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Abstract  1 

Smoking tobacco is a known risk factor for the development of colorectal cancer, and for 2 

mortality associated with the disease. While smoking has been reported to be associated 3 

with changes in DNA methylation in blood and in lung tumour tissues, there has been 4 

scant investigation of how epigenetic factors may be implicated in the increased risk of 5 

developing colorectal cancer. To identify epigenetic changes associated with smoking 6 

behaviours, we performed epigenome-wide analysis of DNA methylation in colorectal 7 

tumours from 36 never smokers, 47 former smokers and 13 active smokers, and adjacent 8 

mucosa from 49 never smokers, 64 former smokers and 18 active smokers. Our analyses 9 

identified 15 CpG sites within the APC 1A promoter that were significantly 10 

hypermethylated and 14 CpG loci within the NFATC1 gene body that were significantly 11 

hypomethylated (pLIS<1x10-5) in tumours of active smokers. The APC 1A promoter was 12 

hypermethylated in 7 of 36 tumours from never smokers (19%), 12 of 47 tumours from 13 

former smokers (26%), and 8 of 13 tumours from active smokers (62%). Promoter 14 

hypermethylation was positively associated with duration of smoking (Spearman rank 15 

correlation, ρ=0.26, p=0.03) and was confined to tumours, with hypermethylation never 16 

observed in adjacent mucosa. Further analysis of adjacent mucosa revealed significant 17 

hypomethylation of four loci associated with the TNXB gene in tissue from active smokers. 18 

Our findings provide exploratory evidence for hypermethylation of the key tumour 19 

suppressor gene APC being implicated in smoking-associated colorectal carcinogenesis. 20 

Further work is required to establish the validity of our observations in independent 21 

cohorts.  22 

 23 

Keywords: Smoking; Tobacco; Colorectal cancer; Epigenetics; DNA methylation; APC. 24 
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Introduction 1 

Smoking tobacco is a risk factor for many forms of cancer, including colorectal cancer 2 

(CRC). Ever-smokers, which includes both current and former smokers, have an 18% 3 

increase in risk of developing the disease relative to individuals who have never smoked 4 

[1], and the risk is greatest for the development of tumours in the rectum. In addition to 5 

increased incidence, active smokers have a 23% greater risk of CRC-related mortality [2] 6 

and patients who are former smokers still display increased risk of all-cause mortality [3]. 7 

The duration and intensity of smoking are known to modify risk, with individuals who have 8 

smoked for ≥30 years and those with ≥20 pack-years of smoking each displaying a 40% 9 

increase in risk of CRC-related mortality [3]. However, the mechanisms by which smoking 10 

tobacco increases CRC risk have not been elucidated. It has been hypothesised that the 11 

carcinogenic products of cigarette smoke may reach the colorectum through the blood 12 

and be implicated in the early initiation of cancer, as opposed to furthering the 13 

development of existing adenomas [4]. 14 

Smoking is associated with alterations in DNA methylation, an epigenetic modifier 15 

of gene expression, in healthy individuals. Such epigenetic events display tissue-16 

specificity [5] and differ by ethnicity [6,7], and can serve as markers of long-term exposure 17 

to tobacco smoke [8]. Several studies examining the blood of smokers have reported 18 

differential methylation of loci within the aryl hydrocarbon receptor repressor (AHRR) 19 

gene [6,9], a putative tumour-suppressor which mediates the detoxification of products in 20 

cigarette smoke, and the coagulation factor II (thrombin) receptor-like 3 (F2RL3) gene 21 

[6,8-10], implicated in blood clotting. Associations have been identified between smoking-22 

related changes in DNA methylation of AHRR, F2RL3 and LINE1 elements measured in 23 

blood and the risk of cancer [11] and mortality from the disease [12]. 24 
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Further to these observations in healthy individuals, there is evidence that smoking 1 

is associated with epigenetic changes in tumour tissue. Epigenome-wide association 2 

studies have identified distinct methylation profiles in lung tumours from smokers and 3 

non-smokers [13], while candidate-gene approaches have identified smoking-related 4 

changes in the methylation of cyclin-dependent kinase inhibitor 2A (CDKN2A/p16) and 5 

runt-related transcription factor 3 (RUNX3) in bladder tumours [14,15] and CDKN2A/p16 6 

and O-6-methylguanine-DNA methyltransferase (MGMT) in lung tumours [16]. Smoking-7 

related epigenetic events may occur early in carcinogenesis, as demonstrated by their 8 

observation in stage I non-small cell lung cancers [17]. However, the evidence for 9 

smoking-associated epigenetic dysregulation in CRC is currently limited. Smoking has 10 

been reported as associated with microsatellite instability and positive CpG island 11 

methylator phenotype (CIMP) status [18], but there has otherwise been scant research of 12 

DNA methylation in colorectal tumours by smoking status. 13 

In this study, we investigated whether epigenetic factors may be implicated in the 14 

increased risk of CRC among tobacco smokers by analysing epigenetic patterns in 15 

colorectal tumours and neighbouring mucosa in relation to smoking behaviours. We 16 

utilised the Illumina HumanMethylation450 microarray platform to analyse DNA 17 

methylation in samples taken from a total of 137 colorectal cancer patients, 51 of whom 18 

had never smoked (‘never smokers’), 68 who had been smokers but had ceased at least 19 

two years prior to cancer diagnosis (‘former smokers’), and 18 who smoked at the point 20 

of diagnosis (‘active smokers’). We report that promoter 1A of the APC gene, commonly 21 

inactivated in CRC, is hypermethylated in the tumours of active smokers. Methylation of 22 

this region is associated with duration of smoking, and hypermethylation (β>0.2) was 23 

never observed in adjacent mucosa. Our results suggest that the increased risk of CRC 24 
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development among smokers may progress through epigenetic inactivation of the key 1 

tumour suppressor gene APC. 2 

 3 

  4 
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Material and Methods 1 

The ColoCare Study 2 

The ColoCare consortium is a multicentre initiative of interdisciplinary research on 3 

outcomes associated with colorectal cancer, with sites at the Fred Hutchison Cancer 4 

Research Center (Seattle, USA), Moffit Cancer Center (Tampa, USA), and from 2010 at 5 

the German Cancer Research Center (Heidelberg, Germany). This study exclusively 6 

focussed upon patients recruited in Heidelberg. ColoCare has been approved by the 7 

ethics committee of the University of Heidelberg medical faculty. Patients were enrolled 8 

to this prospective cohort at the point of diagnosis, having given informed consent, with 9 

biospecimens and data collected at regularly scheduled intervals of 3, 6, 12, 24 and 36 10 

months post-surgery. Medical factors were abstracted from patients’ charts and records 11 

from the University Hospital of Heidelberg. Data on dietary habits, exercise and physical 12 

activity, smoking habits, medication, socio-demographic information, and quality of life 13 

were collected via questionnaires. To date, 500 patients have been recruited at the 14 

Heidelberg site.  15 

 16 

Tissue samples 17 

Tissue samples were collected from patients undergoing surgery at the University 18 

Hospital of Heidelberg, and were reviewed by pathologists to ensure their quality and 19 

origin. Tumour samples were collected from 36 patients who had never smoked, 47 who 20 

were former smokers, and 13 who were active smokers at the point of diagnosis. Mucosa 21 

was taken from adjacent to tumours from 49 never smokers, 64 former smokers and 18 22 

active smokers. A summary of patient characteristics is provided in Table 1.   23 

 24 

DNA isolation 25 
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DNA was extracted from fresh-frozen tissue using the QIAamp AllPrep DNA/RNA mini kit 1 

(Qiagen) according to the manufacturer’s instructions. 2 

 3 

Illumina Infinium HumanMethylation450 BeadChip microarrays 4 

DNA microarrays were performed at the Genomics and Proteomics Core Facility at the 5 

German Cancer Research Center (Heidelberg, Germany). 1.0µg of Genomic DNA was 6 

bisulfite-converted using the EZ DNA Methylation kit (Zymo Research) according to the 7 

manufacturer’s instructions. The microarrays were then performed according to the 8 

Illumina Infinium HD Methylation protocol. 9 

 10 

Microarray data analysis 11 

Microarray data was pre-processed using the Illumina Genome Studio software program 12 

before analysis using the R minfi package. Background correction and dye-bias 13 

normalisation were performed using noob [19], and functional normalisation was 14 

performed to remove batch effects and inner technical variability and adjust for Type I/II 15 

probe fluorescence effect, as described elsewhere [20]. Prior to background correction 16 

and normalisation, probes with detection p values >0.01 in 10% of samples (n=662) or 17 

bead counts less than three in 10% of samples (n=162) were removed. Probes with SNPs 18 

within 10bp of the target CpG with minor allele frequencies of >0.01 (n=19,099) and 19 

mapping to the X and Y chromosomes (n=11,150) were removed. Subsequently, a total 20 

of 456,144 probes were taken forward for analysis. 21 

Loci that are differentially methylated by smoking behaviours were identified by 22 

fitting a linear least-squares regression model across the conditions followed by 23 

computing moderated t-statistics for every CpG site, as described in the limma pipeline 24 

[21]. Due to the non-independent structure of the univariate t-statistics, we used a non-25 
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homogenous hidden Markov model (NHMM) to incorporate the dependence coming from 1 

the chromosomal positions of CpGs in the test statistics, as proposed and described 2 

elsewhere [22]. Briefly, t-statistics are z-score transformed and distances (base pairs) 3 

between CpGs were calculated and used as dependence structure in the NHMM. The 4 

NHMM parameters were estimated by expectation maximisation with randomised initial 5 

values. To avoid local maxima in the maximisation algorithm we used 30 initialisations 6 

and chose the initialisation with the smallest Bayesian information criteria (BIC). This 7 

provides a reproducible local index of significance (LIS), as previously defined [23], and 8 

can be interpreted as dependence corrected p value (pLIS). For computational efficiency 9 

we performed the analysis by chromosome and pooled the results afterwards, with 10 

significance defined as pLIS<1x10-5. The pLIS scores were computed using the R 11 

package NHMMfdr. Comparisons were made between never smokers and active 12 

smokers and between never smokers and former smokers in tumour and adjacent 13 

mucosa tissues. To identify loci that are differentially methylated between tumours and 14 

adjacent mucosa in a smoking-specific manner, we compared the differences in active 15 

smokers of tumour and mucosa with the differences among never smokers of tumour and 16 

mucosa. All analyses were adjusted for age and sex in the linear regression model. 17 

The methylation microarray dataset is available from the NCBI Gene Expression 18 

Omnibus repository (accession number: GSE101764). 19 

 20 

Identification of probe-associated SNPs 21 

To account for false positives stemming from genetic variation, we used the UCSC 22 

Genome Browser and NCBI dbSNP databases [24,25] to identify single nucleotide 23 

polymorphisms (SNPs) within the 50-mer probes of the microarray for sites identified as 24 

significantly differentially methylated by smoking behaviours. The unconverted DNA 25 
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sequences (‘SourceSeq’) for each significantly-different probe in tumour tissue and 1 

adjacent mucosa were extracted from the GenomeStudio output file and were used to 2 

perform a BLAT search using the UCSC Genome Browser [24]. The minor allele 3 

frequencies for all SNPs located within the probe sequences were identified using the 4 

UCSC Genome Browser and the NCBI dbSNP database [24,25]. Data from across all 5 

ethnicities or, where available, European populations was recorded, using estimates 6 

from studies with the largest sample sizes. 7 

 8 

Statistical analyses 9 

Associations between DNA methylation and smoking habits were calculated using data 10 

on pack-years and duration of smoking for each patient, and time since cessation among 11 

former smokers. Detailed data on smoking habits was available for 87 patients from whom 12 

tumour tissue was taken and 115 patients providing adjacent mucosa.  Associations 13 

between DNA methylation (beta values) and intensity (pack-years) and duration (years) 14 

of smoking were identified using Spearman’s rank correlation coefficient, as were 15 

associations with time since cessation of smoking (years). Associations between tumour 16 

location and APC promoter 1A hypermethylation were calculated using Fisher’s exact 17 

test. Statistical significance defined as p<0.05. 18 

 19 

  20 
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Results 1 

Characteristics of the patients 2 

Details of the CRC patients from whom samples of colorectal tumours and adjacent 3 

mucosa were obtained are provided in Table 1. Tumour tissue was obtained from 36 4 

never smokers, 47 former smokers and 13 active smokers, while adjacent mucosa was 5 

taken from 49 patients who were never smokers, 64 who were former smokers and 18 6 

active smokers. Matched pairs of tumour and adjacent mucosa tissue were available for 7 

89 of the patients (33 never smokers, 43 former smokers and 13 active smokers). The 8 

mean level of smoking was 18.7 pack-years among active smokers and 12.7 pack-years 9 

among former smokers. The mean duration of smoking was 37.6 years among active 10 

smokers and 19.6 years among former smokers. 11 

 12 

The APC promoter 1A is hypermethylated in the tumours of active smokers  13 

Epigenome-wide analysis of DNA methylation in 96 colorectal tumours and 131 samples 14 

of adjacent mucosa was performed using the Illumina Infinium HumanMethylation450 15 

BeadChip microarray platform at the German Cancer Research Center Genomics and 16 

Proteomics Core Facility (Heidelberg, Germany). An overview of performed analyses with 17 

the different comparisons is shown in Figure 1. 18 

We identified 21 CpG sites where methylation was significantly different between 19 

tumours from patients who had never smoked and those who were active smokers at the 20 

point of diagnosis (Figure 2a). These mapped to 14 loci within the NFATC1 gene, 6 within 21 

the APC gene, and 1 within LAMB1 (Table 2). The 14 loci that mapped to the NFATC1 22 

gene were distributed throughout the gene body and predominantly located in CpG 23 

islands. In contrast, each of the six loci associated with APC corresponded to the 1A 24 

promoter region and were within a span of 83 bp.  Median beta values at each of the six 25 
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CpG sites were 0.41–0.53 higher in active smokers in comparison to never smokers. No 1 

CpG sites were differentially methylated between tumours from former smokers and 2 

never smokers. 3 

 4 

Smoking-specific differential methylation between tumours and adjacent mucosa 5 

We performed further analysis to identify genes that may be implicated in smoking-6 

associated carcinogenesis by identifying loci that are differentially methylated between 7 

tumours and adjacent mucosa among active smokers but not never smokers. We 8 

identified 148 loci that were significantly differentially methylated between these 9 

conditions (Figure 2b, Supplementary Table 1). This included all six of the loci 10 

previously identified within the APC 1A promoter and 9 of the 14 sites previously 11 

identified within the NFATC1 gene body. The nine sites with greatest statistical 12 

significance all mapped to the APC 1A promoter, and a further six significantly 13 

differentially methylated sites were also identified within this region. The average beta 14 

values in tumours and adjacent mucosa from active smokers differed by >0.24 at each 15 

of the 15 sites of the APC 1A promoter, while differing by <0.10 in the same tissues 16 

from never smokers. Other genes prominently identified by this analysis included 17 

receptor-type tyrosine-protein phosphatase N2 (PTPRN2) and sidekick cell adhesion 18 

molecule 1 (SDK1). 19 

 20 

APC promoter 1A methylation and tumour pathology 21 

Our epigenome-wide analysis identified the APC promoter 1A as the leading target for 22 

smoking-associated methylation changes. This was confirmed by cross-validation 23 

analysis, which identified this region as the most predictive to distinguish between 24 
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tumours from never and active smokers (Supplementary Figure 1). We sought to further 1 

characterise methylation of this region by tumour pathology and smoking behaviours. 2 

Expanded analysis across the 15 significantly differentially methylated loci mapping to 3 

the APC 1A promoter revealed distinct hypermethylation in some patients (Figure 3a). 4 

Defining hypermethylation as mean beta values of >0.2, in accordance with our 5 

observed values across all tumours, the APC 1A promoter was hypermethylated in 7 of 6 

36 tumours from never smokers (19%), 12 of 47 tumours from former smokers (26%), 7 

and 8 of 13 tumours from active smokers (62%). Across all smoking behaviours, 8 

hypermethylation was observed at all AJCC stages, including 4 of 8 stage I tumours 9 

(Figure 3B), and was more common in tumours located in the rectum (14 of 38 tumours, 10 

37%) and distal colon (8 of 25, 32%) than in the proximal colon (2 of 14, 14%), but not 11 

significantly so (Fisher’s exact test, p=0.18 and p=0.28 respectively). We identified no 12 

associations between methylation at the six differentially methylated loci within the APC 13 

1A promoter and alcohol consumption (grams/day) or BMI (both p > 0.05). 14 

Hypermethylation of the 1A promoter was significantly more frequent among women 15 

(Fisher’s exact test, p=0.02) and was associated with younger age (Spearman rank 16 

correlation, ρ=-0.28, p=0.01). 17 

 18 

Methylation of the APC 1A promoter is associated with duration of smoking 19 

To explore the relation between the intensity and duration of smoking with methylation 20 

of the APC 1A promoter, we utilised data for the 72 former and active smokers in this 21 

study regarding intensity (pack-years) and smoking duration (length of time for which 22 

the patient smoked). Additionally, for the 47 former smokers, the relation with the length 23 

of time between cessation of smoking and cancer diagnosis was also assessed. 24 
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Greater duration of smoking was significantly and positively associated with increased 1 

methylation at cg14479889 (ρ=0.27, p=0.03) and trended towards significance at each 2 

of the other five differentially methylated loci (ρ>0.19, p<0.09) (Table 3). Most notably, 3 

the average methylation (beta values) across the 15 differentially methylated loci 4 

mapped to this promoter region was significantly and positively associated with duration 5 

of smoking (ρ=0.26, p=0.03). No significant associations were observed with pack-years 6 

of smoking (p>0.29) or time between cessation of smoking and cancer diagnosis among 7 

former smokers (p>0.16). 8 

 9 

The APC promoter 1A is not hypermethylated in the mucosa adjacent to tumours 10 

We examined APC promoter 1A methylation in mucosa adjacent to tumours, to 11 

determine whether hypermethylation of this region exists as a field defect. Matched 12 

tumour and adjacent mucosal tissue were available for 24 of the 27 patients with 13 

tumoural hypermethylation of the 1A promoter (irrespective of smoking status). No 14 

promoter hypermethylation was observed in the adjacent mucosa from any of the 24 15 

patients (Figure 3c, average beta < 0.11), or individually at any of the six differentially 16 

methylated loci (β<0.13) (Supplementary Figure 2). 17 

 18 

TNXB is differentially methylated in the adjacent mucosa of smokers 19 

To gain insight into how smoking may act upon the colon, such as through carcinogenic 20 

compounds from cigarette smoke carried in the blood or chronic inflammation, we 21 

performed epigenome-wide analyses of DNA methylation in adjacent mucosa by 22 

smoking behaviours. We identified four sites within a 500 bp region that map to the 23 
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tenascin XB (TNXB) gene body that were significantly hypomethylated in mucosa from 1 

active smokers (Supplementary Table 2). No differentially methylated loci were 2 

observed between former and never smokers. 3 

  4 
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Discussion 1 

In this study, we investigated how epigenetic factors may be implicated in conferring the 2 

increased risk of colorectal cancer among smokers by performing epigenome-wide 3 

analysis of DNA methylation in samples of tumours and adjacent mucosa by smoking 4 

behaviours. We report that smoking at the time of diagnosis is significantly associated 5 

with hypermethylation of the 1A promoter of APC, a key tumour suppressor gene that 6 

has been extensively studied with regard to colorectal cancer. Hypermethylation was 7 

unique to tumour tissue and was associated with the duration for which the patient has 8 

smoked. We observed that hypermethylation of this promoter was more common in the 9 

rectum and distal colon, in concordance with evidence that the association between 10 

smoking and CRC risk is greatest for developing tumours in the rectum [1,26]. Our 11 

findings may implicate the epigenetic silencing of APC in smoking-associated colorectal 12 

carcinogenesis. However, due to the relatively small number of patients who were 13 

active smokers at diagnosis, our results should be considered exploratory at this stage. 14 

We have been unable to validate our observations in an independent cohort due to the 15 

absence of publicly-available datasets incorporating smoking history, and insufficient 16 

numbers of active smokers at diagnosis within other studies. Further work in external 17 

cohorts is required to examine the validity of our observations. 18 

APC is a tumour suppressor gene and regulator of the Wnt signalling pathway, 19 

which acts via regulation of β-catenin degradation and localisation. Loss of APC 20 

function has been proposed as a key early event in the development of sporadic 21 

colorectal cancer [27], with inactivation frequently occurring through mutations, 22 

especially in the mutation cluster region [28], and promoter methylation [29]. Expression 23 

of the 1A mRNA isoform of APC is regulated in part through methylation of promoter 1A 24 

(chr5:112,072,710-112,073,585) [30], and this region is aberrantly methylated in 25 
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colorectal, breast and lung tumours, resulting in transcriptional silencing and increased 1 

activation of the Wnt signalling pathway [29,31]. We observed significantly greater 2 

methylation of this region in tumours from patients who were active smokers at the point 3 

of diagnosis, thereby linking smoking behaviours to silencing of this key tumour 4 

suppressor gene. It has been reported elsewhere that smoking is associated with 5 

mutations in TP53 and BRAF but not APC [32], which together with our study may 6 

suggest that inactivation of this gene more commonly occurs through epigenetic 7 

dysregulation in smoking-associated CRC than through genetic changes. Median 8 

promoter methylation levels (beta values) were approximately 0.5 higher in active 9 

smokers (Figure 3), consistent with monoallelic methylation of the promoter. Although 10 

evidence from the mouse model suggests that inactivation of both alleles is required for 11 

tumourigenesis [33], monoallelic methylation of the APC promoter 1A is a frequent 12 

event in human colorectal tumours [31,34] and cancer cell lines [35], and has been 13 

reported in gastric tumours [36].  14 

Interestingly, hypermethylation of the APC promoter 1A was never present in 15 

mucosa adjacent to the tumours. Methylation at each interrogated CpG site within 16 

promoter 1A was very highly conserved in adjacent mucosa, while in direct contrast 17 

there was substantial variation in promoter methylation between tumour samples 18 

(Figure 3C, Supplementary Figure 2). Cancer is associated with significantly greater 19 

variability in DNA methylation than is found in healthy tissue, and this loss of stability 20 

and increased stochastic variation may facilitate malignant cells to adapt to changes in 21 

their microenvironments [37,38]. Genetic and epigenetic alterations implicated in 22 

carcinogenesis are sometimes present in the surrounding tissue as field defects [39,40], 23 

and increased variation in DNA methylation has been observed in cytologically-normal 24 

cells from individuals later diagnosed with cervical cancer [41]. However, we observed 25 



18 
 

that methylation of the APC promoter 1A was still highly conserved in adjacent mucosa, 1 

in line with studies reporting an absence of APC hypermethylation in colonic mucosa 2 

[31]. Mutations in APC are sufficient to induce polyp formation in mice [42,43] and 3 

humans [44], and we therefore speculate that this absence of APC hypermethylation in 4 

adjacent mucosa may be due to the key role for loss of APC in driving carcinogenesis. 5 

Indeed, we observed hypermethylation of the 1A promoter in half of stage I tumours 6 

(Figure 3B). This hypothesis is further supported by evidence of APC promoter 7 

methylation being an early event in colorectal carcinogenesis that is detectable in small 8 

(<15 mm) adenomas [31].  9 

We observed a significant association between promoter 1A hypermethylation 10 

and duration of smoking (Table 3), but further work is required to expand upon the 11 

relation between the intensity and duration of exposure and epigenetic events in CRC. 12 

Indeed, promoter hypermethylation was not observed in tumours from any of the 8 13 

former smokers who had smoked for >35 years, and our epigenome-wide analysis did 14 

not identify any differentially methylated sites between never smokers and former 15 

smokers in tumours or adjacent mucosa. The cessation of smoking is known to reduce 16 

the risk of CIMP-high colorectal cancer and patients who quit >10 years prior to 17 

diagnosis display similar risk of CIMP-high tumours to never smokers [18]. Furthermore, 18 

it is known that methylation of the AHRR and F2RL3 genes returns to normal levels with 19 

increasing time since cessation [9]. Therefore, as only 9 of the 40 former smokers in this 20 

study for whom there is relevant data ceased smoking <10 years prior to diagnosis, we 21 

speculate that the time since cessation may also be a significant factor in the risk of 22 

hypermethylation of APC promoter 1A.  23 

Our epigenome-wide analysis also identified the NFATC1 gene body as being 24 

hypomethylated in tumours from smokers (Figure 2). This gene encodes a transcription 25 
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factor implicated in T cell activation. Epigenetic dysregulation of this gene has been 1 

observed in hepatocellular carcinoma [45] and lymphomas [46] while hypomethylation 2 

has been reported in healthy individuals with lower socioeconomic status [47]. Our 3 

study is the first to report hypomethylation of NFATC1 in colorectal tumours. 4 

Overexpression of the gene is associated with worse prognosis in stage II and III 5 

colorectal cancer patients, which may occur through the promotion of cell migration and 6 

metastasis [48,49]. As the ColoCare Study began to recruit patients in October 2010, 7 

we are currently unable to determine whether NFATC1 methylation is associated with 8 

patient prognosis in this cohort. We will be able to address this question in time as 9 

further data regarding patient outcomes is collected. 10 

Our data suggests that smoking is not associated with the accumulation of 11 

widespread epigenetic defects in the adjacent mucosa. Methylation of the APC 12 

promoter 1A occurs independently of other epigenetic events in CRC [31], and we 13 

identified only one gene, TNXB, as differentially methylated in the adjacent mucosa of 14 

active smokers (Table 3). This may be considered to be in contrast to the findings of 15 

Paun et al [50], who reported disruption of normal gene methylation profiles in the 16 

normal rectal mucosa of smokers. We speculate that this may be the product of our 17 

analyses identifying genes implicated in malignant transformation due to our 18 

comparison of tumours and adjacent mucosa, while Paun et al examined rectal mucosa 19 

prior to the advent of tumour formation. To our knowledge, ours is the first study to 20 

observe differential methylation of TNXB by smoking behaviours. Further work is 21 

required to investigate how this extracellular matrix glycoprotein could be implicated in 22 

smoking-associated carcinogenesis. 23 

Further to the inability to confirm our findings in an independent cohort, the 24 

comparatively low number of patients who actively smoked at the point of diagnosis is a 25 
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limitation of this study, and one which could inhibit the identification of associations 1 

between smoking and methylation. We therefore incorporated the chromosomal position 2 

into test statistics by means of a NHMM, which also served to reduce the probability of 3 

secluded differentially methylated CpGs and hence most likely false positives. A particular 4 

strength of this study is the analysis of both tumour tissue and adjacent mucosa, which 5 

has enabled us to gain greater insight by identifying epigenetic events associated with 6 

smoking that are uniquely found in tumour tissue (hypermethylation of the APC promoter 7 

1A) and to establish an absence of field defects associated with smoking in the 8 

neighbouring mucosa. 9 

In conclusion, we report exploratory evidence for hypermethylation of the APC 10 

promoter 1A being implicated in the development of colorectal tumours among smokers. 11 

Methylation of this region was significantly associated with smoking at the point of 12 

diagnosis and with the duration of time for which the patient smoked, and 13 

hypermethylation was confined to tumours. Further work is required to validate our 14 

observations in independent cohorts, and to identify implications for patient prognosis. 15 

  16 
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Table 1: Clinical and demographic characteristics of the patients 

  Adjacent mucosa Tumour 
  Never Former Active Never Former Active 

Patients n 49 64 18 36 47 13 
        

Age Mean 63.7 65.5 56.6 63.9 65.1 59.6 
 SD 11.8 10.9 12.5 11.5 10.3 9.8 
 Range 34 - 82 38 - 89 22 - 79 41 - 82 38 - 89 35 - 79 
        

Gender Male 24 48 10 21 37 6 
 Female 25 16 8 15 10 7 
        

Stage I 8 8 4 3 5 1 
 II 15 24 7 12 17 7 
 III 13 18 5 12 14 4 
 IV 11 14 2 9 11 1 
        

Pack-years Mean (years) - 11.5 18.7 - 12.6 16.4 
 0 – 9 (n) - 31 5 - 22 4 
 10 – 19 (n) - 15 4 - 11 3 
 ≥20 (n) - 11 6 - 11 4 
        

Duration Mean (years) - 18.8 31.8 - 19.6 37.6 
 0 – 9 (n) - 18 2 - 11 0 
 10 – 19 (n) - 17 3 - 11 2 
 20 – 29 (n) - 13 2 - 8 0 
 ≥30 (n) - 15  17 -  11  9 
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Table 2: CpG sites with differential methylation by smoking status in tumours 

 

Probe ID Chromosomal Gene Gene region Island status Mean β-value LIS 
 location    Never Active p value 
cg08571859 chr5:112073350 APC TSS1500 Open sea 0.11 0.36 7.4 x 10-6 
cg14511739 chr5:112073373 APC TSS200 Open sea 0.11 0.39 1.2 x 10-6 
cg22035501 chr5:112073426 APC TSS200 Open sea 0.12 0.42 4.4 x 10-7 
cg11613015 chr5:112073433 APC TSS200 Open sea 0.10 0.34 9.0 x 10-7 
cg14479889 chr5:112073426 APC TSS200 Open sea 0.12 0.38 1.6 x 10-6 
cg16970232 chr5:112073433 APC TSS200 Open sea 0.13 0.40 2.4 x 10-6 
cg04744624 chr7: 107641770 LAMB1 Body N_Shore 0.23 0.41 8.8 x 10-6 
cg15138382 chr18: 77186504 NFATC1 Body / 5’ UTR Island 0.89 0.75 1.8 x 10-6 
cg05302701 chr18: 77196320 NFATC1 Body / 5’ UTR Island 0.81 0.68 4.4 x 10-6 
cg18092363 chr18: 77202678 NFATC1 Body / 5’ UTR Island 0.94 0.85 7.9 x 10-6 
cg26550337 chr18: 77203542 NFATC1 Body / 5’ UTR Island 0.81 0.70 1.5 x 10-6 
cg26100137 chr18: 77203667 NFATC1 Body / 5’ UTR Island 0.97 0.90 2.3 x 10-6 
cg22279865 chr18: 77204561 NFATC1 Body / 5’ UTR S_Shore 0.93 0.87 4.5 x 10-6 
cg00445548 chr18: 77207209 NFATC1 Body / 5’ UTR Island 0.93 0.82 7.1 x 10-6 
cg02675550 chr18: 77208807 NFATC1 Body / 5’ UTR Island 0.86 0.75 5.6 x 10-6 
cg21242663 chr18: 77208881 NFATC1 Body Island 0.90 0.81 8.1 x 10-6 
cg25595641 chr18: 77208991 NFATC1 Body Island 0.94 0.86 1.8 x 10-6 
cg21806238 chr18: 77210990 NFATC1 Body Island 0.92 0.84 5.1 x 10-6 
cg16253249 chr18: 77211212 NFATC1 Body Island 0.81 0.74 1.8 x 10-6 
cg03239925 chr18: 77230795 NFATC1 Body Island 0.74 0.63 7.0 x 10-6 
cg22324981 chr18: 77283493 NFATC1 Body N_Shore 0.80 0.58 9.2 x 10-7 
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Table 3: Associations between DNA methylation and smoking intensity and duration in tumours 

 

Probe ID Chromosomal Gene Pack-years Duration Time since cessation 
 location  ρ p ρ p ρ p 

cg08571859 chr5:112073350 APC -0.07 0.31 0.22 0.06 -0.05 0.41 
cg14511739 chr5:112073373 APC -0.01 0.47 0.19 0.09 -0.05 0.41 

cg22035501 chr5:112073426 APC -0.08 0.29 0.19 0.09 -0.11 0.31 

cg11613015 chr5:112073433 APC -0.02 0.44 0.20 0.08 -0.14 0.27 

cg14479889 chr5:112073426 APC -0.05 0.37 0.27 0.03 -0.21 0.17 
cg16970232 chr5:112073433 APC -0.01 0.48 0.21 0.07 -0.10 0.32 

Promoter 1A chr5:112,072,710 - 112,073,585 APC 0.02 0.44 0.26 0.03 -0.20 0.19 
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Figure legends 

Table 1: Clinical and demographic characteristics of the patients. Data are provided 

regarding the age (mean, standard deviation, and range), gender, tumour stage and 

pack-years of smoking for the patients according to smoking status at the point of 

cancer diagnosis. 

 

Table 2: CpG sites with differential methylation by smoking status in tumours. Loci 

with significantly different methylation between tumours from never smokers and 

active smokers are listed, including Illumina annotation data. Median beta values are 

provided, along with pLIS values. 

 

Table 3: Associations between DNA methylation and smoking intensity and duration 

in tumours. Spearman’s rank correlation coefficients were calculated for each of the 

significantly different loci in tumour tissue, using data from former (n=47) and active 

(n=13) smokers. Correlations were calculated between methylation (beta values) and 

the pack-years of smoking or duration (years) of smoking. Additionally, for former 

smokers, correlations between methylation and time since cessation were calculated.  

ρ and p values are provided, with significant values highlighted in bold. 

 

Figure 1: Overview of analyses by smoking behaviours in tumours and adjacent 

mucosa. Differentially methylated sites between smokers and never smokers were 

identified in tumour tissue and in adjacent mucosa. Further analyses were performed 

to identify sites displaying smoking-specific differential methylation between tumours 

and adjacent mucosa. 
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Figure 2: Manhattan plots showing differentially methylated sites between never and 

active smokers. Results of the analyses between tumours from never and active 

smokers (A) and differential methylation between tumours and adjacent mucosa 

unique to active smokers (B). Genesymbols of the genes associated with the most 

significantly different sites are provided. The threshold (line) represents statistical 

significance (pLIS<1x10-5) 

 

Figure 3: Methylation of the APC promoter 1A in tumours and matched adjacent 

mucosa. Mean methylation levels (beta values) for each patient were calculated 

across the 15 CpG sites mapping to the 1A promoter that were identified as 

differentially methylated by smoking status (Figure 2). A: promoter methylation in 

tumours by patient smoking status. Mean values by smoking status are indicated by 

horizontal lines. B: promoter methylation in tumours by AJCC stage in all patients. 

Mean values by stage are indicated by horizontal lines. C: promoter methylation in 

matched samples of tumours and adjacent mucosa from 89 patients (33 never 

smokers, 43 former smokers, and 13 active smokers). Lines indicate matched 

samples from the same patient. 

 

Supplementary Table 1: CpG sites with smoking-specific differential methylation 

between tumours and adjacent mucosa. Loci that are differentially methylated 

between tumour and adjacent mucosa tissue among active smokers, but not never 

smokers, are listed. Illumina annotation data, median beta values in adjacent mucosa 
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and tumour tissue for never and active smokers, and pLIS values are provided. 

Statistical significance was defined as pLIS < 1 x 10-5. 

 

Supplementary Table 2: CpG sites with differential methylation by smoking status in 

adjacent mucosa. Loci with significantly different methylation between adjacent 

mucosa from never smokers and active smokers are listed, including Illumina 

annotation data. Median beta values are provided, along with pLIS values. 

 

Supplementary Figure 1: Prediction performances of the top-six methylation features. 

Cross-validation analysis with support vector machine was used to identify regions 

predictive of smoking behaviour in tumours. The area under the curve of the receiver 

operating characteristic are presented for the top-six predictive features. 

 

Supplementary Figure 2: Methylation of differentiated methylated sites within the 

APC promoter 1A in matched tumours and adjacent mucosa. Methylation (beta 

values) at each of the 15 significantly differentially methylated loci identified in 

tumours (Figure 2) in match tumour and adjacent mucosa samples from 89 patients. 

Lines indicate matched samples from the same patient. 

 

Supplementary Materials and Methods: Cross-validation analysis 
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Figure 1: Overview of analyses by smoking behaviours in tumours and adjacent mucosa 
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Figure 2: Manhattan plots showing differentially methylated sites between never and active smokers 
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Figure 3: Methylation of the APC promoter 1A in tumours and matched adjacent mucosa 
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Supplementary Materials and Methods 

Cross-validation analysis 

To confirm robustness of our findings from the NHMM, we used cross-validation 

analysis with support vector machine to find smoking associated methylation regions 

according to their predictive power. Average beta values were calculated at promoter 

(TSS1500 – 1stExon) and gene body for different island status (Island, Shore, Shelf, 

OpenSea) for each gene according to the Illumina 450k annotation. This combined to 

78,405 features of which we considered the top 2% with the highest standard 

deviation across tumor samples for further analysis (n=1,569). These features were 

individually taken to predict smoking status (never / active) with machine learning. 

Prediction performances, as the area under the curve (AUC) of the receiver operating 

characteristic (ROC), were calculated by three times repeated 10-fold cross-

validation using a linear support vector machine kernel (cost=1). To account for 

imbalanced sample groups (never smokers = 36; active smokers = 13), we averaged 

results of 24 down-samplings of the never-smoking group, i.e., 13 of 36 randomly 

selected never-smoking samples were considered for cross-validation analysis. All 

analysis was performed with R caret package. 

We identified the APC promoter OpenSea (30 CpGs) to be the most predictive 

region to differentiate active from never smokers in tumor tissues (AUC = 0.77). This 

supported the results from the NHMM and confirms the robustness in our data set. 

Other features performed considerably worse (AUC < 0.67).  The NFATC1 body 

island consists of 102 CpGs, of which only 12 were found differentially methylated in 

the NHMM analysis. Hence, the smoking associated differences averaged out for 

location and island status in NFATC1. This explains why NFATC1 body island was 

not included in the most variable features and not tested in cross-validation analysis. 
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Supplementary Table 1: CpG sites with smoking-specific differential methylation 
between tumours and adjacent mucosa. 
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Supplementary Table 2: CpG sites with differential methylation by smoking status in adjacent mucosa 

 

Probe ID Chromosomal Gene Gene region Island status Mean β-value LIS 
 location    Never Active p value 
cg17662683 chr6: 32064146 TNXB Body Island 0.44 0.38 4.6 x 10-6 
cg20414186 chr6: 32064491 TNXB Body Island 0.30 0.24 5.6 x 10-6 
cg24882324 chr6: 32064508 TNXB Body Island 0.43 0.37 7.2 x 10-6 
cg12694372 chr6: 32064582 TNXB Body Island 0.50 0.42 8.4 x 10-6 
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Supplementary Figure 1: Prediction performances of the top-six methylation features. 
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Supplementary Figure 2: Methylation of differentiated methylated sites within the APC promoter 1A in matched tumours and adjacent 
mucosa 
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