
Modesti, Paolo (2016) AnBx: Automatic Generation and Verification of Security
Protocols Implementations. In: 8th International Symposium, FPS 2015, 2628
Oct 2015, ClermontFerrand, France.

Downloaded from: http://sure.sunderland.ac.uk/id/eprint/6441/

Usage guidelines

Please refer to the usage guidelines at http://sure.sunderland.ac.uk/policies.html or alternatively
contact sure@sunderland.ac.uk.

AnBx : Automatic Generation and Verification
of Security Protocols Implementations

Paolo Modesti

School of Computing Science, Newcastle University, UK
paolo.modesti@newcastle.ac.uk

Abstract The AnBx compiler is a tool for automatic generation of Java
implementations of security protocols specified in a simple and abstract
model that can be formally verified. In our model-driven development
approach, protocols are described in AnBx , an extension of the Alice
& Bob notation. Along with the synthesis of consistency checks, the
tool analyses the security goals and produces annotations that allow the
verification of the generated implementation with ProVerif.

Keywords: security protocols, Java code generation, applied formal
methods, verification

1 Introduction

In the Internet era, organisations and individuals heavily depend on the security
of the network infrastructure and its software components. Security protocols
play a key role in protecting communications and user’s digital assets, but evid-
ence shows [1] that despite considerable efforts, their implementation remains
challenging and error-prone. In fact, low-level implementation bugs that need to
be manually patched, are discovered even in ubiquitous protocols like TLS and
SSH which are thoroughly tested. Indeed, a robust implementation requires the
specification of the (defensive) consistency checks on the received data that need
to be performed to control that the protocol is running according to the specific-
ation. However, it is important to recognize that while some checks on reception
are trivially derived from the narrations (verification of a digital signature, com-
parison of the agent’s identities), others are more complex and managing them
can be a challenging task even for an expert programmer.

To counter this problem, we propose a model-driven development approach
that allows automatic generation of a program, from a simpler and abstract
model that can be formally verified. In this paper, we present the AnBx Compiler
and Code Generator1, a tool for automatic generation of Java implementations
of security protocols specified in the simple Alice & Bob (AnB) notation [2] (or
its extension AnBx [3]), suitable for agile prototyping.

In addition to the main contribution of an end-to-end AnB to Java compiler,
this paper extends our previous work [4] providing a formalization of the com-
piler, focusing on the generation of consistency checks (enhancing on [5]) and

1 Available at http://www.dais.unive.it/~modesti/anbx/

http://www.dais.unive.it/~modesti/anbx/

2 Paolo Modesti

AnBx

AnB

Optimized Executable Narration

A -> B,(A|B|-): M

A -> B: {B,M}inv(sk(A))

A: send(B,sign((B,m),priv(skA)))

B: x:=receive()
B = proj[1](dec(x,pub(skA)))

OFMC
verification

safe

AnBx channel implementation

generation of checks on reception

common subexpression elimination

check set refinement

unsafe

ATTACK

AnB-IF

Figure 1. Compiler front-end: pre-processing, verification, ExecNarr optimization

on the generation of annotations of the security goals that are necessary for the
verification of the implementation with ProVerif [6].

Outline of the paper In §2 we describe the architecture of the AnBx Compiler
and Code Generator. The translation from AnB to the intermediate format and
the construction of the implementation are described in §3. §4 focuses on the
verification of the implementation and in §5 we conclude by discussing related
and future work.

2 Architecture of the AnBx compiler

In this section, we present an overview of the compiler, which is developed in
Haskell, by illustrating all the steps in the automatic Java code generation of
security protocols from an AnBx or AnB model (Figures 1 and 2).

Pre-Processing and Verification AnBx→ AnB→ (verification)
The AnBx protocol is lexed, parsed and then compiled to AnB , a format

which can be verified with the OFMC model checker [7]. The compiler can also
directly read protocols in AnB . The AnBx language is described in §3.1.

Front-end AnB→ ExecNarr→ Opt-ExecNarr
At this stage, if the verification is successful, the AnB specification can be

compiled into an executable narration (ExecNarr), a set of actions that opera-
tionally encodes how agents are expected to execute the protocol. The core of
this phase (§3) is the automatic generation of the consistency checks derived

AnBx : Automatic Generation and Verification of Security Protocols 3

Optimized

(application logic)Application Template

Typed Optimized

Code Generation

Generated Code Security Library
API

(protocol logic)

Type System

Java Runtime Environment Java Cryptographic Architecture

concrete types and API calls

config file: network and crypto parameters

type inference / type checking

abstract types and API calls

verification

unsafe

ATTACK

safe

PROVERIF
applied-pi

Executable Narration

Executable Narration

Figure 2. Compiler back-end (Type System, Code generator, Verification) and run-
time support

from the static information of the protocol narrations. Checks are expressed by
means of consistency formulas; the tool applies some simplification strategies
which offer good results in practice, in order to reduce the number of generated
formulas. A further step is the generation of the optimized executable narra-
tion (Opt-ExecNarr) [4], which applies some optimization techniques, including
common subexpression elimination (CSE), which in general are useful to gen-
erate efficient code. Considering the set of cryptographic operations, which are
computationally expensive, the code is optimized, in order to reduce the overall
execution time. To this end, variables are instantiated to store partial results
and a reordering of assignment instructions is performed with the purpose of
minimizing the number of cryptographic operation.

Back-end Opt-ExecNarr→ (protocol logic) + (application logic)→ Java
The final stage is the generation of the Java source code from the Opt-

ExecNarr . The previous phases are fully language independent from the target
programming language considered. Moreover, we designed a versatile tool that
allows for a wide range of user customizations. We summarize here the main
components and their characteristics:2

Code generation strategy We make a distinction between the protocol
logic and the application logic. The latter is implemented by means of para-
metrized application template files written in the target language which can be

2 A detailed description of the compiler’s back-end is available in [8].

4 Paolo Modesti

customized by the user. This helps the integration of the generated code in larger
applications. The templates are instantiated with the information (the protocol
logic) derived from the optimized executable narration. We model the protocol
logic by means of a language independent intermediate format called Typed-Opt-
ExecNarr , which is, in essence, a typed representation of the Opt-ExecNarr . This
is useful to parametrize the translation and to simplify the emission of code in
other programming languages.

Type System Building the Typed-Opt-ExecNarr requires a type system
modelling a typed abstract representation of the security-related portion of a
generic procedural language supporting a rich set of abstract cryptographic prim-
itives. The type system infers the type of expressions and variables insuring that
the generated code is well-typed. It has the additional benefit of detecting at run
time whether the structure of the incoming messages is equal to the expected
one, according to the protocol specification.

Code emission This is performed by instantiating the protocol templates,
i.e., the skeleton of the application, using the information derived from the pro-
tocol logic. It is worth noting that only at this final stage the language specific
features and their API calls are actually bound to the protocol logic. To this end,
two mappings are required. One between the abstract and the concrete types;
the other one between the abstract actions and the concrete API calls.

Security API The run-time support relies on the cryptographic services
offered by the Java Cryptography Architecture (JCA). In order to connect to
the JCA, we designed an API for security which wraps, in an abstract way,
the JCA interface and implements the custom classes necessary to encode the
generated programs in Java. The AnBxJ library offers a high degree of generality
and customization, since the API does not commit to any specific cryptographic
solution (algorithms, libraries, providers). Moreover, the library provides access
in an abstract way to the communication primitives used to exchange messages
in the standard TCP/IP network environment. The generated code comes along
with a configuration file that allows the developer to customize the deployment of
the application at the cryptographic (keystore location, aliases, cipher schemes,
key lengths, etc.) and network level (IP addresses, ports, etc.) without requiring
to regenerate the application.

Verification of the implementation The Typed-Opt-ExecNarr can be trans-
lated into Applied pi-calculus and verified with ProVerif [6]. This requires that
the AnB security goals are analysed and specific annotations modelling the se-
curity properties are generated along the compilation chain. The verification of
the implementation is described in §4.

3 Construction of the Implementation

We now describe how protocols in AnB can be compiled into ExecNarr . The goal
is to obtain an operational description of the actions each agent has to perform,
including the informative checks on reception of messages.

AnBx : Automatic Generation and Verification of Security Protocols 5

Protocol: CreditCard
Types:

Agent C,M,A;
Certified C,M,A;
Function [Agent ,Agent -> Number] ccn

Knowledge:
C: C,M,A;
M: C,M,A;
A: C,M,A;
C,A share ccn(C,A)

Actions:
C -> M,(C|A|A): ccn(C,A)
M -> A,(C|A|A): ccn(C,A)

Goals:
A weakly authenticates C on ccn(C,A)
ccn(C,A) secret between C,A

Fig. 3. AnBx protocol - Example

3.1 The AnBx language

The AnBx language [3] is built as an extension of AnB , whose description and
formal semantics are available in [2]. AnBx uses channels as the main abstraction
for communication, providing different authenticity and/or confidentiality guar-
antees for message transmission, including a novel notion of forwarding channels,
enforcing specific security guarantees from the message originator to the final re-
cipient along a number of intermediate forwarding agents. The translation from
AnBx to AnB , can be parametrized using different channel implementations, by
means of different cryptographic operations.

The example in Figure 3 depicts a (hyper-simplified) communication pattern
common in e-commerce protocols like iKP [9] and SET [10]. To complete a
payment, a customer C needs to send its credit card number ccn(C,A) to the
acquirer A, through the merchant M, as these protocols do not contemplate direct
exchange of messages between C and A. The goal of the protocol is dual: the
secrecy of the credit card should not be compromised and A should be convinced
that message has originated from C.

Some peculiarities of the AnBx syntax are the following. In Type section
Certified C,M,A declares that these agents can digitally sign and encrypt mes-
sages. The function ccn with signature [Agent,Agent -> Number] is used to
model abstractly a credit card number. Concretely, the statement in the Know-

ledge section C,A share ccn(C,A) means that C and A know the credit card
number before the protocol execution. The action C -> M,(C|A|A): ccn(C,A),
means that the payload is digitally signed by C, verifiable by A, and confidential
for A.

Goals in AnBx specify the security properties that the protocol is meant to
convey. They can also be translated into low level goals suitable for the verific-
ation with various tools. We support three standard AnB goals:

Weak Authentication goals have the form B weakly authenticates A on M

and are defined in terms of non-injective agreement [11];

6 Paolo Modesti

Authentication goals have the form B authenticates A on M and are defined
in terms of injective agreement on the runs of the protocol, assessing the freshness
of the exchange;

Secrecy goals have the form M secret between A1,...,An and are intended
to specify which agents are entitled to learn the message M at the end of a
protocol run.

3.2 Protocol Compilation

The intermediate format used by the compiler (ExecNarr) is composed by two
sections: a declaration and the actual narration. The declaration includes the
initial knowledge of each agent, the names generated by them and the names
that are assumed to be initially known only by a subset of agents, similarly to the
share construct. The syntax of ExecNarr , which extends the one presented in
[5], is shown in Table 1. The agents are taken from set of agent names A, and the
messages are built upon set of names N. We also consider a set of user-defined
functions F. It is assumed that A,F,N are mutually disjoint.

As a first step of the compilation process, we need to derive the declaration
section from the AnB agent’s knowledge mapping the Knowledge of the protocol.
A function τ : MAnB →M translates the AnB messages to their equivalent in
ExecNarr , where MAnB and M are the sets of messages in the two formats.

A core component of the translation from AnB to the executable narration
format is the computation of the checks on reception extending and refining the
ideas proposed by Briais and Nestmann [5].

However, we improve [5] on three directions. First, a major contribution of
the present paper is the translation of security goals allowing for verification of
the implementation of the protocol (§4). Second, we support a richer language
allowing to model a larger class of real-world protocols, introducing operators
like hmac, kap, kas and user defined functions. kap and kas are used to model
the basic operations on keys which are available in key agreement protocols
like Diffie-Hellman [12]. They satisfy the algebraic property kas(kap(g, x), y) ≈
kas(kap(g, y), x), given the pre-shared parameter g. Third, we dramatically im-
proved the performance of the compiler as shown in [4].

The AnB actions are translated to produce an operational description of the
steps each agent has to perform. Atomic exchanges of the form A→ B : M are
compiled to a more specific set of basic actions:

emission A : send(B,E) of a message expression E (evaluating to M);
reception B : x := receive() of a message and its binding to a fresh variable

name x, where x ∈ V, the set of variables, mutually disjoint from A, F, N;
check B : φ for the validity of the formula φ from the point of view of agent B.

In addition, we define two additional basic actions that may be performed during
the protocol execution and goal annotations:

scoping A : new k, represents the creation and scope of private names;
assignment A : x := E, the variable x assume the value of the expression E.
goal event A : γ, a goal annotation γ from the point of view of agent A.

AnBx : Automatic Generation and Verification of Security Protocols 7

expressionsE
E,F ::= a name

| A agent′s name
| x variable
| hash(E) hashing
| pub(E) public key
| priv(E) private key
| (E1, ..., En) tuple ? Ei ∈ E, i ∈ {1..n}
| πi(E) i−th projection ?

| enc(E,F) asymmetric encryption
| encS(F, F) symmetric encryption ∗

| dec(E,F) asymmetric decryption
| decS(E,F) symmetric decryption ∗

| hmac(E,F) hmac ∗

| kap(E,F) key agreement half key ∗

| kas(E,F) key agreement full key ∗

| E(F) function ∗

formulae
φ ::= [E = F] equality check
| [E : M] well−formedness test
| inv(E,F) inversion test

events∗

Q ::= witness|request
| wrequest|secret

goal labels∗

L ::= l goal label
goals events∗ (A1, ..., An are agent

′s names)
γ ::= Q(L,E, (A1, ..., An)) goal event

actions (A,B are agent′s names)
I ::= A : new k fresh name generation
| A : send(B,E) message emission
| A : x := receive() message reception
| A : x := E assignment ∗

| A : φ check
| A : γ goal event ∗

narrations
N ::= ε empty narration
| I;N non empty narration

declarations
D ::= A knowsM initial knowledge

(M is a ground expression)
| A generates n fresh name generation
| private k private name

protocol
P ::= D;P |N declarations + narration

Table 1. Syntax of the executable narrations (Extensions with respect to [5] are marked
with *. Moreover, previously pairs (E.F) were used instead of tuples (?).)

8 Paolo Modesti

ANA−INI
(M,E) ∈ K

(M,E)∈A0(K)

ANA−OP1
(op(M), E) ∈ An(K)

(op(M), E)∈An+1(K)
op ∈ {pub, priv, hash}

ANA−OP2
(op(M,N), E) ∈ An(K)

(op(M,N), E)∈An+1(K)
op ∈ {hmac, kap, kas}

ANA−FUN
(M(N)), E) ∈ An(K) M ∈ F

((M(N)), E)∈An+1(K)

ANA−PROJ
((M1, ...,Mm), E) ∈ An(K)

((Mi, πi(E))∈An+1(K)
i ∈ {1..m}

ANA−DEC
(enc(M,N), E) ∈ An(K) (inv(N), F) ∈ S(An(K))

(M,dec(E,F)∈An+1(K)

ANA−DECS
(encS(M,N), E) ∈ An(K) (inv(N), F) ∈ S(An(K))

(M,decS(E,F)∈An+1(K)

ANA−DEC−REC
(op(M,N), E) ∈ An(K) (inv(N), F) /∈ S(An(K))

(op(M,N), E)∈An+1(K)
op ∈ {enc, encS}

ANA−NAM−REC
(M,E) ∈ An(K) M ∈ N ∪A

(M,E) ∈ An+1(K)

Table 2. Analysis ana-rules

Generation of consistency checks Formulas φ on received messages are
described by a conjunctions of three kinds of checks:

equality [E = F] denoting the comparison of two expressions E and F ;
well-formedness [E : M] denoting the verification of whether the projections

and decryption contained in E are likely to succeed;
inversion inv(E,F) denoting the verification that E and F evaluate to inverse

messages.

Since consistency checks will have to operate on (message,expression) pairs,
the representation of the agent’s knowledge must be generalized. The idea is
that a pair (M,E) denotes that an expression E is equivalent to the message
M . For this reason, it is necessary to introduce the notion of knowledge sets, and
two operations on them: synthesis reflecting the closure of knowledge sets using
message constructors; analysis reflecting the exhaustive recursive decomposition
of knowledge pairs as enabled by the currently available knowledge.

Formally these sets and operations are defined as follows with the necessary
adaptations from [5]:

Definition 1 (Knowledge).
Knowledge sets K ∈ K are finite subsets of M×E.
The analysis A(K) of K is

⋃
n∈N
An(K) where the sets Ai(K) are the smallest

sets satisfying the ana-rules in Table 2.

AnBx : Automatic Generation and Verification of Security Protocols 9

SYN−OP1
(M,E) ∈ S(K)

(op(M), op(E))∈S(K)
op ∈ {pub, priv, hash}

SYN−OP2
(M,E) ∈ S(K) (N,F) ∈ S(K)

(op(M,N), op(E,F))∈S(K)
op ∈ {hmac, kas, kap}

SYN−ENC
(M,E) ∈ S(K) (N,F) ∈ S(K)

(op(M,N), op(E,F))∈S(K)
op ∈ {enc, encS}

SYN−TUPLE
(M1, E1) ∈ S(K) ... (Mm, Em) ∈ S(K)

((M1, ...,Mm), (E1, ..., Em))∈S(K)
i ∈ {1..m}

SYN−FUN
(M,E) ∈ S(K) (M,F) ∈ S(K) M ∈ F

(M(N), (E(F))∈S(K)

SYN−KAP
(M,E) ∈ S(K) (N,F) ∈ S(K) M ∈ N

(kap(M,N), kap(E,F))∈S(K)

SYN−KA−EQ
(kas(kap(M,N), O), kas(kap(E,F), G) ∈ S(K) M ∈ N

(kas(kap(M,O), N), kas(kap(E,G), F) ∈ S(K)

Table 3. Synthesis syn-rules

The synthesis S(K) of K is the smallest subset of M × E containing K
and satisfying the syn-rules in Table 3. In addition, we define a variant of
the synthesis S?(K) of K as the smallest subset of M × E containing K and
satisfying the syn-rules in Table 3 excluding the syn-enc rule.

With respect to the original work [5] we defined S? and we added the syn-
rules syn-op2, syn-fun, syn-tuple, syn-kap, syn-ka-eq and the ana-rules
ana-op2, ana-fun, ana-proj in order to support a more expressive language
like AnB . These new rules are necessary to generalize the notion of synthesis and
analysis with functions and operators defined in AnB , and previously unavailable
in the original work. It is worth noting that the syn-ka-eq rule is necessary
to model the algebraic equivalence kas(kap(g, x), y) ≈ kas(kap(g, y), x). More
equational theories could be supported by adding ad-hoc rules.

During the protocol execution the initial knowledge set is extended, according
to the information learned by the reception actions: the expected message and
the corresponding expression.

Definition 2 (Consistency Checks).
Let K be a knowledge set. Its consistency formula Φ(K) is defined as follows:
Φ(K) :=

∧
(M,E)∈K [E : M]

∧
∧

(M,Ei)∈K∧(M,Ej)∈S?(K)∧Ei 6=Ej
[Ei = Ej]

∧
∧

(M,Ei)∈K∧(inv(M),Ej)∈S(K) inv (Ei, Ej)

The first conjunction clause checks that all expressions can be evaluated,
the second checks that if there are several ways to build a message M , then
all the corresponding expressions must evaluate to the same value. We can see
here that S? is introduced to avoid computing any equality check which requires

10 Paolo Modesti

synthesizing new terms using symmetric and asymmetric encryption. In fact, in
concrete implementations, non-deterministic encryption schemes are employed
and therefore, those checks are going to fail anyway. It is important to underline
that this does not undermine the robustness of the application because we just
prune checks failing due to the over approximation of the abstract model. The
third conjunction clause checks that if it is possible to generate a message M and
its inverse inv(M), then the corresponding expressions must also be mutually
inverse. The generation of the consistency formulas implies comparing pairs taken
from K, with pairs taken from the synthesis of K. Knowledge sets can often be
simplified without loss of information, i.e. without undermining the computation
of the consistency formula.

Definition 3 (Irreducibles).
Let K be a knowledge set, OP1 = {pub, priv, hash} the set of the unary

operators, OP2 = {enc, encS, hmac, kap, kas} the set of binary operators and F
the set of user-defined functions. The set of irreducibles I(K) is defined as
I(K) = irr (A(K)), where

irr(K) := {(M,E) ∈ K |M ∈ A ∪N}⋃
{((M1, ...,Mn) , E) ∈ K | ∀F (Mi, F) /∈ S (K) ∀i ∈ {1..n}}⋃

op∈OP1∪F

{(op (M) , E) ∈ K | ∀F (M,F) /∈ S (K)}⋃
op∈OP2

{(op ((M,N) , E) ∈ K | ∀F (M,F) /∈ S (K) ∧ ∀G (N,G) /∈ S (K)}

Let ∼ denote the equivalence relation on M×E induced by (M,E) ∼ (N,F)
⇐⇒ M = N . rep (K) denotes the result of deterministically selecting one rep-
resentative element for each equivalent class induced by ∼ on K.

Compilation The above notions are the elements required to compile the AnB
protocol to ExecNarr . The translation function keeps track of the global inform-
ation regarding variables used, private names, generated names, and agents’
local knowledge. To model the latter we define a function k : A → K, mapping
agents’ names to their current knowledge.

The compilation of A → B : M checks that M can be synthesized by A,
instantiate a new variable x and adds the pair (M,x) to the knowledge of B.
The consistency formula Φ(A(K ′

B)) of the analysis of the updated knowledge
K ′

B defines the checks φ to be performed by B at run-time.
Our compilation process extends the one formalized in [5] in two fundament-

als aspects. First, it considers an extended language as described above. Second,
it handles the generation of events related to security goals that was previously
not considered. The compilation can be summarized as follows: if A 6= B and
∃E. (τ(M), E) ∈ S (k (A)), we can compile the AnB action A → B : M as a
sequence of basic actions in ExecNarr . In detail:

A : γA
A : send(B,E)
B : x := receive()
B : φ

AnBx : Automatic Generation and Verification of Security Protocols 11

B : γB

where x is a fresh variable storing the incoming message, k (A) and k (B)
are the partial mappings of the knowledge set for the two agents, K ′

B = k (B)∪
{(M,x)} is the updated knowledge of the agent B, φ = Φ(A(K ′

B)) is the formula
representing the consistency checks, γA and γB are sets of goal annotations,
computed as we explain in the next section. The updated knowledge of the
agent B, in the reduced form, k′ (B) = rep(I(K ′

B)), is made available for the
compilation of the next protocol action.

4 Verification of the Implementation

4.1 Compiling Security Goals

The standard approach of verification tools like OFMC [7] and ProVerif [6] is
to model secrecy goals as reachability properties and authentication goals as
correspondence assertions. In order to verify the implementation, AnB security
goals must be analysed and specific annotations (events) modelling the security
properties need to be generated along the compilation chain. To build the an-
notations, our approach is inspired by the translation from AnB to IF done in
OFMC [13]. However, since IF is not suitable to encode consistency checks in an
imperative style as the one used by ExecNarr , we found it practical to translate
our encoding into Applied pi-calculus which can be verified by ProVerif.

Let G be the set of goals of the AnB protocol. Abstractly, authentication
goals can be expressed in the general form g := ((A1, A2) , goaltype,M) where
A2 is the “originator/sender” agent, A1 is a “recipient/receiver” agent, and M is
the message that the goal g is meant to convey. In ExecNarr , the structure of a
single goal annotation γ for an agent A is Q (L,E, (A1, A2)), where Q is a goal
event (wrequest or request or witness), L is a goal label, E is an expression
that represents the message M from the perspective of A, and A1, A2 are the
agent’s names. Goal labels must be unique for each goal and corresponding
assertions must share the same label. Instead secrecy goals have the abstract form
g := ((A1, ...An) , secret,M) where A1, ...An is a list of agents’ names (the secrecy
set), and M is the message meant to stay secret among the agents. In ExecNarr
the structure of a single goal annotation γ for an agent A is Q (L,E, (A1, ...An))
where Q is a goal event secret, L is a goal label, E is an expression that
represents the message M from the point of view of A, and A1, ...An the secrecy
set. Since annotations for the secrecy goals are generated in a different way, we
first discuss only the authentication goals.

Authentication goals Initially, we consider two identical copies of the G set,
named G0

S and G0
R. During the compilation process, these two sets are analysed

and consumed, from the point of view of the sender and the receiver respectively.
Consumed means that for each action A → B : M , the compiler considers
only the goals for which it is possible to synthesize the message specified in
the goal according to the current agent’s knowledge and for those generates

12 Paolo Modesti

the corresponding annotations. Once these messages are synthesized, and the
annotation is generated, these goals are removed from the goal sets. We recall
here that for goals expressed by means of a correspondence assertion, one begin
event must be generated on the sender side and one end event must generated
on the receiver side.

We compile all the protocol actions in sequence with the following pro-
cedure. Given a protocol action A → B : M , an authentication goal g :=
((B′, A′) , goaltype,M ′) and a sender goal set GS , a subset G′

S is computed:

G′
S = {g ∈ GS |∃E. (τ (M ′) , E) ∈ S (k (A)) ∧A = A′}

This is the set of goals where the message M ′ can be synthesized by A. Then
for each g ∈ G′

S the compiler generates a begin event. We denote γA the set of all
generated events on the A side at this step. For example, if g is a weak authentica-
tion goal, the following event is generated: witness(_wauth_MSGBA,E,(B’,A)),
where the event type Q=witness and goal label L=_wauth_MSGBA.

Similarly, given the receiver set of goal GR, a subset G′
R is computed:

G′
R = {g ∈ GR|∃E. (τ (M ′) , E) ∈ S (k′ (B)) ∧B = B′}

It should be noted that this time we synthesize M ′ from k′ (B), the updated
local knowledge of B in the reduced form, which includes {(M,x)}, the incoming
message M and the associated variable x. Therefore, we try to generate the end
event as soon as the receiving agents can synthesize the goal message, but we
position them, in the generated code, after the last usage of the message (checks
included). For each g ∈ G′

R the compiler generates an end event. We denote γB
the set of all generated event on theB side. For example, if g is a weak authentica-
tion goal, the following event is generated: wrequest(_wauth_MSGBA,E,(B,A’)),
where the event type Q=wrequest and goal label L=_wauth_MSGBA.

The labels of the two events must be identical, in order to link them, when
proving the agreement. To this end, we underline that in order to have a precise
verification of the security goals, it is crucial the position where these annotations
are placed into the generated code. This guarantees that the goals are“reachable”
(in ProVerif) it also makes the verification more efficient, as it strengthens the
corresponding property [14].

Modelling the injective agreement is similar, we just replace the wrequest

predicate with request. It should be noted that the generation of the two corres-
ponding assertions (begin/end events) in general implies compiling two different
actions. This is the reason why we consider two sets of goals GS and GR. The
authentication goal in Figure 3 is a clear example of this as the two agents never
exchange a message directly. In fact, managing only a single set of authentica-
tion goals may result in an imprecise translation in the cases where only one of
the agents involved in the action, can synthesize the goal expression but not the
other. After compiling this protocol action, we compute two new sets of goals
G′′

R = GR \G′
R, G′′

S = GS \G′
S , and then apply the procedure to the next action,

and so on.

AnBx : Automatic Generation and Verification of Security Protocols 13

Typed-Opt-ExecNarr Applied pi

A : new k new k
A : send(B,E) out (ch,E)
A : x := receive() in (ch, x)
A : x := E let x = E in

A : E = F if eq (E,F) then

A : wff (E) if eq (E,E) then

A : inv (E,F) if eq (decS (encS (E,F) , F)) , E) then

A : Q (L,E, (A1, ..., An))

{
out (ch, encS (L,E)) if Q = secret

event Q+ L (E,A1, ..., An) otherwise

Table 4. Translation of executable narrations into Applied pi (where + is the concat-
enation operator, ch is the plain channel, eq is the equality function)

Secrecy goals In order to verify secrecy goals, verification tools investigate
whether an expression can become available to the attacker. At the current step
of the compilation we generate one secret event for every agent belonging to
the secrecy set {A1, .., An}, provided the secret message M ′ can be synthesized
by the agent. For agent Ai is checked if ∃E. (τ (M ′) , E). Then an event of the
form secret(<label>,E,(A1,..,An)) is generated and appended at the end of
the actions for each agent. The label must be the same for all events associated
with this goal.

4.2 Translation into Applied pi and Verification with ProVerif

After the generation of the ExecNarr , the compiler performs an optimization step
and generates a typed representation of the implementation called Typed-Opt-
ExecNarr . This language-independent format is used for the code emission in the
target language (Java) which is done mapping one action of Typed-Opt-ExecNarr
to one action in Java. The verification of the soundness of the translation up to
this step is done with ProVerif. The translation into Applied pi requires several
steps: (1) the generation of a prelude that includes cryptographic primitives,
constructors, destructors and security goals used in the protocol, the definition
of (2) a specific process which models the agents’ actions for each agent, (3) a
main process than orchestrates the agent’s processes, and (4) an initialization
process that initialize the whole system. The generation of the prelude is rather
standard with cryptographic primitives defined as usual in ProVerif.

For the definition of authentication goals we consider the annotations of
end events Q (L,E, (A1, A2)) and for each of them we generate the following
goal definition: “query m:bitstring, a1:bitstring, a2:bitstring” + inj +
“event(” + Q + L + “(m,a1,a2)) ==> ” + inj + “event(witness” + L +
“(m,a1,a2))” where inj = “inj-” if Q= “request” (strong authentication), oth-
erwise is the empty string (weak authentication). It should be noted that since
this is a general definition of the goal, we can freely use generic parameters

14 Paolo Modesti

(* Process M *)
let process_M(A:bitstring ,C:bitstring ,M:bitstring ,InvpkM:bitstring ,InvskM:

bitstring ,honestC:bitstring ,honestA:bitstring) =
in(ch,VAR_M_R0:bitstring);
out(ch,VAR_M_R0);
if C = honestC && A = honestA then
out(ch,encS(InvskVSMM ,InvskM));
out(ch,encS(InvpkVPMM ,InvpkM));0.
(* Process C *)
let process_C(A:bitstring ,C:bitstring ,M:bitstring ,CcnCA:bitstring ,pkA:

bitstring ,InvpkC:bitstring ,InvskC:bitstring ,honestM:bitstring ,honestA:
bitstring) =

event witness_wauth_CCNCAAC(CcnCA ,A,C);
out(ch,enc(sign((A,CcnCA),InvskC),pkA));
if M = honestM && A = honestA then
out(ch,encS(CCNCACA ,CcnCA));
out(ch,encS(InvskVSCC ,InvskC));
out(ch,encS(InvpkVPCC ,InvpkC)); 0.
(* Process A *)
let process_A(A:bitstring ,C:bitstring ,M:bitstring ,CcnCA:bitstring ,skC:

bitstring ,InvpkA:bitstring ,InvskA:bitstring ,honestC:bitstring ,honestM:
bitstring) =

in(ch,VAR_A_R1:bitstring);
let VAR_A_DDAR1VPAUSC:bitstring = verify(dec(VAR_A_R1 , InvpkA), skC) in
if eq(A,proj_1_2(VAR_A_DDAR1VPAUSC)) then
if eq(CcnCA ,proj_2_2(VAR_A_DDAR1VPAUSC)) then
if eq(decS(encS(dec(VAR_A_R1 ,InvpkA),dec(VAR_A_R1 ,InvpkA)),dec(VAR_A_R1 ,

InvpkA)),dec(VAR_A_R1 ,InvpkA)) then
if C = honestC && M = honestM then
out(ch,encS(CCNCACA ,CcnCA));
out(ch,encS(InvskVSAA ,InvskA));
out(ch,encS(InvpkVPAA ,InvpkA));
event wrequest_wauth_CCNCAAC(CcnCA ,A,C); 0.

Figure 4. Translation into Applied pi of the Example (fragment)

as m,a1,a2. For the definition of the secrecy goals secret (L,E, (A1, ...An)) we
define: “free ” + L + “:bitstring[private].query attacker(“ + L + “)”.

For the generation of the agent’s process, the translation of actions is de-
scribed in Table 4. Secrecy events are translated into outputs of encrypted terms.
We encrypt the label L with the expression E which is used as key. If the key
is compromised the expression becomes known by the attacker, and then L;
therefore, the goal is violated.

In Figure 4, we show a fragment of the translation of the three processes
in Applied pi of the example Figure 3. For each agent a process is generated.
Process M does not contain events annotations because M acts only as a blind
forwarder of the message from C to A. Agent C registers a witness event linked
to the credit card number CcnCA and outputs a signed and encrypted message
on the public channel ch. More interestingly, A receives a message on the public
channel, decrypts the message and verifies the digital signature of A. Then C

checks if the payload is equal to the information already possessed and then, if the
check is successful, registers a wrequest event linked to the credit card number.
If the check fails, the correspondence cannot be proved, and therefore there
is an attack. Each agent’s process is parametrized and actions are translated
according to Table 4. The parameters of the process are the free names of each

AnBx : Automatic Generation and Verification of Security Protocols 15

process, plus the honestX parameters which are used to distinguish the runs of
the honest agents from the runs which may include the intruder (in this case goals
are trivially violated). For the generation of the main process, we consider the
parallel execution of an arbitrary number of sessions. The process that initializes
the system declares the agent names, sends them on the plain channel and makes
them available to the attacker along with the public keys. Moreover, the shared
values (as the credit card number) are declared. These parameters are passed
to the main process and then to the single processes. An unbounded number of
instances of the initialization process are generated to define the most general
instantiation of the protocol.

4.3 Experimental Results and Tool Evaluation

To experiment and validate our approach we considered a test protocol suite,
which includes, along with the AnB examples in the OFMC distribution, com-
plex e-commerce protocols like SET [10] and iKP [9]. We compared, for this set
of protocols, the results of the analysis performed by OFMC and ProVerif, in
order to check if they provide the same assessments in terms of protocol safety or
detection of (known) attacks. Although this is not a formal proof of correctness,
we think that this comparison may provide a significant experimental evidence
of the soundness of the translation steps along the compilation chain from AnB
to Applied pi. No new attacks, in Dolev-Yao intruder model, should have been
introduced. We found that the two tools provide the same results, with the fol-
lowing caveats. Firstly, ProVerif cannot prove injective agreements if freshness
is achieved using sequence numbers. However, if non-injective agreements can
be proved, and the sequence number is used as a parameter in annotations, the
injectivity, given the uniqueness of the number, can also be derived, but, for a
fully automated proof, it would be necessary to use tools able to model set mem-
bership, for example Set-pi [15]. It should be noted that this is not a limitation
of the Applied pi language itself but a consequence of how ProVerif models sets.
Secondly, it is worth noting that while ProVerif verifies for an unbounded number
of sessions, for large protocols like SET and iKP OFMC struggles to verify two
sessions. Therefore, a direct comparison in these cases may not be immediate.
On the performance side we found that ProVerif is generally faster than OFMC,
but in a few cases is unable to terminate the analysis. In these cases a few tech-
niques like reordering of terms in a message or tagging or mentioning explicitly
the arguments in new instructions may help ProVerif to terminate. However, it
should be noted that in the latter case the analysis preformed by ProVerif could
be less precise, therefore, the previous techniques should be preferable.

On the formal side, the soundness of the translation from AnBx to AnB ,
for a specific channel implementation, has been proven in [16]. At the moment,
we do not verify the concrete Java code which may be part of the future work.
However, we believe that the verification of Typed-Opt-ExecNarr is a crucial step
for the validation of the protocol implementation, being the last step before code
emission.

16 Paolo Modesti

5 Related Work and Conclusions

The tool presented in this paper allows for the specification of security pro-
tocols in AnBx , an extension of the Alice & Bob notation, and automatically
generates Java implementations, including the checks on receptions, which are
crucial for building robust code. Some tools proposed in the past required the
manual encoding of consistency checks and, in contrast with those using process
calculi as an input language [17,18,19], we think that an intuitive specification
language makes the model-driven approach more suitable for a larger audience
of developers. JavaSPI [20], an evolution of Spi2Java, uses Java both as a mod-
elling and as an implementation language. Our abstract specification is succinct,
while, for example, the Spi calculus requires long specification files and type an-
notations [18], which are also required in [21]. Instead, apart from a few naming
conventions, our tool delegates the duty to generate well-typed code entirely to
the type system.

Two recent works considered the generation of implementations from an Alice
& Bob specification. The first one, SPS [22], uses the notion of formats to ab-
stract the structure of real-world protocols and computes the checks on reception
proving the correctness of the translation with respect to the semantics of [2]. The
tool automatically generates JavaScript specifications for the execution environ-
ment of the FutureID project [23], which may require some manual encoding.
The other one [24] proposes a translation from an Alice & Bob specification into
an intermediate representation verifiable with Tamarin [25]; the paper illustrates
how to derive the checks but the tool does not generate concrete implementa-
tions in a programming language. Instead, our tool generates with one-click Java
code that is directly runnable, thanks to the support of the integrated AnBxJ
security library.

We can currently verify the abstract model with OFMC, and deriving an-
notations from the security goals the implementation (up to the code emission)
with ProVerif. For future work, it would be important to verify the final Java
code, along with trying to build a mechanized proof of correctness of the transla-
tion chain. Another possible extension could be the generation of interoperable
implementations. However, AnBx is meant more as a design language rather
than a mere specification language and therefore, from this point of view, is
more amenable for designing new applications or re-engineering existing proto-
cols. A further opportunity could be to plug the tool into an existing Integrated
Development Environment (IDE) such as Eclipse [26] experimenting with pro-
fessional programmers the effectiveness of the model-driven approach proposed
by the AnBx compiler in a more realistic software development environment.

Acknowledgements This work was partially supported by the EU FP7 Project
no. 318424, “FutureID: Shaping the Future of Electronic Identity” (futureid.eu).
The author thanks Michele Bugliesi, Thomas Groß and Sebastian Mödersheim
for useful discussions and Bruno Blanchet for his support on the use of the
ProVerif tool.

AnBx : Automatic Generation and Verification of Security Protocols 17

References

1. Avalle, M., Pironti, A., Sisto, R.: Formal verification of security protocol imple-
mentations: a survey. Formal Aspects of Computing 26(1) (2014) 99–123

2. Mödersheim, S.: Algebraic properties in Alice and Bob notation. In: International
Conference on Availability, Reliability and Security (ARES 2009). (2009) 433–440

3. Bugliesi, M., Modesti, P.: AnBx-Security protocols design and verification. In:
Automated Reasoning for Security Protocol Analysis and Issues in the Theory of
Security: Joint Workshop, ARSPA-WITS 2010, Springer-Verlag (2010) 164–184

4. Modesti, P.: Efficient Java code generation of security protocols specified in An-
B/AnBx. In: Security and Trust Management - 10th International Workshop, STM
2014, Proceedings. (2014) 204–208

5. Briais, S., Nestmann, U.: A formal semantics for protocol narrations. Theor.
Comput. Sci. 389 (December 2007) 484–511

6. Blanchet, B.: An efficient cryptographic protocol verifier based on Prolog rules. In:
Computer Security Foundations Workshop, IEEE, IEEE Computer Society (2001)
0082–0082

7. Basin, D., Mödersheim, S., Viganò, L.: OFMC: A symbolic model checker for
security protocols. International Journal of Information Security 4(3) (2005) 181–
208

8. Modesti, P.: Efficient Java code generation of security protocols specified in An-
B/AnBx. Technical Report CS-TR-1422, School of Computing Science, Newcastle
University (2014)

9. Bellare, M., Garay, J., Hauser, R., Herzberg, A., Krawczyk, H., Steiner, M., Tsudik,
G., Van Herreweghen, E., Waidner, M.: Design, implementation, and deployment
of the iKP secure electronic payment system. IEEE Journal on Selected Areas in
Communications 18(4) (2000) 611–627

10. Bella, G., Massacci, F., Paulson, L.: Verifying the SET purchase protocols. Journal
of Automated Reasoning 36(1) (2006) 5–37

11. Lowe, G.: A hierarchy of authentication specifications. In: CSFW’97. IEEE Com-
puter Society Press (1997) 31–43

12. Denker, G., Millen, J.: CAPSL and CIL language design. Technical Report SRI-
CSL-99-02, SRI International Computer Science Laboratory (1999)

13. Mödersheim, S.: Algebraic properties in Alice and Bob notation (extended version).
Technical Report RZ3709, IBM Zurich Research Lab (2008)

14. Blanchet, B., Smyth, B., Cheval, V.: ProVerif 1.91: Automatic cryptographic pro-
tocol verifier, user manual and tutorial. (2015)

15. Bruni, A., Modersheim, S., Nielson, F., Nielson, H.R.: Set-pi: Set membership
pi-calculus. In: Computer Security Foundations Symposium (CSF), IEEE (2015)
185–198

16. Bugliesi, M., Calzavara, S., Mödersheim, S., Modesti, P.: Security protocol spe-
cification and verification with AnBx. Technical Report CS-TR-1479, School of
Computing Science, Newcastle University (2015)

17. Tobler, B., Hutchison, A.: Generating network security protocol implementations
from formal specifications. Certification and Security in Inter-Organizational E-
Service (2005) 33–54

18. Backes, M., Busenius, A., Hriţcu, C.: On the development and formalization of
an extensible code generator for real life security protocols. In: NASA Formal
Methods. Springer (2012) 371–387

18 Paolo Modesti

19. Pironti, A., Pozza, D., Sisto, R.: Formally based semi-automatic implementation of
an open security protocol. Journal of Systems and Software 85(4) (2012) 835–849

20. Avalle, M., Pironti, A., Pozza, D., Sisto, R.: JavaSPI: A framework for security
protocol implementation. International Journal of Secure Software Engineering
2(4) (2011) 34–48

21. Millen, J., Muller, F.: Cryptographic protocol generation from CAPSL. Technical
Report SRI-CSL-01-07, SRI International (December 2001)

22. Almousa, O., Mödersheim, S., Viganò, L.: Alice and Bob: Reconciling formal mod-
els and implementation. In Bodei, C., Ferrari, G.L., Priami, C., eds.: Programming
Languages with Applications to Biology and Security: Essays Dedicated to Pier-
paolo Degano on the Occasion of His 65th Birthday. Volume 9465 of Lecture Notes
in Computer Science. Springer International Publishing (2015) 66–85

23. FutureID Consortium: FutureID Project http://www.futureid.eu.
24. Basin, D., Keller, M., Radomirovic, S., Sasse, R.: Alice and Bob meet equational

theories. In Mart́ı-Oliet, N., Ölveczky, P.C., Talcott, C., eds.: Logic, Rewriting,
and Concurrency. Volume 9200 of Lecture Notes in Computer Science. Springer
International Publishing (2015) 160–180

25. Schmidt, B., Meier, S., Cremers, C., Basin, D.: Automated analysis of Diffie-
Hellman protocols and advanced security properties. In: Computer Security Found-
ations Symposium (CSF), 2012 IEEE 25th, IEEE (2012) 78–94

26. Eclipse Foundation: Eclipse IDE http://www.eclipse.org.

http://www.futureid.eu
http://www.eclipse.org

	AnBx: Automatic Generation and Verification of Security Protocols Implementations

