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Abstract

It is the intention of this paper to stimulate interest
and highlight the possibilities and challenges of at-
tempting to transfer knowledge between neural net-
works. The goal of knowledge transfer is to take ad-
vantage of previous training experience to solve related
but new tasks. This paper tackles the issue of transfer
of knowledge between radial basis function neural net-
works. We present some preliminary work illustrating
how a neural network trained on one task (the source)
can be used to assist in the synthesis of a new but
similar task (the target).

1 Introduction

The robustness and pattern matching characteristics
of neural networks has enabled them to be applied to
many real-world, large-scale problems of considerable
complexity [Bishop, 1995]. They provide solutions to a
variety of classification problems such as speech, char-
acter and signal recognition, as well as functional pre-
diction and system modeling where the physical pro-
cesses are not understood or are highly complex. Most
of this neural network development effort has concen-
trated upon what has become known as the tabula rasa
approach, i.e. each neural network is developed from
scratch using the appropriate training data and does
not take advantage of previous task-related work.

However, humans tend to perform better at learning
new tasks after having been previously trained on a
similar task. It has been argued for a long time that
transfer of knowledge is an essential human capabil-
ity [Ellis, 1965]. In most situations humans first try to
rely on our experience and adapt knowledge or a strat-
egy which has been successful before. Neural networks
generally have difficulties sharing their task experience
because each network is trained individually on a spe-
cific task that may involve the modeling of a complex
function. The learned function is stored across the

weights and thresholds in a distributed form. This
difficulty hinders the isolation and transfer of desir-
able feature or activity learned by the neural network
to another task [Pratt, 1993]. This may not appear
to be a problem since it is a relatively simple matter
to train a neural network given enough data. How-
ever, such a methodology for network development, is
clearly not biologically plausible and also creates se-
vere difficulties for on-line adaptive learning. Sharkey
describes the process of knowledge transfer as “adap-
tive generalisation” and argues the case for inserting
prior knowledge into a neural network and is worth
repeating here at length:

“If connectionist nets are to be able to exhibit
adaptive behaviour, they need to be prestruc-
tured. Such prestructuring can be accom-
plished through training on related tasks... A
net can be said to exhibit a degree of adap-
tive generalisation when training on one task
results in positive transfer to another task.
In such a case, information has been ez-
tracted that facilitates the performance of a
second task. On the other hand, when neg-
ative transfer is obtained, prior experience
interferes with subsequent learning. In this
way, not only can previous knowledge be in-
corporated by means of postive transfer, but
a net can be seen as having a predisposition
to learn certain tasks rather than others.”
[Sharkey and Sharkey, 1993]

The remainder of this paper is structured as follows:
section two discusses the terminology and details of
task transfer as applied to neural networks; section
three highlights the architecture and characteristics of
radial basis function neural networks; section four de-
scribes the experimental methodology; section five dis-
cusses the results and section six presents the conclu-
sions.



2 Knowledge Transfer

In this section we discuss motivations, techniques and
methodology for knowledge transfer between RBF net-
works.

2.1 Task Transfer Terminology

In the literature, some terms used in task transfer
have several meanings which can be confusing. It will
be useful to define the meanings of the various terms
which are used in the following sections:

(i) Task. A task is the particular function of the RBF
network to be transferred. In all the instances pre-
sented in this thesis it will refer to classification tasks
of some type e.g. Vibration fault classification, Iris
species classification or Vowel classification.

(i) Data. Data refers to the training and test exam-
ples used to train the RBF networks. It is effectively
what the tasks are performed on.

(#4i) Network. The RBF network is trained on a par-
ticular classification task using data from a particular
domain.

(iv) Activity. An activity is a specific instance of a
task transfer operation e.g activity 10 in table 3 refers
to task E being transferred over to task A.

(v) Domain. A domain is a general area of expertise
and can refer to all the knowledge in a given area e.g.
the Iris data set is a collection of three types of Iris in
the domain of flowers.

Early research on task transfer by Ellis has provided
some metrics to gauge the progress of transfer within
humans [Ellis, 1965]. This research can equally be ap-
plied to neural network learning. Ellis identified three
results of attempting task transfer:

(i) Positive transfer. Learning the first task aided in
learning the second task.

(i) Negative transfer. The first task has hindered
learning on the second task. The two tasks were so
dissimilar that the network parameters were initialized
to unsuitable values. This would result in the second
task not reaching an acceptable level of accuracy or
taking far longer than normal to train.

(iii) Zero transfer. No overall effect was observed by
learning the first task. This could be as a result of
small but equal positive and negative effects canceling
each other out.

2.2 Potential advantages of task transfer

Assuming positive transfer has occurred, the following
characteristics should be present in the target network:

(i) Modeling tasks of increased complezity. The ratio-
nale for knowledge transfer is based upon the fact that
humans are able to learn tasks that are of increasing
difficulty. However, if a difficult task is presented be-
fore the simpler prerequisite tasks then it is possible
that the learner may not be able to successfully com-
plete or will at best finish the task by taking an inor-
dinate amount of time.

(i) Learning on fewer training examples. A good in-
dication of the level of intelligence in humans is the
ability of a learner to quickly understand how to ac-
complish a task without being repeatedly told how to
do it. Assuming task transfer was successful then the
previous task should have provided the network pa-
rameters with useful initial values (or better than ran-
dom values).

(iii) Training speedup. Humans tend to perform re-
lated tasks faster, it may be possible for neural net-
works to benefit from a similar speedup in training
time.

3 Radial Basis Function Networks

Radial basis function (RBF) neural networks are a
model that has functional similarities found in many
biological neurons [Moody and Darken, 1989]. RBF
networks have been proved to be capable of univer-
sal function approximation. RBF networks have been
applied to several real-world, large-scale problems of
considerable complexity [Guang and Billings, 1996;
Fung et al., 1996]. They are excellent at pattern recog-
nition and are robust classifiers, with the ability to
generalize in making decisions about imprecise input
data. They offer robust solutions to a variety of clas-
sification problems such as speech, character and sig-
nal recognition, as well as functional prediction and
system modeling where the physical processes are not
understood or are highly complex.

The RBF network consists of feedforward architecture
with an input layer, a hidden layer of RBF units and
an output layer of linear units. The input layer simply
transfers the input vector to the hidden units, which
form a localized response to the input pattern. This
property appears to be very attractive for knowledge
transfer in neural networks. The activation levels of
the output units provide an indication of the nearness
of the input vector to the classes. Learning is nor-
mally undertaken as a two-stage process. An unsuper-
vised clustering technique is appropriate for the hid-
den layer while a supervised method is applied to the
output layer units. The nodes in the hidden layer are
implemented by kernel functions, which operate over



a localized area of input space. The effective range
of the kernels is determined by the values allocated
to the centre and width of the radial basis function.
While the Gaussian function is normally used as the
receptive field other functions such as the thin-plate-
spline function, multi-quadratic function and the in-
verse multi-quadratic functions have been used [Lowe,
1997].

4 Methodology

This section discusses the data sets used in the exper-
imental work and the task transfer technique.

4.1 Data Sets

The data sets represent a variety of synthetic and real
world problems of varying complexity (i.e. number of
examples, input features and classes.).

Figure 1 gives the details of the data sets. The
columns indicate the number of examples, the number
of classes, the number of input features, if the data set
contains continuous data, discrete data and the last
column indicates if any data is missing.

4.2 Task specific constraints

Factors which must be considered are the differences
between the source and target tasks. A source task
consists of a pre-trained RBF network and/or the orig-
inal data. A target task consists of the available train-
ing data (which may be insufficient) and information
about the number of input features and output classes.
A number of factors must be taken into account when
judging the similarity between two tasks:

(i) Structural differences. For example, the number
of inputs and outputs may not be the same for each
task. If the source task has a greater number of inputs
than the target task then the additional features may
enable a better classifier to be built.

(i) Symbolic differences. For example, the inputs and
outputs present in the source task may not correspond
to the same features on the target task. Even in
strongly related domains such differences can occur.
(iii) Complexity differences. For example, either the
source or the target task may be more complex. The
complexity for each task is determined by the number
of the degrees of freedom within the RBF network,
training time, and the accuracy of the RBF network.
(iv) Spatial differences. For example, it is likely that
the numerical values comprising the input space may
differ to a great extent, this can be partially alleviated

by scaling before the training the networks. Large nu-
merical values would adversely affect the classification
ability.

(v) Ordering differences. For example, related to the
complexity difference as it may be easier to under-
stand a simpler task before tackling a more complex
task. Hence, the order in which task transfer occurs
may be crucial.

4.3 Experimental approach for task transfer

We suggest it may be more appropriate to view task
transfer within an RBF network as an analysis of the
hidden units with the objective of recruiting those
units that may be useful in representing the second
task. The selected hidden units and weights are then
copied and assigned to the new task.

The selection of RBF units deemed useful for transfer
was based upon the activation levels of those units
when presented with the second task training set.
Those radial basis units that had consistently high
(near 1) mean activation levels were selected for trans-
fer. A variable set-point S for selecting the most ac-
tive hidden units was used. A high value is initially
assigned to S which can be reduced depending upon
the strength of the task similarity. Figure 2 describes
the transfer algorithm in detail.

S is used as a metric to judge the task similarity. It
may be reduced where appropriate to include hidden
units that may contribute towards a useful classifica-
tion. Those hidden units that are selected are com-
bined with the hiddden units generated from the ap-
propriate second task training data. The hidden units
are grouped with the appropriate output class units
by calculating a new output weight matrix.

5 Experimental Results

The tasks were organized into seven combinations of
training sets. Task G contains all three classes and
therefore acts as a control to monitor the effects of
transfer. Table 1 lists the contents of each task.

Figure 3 shows the order in which the tasks were per-
formed and the effects of the transfer process in terms
of: classification accuracy, number of floating point op-
erations required for training, number of hidden units
involved in transfer and the overall result of transfer
(positive, negative or zero).

Overall, the process of transfer worked quite well. The
first six activities consisted of single class tasks. Ac-



Figure 1: Composition of data sets used in experimental work

Data set Cases Classes Attrib Contin Discrete Missing
Xor(binary) 4 2 No Yes No
Xor(continuous) 100 2 Yes No No
Iris 150 3 Yes No No
Housing(see notes) | 506 3 Yes Yes No
Vowell(Peterson) 1520 10 Yes Yes No
Vowell(Deterding) | 990 11 Yes Yes No
Protein(yeast) 1484 10 Yes No No
Protein(ecoli) 336 8 Yes No No
Dna(splice) 3190 3 60 No Yes No
Credit(German) 1000 2 20 No Yes Yes
Credit(Japanese) 125 2 Yes Yes Yes
Credit(Australian) | 690 2 15 Yes Yes Yes
Abalone(see notes) | 4177 3 Yes Yes No
Diabetes(Pima) 768 2 Yes No No
Monksl 556 2 No Yes No
Sonar 208 2 60 Yes No No
Vibration 1 1028 3 Yes No No
Vibration 2 1862 8 20 Yes No No
Figure 3: Results of knowledge transfer on Iris dataset
Activity Task Classification Complexity = RBF units Total of Overall
Sequence Accuracy (%) (MFlops) Transferred RBF units Transfer
1 A—>B 90 3.37 16 56 Positive
2 A—-C 86 1.68 1 41 Positive
3 B—~C 97 1.88 1 41 Positive
4 B—+A 75 3.68 19 59 Negative
5 C— A - - 0 - Zero
6 C—+B - - 0 - Zero
7 A—-E 86 24 7 47 Positive
8 B—=F 90 3.9 9 49 Positive
9 C—-D - - 0 - Zero
10 E—>A 88 4.41 20 60 Positive
11 F—-B 92 3.99 11 45 Positive
12 D—-C 36 3.69 8 48 Negative
13 G 4 772 N/A 60 N/A

Table 1: Task training set composition

Task Composition

Task A Versacolor

Task B Virginica

Task C  Setosa

Task D Versacolor + Virginica

Task E  Setosa + Virginica

Task F Setosa + Versacolor

Task G Setosa + Virginica + Versacolor

tivities 1, 2 and 4 had source tasks that were closely
related to the target task and were able to contribute
hidden units to the second task. Activities 5, 6 and
9 consisted of those source tasks that were too disim-

ilar to the target task and were unable to contibute
any hidden units. It would have been possible to re-
duce the setpoint value S and thus collect some hidden
units. However, in practice the value of such units in
contributing towards a useful classification is insignif-
icant. Therefore the order in which the tasks are pre-
sented is also an important feature of neural network
transfer, i.e. the zero transfer activities 5 and 6 are
the reverse of positive activities 2 and 3.

Activities 7-12 are more complex consisting of one class
task transferred to two class tasks and vice-versa. Ac-
tivity 13 is a task trained on all three classes and acts
as a control to measure the effects of transfer upon the
other tasks. Activity 13 (TaskG) is the usual method
of training a neural network, i.e. all the training exam-



Input:
Source task A network parameters
Source task A training data
Target task B training data
Set-point S
Gaussian radius spread o
Output:
Target task B network
Hidden units from task A
Procedure:
Train source task on A data
Set-point = upper value
Apply task B data to source network A
While set-point > lower value
If Task A hidden unit activations > S
Save hidden units
Else
Decrement S
If Hidden units found
Extract hidden unit parameters
Train task B network on task B data
Merge extracted units with task B network
Adjust o for all RBF centers
Compute new output unit weights
Save final network
Else
Exit program

Figure 2: Knowledge transfer algorithm

ples were supplied on a single training run. Activity
3 is interesting because its classification accuracy is
better than the control task G. This was due to the
activity 3 consisting of two classes. The absent third
class always causes mis-classification errors.

5.1 Inter-Task Transfer Experiments

This section describes the work performed on inter-
task transfer i.e. transfer between entire data sets
rather than a decomposed task (intra-task) as that
performed on the Iris data set. Unfortunately, in most
cases task transfer failed to obtain favorable results.

The task transfer algorithm described in figure 2 was
then applied to the other problem domains. It was ex-
pected that previous learning on tasks within a related
family would give significant training advantages. The
tasks were organised into related tasks of training sets,
table 2 identifies the contents of each task. Those tasks
prefixed with a “U” are unrelated to all other tasks.

Modifications were made to the original task trans-
fer algorithm. This involved developing a similarity
checking algorithm which was used as a pre-processor
to task transfer. This new algorithm checked several

Table 2: Task naming convention and complexity rat-
ing

Task id Domain Complexity
Al Xor(bin) 16

A2 Xor(continuous) 16

B1 Vowel(peterson) 347.00
B2 Vowel(deterding)  1509.80
C1 Protein(yeast) 764.57
C2 Protein(ecoli) 287.18
D1 Credit(german) 211.70
D2 Credit(japan) 149.73
D3 Credit(australian) 118.57
El Vibration(1) 96.93
E2 Vibration(2) 879.78
U1l Iris 22.23
U2 Housing 102.73
U3 Dna 380.51
U4 Monks1 56.82
Us Sonar 115.90
U6 Diabetes 630.36

of the task criteria discussed earlier (structural and
complexity similarities). The complexity measure was
easily assessed by using equation 1:

Complexity = (Ni+Nh+No+Nw2)/(100/Ngee) (1)

where: Ni is the number of input features, Nh is the
number of hidden units, No is the number of output
units and Nw2 is the number of hidden to output unit
weights (W2). N,.. was the accuracy of the network
and was given a greater role in determining the com-
plexity than the other parameters.

5.2 Analysis of inter-task transfer

The disapointing results obtained from majority of the
inter-task experiments could be traced down to a num-
ber of potential sources of error.

e The averaged spread o values calculated for trans-
ferred hidden units were inappropriate. A hid-
den unit receiving a larger spread than it was
trained on is apt to over generalize and give false
positives. Conversely, a hidden unit receiving a
smaller spread than it was trained on is unlikely
to detect the appropriate input patterns and thus
generate false negatives.

e The averaged input feature values (u centres)
calculated for the transferred hidden units with
“missing” input features were inappropriate. No



Figure 4: Results of knowledge transfer for related tasks

Activity Task Acc Comp Symb RBFs Total Overall
Sequence (%) Diff Diff(%) Trans RBFs Transfer
1 Al —» A2 100:100 Equal 0.0 4 6 Positive
2 A2 - Al 100:100 Equal 0.0 4 4 Positive
3 Bl — B2 86:86 Greater 50.0 9 209 Zero
4 B2 — B1 62:62 Less 0.0 6 36 Zero
5 Cl —» C2 87:87 Less 45.0 45 80 Zero
6 C2 —» C1 57:57 Greater 35.0 11 131 Zero
7 D1 —» D2 93:93 Less 50.0 0 50 Zero
8 D1 — D3 71:71  Less N/A 0 50 Zero
9 D2 - D1 72:72 Greater 0.0 0 90 Zero
10 D2 — D3 71:71  Less N/A 0 50 Zero
11 D3 — D1 72:72  Greater N/A 0 90 Zero
12 D3 — D2 93:93  Greater N/A 0 50 Zero
13 El — E2 94:85 Greater 68.0 12 112 Negative
14 E2 =+ El1 73:73 Less 0.0 23 46 Zero

analysis was performed to verify this hypothe-
sis. However, given the authors knowledge of how
spread and centre position values can affect clas-
sification accuracy it is likely that this was a par-
ticulary damaging source of error.

6 Conclusions

The results of the initial experimental work on intra-
task transfer were encouraging. Although it was sus-
pected that the Iris domain may have been too simple
to enable useful transfer of knowledge to occur. How-
ever, positive transfer did occur in a number of cases
because of the decomposition of the Iris data. This en-
abled the formation of three tasks that had the same
number of input features with RBF centre locations
that were numerically similar. The main factor likely
to prevent the uptake of knowledge transfer by the neu-
ral network community would concern to the practi-
calities of training a network afresh versus the tradeoff
between the computational overheads of the transfer
process. There are undoubtably many application ar-
eas where neural networks would not benefit from task
transfer e.g. those source to target tasks that have
different numbers of input features and those which
are from drastically different domains. Conversely, to
benefit from task transfer the RBF networks under
scrutiny should have the same number of inputs and
be from fairly similar domains.
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