

Chaw, Cheng and Zhenli, C. (2013) Production of pH Sensitive Microparticles by Coacervation Technique: Effect of Isopropanol. In: 2013 AAPS Annual Meeting and Exposition, 10-14 Nov 2013, Henry B Gonzalez Convention Centre, San Antonio.

Downloaded from: http://sure.sunderland.ac.uk/id/eprint/5040/

Usage guidelines

Please refer to the usage guidelines at http://sure.sunderland.ac.uk/policies.html or alternatively contact sure@sunderland.ac.uk.

Production of pH Sensitive Microparticles by Coacervation Technique: Effect of Isopropanol

C. S. Chaw, Z. Chong

University of Sunderland

Purpose

The pH sensitive polymers are commonly used for enteric coating. They are also promising carriers for lipophilic drugs. Ethanol is a common solvent added for the production of enteric microparticles by simple coacervation technique. This study investigated the effect of isopropanol as solvent to produce cinnarizine loaded Eudragit L100-55 microparticles by the same technique.

Methods

To produce microparticles, an aqueous HPMC solution (2.5 to 8.0 % w/w) was added to a solution (made of isopropanol) consisting of cinnarizine (15 % w/w) and Eudragit L100-55 (8 to 16 % w/w). Microparticles formed after addition of water. Different ratios of Eudragit to HPMC (between 4.5:1 and 1:1) were studied. The microparticles obtained were evaluated for particle sizes, encapsulation efficiencies, yields, dissolution profiles and etc.

Results

HPMC ratio of 4.5:1, were produced. Satisfactory yields (75-87%) were obtained with reasonably high drug encapsulation efficiencies (84-95%). No visible cinnarizine crystals were detected from SEM. The endothermic peak related to melting temperature of cinnarizine disappeared and there was shift to a lower value for the transitional peak of Eudragit in the DSC analysis. This result indicated that cinnarizine interacted with the enteric polymer. It exerted a plasticizing effect on the enteric polymer chains. The drug also transformed into amorphous form by coacervation technique. The microparticles exhibited pH responsive characteristics and at the ratios of Eudragit: HPMC between 2:1 and 4:1, over 85% suppression of drug release in HCl was seen. These particles were least 10 µm in diameter.

Conclusion

When isopropanol was used as solvent, the ratios of Eudragit® L100-55: HPMC required to form stable coacervate droplets with particle size of over 10 μ m was lower than those produced from ethanol according to previous work, i.e. isopropanol (2:1 to 4:1) vs. ethanol (3.75:1 and 4.8:1). Nonetheless, to produce similar degree of suppression for release in HCl. The particle size should be over 10 μ m.