Effect of poly(ethylene glycol) content and formulation parameters on particulate properties and intraperitoneal delivery of insulin from PLGA nanoparticles prepared using the double-emulsion evaporation procedure

Yusuf A. Haggag1,2, Ahmed M. Faheem3, Murtaza Tambuwala1, Mohamed A. Osman2, Sanaa A. El-Gizawy2, Barry O’Hagan4, Nigel Irwin1 and Paul A. McCarron1*

1School of Pharmacy and Pharmaceutical Sciences, Saad Centre for Pharmacy and Diabetes, Ulster University, Cromore Road, Coleraine, Co. Londonderry, BT52 1SA, UK
2Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Tanta, Tanta, Egypt.
3University of Sunderland, Department of Pharmacy, Health and Well-being, Sunderland, SR1 3SD, UK
4School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Co. Londonderry, BT52 1SA, UK

*Corresponding author

School of Pharmacy and Pharmaceutical Sciences, Saad Centre for Pharmacy and Diabetes, Ulster University,
(Faheem and McCarron made equal contributions to the work)
Abstract

Context Size, encapsulation efficiency and stability affect the sustained release from nanoparticles containing protein-type drugs.

Objectives Insulin was used to evaluate effects of formulation parameters on minimising diameter, maximising encapsulation efficiency and preserving blood glucose control following intraperitoneal (IP) administration.

Methods Homogenisation or sonication was used to incorporate insulin into poly(D,L-lactic-co-glycolic acid) (PLGA) nanoparticles with increasing PEG content. Effects of polymer type, insulin/polymer loading ratio and stabiliser in the internal aqueous phase on physicochemical characteristics of NP, in vitro release and stability of encapsulated insulin were investigated. Entrapment efficiency and release were assessed by radioimmunoassay and bicinconnic acid protein assay, and stability was evaluated using SDS-PAGE. Bioactivity of insulin was assessed in streptozotocin-induced, insulin-deficient Type I diabetic mice.

Results Increasing polymeric PEG increased encapsulation efficiency, whilst absence of internal stabiliser improved encapsulation and minimised burst release kinetics. Homogenisation was shown to be superior to sonication, with NP fabricated from 10% PEG-PLGA having higher insulin encapsulation, lower burst release and better stability. Insulin-loaded NP maintained normoglycaemia for 24 hours in diabetic mice following a single bolus, with no evidence of hypoglycaemia.

Conclusions Insulin-loaded NP prepared from 10% PEG-PLGA possessed therapeutically useful encapsulation and release kinetics when delivered by the IP route.
Key words insulin, nanoparticles, diblock copolymers, encapsulation efficiency, intraperitoneal bioactivity
1. Introduction

Effective insulin administration underpins clinical management of Type 1 diabetes (1). Daily routines of insulin injection are a familiar feature, the discomfort of which contributes in part to poor patient adherence to prescribed therapy (2). Although insulin is the most common treatment option for the Type 1 diabetic patient, its use is commonplace in therapy of the Type 2 patient, who suffers uncontrolled blood glucose levels unresponsive to diet, exercise, weight control and oral hypoglycaemic medication (3).

Advances in formulation design that incorporate insulin are wide-ranging and form the basis of generic protein-based therapeutics (4). Polymeric nanoparticles (NP) feature often and are used to incorporate an array of therapeutic peptides and proteins (5). Their development is driven, in part, by excellent safety profiles relevant to human use (6). Biodegradable poly(esters), such as poly(D,L-lactic-co-glycolic acid) (PLGA), are popular matrix materials and often modified by co-polymerisation with poly(ethylene glycol) (PEG). This alters hydrophobicity, enhances the drug loading, controls the burst effect, prolongs in vivo circulation time by avoiding phagocytosis and, consequently, improves overall bioavailability (7). These polymers have been used to encapsulate inter alia lysozyme, recombinant human epidermal growth factor and luteinising hormone-releasing hormone agonist, leading to improvement of pharmacokinetic profiles and minimising frequency of administration (8, 9). They are generally fabricated using emulsion solvent evaporation or solvent-displacement techniques, which rely on primary and secondary emulsion phases of either organic or aqueous character (10).

Studies describing encapsulation of insulin into biodegradable polymeric devices highlight certain problems. A poorly controlled initial release phase is commonplace and
leads to hypoglycaemic shock (11). However, the primary concern is poor stability of insulin after exposure to formulation conditions present during the emulsification and solvent removal-based processes (12). The primary emulsification phases are of particular concern (13). Emulsification of the primary aqueous protein solution with an immiscible solvent, such as dichloromethane, facilitates protein aggregation at the aqueous–organic interfacial boundary (14). The end result is incomplete release (15) or low encapsulation efficiencies (16).

There is a need to improve the sustained release kinetics of insulin and biologically active peptides from biodegradable carriers, whilst preserving activity during fabrication. Formulation studies using potent peptides is often hampered given that available quantities of peptide are often low. Using model drugs, such as insulin, is a common strategy which gathers preliminary data. Formulation of insulin-loaded NP by the double-emulsion technique is commonly done by shearing the system with either sonication or homogenisation (17). Encapsulating insulin using sonication gives high insulin burst release and low entrapment efficiency as troublesome consequences (18). Emulsification using homogenising maintains a linear release profile and higher encapsulation efficiency of hydrophilic drugs that cannot be achieved in particles fabricated by sonication (17), but details of stability are less well documented. Therefore, in this study, sustained release NP for parenteral insulin delivery were evaluated for stability and biological activity during both fabrication steps and release. The formulation strategy used was a modified double-emulsion solvent evaporation technique adopting either homogenisation or sonication to optimise the entrapment efficiency and the initial release of insulin from PLGA and its diblock copolymers containing 5% and 10% PEG. The effect of polymer type,
insulin/polymer loading ratio and concentration of poly(vinyl alcohol) in the internal aqueous phase, on the physicochemical characteristics of insulin-loaded NP, together with in vitro release profiles and stability were investigated. Furthermore, we evaluated in vivo insulin activity using the IP route, as administration is relatively straightforward in the murine model. It is also relevant to the development of continuous intraperitoneal insulin infusion. IP insulin has been shown to provide adequate glycaemic control, which appears superior to that seen following treatment with conventional SC insulin (19). However, the approach is not without its clinical difficulties and more data is needed to assess long-term safety, which will include evaluation of novel delivery strategies, such as nanoparticulate platforms (19).
2. Materials and Methods

2.1 Materials

PLGA (Resomer®RG 503H) with an average molecular weight of 34 kDa and a lactide-to-glycolide ratio of 50:50 was purchased from Sigma Chemical Co. (St. Louis, USA). Two PEG-PLGA diblock copolymers (Resomer® RGP d 5055 (5% PEG) and Resomer® RGP d 50105 (10% PEG) with PEG molecular weight of 5 kDa, were purchased from Boehringer-Ingelheim (Ingelheim, Germany). Bovine insulin (51 amino acids, MW5.734 kDa), poly(vinyl alcohol) (PVA) 87-89% hydrolysed (MW 31.000-50.000) and phosphate buffered saline (PBS) were obtained from Sigma Chemical Co. (St. Louis, USA). A Micro BCA® Kit was obtained from Pierce Ltd. (Rockford, IL). Dichloromethane was of HPLC grade and all other reagents were of analytical grade or higher purity. Milli-Q-water was used throughout the study.

2.2 Preparation of insulin-loaded NP

A modified, double-emulsion, solvent evaporation technique was used in this work, as illustrated schematically in Fig. 1 (20). Insulin was dissolved in 0.2 ml of internal aqueous phase (0.1 M HCl), which was then emulsified at 6,000 rpm (Silverson L5T, Silverson Machines Ltd., Buckinghamshire, UK) for 2 minutes into 2.0 ml of dichloromethane (DCM) containing 10% w/v of the polymer type under investigation. The primary emulsion (w/o) was injected directly into 50 ml of PVA solution (external aqueous phase) under agitation. Emulsification continued at 10,000 rpm for 6 minutes to produce the secondary emulsion using the same homogeniser.
For insulin-loaded NP prepared by sonication, insulin was dissolved in 0.2 ml of 0.1 M HCl and then mixed with 2.0 ml of DCM containing 10% w/v of 10% PEG-PLGA. The primary and secondary emulsification steps were performed using an ultrasonic processor equipped with a XL-2020 3.2 mm probe (Misonix Incorporated, NY, USA) in an ice bath for 2 minutes. The emulsion was stirred overnight under vacuum to evaporate the DCM and prevent pore formation on the surface of the NP. After formation, NP were collected by centrifugation at 10,000 x g for 30 minutes at 4 °C (Sigma Laborzentrifugen GmbH., Germany), washed three times with ultrapure water and 2% w/v sucrose solution and lyophilised using freeze drying (Labconco., Missouri, USA). The freeze-dried NP were stored in a desiccator at ambient temperature. The formulation variables and identifier codes are listed in Table 1.

2.3 NP characterisation

Freeze-dried NP samples (5.0 mg) were mixed with ultrapure water to a suitable concentration and suspended using vortex mixing for 3 minutes. Particle size and its distribution (polydispersity index, PDI) were measured using dynamic light scattering (Zetasizer 5000, Malvern Instruments Ltd., Malvern, UK). NP zeta potential was quantified using laser Doppler anemometry (Zetasizer 5000 (Malvern Instruments Ltd., Malvern, UK), following dispersal and adjustment of conductivity with 0.001 M KCl. All measurements were performed in triplicate.

The NP surface morphology was observed by scanning electron microscopy (SEM) (Quanta 400 FEG, FEI Ltd., Oregon USA). An aliquot of NP was mounted on carbon tape and sputter-coated with gold under vacuum in an argon atmosphere before observation.
2.4 Determination of insulin loading and entrapment efficiency.

Insulin loading was determined using a direct colorimetric method (20). A weighed sample of NP was dissolved in 0.5 ml of 1.0 M NaOH and incubated overnight at 37 °C. The solution was neutralised with 0.5 ml of 1.0 M HCl, centrifuged for 5 minutes at 10,000 x g and the supernatant analysed for insulin content using a bicinchoninic acid assay (Micro BCA®) (21). Percentage entrapment efficiency (%EE) was expressed as a ratio of the determined insulin loading to the maximum theoretical loading. An indirect radioimmunoassay method was used to determine insulin content in the supernatant phase during drug release analysis (22). A standard curve of bovine insulin prepared over a concentration range of 3.9x10^{-3} to 2.0x10^{1} ng ml^{-1} was used.

2.5 In vitro release studies

Lyophilised insulin-loaded NP (5.0 mg) were suspended in a release medium of 1.0 ml PBS (pH 7.4) and incubated at 37 °C using a reciprocal shaking water bath at a fixed speed of 100 rpm. Samples (100 µl) were taken at predetermined time intervals of 1, 12, 24, 48, 96, 120, 144 and 168 hours and replaced with fresh PBS at the same temperature. The collected samples were centrifuged for 5 minutes at 10,000 x g and the insulin content in the supernatant determined using the indirect radioimmunoassay, as described in section 2.4. Each experiment was performed in triplicate.
2.6 Determination of residual PVA

The residual mass of PVA attached to the NP surface after washing was determined by a colorimetric method based on the reaction with iodine. A sample of freeze-dried NP (2.0 mg) was incubated in 0.5 M NaOH for 15 minutes at 60 °C, neutralised by addition of 1.0 M HCl and the final volume adjusted to 5.0 ml with water. To each NP sample, 3.0 ml of iodine reagent (0.65 M solution of boric acid, 0.5 ml of a solution of I$_2$/KI (0.05 M/0.15 M)) and 1.5 ml of water were added. The absorbance of each sample was measured using visible spectroscopy (Agilent 8453, Agilent Technologies, Palo Alto, CA, USA) at 690 nm after 15 minutes incubation and compared to a standard plot of known PVA concentration (23). Residual PVA was expressed as a percentage mass fraction of the total NP mass.

2.7 In vitro stability and protein integrity studies

SDS-PAGE analysis was performed using a BioRad Mini Protean II gel apparatus (Hercules, CA, USA). The final supernatant obtained after 7 days of the in vitro release experiment was used as a sample for this study. The sample was prepared under non-reducing conditions for application on a NuPAGE® gel consisting of 4% and 12% stacking and resolving gels, respectively. A fixative solution of Coomassie Brilliant Blue was employed to stain and reveal the protein bands. Insulin dispersed in PBS (pH 7.4) was used as control to simulate release conditions. Electrophoresis was run in constant current mode (50 mA) and fixed voltage modes (60 V and 120 V) during stacking and running stages, respectively (24). The GelDoc-It™ image system was used to record the position of protein bands.
2.8. In vivo studies

Experimental animals

Young (8-week-old) male National Institutes of Health Swiss mice (18–20 g) (Harlan, UK) were age matched, divided into four groups and housed individually in an air-conditioned room at 22±2 °C with a 12:12 hour light-dark cycle (08:00–20:00) and free access to a standard diet and water *ad libitum*. To induce Type I diabetes, weight-matched mice received a single intraperitoneal injection of streptozotocin (STZ, 150 mg kg⁻¹) dissolved in citrate buffer (pH 4.5). Mice with fasting blood glucose level >8 mmol l⁻¹ 72 hours after STZ administration were considered diabetic and included in the study. All animal experiments were carried out in accordance with the UK Animals (Scientific Procedures) Act of 1986 and Ulster University’s Animal Ethics Committee guidelines.

In vivo bioactivity of insulin formulation

Four groups (n=6) of insulin-deficient STZ-induced diabetic mice were used for this study. Insulin-loaded NP and free insulin were suspended in sterile PBS and injected intraperitoneally at a dose of 25 U kg⁻¹ body weight. The two control groups comprised mice treated with saline or blank NP. Blood samples were withdrawn by tail vein puncture prior to injection and at predetermined time points thereafter. Blood glucose and insulin were measured. Blood glucose concentrations were determined instantaneously by the glucose oxidase method using a handheld Ascencia Counter meter (Bayer Healthcare, UK) (25), while plasma insulin was measured by radioimmunoassay (22), as described previously.
2.9 Statistical analysis

Results are presented as mean ± SD and mean ± SEM for *in vitro* and *in vivo* studies, respectively. Comparative analyses between groups were carried out using one-way analysis of variance (ANOVA) followed by Tukey’s *post hoc* test. Area-under-the-curve (AUC) analysis was performed using the trapezoidal rule with baseline correction. A value of *p*<0.05 was considered statistically significant.
3. Results and discussion

3.1 Effect of polymer type on 9% insulin-loaded NP (F1, F4 and F7)

The physicochemical characterisation of insulin-loaded NP fabricated with three different polymer types is shown in Table 1. For an insulin loading of 9%, PEGylated NP (F4 and F7) prepared from 5% and 10% PEG-PLGA diblock copolymers, respectively, were significantly lower in size (p<0.05) than NP prepared from PLGA (F1). This can be explained by the short chain length of PEG-PLGA compared to PLGA, as well as the presence of covalently linked hydrophilic PEG that decreased polymer association during NP formation, which eventually resulted in the formation of smaller particles (26). All insulin-loaded NP formulations showed low PDI values ranging from 0.21 to 0.43. Increasing PEG content in the polymer backbone caused a further decrease in the NP size, leading to the smaller size of F7 compared to F4. These results are in good agreement with previous reports (20).

PLGA NP exhibited higher negative zeta potential values when compared to PEGylated NP (F4 and F7), but no significant difference between the two latter types was observed. PEG chains on the NP surface are expected to mask surface charge arising from PLGA (7). This reduction of surface charge is a drawback for the PEGylated types, given that NP are notoriously difficult to stabilise when dispersed or suspended in aqueous media. Attractive forces cause NP to agglomerate or aggregate, and surface charges play an important role in preventing this effect. However, during this work, no discernible effects relating to aggregation were observed. To obtain long-term stable NP samples, the dispersions were freeze-dried and NP were re-dispersed in a suitable medium prior to the in vitro or in vivo experiments.
PEGylation resulted in a significant increase \((p<0.05)\) in insulin loading and encapsulation efficiency. PEG-PLGA is an amphiphilic polymer and creates a benign environment for encapsulating hydrophilic molecules, like insulin, through its hydrophilic PEG chains. This slows peptide diffusion to the external aqueous phase and results in high loading efficacy \((27)\). The higher encapsulation efficiency of F7 compared to F1 and F4 is due to the lower solubility of 10\% PEG-PLGA in DCM, which resulted in faster polymer precipitation that prevented insulin escape to the outer phase and consequently increased its entrapment efficiency \((28)\).

In vitro release profiles of F1, F4 and F7 are shown in Fig. 2. Insulin-loaded NP prepared with PEGylated polymers displayed an initial burst release, followed by a steady release profile. The burst release from insulin-loaded PLGA NP was smaller in comparison to PEGylated polymers, followed by a more sustained phase. The burst release of insulin is associated with its peripheral loading, which enables it to diffuse quickly towards the release medium \((29)\) and is more prevalent in the PEGylated types. The burst release was faster and significantly higher from F4 and F7 when compared to F1 \((p<0.05)\), with greater cumulative release after 24 hours. Results showed sustained release of insulin from F1, whereas release from F4 and F7 approached complete release over a 7-day period. The release of insulin from PEGylated NP is governed by its diffusion through a swollen inner structure formed after contact with the aqueous release medium due to the presence of hydrophilic PEG moieties in the polymer matrix \((20)\).
3.2 Effect of insulin/polymer loading ratio

The influence of insulin loading (9%, 6% and 3%) is captured in comparisons of formulations of PLGA (F1, F2 and F3), 5% PEG-PLGA (F4, F5 and F6) and 10% PEG-PLGA (F7, F8 and F9). Results from Lamprecht et al. (30) show that there is no effect of protein loading on NP size. However, the results in this work showed that increasing insulin loading from 3% to 9% resulted in a significant increase (p<0.05) in the size of PLGA and PEGylated NP. In addition, blank NP were significantly lower in size when compared to insulin-loaded types. This is likely due to insulin in the primary emulsion droplets driving up their size, and insulin present on the NP surface, which together increases the mean NP diameter.

Increasing the ratio of insulin to polymer had a significant effect on PDI values and encapsulation efficiency (p<0.05), but no effect on surface charge. Importantly, the increase in insulin loading resulted in a significant decrease (p<0.05) in %EE. Although this may at first seem counter-intuitive, it can be explained in terms of concentration gradients driving drug out of the primary droplets. Increasing insulin concentration gradients in this way may deplete droplets of payload more effectively and dump free insulin into the continuous water phase (30).

The in vitro release profiles and the initial bursts were directly related to the degree of theoretical insulin loading, as shown in Fig. 3, 4 and 5. There was a positive correlation between insulin loading and the extent of the initial burst phase. High insulin burst and rapid release rate could be attributed to the drug concentration gradient between the NP and the release media. Moreover, the diffusion of surface-associated insulin facilitates the
formation of water-filled channels that allow subsequent elution of the core-residing insulin (31, 32).

3.3 Effect of internal aqueous phase stabiliser concentration

PVA was used as a stabilising agent in this study and set at three different concentrations, namely 0.00%, 1.25% and 2.50% w/v. The resulting physicochemical properties of different NP formulations of PLGA (F3, F10 and F11), 5% PEG-PLGA (F6, F12 and F13) and 10% PEG-PLGA (F9, F14 and F15) are shown in Table 1. The NP size was significantly decreased (p<0.01) by PVA addition to the primary emulsion. Increasing PVA concentration caused further decreases in the mean NP size. There are differing views in the literature on whether the primary or secondary emulsion phases have the greater influence on particle size. It is proposed that PVA stabilises the inner water droplets against coalescence, which produces smaller primary emulsion droplets and resultantly smaller NP sizes (31). However, this is in contrast to findings of Bilati et al. (33) who concludes that the secondary emulsification step effectively determines the final particle size in double-emulsion techniques. In this current study, particle size reduction was more significant in PEGylated NP when compared to PLGA NP (p<0.05). Since PLGA is more hydrophobic than a diblock copolymer like PEG-PLGA, the interactions between PVA and PEGylated polymers will be stronger than those to PLGA alone. Therefore, our results support the role of the primary emulsion on determining final particle size, especially if PEGylated polymers are used.

PDI values were significantly decreased by adding PVA to the internal phase, whereas a negligible effect on the surface charge was observed. Addition of internal phase
stabiliser had a no significant impact on the encapsulation efficiency in all types of NP, although a decreasing trend was observed. This may be due to the decreasing particle size, resulting in a larger interfacial area for mass transfer (34). These results are not observed in other work, which show a sharp increase in encapsulation efficiency by adding PVA (or other stabilisers), possibly by improved stabilisation of the primary emulsion (36) or payload-PVA interactions (31, 35). Clearly, further detailed study is required to determine the exact effect of PVA on encapsulation efficiency.

The effect of internal aqueous phase stabiliser on the insulin release from different NP formulations is shown in Fig. 6. A significant increase (p<0.05) in the release rate after PVA addition was observed, and the amount of initial release also increased concomitantly. The in vitro release profile of F11, F13 and F15 with 2.5% w/v PVA was significantly faster than the release from NP prepared with 1.25% w/v PVA and NP without PVA. Initial bursts of 49%, 61% and 68% were observed from F11, F13 and F15, respectively, compared to 27%, 42% and 43% from F3, F6 and F9, respectively. The results in Fig. 6 indicate that increasing PVA concentration increased the early stage release, possibly by way of enhanced peripheral accumulation of insulin close to the NP surface. In addition, higher concentrations of PVA enable porosity to form in the NP matrix, which facilitates outwards diffusion of insulin (34, 36).

3.4 Comparison between homogenisation and sonication

In this work, minimising NP size and maximising %EE was considered as an outcome from optimisation of the formulation variables. Formulation F9, which was prepared by homogenisation using 10% PEG-PLGA, contained NP that were significantly lower in size
and higher in %EE (P value <0.05) compared to formulations fabricated by other types of polymers under similar conditions. This formulation was, therefore, chosen for comparison to methods that used sonication instead of homogenisation. It is also important to note that these optimised NP (size < 400 nm and encapsulation efficiency > 90%) are clearly distinguishable from other published work, such as that of Liu et al. (37).

Insulin-loaded NP (F16) prepared by sonication resulted in a decrease in %EE compared to NP prepared by homogenisation (F9). Size and PDI values were significantly (p<0.01) higher. The release profile of F16 showed significantly higher initial and higher total amounts of insulin released (p<0.05) when compared to similar data from F9 (Fig. 7). Release data for F9 and F16 follow a profile that is typical of drug delivery systems that display Higuchi kinetics. Indeed, fitting cumulative percentage drug release data in Fig. 7 to the square root of time (data not shown) confirmed this assumption.

3.5 Scanning electron microscopy

Fig. 8 shows a micrograph of the optimised insulin-loaded NP (F9). NP were of spherical shape with a size distribution in approximate agreement with light scattering data. The smooth NP surface was free from void and pores. After 7 days of in vitro release, there was little evidence of the presence of spherical structures. Instead, the recovered polymeric material was irregular and sheet-like (Fig. 8B). As F9 has a high PEG content, pore formation during exposure to aqueous media is expected, which may explain poor retention of spherical shape and the enhanced release observed in Fig. 7 (20).
3.6 Residual PVA

PVA is an emulsifier, widely used in the preparation of PLGA NP, and popular because of its ability to produce uniform NP with a size easily dispersed in aqueous media. Importantly, residual PVA associated with PLGA NP can modify their physicochemical properties (38). The addition of PVA to the internal aqueous phase had no impact on the residual PVA attached to all types of NP. Residual PVA determined in different types of NP was less than 7%, being higher for PEGylated NP (Fig. 9). The higher adsorption of PVA to the surface of PEGylated NP is attributed to the amphiphilic characters of these polymers due to PEG chains, with possible PVA interaction. The presence of PEG chains increases the surface area of the NP and consequently increase the probability of hydrophilic molecules, like PVA, to attach to its surface (39). These results contradict those of others (29) who found a reduction in PVA adsorption when PEG is used to modify PLA during NP formation. Thus, it is clear that the alteration in NP surface hydrophilicity using co-polymerised PEG does not produce a clear trend when PVA adsorption is considered.

3.7 In vitro stability and protein integrity

Preserving secondary and tertiary structures of proteins and peptides is essential in maintaining therapeutic efficacy. Stability issues are affected by different formulation conditions with attention focused on the harsh fabrication stress employed during emulsification-based methods (40). Encapsulation of insulin using the double-emulsion technique enables it to act as a surface active molecule, which tends to adsorb at the primary emulsion water/oil interfaces. This adsorption may lead to instability by unfolding,
inactivation or irreversible aggregation. In addition, the high shear stress used for effective emulsification may influence the three-dimensional structure of insulin, which is essential for its therapeutic activity (41).

Aggregation is a major concern for protein-loaded PLGA microspheres, caused by the acidic environment when polymer degradation products accumulate during the release phase (42). To investigate the possibility of insulin aggregation after formulation and in vitro release, the integrity of the insulin released after seven days was evaluated. The three single lines in the gels (Fig. 10), representing the insulin band of the naked and encapsulated insulin released from F9 and F16, provided evidence that the entrapped insulin did not suffer any significant aggregation during its formulation and after in vitro release (36). Although use of a stability indicating method, such as HPLC, would highlight possible degradation, quantification by radioimmunoassay in this work supported the lack of degradation or aggregation of encapsulated insulin. This stability is attributed to co-polymerised PEG, which prevents an acidic micro-environment within particulate systems (43). Furthermore, the hydrophobicity of the PLGA surface is masked by PEG, reducing insulin re-adsorption and preventing possible aggregation (44). Both insulin-loaded NP prepared by homogenisation or sonication maintained insulin integrity after fabrication and in vitro release.

3.8 In vivo bioactivity

It is well-documented that formulation steps inactivate or otherwise denature a proportion of encapsulated insulin (45). If this occurs, then bioactivity is compromised and careful in vivo assessment is required. Therefore, in this work, we determined the bioactivity of an
optimised NP formulation in insulin-deficient Type 1 diabetic mice. The effect of a single intraperitoneal injection of (25 U kg\(^{-1}\)) of free insulin and insulin-loaded NP (F9) on blood glucose levels in type I diabetic mice is shown in Fig. 11A-11C. Free insulin significantly decreased plasma glucose (P <0.001) directly after injection, compared to the blank NP and saline groups. Blood glucose concentrations decreased by 69.1% (P <0.001) 2 hours after administration. However, following this initial reduction, blood glucose concentrations in free insulin-injected mice returned rapidly to control diabetic levels. This is in accordance with the short half-life of parenterally delivered insulin (20).

Insulin-loaded NP induced a significant and sustained glucose lowering effect, as expected from in vitro release data. At the 2-hour time point, insulin-loaded NP had reduced blood glucose levels by 48.3% in our Type 1 diabetic subjects, and these mice had significantly lower glucose levels compared to free insulin-treated mice at 3 hours, post-injection. The clear difference between the glycaemic statuses of the two groups of mice was apparent throughout the entire 24-hour observation period, highlighted by significantly lowered blood glucose concentrations in mice treated with insulin-loaded NP at 24 hours. Encouragingly, blood glucose levels remained within the normal range in insulin-loaded NP treated mice (5-7 mmol l\(^{-1}\)) throughout the 24-hour period, with no obvious signs of hypoglycaemia. This is a foremost advantage for any insulin-containing formulation (20).

Our results showed a clear effect on blood glucose concentration, which is in contrast to the results of Liu et al. (37), who showed insignificant decreases in blood glucose levels following insulin-loaded NP administration within the first 12 hours.

Plasma insulin profiles closely mirrored blood glucose levels in all groups of mice, confirming that the initial burst release and subsequent sustained release of insulin for the
NP were key features of the improved glycaemic status (20). Plasma insulin levels in mice injected with free insulin (Fig. 12A) revealed a mean peak for plasma insulin concentration (C_{max}) of 21.3 ng ml$^{-1}$ observed after one hour, with levels returning to basal, 3 hours after administration. Mice injected with insulin-loaded NP showed a peak insulin concentration of 14.5 ng ml$^{-1}$, which occurred 3 hours after injection and was significantly ($P < 0.001$) higher than the free insulin group. Plasma insulin levels remained elevated in insulin-loaded NP treated mice, and were still significantly ($P<0.01$) greater than free insulin injected mice 24 hours post-injection. AUC analysis (Fig. 11C and 12A) confirmed the sustained and enhanced bioactive profile of released insulin, confirming preservation of its biological activity. Although further studies are required, it is feasible that the remaining insulin within the NP (over 50%) would be slowly released to further sustain normoglycaemic status beyond 24 hours.

4. Conclusions

The aqueous solubility of insulin hinders entrapment efficiency and gives rise to a pronounced burst release from particulate systems. High encapsulation efficiency, low initial release and maintaining stability are essential requirements for sustained insulin delivery from biodegradable formulations. In this current study, we modified key features of the double emulsion technique, such as pH of the internal phase, the ratio of internal phase to external phase and homogenisation speed. After optimisation of the formulation conditions, the %EE of insulin reached 91.5% and the burst release within the first 24 hours was restricted to 28%. An optimised insulin-loaded NP was fabricated by homogenisation from 10% PEG-PLGA with low insulin loading and without any surfactants in the primary
emulsion. Insulin-loaded NP prepared by homogenisation showed lower particle size, lower PDI, higher encapsulation efficiency and lower initial release compared to NP prepared by sonication. PEGylated (10%) PLGA polymer exerted a protective effect on insulin stability by suppressing adsorption phenomena and preventing insulin aggregation. The optimised insulin-loaded NP controlled in vitro insulin release for 168 hours. Both in vitro and in vivo data were in close agreement. Intraperitoneal administration showed effective and pronounced glycaemic control, which verified preservation of biological activity and confirmed the sustained release profiles determined during release studies.

Declaration of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this article.
References

<table>
<thead>
<tr>
<th>Formulation ID</th>
<th>Polymer type</th>
<th>Insulin loading (w/w %)</th>
<th>Internal aqueous phase PVA concentration (% w/v)</th>
<th>Size (nm)</th>
<th>PDI</th>
<th>Zeta potential (mV)</th>
<th>%EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>PLGA</td>
<td>9</td>
<td>0.00</td>
<td>396.5±20.9</td>
<td>0.43±0.05</td>
<td>-21.98±2.82</td>
<td>42.89±3.01</td>
</tr>
<tr>
<td>F2</td>
<td>PLGA</td>
<td>6</td>
<td>0.00</td>
<td>357.0±14.4</td>
<td>0.36±0.01</td>
<td>-20.15±1.96</td>
<td>56.73±3.45</td>
</tr>
<tr>
<td>F3</td>
<td>PLGA</td>
<td>3</td>
<td>0.00</td>
<td>322.5±15.0</td>
<td>0.29±0.02</td>
<td>-20.03±0.95</td>
<td>70.33±5.99</td>
</tr>
<tr>
<td>F4</td>
<td>5%PEG-PLGA</td>
<td>9</td>
<td>0.00</td>
<td>357.5±14.4</td>
<td>0.39±0.06</td>
<td>-6.11±1.04</td>
<td>52.17±3.02</td>
</tr>
<tr>
<td>F5</td>
<td>5%PEG-PLGA</td>
<td>6</td>
<td>0.00</td>
<td>310.3±16.7</td>
<td>0.32±0.11</td>
<td>-5.66±1.53</td>
<td>68.89±3.28</td>
</tr>
<tr>
<td>F6</td>
<td>5%PEG-PLGA</td>
<td>3</td>
<td>0.00</td>
<td>273.5±8.5</td>
<td>0.25±0.01</td>
<td>-6.21±1.91</td>
<td>80.84±4.23</td>
</tr>
<tr>
<td>F7</td>
<td>10%PEG-PLGA</td>
<td>9</td>
<td>0.00</td>
<td>317.5±16.5</td>
<td>0.40±0.04</td>
<td>-5.21±0.98</td>
<td>61.18±3.82</td>
</tr>
<tr>
<td>F8</td>
<td>10%PEG-PLGA</td>
<td>6</td>
<td>0.00</td>
<td>272.5±17.</td>
<td>0.33±0.01</td>
<td>-6.05±1.85</td>
<td>73.88±4.16</td>
</tr>
<tr>
<td>F9</td>
<td>10%PEG-PLGA</td>
<td>3</td>
<td>0.00</td>
<td>239.3±13.0</td>
<td>0.25±0.03</td>
<td>-5.36±1.70</td>
<td>91.52±4.59</td>
</tr>
<tr>
<td>F10</td>
<td>PLGA</td>
<td>3</td>
<td>1.25</td>
<td>300.5±11.8</td>
<td>0.22±0.01</td>
<td>-19.26±1.47</td>
<td>63.76±3.06</td>
</tr>
<tr>
<td>F11</td>
<td>PLGA</td>
<td>3</td>
<td>2.50</td>
<td>277.5±14.7</td>
<td>0.21±0.01</td>
<td>-20.15±1.69</td>
<td>61.66±2.87</td>
</tr>
<tr>
<td>F12</td>
<td>5%PEG-PLGA</td>
<td>3</td>
<td>1.25</td>
<td>240.8±15.1</td>
<td>0.21±0.02</td>
<td>-5.76±0.72</td>
<td>74.39±2.79</td>
</tr>
<tr>
<td>F13</td>
<td>5%PEG-PLGA</td>
<td>3</td>
<td>2.50</td>
<td>200.3±8.5</td>
<td>0.22±0.01</td>
<td>-5.91±1.12</td>
<td>71.23±5.27</td>
</tr>
<tr>
<td>F14</td>
<td>10%PEG-PLGA</td>
<td>3</td>
<td>1.25</td>
<td>197.5±6.8</td>
<td>0.21±0.02</td>
<td>-5.41±0.83</td>
<td>82.45±5.08</td>
</tr>
<tr>
<td>F15</td>
<td>10%PEG-PLGA</td>
<td>3</td>
<td>2.50</td>
<td>160.0±15.7</td>
<td>0.21±0.01</td>
<td>-5.80±1.06</td>
<td>80.88±5.42</td>
</tr>
<tr>
<td>Blank NP</td>
<td>PLGA</td>
<td>0</td>
<td>0.00</td>
<td>269.5±13.5</td>
<td>0.31±0.06</td>
<td>-19.58±1.78</td>
<td>-</td>
</tr>
<tr>
<td>Blank NP</td>
<td>5%PEG-PLGA</td>
<td>0</td>
<td>0.00</td>
<td>211.5±17.6</td>
<td>0.24±0.07</td>
<td>-6.77±0.97</td>
<td>-</td>
</tr>
<tr>
<td>Blank NP</td>
<td>10%PEG-PLGA</td>
<td>0</td>
<td>0.00</td>
<td>187.8±9.8</td>
<td>0.21±0.04</td>
<td>-5.01±1.43</td>
<td>-</td>
</tr>
</tbody>
</table>

Homogenisation

Sonication

| F16 | 10%PEG-PLGA | 3 | 0.00 | 283.8±16.3 | 0.40±0.05 | -5.93±1.33 | 84.01±5.72 |
*polydispersity index
Fig. 1

- Factor changed
- Insulin concentration
- PVA concentration
- Polymer type
- Primary Emulsion
- Polymer solution
- Secondary Emulsion
- PVA solution
- 50 ml
Fig. 2

The graph shows the cumulative release (%) over time (h) for different formulations labeled as F4, F7, and F1. The x-axis represents time in hours (0, 24, 48, 72, 96, 120, 144, 168), and the y-axis represents cumulative release percentage (0% to 100%).
Fig. 3

Cumulative release (%) vs Time (h)

- F1
- F2
- F3
Fig. 4

![Graph showing cumulative release over time for F4, F5, and F6 samples.](image-url)
Fig. 5
Fig. 6
Fig. 7

Cumulative release (%) vs. Time (h)

- F16
- F9
Fig. 8
Fig. 9

The bar chart shows the percentage of residual PVA (wt/wt) for different materials and PVA concentrations. The x-axis represents the materials: PLGA, 5.0% PEG-PLGA, and 10.0% PEG-PLGA. The y-axis represents the percentage of residual PVA.

- **No PVA**
- **1.25% w/v PVA**
- **2.5% w/v PVA**

The data suggests a significant increase in residual PVA with higher concentrations of PVA, especially at 2.5% w/v PVA. The bars are labeled with asterisks to indicate statistical significance. ******* indicates a highly significant difference.
Fig. 11

(A) Blood glucose levels over time for two conditions: Saline (black squares) and Blank NP (upward triangles). The y-axis represents blood glucose levels in mmol/l, and the x-axis represents time in hours.

(B) Blood glucose levels over time for two conditions: Free Insulin (black squares) and Insulin NP (F9) (upward triangles). The y-axis represents blood glucose levels in mmol/l, and the x-axis represents time in hours.
Blood glucose (mmol hr⁻¹)
Fig. 12

(A)
- □ Free Insulin
- ▲ Insulin NP (F9)

(B)
- □ Free Insulin
- ▲ Insulin NP (F9)
Legend to Figures

Fig. 1. Sequence of steps comprising the double-emulsion, solvent evaporation technique. The factors investigated in this study were the insulin concentration, polymer type and PVA concentration in the primary emulsion.

Fig. 2. *In vitro* release profiles of NP prepared using PLGA (F1), 5%PEG-PLGA (F4) and 10%PEG-PLGA (F7) with insulin loading kept constant at 9% and no PVA in the secondary emulsion. Results are mean ± standard deviation (n=3).

Fig. 3. *In vitro* release profiles of NP prepared using PLGA with insulin loading of 9% (F1), 6% (F2) and 3% (F3), with no PVA in the secondary emulsion continuous phase. Results are mean ± standard deviation (n=3).

Fig. 4. *In vitro* release profiles of NP prepared using 5%PEG-PLGA with insulin loading of 9% (F4), 6% (F5) and 3% (F6), with no PVA in the secondary emulsion continuous phase. Results are mean ± standard deviation (n=3).

Fig. 5. *In vitro* release profiles of NP prepared using 10%PEG-PLGA with insulin loading of 9% (F7), 6% (F8) and 3% (F9), with no PVA in the secondary emulsion continuous phase. Results are mean ± standard deviation (n=3).

Fig. 6. *In vitro* release profiles of NP prepared using 1.25% PVA (F10, F12 and F14) and 2.50% PVA (F11, F13 and F15) in the secondary emulsion continuous phase with 3% insulin loading. Results are mean ± standard deviation (n=3).
Fig. 7. *In vitro* release profiles of NP prepared using homogenisation (F9) and sonication (F16) with no PVA in the secondary emulsion continuous phase and 3% insulin loading. Results are mean ± standard deviation (n=3).

Fig. 8. Scanning electron micrographs of F9 after formulation (A) and after 7 days of *in vitro* release (B).

Fig. 9. The percentage of residual PVA on PLGA, 5% PEG-PLGA and 10% PEG-PLGA insulin-loaded NP. Values are mean ± SD with n=3. *p<0.05, **p<0.01, ***p<0.001 compared with PLGA NP.

Fig. 10. SDS-PAGE of free insulin and insulin samples released from formulation F9 & F16 after 7 days of *in vitro* incubation. Molecular weight markers (lane 1); free insulin dispersed in PBS (lane 2); insulin released from F9 (lane 3) and insulin released from F16 (lane 4).

Fig. 11. Effects of free insulin and insulin NP (F9) on blood glucose concentrations in insulin-deficient type I diabetic NIH Swiss mice expressed as a time-resolved plot (A and B) and AUC data (C). Blood glucose concentrations were measured prior to and after intraperitoneal injection of free insulin or insulin NP (25 U/kg bw) in insulin-deficient type I diabetic mice for 24 hours. Values are mean ± SEM for 6 mice.

Fig. 12. Effects of insulin and insulin NP (F9) on plasma insulin concentrations in insulin-deficient type I diabetic NIH Swiss mice expressed as line graph (A) and AUC data (B). Plasma insulin concentrations were measured prior to and after intraperitoneal injection of insulin or
insulin NP (25U/kg bw) in insulin-deficient type I diabetic mice for 24 h. Values are mean ±SEM for 6 mice. **P < 0.01, ***P < 0.001 compared with free insulin.