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Abstract: This work investigates the crashworthiness response for a hierarchical modelling of hybrid 
composite material consisting of short-glass fibres reinforced graphene platelets polyamide PA6 matrix. 

A multi scale approach, using both mean-field homogenisation and finite element FE techniques, is 
employed to derive the overall response. Graphene is considered as platelets GPL embedded within an 
elasto plastic matrix phase. The 2-phases composite response is therefore computed under the Mori-

Tanaka micromechanics scheme by accounting for the GPL spatial orientation. The modelling of the 3-
phases short glass fibres/graphene polymer composite consists on a double-scale approach combining 

the 2-phases graphene polymer composite as matrix phase in which are embedded the glass fibres. 
Numerical characterisations involving tensile, compression, fracture toughness and Charpy impact tests 
enable the determination of damage/failure thresholds for crashworthiness applications. The full crash 

box is simulated by implementing the constitutive 3-phases composite using a user-defined Digimat/LS-
DYNA linkage. Numerical results, which are compared to those from conventional steel and glass 
fibres composites, show the contribution of the GPL volume fraction in the improvement of the specific 
energy absorption SEA. 

Keywords: Graphene platelets, Polymer composites, Multiscale simulation, Numerical characterisation, 
Crashworthiness. 

 

1. Introduction 

Passenger safety represents a major design parameter on which legislation remains continuously tough. 

Whilst, the global trend in automotive engineering is oriented toward lightweight materials for energy 

efficiency, safety issues are as well of a particular interest. Therefore, new materials with high energy 

absorption capabilities need to be developed to overcome the well-known lightweighting-safety trade-

off. For such a purpose, composite materials for instance fibres reinforced plastics have been 

developed with an attractive benefit of a great capability of weight reduction with high energy 

absorption levels during crash situations [1, 2]. Therefore, the use of composite materials in structures 

as energy absorbers is rapidly growing because composites exhibit a significantly higher energy 

absorption capacity per unit weight than metals [3, 4]. Since, the effective response of the composite 

depends on the design of its microstructure, intensive investigations are continuously being led in the 

direction of new composite fillers. Recently, the discovery of the graphene has opened new windows 

for the design of multifunctional materials. 

 

mailto:ahmed.elmarakbi@sunderland.ac.uk
tel:+441915153877


 

2 
 

Graphene is at the centre of a growing academic and industrial interest because it can produce a 

dramatic improvement in mechanical properties at low filler content [5]. Indeed, it is expected that one 

of the most immediate application for graphene will be in composite materials [6]. To take a full 

advantage of its properties, integration of individual graphene sheets in polymer matrices is important. 

Exceptional physical and mechanical properties, a high surface/volume ratio and low filler content of 

graphene make the graphene a promising candidate for developing the next-generation of high 

performance polymer composites [5, 7-13]. Theoretical and numerical studies involving graphene 

related materials have been developed based on the combination of atomistic simulations and 

continuum and structural mechanics. Micromechanics based analytical derivations from molecular 

interatomic potentials (modified-Morse, Lennard-Jones potentials) [14, 15]  as well as FE simulations 

[16-20] have been developed to derive the overall properties of the graphene nanocomposites. While 

the combination of atomistic and continuum approaches could be considered as the most powerful 

computational tool to address the problems associated with different scales, these models require 

especially high computational costs as reported by Dai et al. [21]. As a common assumption in most of 

numerical studies, the graphene is modelled as platelets with a diameter to thickness ratio of a disc 

commonly called aspect ratio AR [22]. 

 

The goal of this work is to analyse the response of an automotive crash box composite consisting on a 

hybrid short glass fibres reinforced graphene platelets polymer matrix composites. In order to assess 

the contribution of the graphene, a hierarchical modelling framework based on analytical as well as 

finite element techniques is employed to derive the overall composite response and subsequently the 

mechanical characterisation for the macroscopic crashworthiness. Graphene sheets are considered as 

platelets GPL embedded within an elasto plastic polyamide PA6 matrix phase leading to a 2-phases 

graphene/polymer composite. The modelling of the 3-phases short glass fibres/graphene polymer 

composite consists on a double-scale approach combining the 2-phases graphene polymer composite 

as matrix phase in which are embedded the glass fibres. The full structure crash box is simulated at 

each Gauss integration point by implementing the constitutive 3-phases composite using a user-

defined materials subroutine. 

 

The paper is organised as follows: section 2 establishes the theoretical framework for deriving the 

effective properties of a composite and recalls the procedure for obtaining the nonlinear tangent 

operators. The modelling of the 2-phases composite is presented in section 3 along with the numerical 

characterisation of the 3-phases composite and the full structure simulation. Numerical results 

obtained for the crashworthiness application are presented in section 4. 

 

2. Theoretical background 

2.1. General considerations 

A macroscopic homogeneous and microscopic heterogeneous materials is selected under a 

representative volume element RVE. The associated boundary-value problems are formulated, in the 

terms of uniform macro field traction vector or linear displacement fields. The RVE is assumed in 

equilibrium and its overall deformation compatible. Also the body forces and inertia term are 

neglected. The effective properties are given by: 

    
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Or in others terms 
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If  the uniform stiffness tensor, the global strain concentration tensor and the volume 

fraction of phase I , respectively. The global strain concentration tensor A  represents the unknown 

parameter which contains all information about the microstructure. Its expression is given by an 

iterative procedure [23] such as: 
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with 
J J r  c c C  and 

r
C is defined as uniform stiffness tensor of a homogeneous reference 

medium. 
I

a  stands for the local strain concentration tensor and
IJ

T represents the interaction tensor 

between inclusions within the RVE. It is expressed such as: 
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with  r r being the modified Green tensor. When the Mori-Tanaka scheme is selected, the 

reference medium is assumed to be the matrix phase leading to 
0R C c . Also, the average strain field 

inside the matrix is approximated by the strain within the reference medium leading to 
0  Ia . Based 

on these assumptions, the effective Mori-Tanaka properties are given by: 
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with 
0

A denoting the global strain concentration tensor of the matrix. Its expression yields: 
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 Case of two (2)-phases composite materials 

In the case of one-site version of the above equations, the interactions between inclusion I  and its 

neighbours J  are neglected, i.e. all the 0IJ T . The local strain concentration tensor 
I

a  becomes 

more simply: 
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where S denotes the Eshelby’s tensor and 
0r C c in the present case of Mori-Tanaka scheme. The 

global strain concentration tensor within the matrix is given by: 
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Substituting equation (8) in equation (5) for the case of 2-phases composite, the effective properties 

yields: 

    
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2.2. Elasto-plastic Tangent Operators 

 

Within the RVE, let us assume that one or more phases behave elasto-plastically. Referring to the 

work by Doghri and Ouaar [24] at least two tangent operators can be defined: the “continuum” (or 

elasto-plastic) 
ep

C tangent operator, which is derived from the rate constitutive equation, and the 

“consistent” (or algorithmic) 
lga

C tangent operator, which is solved by a discretisation in the time 

interval  1,n nt t  . These tangent operators are related to the rate of the constitutive equation as 

follows: 
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They are derived from the classical 
2J flow rule: 
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The “continuum” (or elasto-plastic) 
ep

C tangent operator yields: 
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while the “consistent” (or algorithmic) 
lga

C tangent operator is given by: 
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In equations (12) and (13),   denotes the material shear modulus while 
el

C represents the elastic 

stiffness tensor and  R p  is the hardening stress function with p  the accumulated plastic strain. N  

represents the normal to the yield surface in the stress space. tr
eq denotes a trial elastic predictor of 

eq , 
dev

I  stands for the deviatoric part of the fourth order symmetric identity tensor. 

 

3. Hierarchical modelling of the hybrid composite 

3.1. Modelling of the two (2)-phases composite 

The modelling strategy for the 2-phases composite consists by reinforcing the polymer matrix by 

graphene platelets. The GPL are modelled under DIGIMAT-MF [25] tools. This strategy is shown by 

Figure 1 where a RVE describing two spatial distributions (aligned 2D versus random 3D 

configurations) is studied. The matrix is an elasto-plastic polyamide PA6-B3K with an isotropic 

hardening in power-law whereas the GPL are considered elastic. The properties of the matrix and the 

GPL are reported in Table1 and Table 2, respectively. 

 

Table 1. Material properties of graphene platelets 

Phase Graphene G2NAN 

Density 2.2 mg/cm3 

Poisson’s ratio 0.22 

Young’s Modulus 1000 GPa 

Tensile Strength 5 GPa 

Thickness 10 nm 

Ave lateral size 30 micron 

Aspect Ratio 0.000333 

 

Table 2. Material properties of the polyamide PA6 matrix 

Phase      PA6-B3K 

Density 1.13 mg/cm3 

Poisson’s ratio 0.39 

Young’s Modulus 2000 MPa 

Yield Stress 60.5 MPa 

Hardening Modulus 63 MPa 

Hardening Model Power law 

Hardening exponent 0.4 
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Figure 1. 2-phases composite modelling for GPL distribution 

 

 

3.2. Modelling of the three (3)-phases composite 

The modelling of 3-phases short glass fibres/graphene polyamide composite is based on a double-scale 

approach combining the 2-phases graphene polyamide composite used as matrix in which are 

embedded the short glass fibres. Material properties of the short glass fibres are gathered in Table 3. 

The derivation of the effective properties remains analytical-based micromechanics formalism. 

Mechanical characterisations based on the ASTM standards are performed on tensile [26], 

compression [27], fracture toughness [28] as well as Charpy impact [29] specimens (Figure 2). Their 

results enable the determination of the damage/failure thresholds for crashworthiness applications. 

 

Table 3. Material properties of the short glass fibres 

Phase S-Glass Fibres 

Density 2.49 mg/cm3 

Poisson's ratio 0.22 

Young’s Modulus 89 GPa 

Tensile Strength 4750 MPa 

Compressive Strength 4500 MPa 

Aspect Ratio 23.5 

 

 

Figure 2. 3-phases composite modelling and a FE characterisation 
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3.3. Macroscale FE simulation of a crash box  

The crashworthiness is simulated for the 3-phases composite. A multiscale strategy embedding 

developments at the previous sections are linked at each integration point of a crash box. 

 

Figure 3. Numerical model of the crash box  

The geometry of the crash box depicted by Figure 3 is created under LS-DYNA FE software [30]. 

Shell elements S4R are used for meshing purposes. The crushing load is applied on one side (upper) of 

the box through a rigid plate moving at a constant velocity (20mph). The other (lower) side of the box 

is fully constrained. Contact capabilities in LS-DYNA /EXPLICIT mainly 

*CONTACT_AUTOMATIC_SINGLE_SURFACE are used to define the contact interactions between 

different parts of the model. The constitutive mechanical law implemented in the crash box results 

from a user subroutine *MAT_USER_DEFINED_MATERIAL_MODELS. The linkage DIGIMAT-

CAE/LS-DYNA [25] is employed for passing the microscale data resulting from the 3-phases 

composite modelling to the full macroscale representing the crash box. In addition, the simulation 

requires inputs of damage initiation and evolution resulting from the above sections. Failed continuum 

shell elements are removed using a damage-based element deletion. 

4. Numerical results and discussions 

4.1. Two (2)-phases composite 

A RVE describing two spatial distributions (aligned 2D versus random 3D) of GPL are considered for 

numerical applications. Figure 4 depicts the evolution of the normalised effective Young modulus

2

eff

P mE E
 versus the GPL volume fraction. The results indicate an increase of 

2

eff

P mE E
 with the 

GPL volume fraction evolution. In addition, the aligned 2D distribution shows more effective 

improvement compared to the random 3D. Furthermore, the evolution of 
2

eff

PE 
 versus the GPL aspect 

ratio AR is analysed for both distributions. Indeed, results in Figure 5 show a decrease of 
2

eff

PE 
 when 

the AR increases. The higher the AR, the lower the effective Young modulus 
2

eff

PE 
. The aligned 2D 

distribution shows more effective reinforcement behaviour with respect to the random 3D distribution. 
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Figure 4. Normalised effective Young modulus versus GPL volume fraction 

 

Figure 5. Effective Young modulus versus GPL aspect ratio AR 

In Figure 6 is shown the nonlinear stress-strain response for a tensile specimen versus the GPL Young 

modulus gE . An increase of the effective response with respect to high values of gE . A 

determination of the maximal stress and strain is therefore carried out on these results for applications.  
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Figure 6. Stress-strain behaviour of the 2-phases composite under tensile test 

 

4.2. Three (3)-phases composite 

E-short glass fibres are randomly embedded within a 3D random distribution of the 2-phases 

composite for the analysis of the 3-phases composite. Different volume fractions of GPL are 

considered mainly 0.5%, 2%, and 5%. 

Figure 7(a) depicts the evolution of the effective stress-strain response of the 3-phases composite 

under tensile test. Results shift toward high stress with the increase of the GPL volume fraction. An 

increase in the composite stiffness in terms of Young modulus, initial yield strength and plastic 

hardening modulus are resulting from the volume fraction variation. The damage threshold is obtained 

when the softening point is reached for the determination of the ultimate tensile strength.  
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(a) Tensile 

 

(b) Compression 

Figure 7. Stress-strain behaviour of the 3-phases composite 

For the compression, similar trends in term of Young modulus, initial yield strength and plastic 

hardening modulus are observed in Figure 7(b). However, the composite behaviour under the 

compression is different. The linear elastic stage is followed by the plastic zone where the composite 

yields and damages. Due to the densification resulting from material crushing together, no softening 

trend is observed leading to an increasing stiffer response. Both tests enable the characterisation of the 

damage/failure threshold for the ultimate tensile and compression strengths. 

Besides, Figure 8 shows the impact strength of the 3-phases composite versus the applied load time. 

The impact strength characterises the capability to withstand by shock energy absorption from a 
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suddenly applied load. It shows higher values with the increase of the GPL volume fraction. Another 

interesting trend observed is related to the withstanding time. Indeed, the GPL volume fraction shows 

high impact strength for relatively low time. Therefore, GPL enhance the composite energy absorption 

capability in a short time period with a potential application for crashworthiness in automotive 

 

Figure 8. Impact behaviour of the 3-phases composite 

 

(a) Force versus CMOD  
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(b) Kic and Gic versus volume fraction 

Figure 9. Fracture toughness behaviour of the 3-phases composite 

Furthermore, in Figure 9(a), the fracture toughness is analysed in terms of force versus crack mouth 

opening displacement CMOD. To reach the failure of the sample, results shift toward high force with 

the increase of the volume fraction. Moreover, these results enable the determination of the plane 

strain fracture toughness 
ICK  and the elastic strain energy rate 

ICG .Figure 9(b) shows the evolution 

of 
ICK  and 

ICG  versus the GPL volume fraction. A nonlinear trend is noticed for both parameters 

while, the higher the volume fraction, the higher 
ICK  and 

ICG . 

4.3. Macroscale simulation of the crash box 

Results from the 3-phases composite are implemented within LS-DYNA FE code as a user defined 

material subroutine (UMAT) from DIGIMAT-CAE. Figure 10 shows a full crash box simulation. The 

response of the 3-phases composite (2%graphene + 60% short fibres + 38% polymer PA) is compared 

with that of 2-phases composite (60% short fibres + 40% polymer PA) and the response provided by 

the steel. 
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(a) Force versus displacement 

 

(b) specific energy absorption versus displacement 

Figure 10. Macroscale simulation for model comparison  

The crush force-displacement curve of 2% GPL, is shown by Figure 10(a) along with the response 

obtained from a steel specimen as well as a polymer PA reinforced by short glass fibres without GPL. 

It can be seen that the peak crush force of both composite materials are two time lower compared to 

that is predicted by the steel while no significant difference is noticed between the composites peak 

force. However, the contribution of GPL is significant in terms of specific energy absorption SEA. 

That is illustrated by Figure 10(b) which displays the SEA for the three compared materials versus the 

displacement. While a slightly evolution is seen for the steel and the PA+60%SGF+0%GPL, the SEA 

shows a significant improvement with respect to the content of GPL in the PA+60%SGF+2%GPL.  
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(a) Force versus displacement 

 

(b) specific energy absorption versus displacement 

Figure 11. Volume fraction influence on the crashworthiness  

Furthermore, from Figures 11(a)-(b), the crushing force-displacement and SEA are presented versus 

different GPL volume fraction. It is obtained from Figure 11(a) nearly a similar trend concerning the 

peak force for all range of volume fraction. Beyond the peak force domain, one can observe that the 

average force crush increases with the GPL volume fraction. In Figure 11(b), the evolution of the SEA 

is shown. The higher the GPL volume fraction, the higher the SEA showing the contribution of the 

GPL in the enhancement of the energy absorption. 
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5. Conclusion 

The linkage between LS-Dyna FE code and Digimat homogenisation tools has been used to address 

the hierarchical multiscale crashworthiness modelling of the hybrid short-glass fibres reinforced 

graphene platelets polymer composite. The analysis consists on the modelling of the 2-phases 

graphene polymer composite whose effective properties are obtained from micromechanics formalism. 

Next, short glass fibres are embedded in the 2-phases composite to obtain the hybrid 3-phases 

composite. Numerical characterisation based on ASTM standard tests are performed in tensile and 

compression as well fracture toughness and Charpy impact. 

The analysis of the 2-phases composite reveals an increase of effective Young modulus with the GPL 

volume fraction evolution. Low values of GPL aspect ratio AR have led to high effective Young 

modulus which starts decreasing when AR becomes larger. The 2D orientation configuration shows 

the most effective reinforcement character compared to the 3D orientation. The analysis of the hybrid 

3-phases composite during a Charpy impact test shows that the impact strength remains sensitive to 

the GPL volume fraction. The higher the GPL volume fraction, the higher the impact strength. 

Furthermore, the fracture toughness indicates that the plane strain fracture toughness 
ICK  and the 

elastic strain energy rate 
ICG  shift toward high values when increasing the GPL volume fraction. 

These results enable the determination of the damage and failure threshold for the simulation of a full 

structure under crashworthiness by considering different volume fraction of GPL. Results of the 

simulation indicate a reduction of the peak crush force when composite crush box is involved 

compared to the steel counterpart. While no significant variation in the reduction of the peak crush 

force is observed between neat composite i.e without GPL and composite with GPL, the volume 

fraction of GPL seems to significantly improve the specific energy absorption of the structure. As an 

outlook, this study needs to be extended to other derivatives of the graphene such as the graphene 

oxide GO [31] for examining the influence of a functionalisation of graphene in the full macro 

composite response. In addition, other properties (e.g. electrical conductivity behaviour [32]) to also 

be considered to maximise the impact of the modelling techniques developed in this paper on wider 

applications of science and engineering. 
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Highlights: 

 The overall properties of 2-phases graphene platelets GPL/polymer are determined using a 

mean-field based homogenisation technique; 

 The hybrid 3-phases composite consists on a hierarchical double-scale approach combining 

the 2-phases GPL/polymer composite with short glass fibres; 

 A crashworthiness test is simulated by implementing the constitutive laws of the 3-phases 

glass fibres/graphene polymer composite using the linkage Digimat-CAE/LS-Dyna; 

 A decrease of the crush force peak is noticed for the 3-phases composite; 

 The specific energy absorption SEA of the 3-phases composite is improved compared to 

conventional steel and composites. 

 


