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ABSTRACT The wider use of wearable devices for EEG data capturing provides a very useful way for the
monitoring and self-management of human health. However, the large volumes of data with high dimensions
cause computational complexity in EEG data processing and poses a great challenge to the use of wearable
EEG devices in healthcare. This study proposes a new approach to extract the structural information of EEG
data and tackle the curse of dimensionality of EEG data. A set of methods for dimensionality reduction
(DR) like linear discriminant analysis (LDA) and their improved methods have been developed for EEG
processing in the literature. However, existing LDA-related methods suffer from the singularity problem
or expensive computational cost, and none of existing methods take into consideration the structure of
the projection matrix, which is crucial for the extraction of structural information of EEG data. In this
paper, a new method called regularized matrix discriminant analysis (R-MDA) is proposed for EEG feature
representation and dimensionality reduction. In R-MDA, the EEG data is represented as data matrix, and
projection vectors are reshaped to be a set of projection matrices stacking together. By reformulating LDA
as a least-square formulation and imposing specified constraint on each projection matrix, the new R-MDA
has been constructed to effectively reduce EEG dimensions and capturing the structural information of
EEG data. Experimental results demonstrate that this new R-MDA outperforms the existing LDA-related
methods, including achieving improved accuracy with significant dimensionality reduction of EEG data.
This offers an effective way to enable wearable EEG devices be applicable in human-centered health
monitoring.

INDEX TERMS Human-Centered Health Monitoring, Wearable EEG, Dimensionality Reduction, Reg-
ularized Matrix Discriminant Analysis, Projection Matrices Stack, Machine Learning Algorithms, Pattern
Recognition, Signal Processing

I. INTRODUCTION

THE electroencephalogram (EEG) becomes one of the
most commonly used noninvasive method for the Brain

Computer Interface (BCI) due to its strong reliability per-
formance and low cost [1]–[3]. Through multi-channel elec-
trodes placed on the scalp, the weak bioelectricity signals
generated by the human brain can be collected. After ampli-
fication and preprocessing, the signals are recorded digitally,
which reflects neuronal activities of the brain. EEG signals

play a vital role in a wide range of application areas, such
as healthcare (epilepsy and sleepy disorder diagnosis) [2],
[4], human emotions recognition [5], [6], Motor imagery [7],
controlling functional neuroprostheses [3] and monitoring
drivers’ vigilance [8]. However, the conventional EEG causes
inconveniences to people who are undergoing EEG moni-
toring. It can only be used for disease diagnosis after the
onset of the patient, rather than performing real-time disease
prevention. These issues may restrict the use of EEG to some
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FIGURE 1: Human-centered wearable EEG in closed-loop system.

extent [2].
In recent years, the EEG systems is transforming from

machine-centered conventional EEG to the human-centered
wearable EEG, and the effective use of EEG data captured
from wearable devices provides an effective way for the
monitoring and self-management of human health. Due to
its small size and portability, wearable EEG can perform
real-time operation without restricting subjects’ movements,
thus facilitating health monitoring and self-management of
health. The wearable EEG for health monitoring can be
presented in a closed-loop system [1], [2], [9], [10], as shown
in Fig. 1. In this system, human is considered to be a part of
the whole closed-loop system. Through operations of EEG
data acquisition, preprocessing and pattern recognition, the
wearable EEG system automatically give appropriate feed-
back according to the predictive analytics result. For instance,
when a seizure is likely to occur, wearable EEG epilepsy
treatment closed-loop system can take preventative action via
electrical neural stimulation or anti-epileptic drug release [2],
[4].

In order to enhance the performance of wearable EEG
monitoring systems, we need to develop the abilities in
EEG data acquisition and EEG data processing. To achieve
better performance, it is often to require increasing recording
channels and adopting higher sampling frequencies for EEG
data acquisition [2]. This of course produces larger volumes
of EEG data with higher dimensions. It thus increases com-
putational complexity and poses a great challenge to power
consumption of wearable EEG devices. In the meanwhile,
with voltage fluctuations at multiple channels over a period
of time, it is commonly expected that the voltage values of
the adjacent channels and time points are highly correlated
for EEG [11], [12]. Therefore, it is imperative to reduce EEG
data dimensions while preserving the latent information and
discovering structural correlations of EEG data. One intuitive
way of resolving this issue is to perform dimensionality
reduction (DR) with structural correlations preserved.

In this paper, we propose a new regularized matrix dis-
criminant analysis (R-MDA) method to tackle the issue of
feature representation and DR in wearable EEG system.
Extensive experiments have been performed in this study

which demonstrate the performance of the new R-MDA on
both synthetic data and EEG alcoholism data. The exper-
iments show that the new proposed R-MDA approach has
achieved competitive performance on feature representation
and DR for EEG data. The key contributions of our work are
summarized as follows.
• A new R-MDA approach has been proposed, based on

wearable EEG data analytics, for human-centered health
monitoring system.

• The latent structures and correlations of EEG data sam-
ples in matrix form is captured in this new method by
considering the projection vector as matrix.

• By imposing specified constraint on each projection
matrix, the correlations among the rows and columns
of the projection matrix can be acquired effectively.

• The constraint and the least-square formulation is in-
tegrated in a unified model to solve the problem of
singularity and expensive computational cost.

II. RELATED WORK
DR methods include principal components analysis (PCA),
linear discriminant analysis (LDA), canonical correlation
analysis (CCA) [13] andd so on. LDA is a commonly
used classical DR method for dimensionality reduction and
classification of EEG data [6], [9], [14], having achieved
good results in EEG data processing. Classical LDA method,
designed for data in vector form, formulates the optimization
problem as an eigen-decomposition problem, which may
lead to the undersampled or singularity problem in scatter
matrices when there are limited available data samples [15],
[16]. Even when the data satisfies the conditions for eigen-
decomposition, it may suffer from expensive computational
cost during the decomposition procedure [15], [17]. Addi-
tionally, as the voltage values of the adjacent channels and
time points are highly correlated, there exist strong corre-
lations among the rows and columns of the EEG matrix
instead of feature covariance in the vector. The illustration of
a typical EEG recordings is shown in Fig 2. Using traditional
vector-based LDA methods to process EEG data, we have to
reshape them into vectors, which may destroy the topological
correlations and structures between different channels in

2 VOLUME 12, 2017



2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2803806, IEEE Access

Jie Su et al.: A New Regularized Matrix Discriminant Analysis (R-MDA) Enabled Human-Centered EEG Monitoring Systems

FIGURE 2: Illustration of a typical EEG recordings.

EEG data [15], [16]. To tackle this issue, several methods,
especially matrix-based LDA and its improved models, have
been proposed to perform dimensionality reduction for ma-
trices directly.

Two-dimensional linear discriminant analysis (2DLDA)
[15], [16] was proposed to work with data in matrix rep-
resentation and can conquer the singularity problem. A
Bayes optimal matrix-variate formulation of LDA based on
a matrix-variate model (MVLDA) [18] was proposed for
the spatio-spectral EEG patterns. Regularized MVLDA (R-
MVLDA) [19] integrates vector-variate and matrix-variate
approaches, and allows the estimated scatter matrices to
adapt to the EEG data characteristics. Matrix-based LDA
and row-column duality (D-MLDA) and penalized D-MLDA
(D-MPDA) [20] were proposed for constructing and se-
lecting of discriminant space-time-scale features of EEG.
L2-norm 2DLDA (L2-2DLDA) and L1-norm 2DLDA (L1-
2DLDA) [21] were proposed, which are more robust to
outliers and noises than 2DLDA.

These LDA extension methods have been successfully
used for feature representation and dimensionality reduction
of EEG data, as they can consider the latent correctional in-
formation behind EEG data. However, there still exist several
problems for these LDA extension methods. Firstly, most
of the current methods do take into consideration that data
samples themselves can be represented as matrices, but they
ignore the possibility that the projection vector could be in
matrix form, which means there may exist correlations in the
columns or rows if we reshape projection vector into projec-
tion matrix. In certain circumstances, there do exist structural
correlations among the columns and rows of the projec-
tion matrix, which should be taken into consideration in
constructing the LDA models. Secondly, these matrix-based
LDA methods consider the optimization problem as a two-
dimensional eigen-decomposition problem. Although it can
solve the singularity problem, it still suffers from expensive
computational cost problem caused by eigen-decomposition.
Hence, it is imperative to derive matrix discriminant analysis
method to solve the above issues in a unified model.

In this paper, we propose a new regularized matrix dis-
criminant analysis (R-MDA) method for extracting the EEG
matrix data patterns, which not only can make use of the
structural information of projection matrices, but also remove
the singularity problem and the computational cost in eigen-
decomposition. We firstly represent EEG data samples as
data matrices, and in the meanwhile we represent the con-
ventional project vectors as project matrices correspondingly.
Taking into consideration the structural information of each
projection matrix, we imposing specified constraint on each
of them to capture the latent correctional information. We
then formulate LDA as a least-square problem with a certain
indicator matrix [17]. By considering the least-square formu-
lation and imposing specified constraints together, we could
form a unified model to solve the above issues.

III. PRELIMINARIES AND NOTATIONS
In this Section, the mathematical notations are given for
introducing our method and corresponding numerical solver.
Lower case letters (e.g., x), bold lower case letters (e.g., x)
and bold upper case letters (e.g., X) are used to represent the
scalar values, vectors and matrices, respectively. For a matrix
X ∈ Rp×q of rank r where r ≤ min(p, q), Xij represents its
(i, j)-entity. tr(·) denotes the trace of a matrix, ||X||∗ is the
nuclear norm of a matrix X, where ||X||∗ =

∑n
i=1 σi (σi is

the ith singular value in matrix X). For model training, the
training dataset is presented with n samples {(xi, yi)}ni=1,
where xi ∈ Rd is the input vector and yi ∈ {1, 2, · · · , k},
(k ≥ 2) is the class label of the i-th sample. In multivariate
linear regression (MLR), there is a k-tuple of separating func-
tions f(x) = (f1(x), f2(x), · · · , fk(x)), for any x ∈ Rd.
X̃ = [x̃1, · · · , x̃n] ∈ Rd×n is denoted as the centered
data matrix X, where x̃i = xi − x̄ and x̄ = 1

n

∑n
i=1 xi.

Ỹ = (Ỹij) ∈ Rn×k is denoted as the centered indicator
matrix Y, where Ỹij = Yij − Ȳj and Ȳj = 1

n

∑n
i=1 Yij .

The weight vectors {wj}kj=1 ∈ Rd is denoted to construct
the k linear models, fj(x) = xTwj , for j = 1, · · · , k.
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IV. REGULARIZED MATRIX DISCRIMINANT ANALYSIS

In this section, we analyze the issues mentioned in the
introduction with more details and then derive the proposed
R-MDA. An Alternating Direction Method of Multipliers
(ADMM) algorithm is introduced for model training.

A. R-MDA MODEL

A EEG data with n samples, where each sample can be rep-
resented as Xi ∈ Rp×q , for i = 1, ..., n. However, classical
vector-based LDA methods [13] have to reshape each data
matrix Xi to vector xi by operation of vec(Xi) = xi ∈ Rd,
where d = p× q. These data vectors together can form a data
matrix X ∈ Rd×n. With projection operation X>W, the
original data vectors xi are projected onto a low-dimensional
subspace, where W ∈ Rd×k, (k < d) is projection matrix
and the projected data vectors are represented as x

′

i ∈ Rk,
for i = 1, · · · , n. The way for classical methods to get
projection vector wj is to perform eigen-decomposition on
certain matrices. For example, solving LDA can be equiva-
lently formulated as follows

arg min
w

w>SBw

w>SWw
, (1)

where w is the projection vector, SB is the scatter matrix for
intra-class distance, and SW is the scatter matrix for inter-
class distance. The problem in Eq. (1) can be typically solved
by eigen-decomposition on scatter matrices SB and SW .

However, when data dimension is high, such as EEG alco-
holism data with size of 256× 64 , this approach would suf-
fer from expensive computational cost on decomposing the
matrix. Furthermore, when the number of the data samples
is limited, the scatter matrix may be singular, which causes
problem to eigen-decomposition. The over-fitting problem
may also be inevitable in these cases.

In this study, we propose a unified model called regularized
matrix discriminant analysis (R-MDA) to tackle the above
issues. We represent data samples as their original matrix
form Xi, (i = 1, · · · , n) to retain the structural correlations.
Correspondingly, each column of the conventional projection
matrix wj is reshaped to a matrix Wj . Thus, the classical
projection matrix is reshaped to a set of projection matrices
stacking together, shown in Fig. 3, where Wj ∈ Rp×q and
j = 1, ..., k. As the structural correlations within matrix can
be captured by taking low-rank assumption on the matrix
data [11], [12]. We impose low-rank regularization on each
Wj to capture the correctional information behind the re-
shaped projection matrices. The illustration of our proposed
R-MDA method is shown in Fig. 3 (b).

With the model configuration, we figure out that equiva-
lently formulating the eigen-decomposition as a least-square
problem [17] would be the best way. By specifically con-
structing an indicator matrix under a mild condition [17], we
could derive the following objective function to replace the

eigen-decomposition.

L(W) =
1

2
‖X̃TW − Ỹ‖2F =

1

2

k∑
j=1

n∑
i=1

‖fj(x̃i)− Ỹij‖2.

(2)
where Ỹ = (Ỹij) ∈ Rn×k is a centered specific indicator
matrix, which is defined as follows

Ỹ = (Ỹij) =


√

n
nj
−
√

nj

n if yi = j,

−
√

nj

n otherwise,
(3)

where n is the number of total samples, nj is the number
of the jth class’s samples. With the above equations, the
projection matrix W ∈ Rd×k can be computed by the
following optimization problem

W = arg min
W

1

2

k∑
j=1

(
1

n

n∑
i=1

‖x̃Ti wj − Ỹij‖22

)
, (4)

where x̃i ∈ Rd is the feature vector of the ith sample, wj is
the jth (j = 1, 2, · · · , k) column of the projection matrix
W (the jth projection vector), and Ỹij is a pre-specified
value determined by Eq. (3). Equipped with Eq. (4), we could
avoid computationally expensive eigen-decomposition and
singularity of scatter matrix. More importantly, it provides an
effective way to impose low-rank constraint on the projection
matrix, which can help further capture the structures and
correlations among the rows and columns. Specifically, these
structures and correlations mean that there exist certain linear
combinations among the rows and columns of the projection
matrix. We reshape the feature vectors x̃i ∈ Rd into feature
matrices X̃i ∈ Rp×q , where p × q = d, x̃i = vec(X̃T

i ). In
the meanwhile, each column of the conventional projection
matrix (wj ∈ Rd) is reshaped into a matrix Wj ∈ Rp×q ,
where p×q = d, wj = vec(WT

j ). The item x̃Ti wj in Eq. (4)
can be represented as x̃Ti wj = vec(X̃T

i )T vec(WT
j ) =

tr(X̃T
i Wj). The nuclear norm [12], [23] has been shown to

be the best convex approximation of the matrix rank over the
unit ball of matrices, thus it is always employed to penalize
the projection matrix, which is the known best approximation
of low-rank constraint. We then impose a nuclear norm
constraint on each Wj to capture the correlation of linear
combinations. Therefore, the final objective function for our
R-MDA can be formulated as follows

L(W(1,2,...,k)) =
1

2n

k∑
j=1

n∑
i=1

‖tr(X̃T
i Wj)−Ỹij‖22+τ

k∑
j=1

‖Wj‖∗,

(5)
where τ is a hyper-parameter which is determined by cross-
validation. In our R-MDA framework, we assume that each
Wj (j = 1, 2, · · · , k) is independent with each other. Thus,
we can solve the jth sub-objective functions separately to
obtain optimized parameters. For each Wj , the sub-objective
function can be formulated as follows

L(Wj) =
1

2n

n∑
i=1

‖tr(X̃T
i Wj)− Ỹij‖22 + τ‖Wj‖∗. (6)
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FIGURE 3: The classical LDA approach and the proposed R-MDA approach.

B. SOLVER
The Alternating Direction Method of Multipliers (ADMM) [24]
is adopted to solve the optimization problem. Firstly, we can
equivalently write the Eq. (6) as follows

arg min
Wj ,Sj

H(Wj) +G(Sj), (7)

s.t. Wj − Sj = 0,

where H(Wj) = 1
2n

∑n
i=1‖tr(X̃T

i Wj) − Ỹij‖22, and
G(Sj) = τ‖Sj‖∗. We then apply augmented Lagrangian
multiplier on Eq. (7), and the objective function is derived
as follows

L(Wj ,Sj ,Λj) =
1

2n

n∑
i=1

‖tr(X̃T
i Wj)− Ỹij‖22 + τ‖Sj‖∗

+ tr[ΛT
j (Sj −Wj)] +

ρ

2
‖Sj −Wj‖2F ,

(8)

where Λj is a Lagrangian multiplier matrix and ρ > 0 is
a hyper-parameter. The optimization problem in Eq. (8) can
be divided into two sub-problems in terms of Wj and the
auxiliary variable Sj .

1) OPTIMIZATION FOR AUXILIARY VARIABLE Sj

The first sub-problem for solving Sj can be written in the
following equivalent way

Sj = arg min
Sj

τ‖Sj‖∗ + tr(ΛT
j Sj) +

ρ

2
‖Sj −Wj‖2F , (9)

with the help of the shrinkage thresholding (SVT) [25] oper-
ator, we can get analytical solution of S

(t)
j in the t-th iteration

as follows
S
(t)
j =

1

ρ
Dτ (ρW

(t)
j −Λ

(t)
j ), (10)

where ρWj −Λj = UΣVT is a Singular Value Decompo-
sition (SVD) form. For any τ > 0, Dτ (·) = USτ (Σ)VT is
called the singular value thresholding (SVT) operator, where
Sτ (Σ)ii = max(Σii − τ, 0).

2) OPTIMIZATION FOR THE PROJECTION MATRIX Wj

The second sub-problem for solving Wj , the expression can
be equivalently written as follows

Wj =arg min
Wj

1

2n

n∑
i=1

‖tr(X̃T
i Wj)− Ỹij‖22

− tr(ΛT
j Wj) +

ρ

2
‖Sj −Wj‖2F . (11)

VOLUME 12, 2017 5
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The problem in Eq. (11) is a well-defined convex optimiza-
tion problem, and here we resort to gradient descent to solve
it. In each iteration, we can perform the following operation
to update Wj

Wj := Wj − α
(
∂LWj

∂Wj

)
, (12)

where α >0 is a hyper-parameter, called learning rate. The
partial derivation of Wj is formulated as

∂LWj

∂Wj
=

1

n

n∑
i=1

[tr(X̃T
i Wj)− Ỹij ]X̃i−Λj +ρ(Wj −Sj).

(13)
The main steps for solving the optimization problem in

Eq. (8) have been presented, which solves Wj and Sj itera-
tively. Additionally, the Lagrangian parameter Λj is updated
in a single gradient step as follows

Λj = Λ̂
(t)
j − ρ(W

(t)
j − S

(t)
j ). (14)

The whole flow is summarized in Algorithm 1, where
ADMM is applied here.

Algorithm 1 ADMM for Problem in Eq. (8)

1: for j = 1, 2, 3..., k do
2: Initialize S

(−1)
j = Ŝ

(0)
j ∈ Rp×q, Λ

(−1)
j = Λ̂j ∈

Rp×q, ρ > 0.
3: for t = 1, 2, 3... do
4: W

(t)
j = arg min

Wj

1
2n

∑n
i=1‖tr(X̃T

i Wj) − Ỹij‖22 −

tr(ΛT
j Wj) + ρ

2‖Sj −Wj‖2F
5: S

(t)
j = arg min

Sj

τ‖Sj‖∗+tr(ΛT
j Sj)+

ρ
2‖Sj−Wj‖2F

6: Λ
(t)
j = Λ̂

(t)
j − ρ(W

(t)
j − S

(t)
j )

7: end for
8: end for

V. EXPERIMENTS
In order to verify the performance of our proposed method,
we conduct comparative studies. The proposed R-MDA
method is implemented by Matlab R2015b in a machine
with Inter(R)Core(TM)i5-7500 3.40GHz CPU and 8GB
RAM. We study the performance of our R-MDA with the
comparison of three wide-used methods: 1) Least Square
Linear Discriminant Analysis (LS-LDA) [17]; 2) Two-
Dimensional Linear Discriminant Analysis (2DLDA) [15].
3)Robust L1-norm two-dimensional linear discriminant anal-
ysis (L12DLDA) [21].

To evaluate and compare the performance, we apply these
methods to both synthetic dataset and EEG alcoholism
dataset. We firstly conduct experiments on synthetic low-
rank data to verify our model is effective on low-rank data.
We consider the illustrative examples by examining different
kinds of geometric and natural shapes on the regression ma-
trix. Secondly, we apply our R-MDA on the EEG alcoholism
dataset, where each sample can be represented as a matrix
with size 256× 64.

A. SYNTHETIC DATA ANALYSIS
In order to verify that R-MDA is effective on low-rank EEG
data, we firstly conduct experiments on synthetic low-rank
data. We start with elaborating the illustrative examples by
examining three different signal shapes (Square, Triangle
and Butterfly), where each of them is represented as a
64× 64 signal matrix. The illustration of three signal shapes
(Square,Triangle and Butterfly) are shown in Fig. 4.

(a) (b) (c)

FIGURE 4: Three signal shapes, respective of Square, Trian-
gle and Butterfly.

Based on the signal shapes shown in Fig. 4, we randomly
generate 1000 samples for 10 rounds. We firstly randomly
generate 10 matrices with the size of 64 × 64, where each
matrix corresponds to one type of class. After duplicating
100 matrices for each type of class, we add random Gaussian
noise (The probability distribution function is P (x | µ, σ) =

1
σ
√
2π

exp(−(x−µ)
2

2σ2 )) on all 1000 matrices, after which we can
get Pi matrices, (i = 1, 2, · · · , 1000). Hence, the ith sample
can be generated by the following equation

Xi = S>Pi, (15)

where S is the regression matrix illustrated by a signal shape,
shown in Fig. 4. (Xi, yi) is a randomly generated illustrative
sample, where yi ∈ {1, 2, · · · , 10}. In each round, half of the
samples are used for training and the rest are for testing. We
apply support vector machine (SVM), which is considered as
one of the powerful linear classifiers, to classify the projected
samples. We then compute the mean and standard deviation
of accuracies in 10 rounds on regression matrix S for each
approach. In the experiments, all the hyper parameters are
chosen via cross validation. The detailed comparison of our
R-MDA with other methods are shown in Table. 1.

As shown in the Table. 1, it can be observed that the
proposed R-MDA method outperforms LS-LDA, 2DLDA
and L12DLDA remarkably. Though LS-LDA can tackle the
undersampled problem, it treats each sample as a vector,
resulting in the loss of structural information. 2DLDA and
L12DLDA claim that they treat each sample as a matrix
directly; however, they do not consider each projection vector
itself could be a matrix, which leads to information loss
during training. Although L12DLDA usually deemed as an
effective way to deal with outliers and noises, it fails to
capture the latent correctional information behind low-rank
matrix. Particularly, R-MDA can keep the accuracy around
90% with only 10 dimensional features, while 2DLDA and
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TABLE 1: The accuracies on synthetic data.

Regression Matrix SVM LS-LDA+SVM [17] 2DLDA+SVM [15] L12DLDA+SVM(L12DLDA) [21] Ours(RMDA+SVM)

S Accuracy Projected Samples Dimensions Accuracy Projected Samples Dimensions Accuracy Projected Samples Dimensions Accuracy Projected Samples Dimensions Accuracy Projected Samples Dimensions

Square 0.4124 ± 0.0977 4096 0.0808 ± 0.0465 10 0.6200 ± 0.2253 640 0.5962 ± 0.2096 640 0.9140±0.0886 10

Triangle 0.5524 ± 0.1773 4096 0.1108 ± 0.0106 10 0.7652 ± 0.1924 640 0.6674 ± 0.2452 640 0.8844±0.0828 10

Butterfly 0.5146 ± 0.2361 4096 0.0836 ± 0.0361 10 0.8162 ± 0.2405 640 0.6808 ± 0.2541 640 0.9222±0.0645 10

L12DLDA need p × k = 640 (p is the height of illus-
trative samples, where p = 64 and k = 10) dimensional
features to achieve only around 80% and 70% accuracies,
respectively. Compared with 2DLDA and L12DLDA, the
proposed R-MDA can achieve higher accuracy with lower
feature dimensions. Additionally, in R-MDA, each projection
vector wj ∈ R4096 is reshaped into a projection matrix
Wj ∈ R64×64. Thus the conventional projection matrix
is represented as a set of projection matrices stacking to-
gether. The number of projection matrices is determined by
the number of categories, namely k = 10. The visualized
projection matrices stack Wj , (j = 1, 2, · · · , 10) in the first
round experiment based on the Butterfly signal shape (an
visualization example of projection matrices stack) are given
in Fig. 5. We can observe from Fig. 5 that the colors among
adjacent rows and columns are very close in each Wj , which
means there do exist strong structural correlations among
rows and columns of projection matrices. By imposing low-
rank regularization on each projection matrix, R-MDA can
obtain the correctional information.

B. EEG DATA ANALYSIS
We further evaluate R-MDA on EEG alcoholism data, and
conduct comparison study. We directly adopt EEG alco-
holism dataset 1, which arises from a large study to examine
EEG correlates of genetic predisposition to alcoholism. It
consists of two groups of subjects: alcoholic and control.
For each subject, 64 channels of electrodes are placed to
record voltage values at 256 time points (sampled at 256
Hz, 3.9-msec epoch) per second in three different matching
conditions. All the data can be presented as matrices with
the size of 256 × 64. The example plots of an alcoholic and
control subject are visualized in Fig. 6. The plots indicate
voltage, time, and channel and are averaged over 10 runs
for the single stimulus condition. The version of the EEG
alcoholism dataset we choosing is the Large Data Set. The
training dataset contains 10 alcoholic and 10 control subjects,
getting 10 runs per subject per condition. The testing dataset
uses the same subjects, but with 10-out-of-samples running
per subject per condition. So for both training and testing
dataset, there exist 600 samples (300 alcoholic samples and
300 control samples), respectively.

We conduct experiments for 10 rounds to verify the sta-
bility and effectiveness of the proposed method. In order
to show the advantages of our method in facing undersam-

1http://kdd.ics.uci.edu/databases/eeg/eeg.html
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FIGURE 5: Visualizations of the projection matrices stack
Wj in the first round experiment based on the Butterfly
signal shape.
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pled problem, we randomly choose 300, 200, 150, 100, 50
samples from the training dataset for training and all data
from the testing dataset for testing in each round. We then
compute the mean and standard deviation of accuracies in 10
rounds on different training settings for each approach. In the
experiments, all the hyper parameters are selected via cross
validation. The experimental results are shown in Table. 2.
And the line chart of accuracies on EEG alcoholism data for
different approaches is shown in Fig. 7.
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FIGURE 6: The example plots of an alcoholic and control
subject.

As shown in Table. 2, the R-MDA not only reduces the
feature dimensions to an extreme low level, only 2 dimen-
sional features, but also achieves the best classification accu-
racies on EEG alcoholism dataset for all different training
settings. LS-LDA reduces data dimensions to 2 as well,
but it reshapes EEG matrices into vectors. It destroys the
correlations behind data, resulting in the loss of structural
information. Otherwise, both 2DLDA and L12DLDA project
EEG samples from 16384 (256 × 64) dimensional space to
512 (256×2) dimensional subspace. Compared with 2DLDA

and L12DLDA, our R-MDA can achieve the highest accuracy
with lowest dimensional features in different training set-
tings. Also, with efficient capture of the correlations among
the rows and columns of the projection matrix, our method
can restrict the parameter searching space, which allows R-
MDA to get superior performance among these methods even
when there are only 50 data samples for training. From the
Fig. 7, it can be observed that with a decrease in the number
of training samples, the superiority of our proposed R-MDA
method becomes more remarkable.
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FIGURE 7: The line chart of accuracies on EEG alcoholism
data for different approaches.

VI. CONCLUSION

To deal with the contradiction between increasing volumes
of EEG data and power consumption in human-centered
wearable EEG systems, we propose a new regularized ma-
trix discriminant analysis (R-MDA) method to tackle EEG
feature representation and DR problem. It is showed that the
proposed R-MDA provides an efficient and effective way to
process datasets with EEG data. It can avoid the computa-
tional expensive eigen-decomposition and the undersampled
problem. In addition, the R-MDA method is capable of
capturing the correlations among the rows and columns of the
projection matrices efficiently , which is crucial for extraction
of structural information of EEG data. The experimental re-
sults of applying R-MDA , respectively, on synthetic dataset
and EEG alcoholism dataset show that the new R-MDA
has achieved competitive performance for processing EEG
data with improved classification accuracy and significantly
improved dimensionality reduction. In the future study, we
will investigate the possible correlations among the projec-
tion matrices, and construct regularized tensor discriminant
analysis model based on tensor minimization for EEG signal
patterns.
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TABLE 2: The accuracies on EEG alcoholism data.

Training Samples LS-LDA+SVM [17] 2DLDA+SVM [15] L12DLDA+SVM [21] Ours(RMDA+SVM)

Accuracy Projected Samples Dimensions Accuracy Projected Samples Dimensions Accuracy Projected Samples Dimensions Accuracy Projected Samples Dimensions

300 0.7489 ± 0.0103 2 0.7503 ± 0.0087 512 0.7464 ± 0.0230 512 0.7518±0.0093 2

200 0.7194 ± 0.0183 2 0.7245 ± 0.0118 512 0.7050 ± 0.0137 512 0.7255±0.0158 2

150 0.6912 ± 0.0170 2 0.7108 ± 0.0149 512 0.6842 ± 0.0186 512 0.7118±0.0131 2

100 0.6608 ± 0.0256 2 0.6713 ± 0.1924 512 0.6677 ± 0.0258 512 0.6757±0.0234 2

50 0.6260 ± 0.0294 2 0.6154 ± 0.0334 512 0.6330 ± 0.0312 512 0.6377±0.0247 2
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