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Abstract—Complex networks are a graph theoretic method
that can model genetic mutations, in particular single nucleotide
polymorphisms (snps) which are genetic variations that only
occur at single position in a DNA sequence. These can potentially
cause the amino acids to be changed and may affect protein
function and thus structural stability which can contribute to
developing diseases. We show how snps can be represented by
complex graph structures, the connectivity patterns if represented
by graphs can be related to human diseases, where the proteins
are the nodes (vertices) and the interactions between them are
represented by links (edges). Disruptions caused by mutations can
be explained as loss of connectivity such as the deletion of nodes
or edges in the network (hence the term edgetics). Furthermore,
diseases appear to be interlinked with hub genes causing multiple
problems and this has led to the concept of the human disease
network or diseasome. Edgetics is a relatively new concept which
is proving effective for modelling the relationships between genes,
diseases and drugs which were previously considered intractable
problems.
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I. INTRODUCTION

Many human diseases often have a genetic cause, that is
to say the gene or genes responsible for encoding a specific
biological function have become defective. This may be caused
by some sort of single-nucleotide substitution (mutation) that
causes the gene to produce a protein that can no longer interact
with other proteins and elements in the usual way. Protein
interactions are key to the majority of functions occurring in
the cell and also account for several signaling mechanisms for
processes external to the cell. The connectivity of interacting
proteins (interactome) when mapped as a network reveals
a complex web of relationships. Some proteins have many
connections while others are sparsely connected, however
applying computational techniques such as clustering can also
reveal the modular nature of proteins as they cooperate in
various activities [1], [2]. Researchers have modified graph
theoretic methods to tackle the issues inherent with protein
interaction networks, or have created novel statistical methods
able to predict protein function [3], [4], or to model subgraphs
using a mixture clustering and classification methods [5], [6],
[7]. These computational techniques are essential to unraveling
the complex nature of genes, proteins and their relationship
with diseases.

Our interest in protein interactions is concerned with their
network structure and how this is related to human diseases,
which can be explained as loss of connectivity such as the

deletion of nodes or edges in the network (hence edgetics).
Furthermore, diseases appear to be interlinked with hub genes
that can cause multiple problems when they become defective,
the human disease network or diseasome [8] is now receiving
attention as a means of understanding how diseases occur. The
goal is to develop new drug products to tackle and combat
diseases and perhaps reposition existing drugs to new targets
[9], [10], [11].

Fig. 1. Example of mutation causing node and edgetic perturbations, showing
in A the wild type or normal protein interactions between protein X and it’s
partners, in B we have node deletion of protein X with complete loss of
interactions. In C we have the edgetic removal of a link between protein X
and P4-P5-P6 with partial or perhaps even complete loss of functionality. In D
we have a gain-of function through an additional edge and a new interacting
protein P8.

Edgetic analysis was first proposed by Zhong as a method
of explaining certain disease causing mutations by a loss of
network connectivity on key genes[12], [13]. The aim is to
improve our understanding of the genotype-to-phenotype rela-
tionship, that is from genes to the physical shape and wellbeing
of the individual (phenotype). However, from table ?? can be
seen the complexity of the situation, sometimes it is not a



one-gene to one-function relationship and hence one-disease.
Variants of the same gene can cause different functional defects
(allelic heterogeneity), however the same disease can be caused
by mutations in different genes (genetic heterogeneity) [14],
[15]. The benefits from this analysis would hopefully provide
the knowledge for developing new treatments [16], [17], [18]
and the potential for repositioning existing drugs to other
diseases[19], [20].

A. The role of mutations on disease

The role of genetics dominates almost all of human dis-
eases, even those where the environment does play a significant
factor. Many diseases such as cystic fibrosis can be identified
with a single defective gene and as such are described as
Mendelian because they follow Mendel’s law of inheritance.
Other diseases do not follow Mendel’s law and are the result
of the interaction between several genes and environmental
factors, however these are classed as complex diseases and do
not fall into our area of study.

In this study we are interested in Single Nucleotide Poly-
morphisms (SNP) that affect protein structure, this where a
single letter of the genetic code, called nucleotides (consisting
of four letters: A, C, G, T) are changed by a mutation. For
example an A can be changed to a C, this may or may
not results in a mutation. The genetic code operates using
triplets of letters (codons) that code for a specific amino acid,
proteins are constructed out of long chains of amino acids,
e.g. the triplet CGT encodes for Arginine. The genetic code is
redundant so many mutations (especially in the 3rd position of
codons) will not change the encoded amino acid, so keeping
with our Arginine example CGT, CGC, CGA, CGG will all
encode this amino acid. However, changing CGG to CCG will
result in Proline substituted for Arginine, this may or may not
result in damaging changes to the protein. There are 20 amino
acids which form the majority of proteins and enzymes in the
human body. In figure 2 we show the sequence of events, from
mutation to change of protein structure.
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becomes Arginine)
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?

Fig. 2. Predicting the effects of structural change on protein-to-protein
interaction partners. An SNP changes from a ”T” to a ”C”, encoding for
a different amino acid.

SNPs are classified based on the region of the gene they are
located. The introns or non-coding region of the DNA, do not
generally affect the protein as this sequence is not translated
(the most prevalent type of SNP). The exon or coding region of
a gene is more problematic as these sequences are transcribed
into protein, they are identified as either:

• Synonymous SNPs, the change to the codon will
still code for the same amino acid, protein remains
unchanged.

• Non-synonymous SNPs, the change to the codon re-
sults in amino acid substitution and therefore changes
the protein. Non-synonymous SNPs can also subdi-
vided by the type of mutation they generate:
a) Missense mutations, the SNP will code for a
different amino acid.
b) Nonsense mutation, the SNP encodes a “stop”
command, thus prematurely ending the production of
further protein. Nonsense mutations can be particu-
larly damaging if located at the beginning or middle
of a gene.

The aim of this work is to identify the type of SNP’s, their
frequency of occurrence on disease and non-disease genes and
how this will effect their protein interactions, thus increasing
the risk of contracting cardiovascular disease (CVD). We also
aim to determine any trends or patterns which can indicate
those SNPs likely to cause a greater risk of cardiovascular
events. The remainder of this paper is structured as follows;
section two describes our methods, indicating the types of data
used such as the SNP short DNA sequences and the formation
of protein interaction networks; section three describes how
graph theory, clustering and the other computational techniques
can manage this data, section four highlights the results and
finally section five presents the conclusions and future work.

II. METHODS

In figure 3 we present the overall system operation,
along with the flow of information and its transformation.
We extracted the SNP data from the esembl database which
contains the sequences and point information. The known
disease proteins and their interaction partner proteins were
downloaded from the STRING database [21]. The STRING
database contains approximately six million known protein
interactions generated by text-mining, annotation by experts
and through statistical prediction. Each protein pair contains a
confidence score based on the interaction source, text-mining
for example has a much lower score than annotation by experts.

The system was implemented using the R language with
the RStudio programming environment, on an Intel Xenon
CPU, 64-bit with dual processors (3.2GHz) and 128 GB
of RAM. The following R packages were used: BiomaRT
to download the required data from ensembl database [22];
SeqInR was used to convert DNA sequences into amino
acid chains [23]. Other packages including, ggplot2, dplyr,
tidyr, igraph, stringr and notably Peptides for assessing the
chemical properties of the proteins. The R code was not
compiled or optimized, as a general rule, R is generally
quite slow compared with a compiled language. Our R code
and data files are freely available on GitHub for download:
https://github.com/kenmcgarry/Edgetics



Fig. 3. The overall system operation, data sources and transformations.

A. SNIPPETS

The basic data unit we manipulate is a 20 length DNA
sequence upstream and downstream of the SNP location, this
will encode around the SNP the amino acids. We observe the
normal (wildtype) DNA and compare with the SNP (mutated)
version. We call these small lengths of DNA, SNIPPETS. In
table I the snp, the allele (the mutation) are shown for four
SNPs.

Thus, we investigate if single point SNP mutations cause
changes to the amino acid sequence, and if these transforma-
tions cause a change in protein function and hence interactions
with other proteins. Protein interactions are essentially stable
or transient, and both types are characterized as either strong
or weak. Stable interactions are linked with proteins that are
formed from multi-unit complexes. Transient interactions are
involved in the majority of cellular processes that govern
the cell. They are short lived and often depend on a set of
initial conditions that trigger the interaction. Proteins interact
or bind to each other through various methods such as van der
Waals forces, hydrophobic bonding and salt bridges at specific
locations or domains on each protein. The sites can be small
binding clefts or large surfaces and can be just a few amino
acids long or comprised of several hundred, the connection
strength of the binding is moderated by the size of the binding
domain.

B. Limitations of the study

The study of protein interactions and the analysis of
such databases is a highly dynamic landscape, new protein
interactions are continuously identified along with potential
disease causing mutations. Bias is also present because disease
genes tend to be more studied than others, for example the gene
TP53 (notorious for involved in cancer as well as the study

presented in this paper) has 1098 protein interactions, 2962
SNP’s identified and 11,283 scientific papers written about it
(as of April 2016).

C. Related work

The current algorithms fall into either the machine learning
camp using classified data or use heuristics based on theoretical
models. The MutationTaster [24] and PolyPhen [25] algorithms
are examples of the machine learning based approach and use
examples of known SNP mutations which are damaging or
benign . They take the sequences of the known mutations
as training data. The SIFT [26] and MutationAssessor [27]
algorithms create models using scoring matrices based on the
mutations position They use sequence alignment and score the
mutations based on how well the position is conserved for such
criteria as polarity, charge and other chemical properties.

III. THE RELATIONSHIP BETWEEN GRAPH THEORY AND
INTERACTOME MODELLING

Graph theory or complex networks as it is more commonly
now called is a set of mathematical principles that describe
the structure, relationships and topology of many real-world
situations. We find that social networks such as Twitter and
FaceBook, ecological networks of predator-prey situations and
econometric networks such as supply and demand all have
similar properties, such as a graph-like structure that can
be described with a formal language. The graph network is
simply a set of nodes or entities connected by links that
define the relationships and hierarchy between the nodes.
The frequency of node connectivity, either their sparseness or
abundance provides useful information as to their importance
or redundancy.



TABLE I. SNP’S FOR THE GENE, SMAD3 AND SNIPPET INFORMATION.

snp refsnpid chrom start allele chrome name
1 TATGCGCCCTTTTAGACTTG%T/C%GAGAAGGCCCCTTGGACTTC rs7183244 67168973 T/C 15
2 TGAAGAAACTCATCATTTGG%A/G%ATATTAGGAGATGCTTGAAA rs16950687 67171675 A/G 15
3 GCAGAGCACATGGTCACTGT%G/A%GTAGAACTTGCAGTGAGACC rs731874 67154493 G/A 15
4 CACACTTACAGAACTTGTTG%G/A%GAACACTCAGGAAACTCAGC rs744910 67154447 G/A 15

To manage networks in a formal way we use graph
theoretic methods which can be applied to any network of
interacting entities are linked together through various relation-
ships. Graph creation and inferencing is usually through matrix
algebra, edge lists are converted into connectivity matrices, we
can define a graph G = (V, E) where the nodes also called
vertices V containing links called edges E. The links can be
either directed, that is to say information implying direction
or causality in the relationship is available in the sense that A
causes B. Links can also be undirected, implying that we only
know there is a relationship between the nodes but are unable
to specify the sequence of events or perhaps this information
is unnecessary. In our application, we determine the relevance
of protein connectivity patterns using criteria from the graph
theoretic centrality statistics, see equations 1-5 [28], [29], [30].

A. Identification of hub proteins with centrality measures

Identifying “hub” proteins within the network is often the
first task, hubs tend to have important connections with other
key proteins so the deletion/disruption of a hub protein may
be more problematic than deletion of a non-hub protein [31].
The hub protein may participate in several cellular functions
and this observation is confirmed in many protein networks
which are typically small world networks. This characteristic
is called a power law degree distribution, which manifests itself
as a susceptibility to the removal of certain proteins [32], [33],
thus proteins implicated in lung cancer for example typically
have twice as many interaction partners as non disease related
proteins [34].

We use a number graph based measures to evaluate the
protein networks. The closeness statistics provides a measure
of how close each node is to every other node in the network.
Some nodes may be more prominent than others due to their
topology.

CC(vi) =
N − 1∑
j d(vi, vj)

(1)

The betweeness statistic calculates the extent that a node is
located between pairs of other nodes in the network, such that
a path between the other nodes has to go through that node.

BC(vk) =
∑
i

∑
j

p(vi, vj , vk)

p(vi, vj)
, i 6= j 6= k (2)

The clustering coefficient provides a measure of modularity
of the network in terms of shared components.

Ci =
2 | {ejk} |
ki(ki − 1)

: vj , vk ∈ Ni, eij ∈ E (3)

Where V = v1, v2...vn define the n vertices or nodes and
E the collection of edges or connections, where eij indicates

an edge (E) connecting vertices vi, the term vj ki represents
the vertex (V) neighbourhood. The neighbours N , for a given
vertex (V) vi, is its closely connected neighbours :

Ni = {vj} : eij ∈ E (4)

The in-degree and out-degree of each the vertices (in
undirected graphs it is just overall degree) ki corresponds to the
number of vertices in its near neighbourhood |Ni|. Calculating
the clustering coefficient Ci for each vertex vi the ratio of links
between the vertices within its near neighbourhood partitioned
by the total links that potentially could occur between them.
Furthermore, graphs that are undirected have the characteristic
that eij and eji are considered equivalent.

ki(ki − 1)

2
(5)

A value of unity is returned when all vertices connected to
vi are also linked to all other vertices within the neighbourhood
n, and returns zero when no vertex connected to vi links to
all other vertices that connect to vi.

IV. RESULTS

A list of 13 known proteins involved in CVD was derived
from the literature, these protein names were uploaded to
STRING database and their interaction partner proteins were
downloaded. The Biomart database was searched for SNPs
attributed to each protein (along with mutation type including
upstream and downstream sequence data). Graph network
statistics were calculated for each important protein.

We first calculated some metrics to assess bias in our data,
the disease causing proteins are more likely to be reported in
the literature than those with no apparent association. Hence
these are expected to have more interaction partners identified,
figures 4 and 5 indicate this.

Overall graph statistics for the combined network is pre-
sented in table II. One statistics to note is the connected
parameter, this implies that the network of disease proteins
and their interacting protein partners are not fully connected -
that is to say CVD group of proteins are not fully connected
there are seven isolated subnetworks. The largest contains 60%
of the nodes (79 out of 130), while the others each individually
account for 8%.

TABLE II. OVERALL GRAPH STATISTICS MEASURES FOR THE ENTIRE
NETWORK

modularity avepath nedges nverts transit avedegree diam connect
0.47 2.32 2594.00 225 0.54 23.06 7.00 FALSE

In table III the statistics for each individual protein in the
network is presented. The information in this table is sorted
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Fig. 4. Number of SNPs versus protein interactions
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Fig. 5. Number of publications versus protein interactions

according to the hubness criteria, therefore protein SMAD3 is
the highest scoring and highly connected protein. Followed by
CDKN2A, however out of the disease proteins there are only
two to three that may be considered hubs.

TABLE III. GRAPH STATISTICS MEASURES FOR KNOWN DISEASE
PROTEINS

hubness closeness betweenness authority
CXCL12 0.72 5.11E-05 597.174 0.7370
SMAD3 0.05 2.76E-05 2525.578 0.0620

CDKN2A 0.05 4.85E-05 231.734 0.0029
CDKN2B 0.01 2.19E-05 27.651 0.0223

PDGFD 0.00 3.62E-05 0.000 -0.0000
PLTP 0.00 2.04E-05 0.000 -0.0000
LIPA 0.00 1.98E-05 0.000 0.0003

CETP 0.00 1.98E-05 3.119 0.0002
FMN2 0.00 1.98E-05 0.000 0.0000

HSPE1 0.00 1.98E-05 169.577 0.0035

In table IV we have the highest scoring proteins based
on hubness, these range from 1.0 to 0.92. The cutoff point for
hubness is 0.8 and we have 16 proteins that match this criteria,
these are also displayed in figure 6.

TABLE IV. GRAPH STATISTICS MEASURES FOR TOP RANKING
PROTEINS BASED ON HUBNESS

hubness closeness betweenness authority
CCR3 1.00 9.40E-05 41.842 0.1107

MTRNR2L2 1.00 1.03E-04 32.477 0.0000
S1PR2 0.99 1.00E-04 238.597 0.0378

HCAR3 0.97 6.34E-05 0.000 0.1486
TAS2R43 0.96 6.25E-05 0.000 0.1852

CASR 0.96 6.08E-05 28.856 0.2574
CXCL2 0.95 6.17E-05 0.000 0.2214

RGS6 0.94 9.59E-05 0.000 0.0753
ADCY5 0.93 6.00E-05 42.392 0.2582
CHRM4 0.92 5.92E-05 1.500 0.3288

In figure 6 we display the entire network of 225 proteins
and the 2,594 interactions between them. In diagrams such
as these it is impossible to get any sense of the connection
patterns for anything more then a dozen nodes. Instead we
concentrate on the hubness parameter, those proteins with a
value of 0.8 are classed as hubs and are coloured in orange, all
other less than this cutoff point are light green. The 12 disease
proteins are squared shaped while all others are circles, not all
disease proteins are hubs.

CDKN2A in visceral tissues relates to the increase in
atherosclerosis. The gene plays a role in various other pro-
cesses including, signal transduction (FoxO signaling, TGF-
beta signaling), cellular processes (cell growth and death) and
human diseases (cancer pathways, viral carcinogenesis and
small cell lung cancer).

Other proteins that we know about but our graph based
analysis failed to uncover are FMN2 and MTHFD1L. The
FMN2 (Formin-2) is a gene located on chromosome 1q43 at
position 240282296 , which has been reported in literature as
part of a wide association study, where it is believed to be
linked to coronary heart disease. FMN2 is involved in other
pathways or processes including, organismal systems. Isolating
the FMN2 from the main super network and recalculating the
statistics enabled further insights to be gained. Figure 7 shows
the connectivity.

Fig. 7. The FMN2 subnetwork.

Based on the statistics gained from table V we can deter-



Fig. 6. Interactions between the networks 217 proteins.

mine that FMN2 is an important protein in its own right and
must participate in other signal cascades.

TABLE V. PROTEIN INTERACTION NETWORK OF FMN2

Closeness Betweenness Hubness Authority

ACTA1 0.025 2.77777778 0.626466 0.626466
RAC1 0.02777778 10.57738095 0.778112 0.778112

SPIRE1 0.025 6.911071429 0.553964 0.553964
DIAPH2 0.02222222 0.08333333 0.35453 0.35453
FMN2 0.04 173.9384921 1 1
ACTB 0.025 3.31944444 0.626993 0.626993

Also, the MTHFD1L (methylenetetrahydrofolate dehydro-
genase) is a gene located on chromosome 6 involved in
the synthesis of tetrahydrofolate (THF) in the mitochondrion
and metabolism of cofactors and vitamins (11). Single nu-
cleotide polymorphisms (SNPs) in MTHFD1L, including the
lead polymorphism (rs69222269), are known to be implicated
with coronary heart disease (CAD). The functional effect of
the leading polymorphism (rs69222269) is unknown, a likely

mechanism for the association to CAD, may be related to the
effects on the folate metabolic pathway.

The next stage is to examine the effect of the SNPs
on protein compositions, we need to monitor the chemical
properties based on the DNA to amino acid changes. Exam-
ining the CDKN2A protein we use the following SNPs. In
table VI we have highlighted in grey those parameters for
the Physiochemical properties that have changed between the
wildtype and mutant.

TABLE VI. PHYSIO-CHEMICAL PROPERTIES FOR CDKN2A PROTEIN
(SNP RS11552822)

Physiochemical properties Wildtype Mutant

Aliphatic Index 22.271293 22.271293
Boman Index 1.351167 1.340442

Charge 16.057535 16.057535
Instability Index 78.448428 76.272327
Peptide Length 317 317



The Aliphatic index is the relative volume occupied by
aliphatic side chains, found on alanine, valine, isoleucine
and leucine. It is a positive factor for thermostability of
globular proteins, so if the aliphatic index is decreased the
thermostability is reduced. Less stability could lead to changes
in structure (denaturation) meaning different interactions.

The Boman Index indicates the binding potential of a
protein, and can be used to predict multifunctionality. The
higher the boman index the more like a protein is to interact
with other proteins.

The Theoretical Net Charge can account for protein-
protein repulsion of attraction, (more negative more repulsion).
Changes in charge may affect protein-protein interactions
based on charge/charge interactions. Charge calculations based
on primary amino acid sequence do not factor in the 3D struc-
ture of proteins, in which some amino acids can be buried or
exposed in the center of the protein. The pKas of amino acids
within proteins are also influenced by different interactions
which are highly protein dependent, and not account for in net
charge calculations, so this may not be the best indicator of a
chemical property that can affect protein-protein interactions.

The instability index can be used as a measure of the in-
vivo half-life of a protein. A value of >40 means a half-life of
<5h, meaning less stability, whereas <40 indicates a higher
stability with half-lives of >16h. Longer lifetimes for partially
folded intermediates may influence the aggregation of inter-
mediates as there is a greater chance of interaction between
proteins, and more exhaustion of molecular chaperones.

In table VII we have highlighted in grey those amino
acid parameters that have changed between the wildtype and
mutant.

TABLE VII. AMINO ACID COMPOSITION FOR CDKN2A PROTEIN
(SNP RS11552822)

Number % Mole Number % Mole

Tiny 77 24.29 76 23.975
Small 102 32.177 101 31.861

Aliphatic 35 11.041 35 11.041
Aromatic 11 3.47 11 3.47

Non-Polar 76 23.975 76 23.975
Polar 83 26.183 82 25.686

Charged 34 10.726 34 10.726
Basic 27 8.517 27 8.527

Acidic 7 2.208 7 2.208

Differences in the amino acid composition (table VII) could
lead to changes in protein structure, leading to new/different
interactions partners. The position of change could be involved
in ligand binding, disulphide bridging or other protein-protein
interactions site, causing changes to such interactions. Changes
in polar or hydrophobic residue containing amino acids would
be expected to be less harmful to interactions as these are
usually tucked in the center of the protein, although could still
change the 3D conformation of the protein.

Most of the changes for our chosen proteins are fairly
negligible in terms of these statistics, if there are any at all.
Could not say whether they would affect the protein-protein
interactions or cause any loss of functions.

Of the many challenges in predicting protein-protein in-
teraction parameters, are the surface areas that are involved

TABLE VIII. PHYSIO-CHEMICAL PROPERTIES FOR CDKN2A PROTEIN
(SNP RS100586)

Physiochemical properties Wildtype Mutant

Aliphatic Index 32.9968454 32.9968454
Boman Index 0.57091478 0.5883912

Charge 6.9662124 6.9662124
Instability Index 89.5566038 91.108805
Peptide Length 317 317

TABLE IX. AMINO ACID COMPOSITION FOR CDKN2A PROTEIN (SNP
RS100586)

Wildtype Mutant

Number % Mole Number % Mole
Tiny 57 17.981 57 17.981

Small 111 35.016 110 34.7
Aliphatic 43 13.565 43 13.565
Aromatic 9 2.839 9 2.839

Non-Polar 105 33.123 104 32.808
Polar 54 17.035 55 17.35

Charged 22 6.94 22 6.94
Basic 16 5.047 16 5.047

Acidic 6 1.893 6 1.893

in many such interactions which typically are of the order of
several hundred Angströms and hence it is often the case that
a single amino acid change has limited impact on the global
binding interaction energy.

V. CONCLUSION

In recent years we have all become accustomed to the
discovery of new genes and their alleged roles in causing
specific diseases. All humans have these genes, however it
is the mutated version that actually causes the problems. Thus
the role of mutations is pivotal in defining how the disease
will manifest itself and how the individual may be affected.
The various computational methods now being explored to
study edgetics will play an important role in understanding the
etiology of diseases. Our ongoing work is exploring the impact
of interacting proteins being located on the same chromosome,
along locality in the same tissues and organs. Locality and
modularity may make protein interactions more likely to occur,
giving more information to improve prediction of type and
severity of diseases.
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