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1 Abstract of Research 

 
Gastroretentive drug delivery systems might enhance bioavailability of some drugs 
formulated in sustained release dosage forms by providing a longer residence time 
in the stomach. The aim of this study was to develop and evaluate a swellable 
floatable gastroretentive drug delivery system utilizing an effervescent mechanism. 
Tablets were based on a binary (1:1) mixture of hydroxyethyl cellulose and sodium 
alginate gel forming polymers, with sodium bicarbonate, calcium carbonate or 
sodium carbonate gas generating agent. The variables affecting drug release and 
floating properties were investigated, such as tablet crushing strength, wet 
granulation (to compare the effects of powders versus those of granules), type and 
ratio of the gas forming agent. The possible interactions between model drug and 
excipients were analysed using differential scanning calorimetry and Fourier 
transform infrared spectroscopy. The drug release characteristics, floating capacity 
and swelling behaviours of drug-loaded matrix tablets were evaluated in 0.1 M HCl 
(pH 1.2) at 37°C ± 0.5°C. Release data were analysed by fitting the power law 
model of Korsmeyer–Peppas, which describes the drug release from polymeric 
systems. The stability of all tablets (stored at 40±2°C and 80±5% RH for 3 months) 
prepared from a granular origin was evaluated for their apparent density, drug 
release rate, and floating capacity. It was found that most tablets prepared through 
wet granulation showed acceptable physical properties. The effect of the 
granulation process on the drug release rate from all formulations at different 
crushing strength levels revealed that the granulation process reduced drug 
release rate. Generally, increasing the tablets‘ crushing strength level of all 
formulations, either prepared from powder or granules, decreased their drug 
release rate. In addition, increasing the gassing agent concentration from 10% to 
20% (w/w) increased the drug release rates of formulations prepared originally 
from a powder mixture at all levels of crushing strength, especially in the case of 
sodium bicarbonate or calcium carbonate. For tablets prepared from granules, 
increasing calcium or sodium carbonate gassing agent increased the drug release 
rate. On the contrary, a decrease in drug release rate was noted when sodium 
bicarbonate level was increased. Generally, increasing the concentration of 
gassing agent decreased the floating lag time for tablets based on sodium 
bicarbonate or calcium carbonate and increased it for those with sodium 
carbonate. However, increasing tablet crushing strength increased the lag time of 
all tablets. Most tablets floated on the surface of the dissolution medium and 
showed an adequate floating lag time (< 30 min) and floated for more than 8 
hours. Tablets containing the model drug pentoxifylline showed better stability 
results in comparison to those of cefalexin monohydrate in either closed or open 
containers. Pentoxifylline tablets manufactured with 20% (w/w) calcium carbonate 
were promising with respect to their floating lag time, floating duration, swelling 
ability, sustained drug release rate, and stability results. An in vivo investigation of 
these promising tablets against a reference solution of pentoxifylline was 
performed by oral administration of 5.75 ± 0.15 mg to rats. Compared with the 
reference solution, the maximum plasma concentration (Cmax) of the tablets 
decreased, while the time to reach this concentration (Tmax) and the t1/2 were 
prolonged. This study shows that a binary mixture of hydroxyethyl cellulose and 
sodium alginate, together with different gassing agents at variable levels, offers an 
exciting opportunity to develop sustained release preparations. 
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1.1 Overview 

 

Drug administration through oral route has been reported to be the most 

popular route of drug administration due to safety considerations, patient 

compliance, and flexibility of oral dosage forms design than most other dosage 

forms (Chen et al., 2010a, Gupta and Robinson, 1992). Tablets and capsules are 

the most common marketed oral dosage forms; still, tablets are more widely 

marketed because of patient swallowing convenience, ease of handling, and lower 

manufacturing cost (Ilić et al., 2013). Oral controlled release formulations that are 

able to deliver the drug locally or systemically at predetermined rates for a 

specified period of time have become an integral part of research centers and 

pharmaceutical industry due to their many benefits over conventional dosage 

forms. Such systems can reduce the frequency of dosing which suites patients 

with chronic illnesses and improve their compliance. Also, they can reduce side 

effects due to better control of therapeutic drug concentrations. However, the 

development costs required for some controlled release formulations may be 

expensive, and they should not be crushed or chewed as loss of drug release 

control as well as toxicity may be achieved (Nokhodchi et al., 2012). Despite the 

oral route advantages, it has its own challenges on the controlled drug delivery 

systems. Food and gastric physiological conditions such as transit time, motility, 

ions, pH and enzymes can influence bioavailability of drug loaded in oral controlled 

release systems (Singh et al. 1968; Drewe et al., 1992; Abrahamsson et al. 2004). 

One of the major obstacles is when drugs show variability in absorption throughout 

the gastrointestinal tract (GIT). This can decrease bioavailability as drugs are not 

being fully absorbed once passed the limited area of absorption. Some drugs 

show region specific absorption (absorption window), most commonly from the 

upper part of the small intestine (Harder et al., 1990; Rouge et al., 1996).  

Most drug molecules are absorbed as un-ionized forms by passive diffusion 

but solubility and stability of the drug molecule are of critical value for successful 

biological membrane crossing. Yet, drug molecules experience a wide pH range  

as they pass through the gastrointestinal tract (GIT) which can influence their 

extent of ionization, solubility, and stability. This can lead to variable absorption or 

an absorption window.  
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Polar drug molecules (e.g. cimetidine) generally have good absorption from 

the proximal small intestine, but have poor absorption from the large intestine or 

colon part of the gastrointestinal tract (Adkin et al. 1995; Corrigan, 1997). 

Furthermore, some drugs are substrates of certain enzymes present in a particular 

part of the gastrointestinal tract which can lead to regional variability in these drugs 

absorption (Chungi et al., 1979). Intestinal metabolic enzymes, cytochrome P450 

(CYP3A), are largely present in the intestinal epithelium with levels rising slightly 

from the duodenum to the jejunum and then declining in the ileum and colon. 

Drugs that are substrates of CYP3A enzyme display regional variability in their 

absorption due to the non-uniform enzyme distribution along the gastrointestinal 

tract. Similarly, drugs which depend on certain systems of facilitated transport 

process like carriers and pump systems show higher regional specificity because 

of the dominance of these systems in only certain parts of the gastrointestinal tract 

(Ritschel and Kearns, 1999). For example, angiotensin enzyme inhibitors and β-

lactam antibiotics (e.g. cephalexin) depend on peptide transporters located in the 

small intestine (Zhang et al., 2010).  

Carriers, such as P-glycoprotien, are involved in the secretion of organic 

molecules from the blood back into the intestinal lumen which may affect drug 

absorption (Benet and Cummins, 2001). P-glycoprotien which is located on the 

mucosal surface of intestinal epithelial cells is responsible for low and variable 

bioavailability of various compounds such as propranolol and felodipine 

(Siegmund et al., 2003). Thus drugs with site-specific absorption window are 

difficult to be designed as oral controlled drug delivery systems because time 

available for drug absorption will be limited and after crossing the absorption 

window, the drug will have negligible or no absorption. Accordingly, it has been a 

challenge to develop desirable oral sustained release dosage forms maintained at 

the targeted area inside gastrointestinal tract (GIT). Gastroretentive drug delivery 

systems provide dosage forms with longer residence time in the stomach and 

sustained release behaviour which can improve bioavailability as well as acting 

locally on the stomach (Kagan et al., 2006; Murphy et al., 2009).  
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Many drugs are considered good candidates to be benefit from 

gastroretentive delivery systems. Such drugs include those that a) have narrow 

absorption window such as acyclovir (Bhosale et al., 2012; Ruiz-Caro et al., 2012), 

atenolol (Rouge et al., 1998; Lal and Datta, 2015), furosemide (Klausner et al., 

2003a; Meka et al., 2009), levodopa (Klausner et al., 2003b; Ngwuluka et al., 

2013), metformin (Ali et al., 2007; Ige and Gattani, 2012), metoprolol (Malode et 

al., 2015; Biswas and Sahoo, 2016), and riboflavin (Hamdani et al., 2006; Gröning 

et al., 2007); b) show low solubility within the alkaline environment of the intestine 

such as ofloxacin (Chavanpatil et al., 2006; Qi et al., 2015) verapamil (Dürig and 

Fassihi, 2000; Sawicki, 2002), and diazepam (Sungthongjeen et al., 2008); c) 

unstable in the colonic environment such as captopril (Gröning et al., 2007; 

Jiménez-Martínez et al., 2008); and d) indicate local activity in eradication of the 

stomach Helicobacter pylori such as amoxicillin (Rajinikanth et al., 2007; Badhan 

et al., 2009) and metronidazole (Ishak et al., 2007; Loh and Elkordy, 2015). 

Nevertheless, drugs that have adverse effects on the gastric mucosal lining, are 

unstable in the acidic conditions of the stomach, or are absorbed equally 

throughout the entire GIT are not suitable for use as in gastroretentive delivery 

systems. 

 

1.2 Gastric anatomy and physiology 

1.2.1 Stomach  

 

The stomach is positioned in the left upper part of the abdominal cavity 

immediately under the diaphragm. The stomach size following a meal can swell up 

to 1500 ml; but after emptying food a collapsed state can be obtained with resting 

volume of 25–50 ml (Waugh and Grant, 2001). Anatomically, as shown in 

(Figure 1-1), the stomach is divided into four regions: fundus, body, antrum, and 

pylorus. The proximal part of the stomach (fundus) functions as a reservoir. It 

adjusts to the increased volume during eating by relaxation of the fundal muscle 

fiber which results in greater curvature. The proximal stomach controls the gastric 

emptying of liquids by applying basal pressure in the stomach due to slow and 

sustained contractions. Also, a steady pressure is also applied by fundus which 

gradually presses gastric solid contents towards the distal part of the stomach. 
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The distal part (antrum) has a thicker muscular wall to facilitate mechanical 

grinding and homogenisation of food, after which pumping the contents toward the 

pylorus to accomplish gastric emptying. The pylorus is a sphincter located 

between the antrum and the duodenum that functions as a mechanical stricture to 

the transit of large particles into the small intestine (Wilson and Washington, 

1989). The body of the stomach is lined with several types of cells that secrete up 

to 2-3 liters of gastric juice daily. For example, goblet cells secrete mucus, parietal 

(oxytntic) cells secrete acid and intrinsic factor, and peptic (chief) cells secrete the 

precursor of pepsin (pepsinogen) (Dressman et al., 1990). The stomach provides 

barrier to delivery, therefore, very little absorption occurs from this site (Wilson and 

Washington, 1989). More significant absorption occurs outside the stomach where 

the duodenum has epithelial surface with transporters for peptides (Ogihara et al., 

1999) and metals (Cousins and McMahon, 2000; Barley et al., 2001).  

 

 

 

 

Figure 1-1: The stomach parts (Wilson and Washington, 1989).  
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1.2.2 Gastric pH  

 

The gastric pH is variable between subjects as well as in the same subject 

where numerous factors such as food, disease, presence of gases, fatty acids, 

and other fermentation products can modify the pH value (Dressman et al., 1990; 

Talukder and Fassihi, 2004). According to food type the gastric pH can be 

increased from 1.8 (at resting time) to 3-5, but milk can raise it to over 6, however 

the pH returns to basal level within approximately 2 h after food ingestion is 

completed (Wilson and Washington, 1989). Age, pathological conditions and drugs 

may influence the gastric pH value. Holt et al. (1989) reported that 20% of elderly 

people show either diminished (hypochlorohydria) or no gastric acid secretion 

(achlorohydria) which elevates the basal pH value above 5.0. Furthermore, 

elevated gastric pH due to significant reduction in the gastric acid secretion was 

reported in some pathological conditions such as pernicious anemia and AIDS 

(Benn and Cooke, 1971; Varis et al., 1979). Drugs like proton pump inhibitors 

significantly reduce gastric acid secretion and elevate the gastric pH over 6.0 

(Laine et al., 2008). Outside the stomach, pH values tends to increase gradually 

due to the bicarbonate secreted by the pancreas and the duodenal mucosa where 

the proximal duodenum pH may rise as high as 4 pH units from the stomach 

(Benn and Cooke, 1971). It is important to take in consideration the gastric pH in 

selecting a drug substance and excipients for designing oral drug delivery 

systems. Nevertheless, the gastric emptying time corresponding to the fast and 

fed states has an enormous influence on the proposed efficacy of such dosage 

forms.  

 

1.2.3 Gastric motility and emptying rate  

 

Gastric emptying occurs during both fasting and fed states, yet, there are 

marked differences between the patterns of motility of both states. During the 

fasting state inter digestive series of electrical events occur, which cycle both 

through the stomach and the intestine every 2 to 3 h (Vantrappen et al., 1979; 

Pawar et al., 2011a). This is called inter digestive myloelectric cycle or migrating 

myloelectric cycle, which can be divided into the following four phases.  
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Phase-I or basal phase, lasts from 40 to 60 min with rare contractions. 

Phase-II or pre burst phase, lasts for 40 to 60 min with intermittent action potential 

and contractions. Phase-III or burst phase, is a short phase of intense (lasts for 4 

to 6 min), and characterized by large regular contractions with a frequency of 4–5 

per min (Rubinstein et al., 1988) and maximal pyloric opening (Ehrlein, 1988). It is 

known as ―house keeper wave‖, and due to that all the undigested material is 

swept out of the stomach down to the small intestine. Phase-IV lasts for 0 to 5 min 

and occurs between phases-III and I of two consecutive cycles.  

In the fed state, the gastric emptying rate is slowed since the onset of 

migrating myloelectric cycle is delayed (Wilson and Washington, 1989). The motor 

activity in the fed state is induced 5–10 min after ingestion of a food and continues 

as long as food remains in the stomach. It can last 2–6 h regarding amount of food 

ingested (Hasler, 1995). Feldman et al. (1984) reported that the time required for 

the stomach to be half emptied from liquid, digestible solid and indigestible solid 

phases (10 oz of soft drink, scrambled egg and radio-opaque markers) was 30 ± 7 

min, 154 ± 11 min and 3.5 ± 0.5 h respectively. Emptying of liquids from the 

stomach is based on slow contractions produced in the proximal stomach. 

However, larger particles require longer time to be milled into a suitable size to 

pass through the pylorus. After emptying digestible materials into the small 

intestine, residues of large undigested solids, which cannot pass through the 

pylorus, will be retro-pulsed from the pylorus and distal antrum to the proximal 

antrum and stomach body (Kelly et al., 1973; Ehrlein, 1980; Shalaby et al., 1992a) 

and will be kept in the stomach till they swept out by house keeper waves of the 

fasted pattern motility (Wilson and Washington, 1989).  

 

1.2.4 Factors influencing gastric emptying rate  

 

Several factors can influence the gastric emptying rate. For example meals 

with balanced content of fat, carbohydrate, and protein, the emptying process will 

depend on its nutritive density (Hunt and Stubbs, 1975). Nonetheless, meals with 

high acidity, osmolarity, calorific value are emptied later than the others (Hunt and 

Knox, 1972). Also, a prolongation in gastric emptying time after a succession of 

meals in comparison to that after a single meal has been reported (Iannuccelli et 

al., 1998a).  
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Fluids temperature and volume can also influence the gastric emptying time. 

Fluids at body temperature are emptied more rapidly in comparison with higher or 

lower temperature ones. Also, large volume fluids can leave the stomach more 

rapidly than smaller volumes (Wilson and Washington, 1989). Stress increases the 

gastric emptying rate, while depression slows it down. In general, women and 

elderly have a slower gastric emptying rate than men and young people 

respectively (Kaus and Fell, 1984; Reddy et al., 1999). Although, Ollerenshaw et 

al. (1987) reported that exercise and body posture may influence the gastric 

emptying, Mojaverian et al. (1988) had observed no significant effect of standing 

or flat on back positions on gastric residence time. Concomitant intake of some 

kinds of drugs acting as anticholinergic agents like atropine and propantheline, 

opiates like codeine and prokinetic agents like metoclopramide, cisapride can alter 

the gastric emptying rate (Kaus et al., 1984). Furthermore, Triantafyllou et al. 

(2007) reported a decrease in the gastric emptying rate of patients with type I and 

type II diabetes, however, a delay in the gastric emptying which may be frequently 

accompanied by constipation was reported in patients with Parkinson‘s disease 

(Krygowska-Wajs et al., 2009). 

 

1.2.5 Gastric emptying time of dosage forms  

 

Presence of food in the stomach can produce a significant effect on dosage 

forms emptying rate. Nonetheless it can increase, decrease, or delay drug 

absorption rate (Heading et al., 1973). For liquid dosage forms, it was reported 

that small volumes (10 to 20 ml) of such dosage forms were emptied from fasted 

volunteers‘ stomach within 1 h (Jenkins et al., 1983), however more than 2 h was 

required to empty them from stomach under fed condition (May et al., 1984). Large 

tablets and capsules are treated by the stomach as an indigestible materials either 

they are intact or in large fragments (Wilson and Washington, 1989). It was 

demonstrated that when non-disintegrating tablets taken before meals they were 

emptied from the stomach within highly variable time ranging from 5 min to 3 h 

depending on the inter digestive myloelectric cycle (Kaus et al., 1984); but when 

taken after meals, the emptying became around 2 to 3 h if the meal was light and 

up to 12 h if the subject was fed in regular intervals (Wilson et al., 1989).  
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In addition to the stomach state (fed or fast), size of the dosage form is 

another parameter that can influence the gastric emptying of non-disintegrating 

tablets. In the fasted state, the gastric emptying of large single unit dosage forms 

is changeable. It depends on the time of arrival in the stomach in relation to activity 

of inter digestive myloelectric cycle. Units larger than 1.9 cm, the pylorus mean 

diameter (Salessiotis, 1972), are retro pulsed in the antrum and several phases of 

myoelectric activity take place when the pyloric opening increases in size during 

the housekeeping wave and allows the sweeping of these solids (Park et al., 

1984). Under the fed state, the gastric waves are delayed and the gastric 

residence time can be significantly increased (Mojaverian et al., 1985). Studies 

revealed that the gastric residence time of tablets in the fed state can also be 

influenced by their size. Although, tablets larger than the pylorus, were retained in 

the stomach for as long as the digestive phase was maintained and emptied 

during the housekeeping waves (Davis et al., 1984), tablets with diameter less 

than 7 mm left the stomach during the digestive phase (Kinget et al., 1998). The 

dosage form density can also alter the gastric emptying rate. Dosage forms with 

densities less than that of the gastric fluids can float and can be kept away from 

the pylorus for a prolonged period of time as they can be protected from the 

peristaltic waves of the stomach.  

A study of effect of size of floating and non-floating capsules on the gastric 

residence time revealed that the floating units were more likely to be kept in the 

stomach compared with the non-floating units. Regarding body posture, the 

upright position enhanced the gastric retention of the low density capsules that 

floated on top of the gastric contents, however, the supine position increased the 

gastric retention time of the non-floating capsules (Timmermans and Möes, 1994). 

Multi-particulate systems or pellets contained in a hard gelatine capsule can also 

be used orally to control the drug release. It was demonstrated that the gastric 

emptying of pellets from fasted subjects was dependent on how quickly they can 

disperse in the small volume of the gastric fluid available in the stomach and they 

tended to empty as a series of boluses (Christensen et al., 1985; Hunter et al., 

1982). In fed conditions, Meyer et al. (1985) reported that spheres emptying rate 

was dependent on their size and density. The smaller the spheres the faster they 

emptied from the stomach.  
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Also, spheres with higher or lower density than that of the gastric fluid, 

tended to sink to the base of the stomach or to float on the gastric content 

respectively. Such spheres emptied more slowly in comparison with spheres of 

similar density to food. Generally, multiple-unit dosage forms such as, beads, 

pellets, and granules have a more predictable and reproducible gastrointestinal 

transit in comparison with single-unit modified-release formulations (Varum et al., 

2010). It is believed that gastric emptying is the major factor controlling the 

absorption of all materials ingested by oral route. As discussed earlier, many 

variables can influence the gastric pH, motility, and emptying rate including 

physiological state of the patient and design of the pharmaceutical dosage form 

which may affect drug bioavailability. Consequently, it is important to design a 

dosage form that can overcome physiological adversities like short residence 

times and unpredictable gastric emptying rates.  

 

1.3 Gastroretentive delivery systems 

 

Over the last three decades, numerous gastroretentive dosage forms have 

been designed and developed by pharmaceutical industry. Increasing gastric 

residence time can be achieved either by expandable systems, mucoadhesive 

systems, high-density systems, superporous hydrogels, magnetic systems, or 

floating systems. 

 

1.3.1 Expandable systems 

 

Such systems can show an increase in their volume and/or shape by 

swelling or unfolding to achieve longer gastric residence time. Swellable systems 

(Figure 1-2) are based on hydrophilic polymers such as hydroxypropylmethyl 

cellulose, polyethylene oxide and carbopol which increase in size after hydration 

with the gastric fluids. The swelling is usually results from osmotic absorption of 

water. Unfoldable systems (Figure 1-3) are based on biodegradable polymers that 

are folded and encapsulated in a carrier. In the stomach the system unfolds to its 

initial geometrical shape due to carrier degradation and become too large to pass 

through the pylorus (Gardner et al., 1986).   
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Figure 1-2: Schematic presentation of gastroretentive delivery systems (Alzaher et 
al., 2016) 
 

 

  

 
Figure 1-3: Schematic presentations of gastroretentive unfoldable systems 
(Gardner, 1986) 
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Generally, expandable systems should have convenient size to be easily 

swallowed by patients, and the resulted systems size inside the stomach should 

not be smaller than that of the pylorus. Nevertheless, during fasting, the 

expandable systems can sweep from the stomach by inter digestive myloelectric 

cycle unless they are extremely large in size. Accordingly, in order to prevent 

gastric obstruction either singly or by accumulation, biodegradable polymers 

should facilitate their easy elimination from the stomach at the end of the drug 

delivery process (Klausner et al., 2003c). Expandable systems were investigated 

by researchers. Regarding swellable systems, Mamajek and Moyer, (1980) 

evaluated a device composed of a drug reservoir surrounded by a swellable 

polymer and coated by an elastic outer polymeric permeable membrane to control 

drug release. Also, Urquhart and Theeuwes, (1984) designed and evaluated tiny 

pills coated by wax to control drug release and dispersed in a matrix of polymeric 

hydrogel. The system could swell up to 50-folds of its original size in body fluids. 

Shalaby et al. (1992b) evaluated enzyme-digestible hydrogels based on 

polyvinylpyrrolidone crosslinked with albumin. The system was successful to show 

gastric residence time in dogs more than 24 h under fasted conditions. Gröning et 

al. (2007) developed a drug-loaded collagen freeze-dried sponge which was 

pressed and coated with a thin layer of magnesium stearate to avoid contact with 

saliva. In the stomach, the tablet expanded to almost its original size. El-Zahaby et 

al. (2014) developed swellable tablets (plug-type) loaded with levofloxacin for 

Helicobacter pylori eradication. Tablets were based on in situ gel forming 

polymers, such as gellan gum, sodium alginate, pectin and xanthan gum cross 

linked calcium or aluminum chloride. Results showed that the drug release was 

dependent on nature of the matrix and type of the cross linker used to form the 

plug-type tablets.  

For unfoldable systems, different geometric forms were investigated. 

Caldwell et al. (1988a,b) developed and evaluated tetrahedron, ring and planar 

membrane of bio-erodible polymer enclosed within a capsule. Tetrahedron devices 

had longer gastric residence time than the other tested shapes of similar size. 

Sonobe et al. (1991) patented a ‗‗Y‘‘ shape system, with three erodible arms 

serving as a drug reservoir and whose rate of degradation controlled the gastric 

retention time.  
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A spring unfoldable system was evaluated by Curatolo and Lo, (1995) with 

arms fixed by a gelatin band which could dissolve in the stomach, releasing the 

mechanically preferred extended form. Klausner et al. (2003b) developed a 

dosage form based on unfolding polymeric membranes loaded with levodopa. The 

gastroretentive dosage form was able to maintain the drug concentrations within 

the therapeutic level (> 500 ng/ml) over 9 h. Verma et al. (2014) developed and 

evaluated cinnarizine polymeric films of ethylcellulose and hydroxypropylmethyl 

cellulose containing different amounts of stearic acid that were folded into hard 

gelatin capsules. Authors revealed that in the first hour of the in vitro dissolution 

test, the drug had immediate release followed by a gradual release over 12 h. 

Mechanical property of the expanding systems is considered a vital parameter for 

their gastric retention. Although size of the expanding systems is important, 

systems lack high rigidity will not be retained in the stomach (Klausner et al., 

2003b). Moreover, the mechanical shape memory of the unfolding systems, is 

relatively short-lived (Klausner et al., 2003d), they are difficult to industrialize and 

may not be cost-effective (Hwang et al., 1998). 

 

1.3.2 Superporous hydrogels 

 

Superporous hydrogels (Figure 1-2) are based on cross-linked hydrophilic 

polymers with average pore size  > 100 μm in comparison with 10 nm to 10 μm 

pore size of conventional swellable systems. Consequently, they can rapidly 

absorb significant volume of aqueous fluids by capillary action to swell and create 

an open channel structure that can avoid premature gastric emptying by house 

keeper waves and increase the gastric residence time (Chavda et al., 2012). 

Superporous hydrogels can be classified according to their swelling and 

mechanical properties into three different generations. The first generation 

(conventional superporous hydrogels) has rapid and high swelling ratio but has 

mechanical fragility. Equilibrium swelling with this generation can be achieved in < 

1 min with an increase in system volume by more than 1000 times in some cases 

(Chen et al., 1999; Chen and Park, 2000a).  
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The second generation (superporous hydrogel composites) has quick and 

moderate swelling ratio (a few hundred times of the original volume) with superior 

mechanical properties (to withstand pressure by the gastric contraction) by adding 

a composite material such as croscarmellose sodium (Chen and Park, 2000b). 

Such systems showed gastric retention in fasted dogs for 2-3 h after which they 

broke into pieces and emptied into the intestine, however, they kept in the 

stomach for > 24 h when dogs were in the fed state (Chen et al., 2000). The 

promising third generation for gastroretention (hybrid superporous hydrogels) has 

a very high mechanical or elastic property. The hybrid superporous hydrogels are 

prepared by adding a hybrid agent such as polysaccharides including sodium 

alginate, pectin, chitosan or synthetic water-soluble hydrophilic polymers such as 

polyvinyl alcohol that can be cross-linked after formation of superporous hydrogel 

(Omidian et al., 2005). For example the synthesis of acrylamide-based 

superporous hydrogel in the presence of sodium alginate which could be cross-

linked by calcium ions. This formulation was able to stretch up to 2–3 times its 

original length showing resilience and a rubbery property in its fully water-swollen 

state (Omidian et al., 2006). Recently, El-Said et al. (2016) evaluated an extended 

release superporous hydrogel hybrid system using gellan gum, guar gum, 

polyvinyl alcohol and gelatin in dogs. Results revealed an increase in baclofen 

bioavailability and the effectiveness of the designed system. Generally, there is a 

lack of information in the literature about superporous systems. 

 

1.3.3 Mucoadhesive systems 

 

Mucoadhesive systems (Figure 1-2) are based on natural or synthetic 

mucoadhesive polymers such as poly(acrylic acid), chitosan, cholestyramide, 

tragacanth, sodium alginate, carrageenan, carbopol, sodium carboxymethyl 

cellulose, hydroxypropylmethyl cellulose, sephadex, sucralfate, polyethylene 

glycol, dextran, poly(alkyl cyanoacrylate), and poly-lactic acid that have ability to 

adhere to epithelial surface of the stomach to increase gastric residence time. 

Four different theories exist to explain the adhesion mechanism (Tao et al., 2009). 

First of all is the electronic theory, involving attractive electrostatic forces between 

the glycoprotein mucin network and the mucoadhesive polymers (Derjaguin et al., 

1977).  
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Secondly is the adsorption theory, where secondary forces such as Van der 

Waals forces and hydrogen bonding are responsible for mucoadhesion (Kinloch, 

1980). Thirdly is the wetting theory, as mucoadhesive polymers are able to spread 

and develop close contact with the mucus layers (Kaelbe, 1977). And finally, the 

diffusion theory, which based on a physical entanglement of mucin strands and the 

flexible polymer chain, or an interpenetration of mucin strands into the porous 

structure of the polymer substrate (Voyutskii, 1963).  However, the exact 

mechanism of mucoadhesion is not yet completely understood. Smart and 

Kellaway (1989) reported extended gastric retention time of dosage forms coated 

with carbomer polymer in mice. Akiyama and Nagahara (1999) evaluated 

mucoadhesive microspheres based on a mixture of amoxicillin and carbopol 934P 

which was dispersed within a matrix of polyglycerol esters of fatty acids. After oral 

administration, microspheres were able to adhere to the stomach mucosa in 

Mongolian gerbils and to show higher anti Helicobacter pylori activity in 

comparison with an amoxicillin suspension. Jackson et al. (2000) reported 

extended gastric residence times with ability to coat the gastric mucosa uniformly 

of the positively charged ion-exchange resin colestyramine.  

Hejazi and Amiji (2002) prepared chitosan microspheres loaded with 

tetracycline by ionic precipitation with sodium sulfate. The drug release from the 

microspheres showed dependency on the dissolution medium pH, where ∼ 70 and 

90% of the drug was released after 3 and 8 h at pH 3.5 and 5.0 respectively. Also, 

they investigated the gastric residence time of chitosan-based microspheres 

loaded with tetracycline gerbils (Hejazi and Amiji, 2003). The gastric residence 

time of the microspheres was independent of the gastric pH within the range of 1.0 

– 4.5, but, the drug concentration in the stomach was similar to that of an aqueous 

solution. Later, increased gastric residence time in fasted gerbil stomach was 

reported for chitosan-based microspheres prepared by ionic precipitation followed 

by chemical crosslinking with glyoxal and loaded with tetracycline in comparison 

with non-crosslinked microspheres and tetracycline solutions (Hejazi and Amiji, 

2004). After 2 h, 17% of the crosslinked microspheres remained in the fasted 

stomach, whereas only 10% of the non-crosslinked systems were retained. 

Sakkinen et al. (2003) reported that granules containing microcrystalline chitosan 

and furosemide exhibited slow release characteristic with higher AUC than that of 

the conventional dosage form due to their mucoadhesive properties.  
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Preda and Leucuta (2003) presented significant retardation of gastric 

emptying of a mucoadhesive system based on polyacrylic acid in gelatin 

microspheres in rats. Higo et al. (2004) presented promising mucoadhesive 

properties of tetracycline– sucralfate complex prepared under acidic conditions. 

Higher percentage of the complex was retained on the gastric mucosa in rats 

compared with the physical mixtures of tetracycline and sucralfate after 3 h. 

Schmitz et al. (2005) developed minitablets based on low molecular-weight 

heparin and thiolated polycarbophil was used as the mucoadhesive carrier 

material. Hydroxyethyl cellulose was used as a non-mucoadhesive control. In 

contrast to thiolated polycarbophil-based delivery systems, the control formulations 

were not observed in the gastric lumen of rats at 4 h after administration. Liu et al. 

(2005) developed a promising mucoadhesive microspheres loaded with amoxicillin 

for the treatment of Helicobacter pylori infection. Ethylcellulose was used as matrix 

to control the drug release and carbopol 934P as mucoadhesive polymer. Results 

showed that the system could retain in gastrointestinal tract for an extended period 

of time. Later Tao et al. (2009) evaluated acyclovir mucoadhesive microspheres 

based on similar composition in rats. Results showed prolonged residence time of 

microspheres in the gastrointestinal tract with relatively steady plasma drug 

concentrations within 8 h after oral administration.  

Zate et al. (2010) developed a mucoadhesive tablet loaded with venlafaxine 

hydrochloride using carbopol 971 P as the mucoadhesive agent and Eudragit® 

RS-PO and ethylcellulose as controlled release polymers. Results revealed that 

increasing the carbopol 971 P concentration increased the residence time up to 12 

h and more ethylcellulose retarded the drug release. Jha et al. (2011) 

demonstrated an increase in the absorption, bioavailability and sustained release 

of raloxifene hydrochloride from mucoadhesive microspheres based on 

cyclodextrin(s) and different proportions of carbopol and hydroxypropylmethyl 

cellulose. Pund et al. (2011) developed a biphasic mucoadhesive tablet to deliver 

loading and maintenance dose rifampicin. The tablet was retained in the stomach 

for more than 320 min. Mini-tablets of rosuvastatin calcium with mucoadhesive 

properties using pre-activated thiolated pectin derivative as a mucoadhesive agent 

were formulated (Hauptstein et al., 2013).  
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Results demonstrated improved mucoadhesion with sustained release of 

rosuvastatin calcium over 36 h for the designed system in comparison with mini-

tablets prepared with the pre-activated thiomer, the thiolated intermediate and 

unmodified pectin. Pandey et al. (2013) prepared a bilayer mucoadhesive rate 

controlling film of lercanidipine HCl using a combination of Eudragit® RSPO and 

RLPO, and a mucoadhesion film, combining various hydrophilic polymers. In vivo 

studies in rabbits showed that drug release was controlled for over 12 h, with 

enhanced bioavailability. Jelvehgari et al. (2014) designed multiple unit bilayer 

discs loaded with metformin using carbopol 934P as a mucoadhesive polymer and 

ethylcelullose as a drug retarding polymer. It was found that this system was 

successful to show good drug release properties. Sodium alginate, xanthan and 

karaya gum were used as mucoadhesive polymers to develop a mucoadhesive 

tablet of lafutidine (Patil and Talele, 2015). Results suggested an adequate drug 

release rate was provided with 10 h adhesion in the rabbit stomach.  

An advantage of mucoadhesive systems in the stomach is the short 

pathways due to the close contact with the gastric mucosa for drugs targeting the 

stomach, such as antibiotics against Helicobacter pylori. Although the concept of 

mucoadhesion gains increasing interest, only a few successful approaches to 

develop gastroretentive mucoadhesive systems have been reported. They are 

challenged by the stomach turnover, the mucus layer renewal, and the high 

stomach hydration that decreases the mucoadhesion of polymers (Kockisch et al., 

2003). Also, targeting the gastric mucus with mucoadhesive polymers is difficult 

because they can stick to various surfaces they come in contact with (Khosla and 

Davis, 1987). Regarding safety aspects, oesophageal binding might present a 

challenge for such devices (Wang et al., 2000).  

 

1.3.4 High density systems 

 

These systems (Figure 1-2) can sink to the bottom of the stomach (below 

the pylorus) as they have a density higher than that of the gastric fluid (> 1.004 

g/cm3) and tend to withstand the peristaltic movements of the stomach wall (Clarke 

et al., 1993; Bardonnet et al., 2006).  
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High density excipients such as iron powder, barium sulfate, titanium 

dioxide, and zinc oxide could be used to formulate high density systems 

(Devereux et al., 1990). Bechgaard and Ladefoged (1978) evaluated influence of 

density or diameter of pellets on the gastric transit time. An extension of 5.8-25 h 

of the gastric residence time depending more on the pellets density rather than on 

the pellets diameter was reported. Riner et al., (1982) and Cardinal (1985) 

presented promising results of high density systems in ruminants. Also, Devreux et 

al. (1990) reported that pellets with density of at least 1.5 g/cm3 have significantly 

higher gastric residence time either in fasted or fed conditions. Later, it was 

demonstrated that an increase in the gastric residence time of pellets could be 

achieved with density values range 2.4-2.8 g/cm3 (Clarke et al., 1995).  

Simoni et al. (1995) reported a better bioavailability of sinking enteric-

coated tablets loaded with ursodeoxycholic acid in comparison to floating enteric-

coated tablet and hard gelatine capsules in 12 healthy volunteers. Still, Davis et al. 

(1986) showed that in vivo data did not confirm the effectiveness of the high 

density systems in exdending the gastric residence time, as the stomach state at 

time of administration was the main determining factor. Gupta and Robinson 

(1995) reported that these devices did not extend significantly the gastric 

residence time. Furthermore, Rouge et al. (1998) evaluated effect of immediate 

release system, a high density system and a low density system gastric residence 

times. Results indicated that the high density system did not show any significant 

extension of the gastric residence time as results were 0.5, 1, and 2 h respectively. 

Till present, there is a lack in information about successful approach describing a 

gastroretentive device based only on high density.  

 

1.3.5 Magnetic systems 

 

These systems (Figure 1-2) are designed to increase the gastric residence 

time because of attractions between the pharmaceutical dosage which contains 

magnetically active elements and a magnet which is placed under the abdomen, 

near the stomach (Lopes et al., 2016). Primarily, magnetic granules were designed 

as a drug delivery system to oesophageal mucosa in oral administration (Ito et al., 

1990).  
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Fujimori et al. (1994) evaluated a magnetic tablet containing 50% w/w ultra-

ferrite with hydroxypropyl cellulose and cinnarizine in beagle dogs by the 

application of a magnetic field. The tablet was successful to remain in the stomach 

for 8 h with sustained drug release. Later, Fujimori et al. (1995) reported a delay 

for 3 h in the gastric emptying time of a bilayer magnetic tablet loaded with 

acetaminophen. Gröning and Berntgen (1996) incorporated a small magnet within 

a drug loaded capsule and guided it with an extracorporeal magnet attached to the 

abdomen. The gastric residence time of the device was effectively delayed. Later, 

Gröning et al. (1998) investigated acyclovir serum concentration after oral 

administration of magnetic depot tablets and the influence of extracorporeal 

magnet to control gastroretentive transit. The drug plasma concentrations showed 

an increase in acyclovir absorption with a gastric residence time of 12 h was 

obtained. Practically, the magnetic field can retain the dosage form and control its 

gastric residence time; however, the external magnet device could decrease the 

patient compliance (Hwang et al., 1998).   

 

1.3.6 Floating systems 

 

The floating drug delivery systems were early described in the literature as 

early as 1968 (Davis, 1968). These systems (Figure 1-2) are designed to have a 

bulk density lower than the gastric fluid (< 1.004 g/cm3) so they can remain 

buoyant for prolonged period of time without affecting the gastric emptying rate 

(Whitehead et al., 1998). One of the drawbacks of floating drug delivery systems is 

that they require an adequate level of fluids in the stomach for the system to float 

effectively, but, administration of a glass full of water (200–250 ml) can overcome 

such disadvantage (Pawar et al., 2011b). Floating drug delivery systems can be 

classified into non-effervescent systems or effervescent systems.  
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1.3.6.1 Non-effervescent floating systems 

 

Non-effervescent floating drug delivery systems are based mainly on gel 

forming or highly swellable cellulose type hydrocolloids, polysaccharides, and 

matrix forming polymers such as sodium alginate, polycarbonate, polyacrylate, 

polymethacrylate, and polystyrene. After oral administration, these systems will 

swell in the gastric fluid and maintain a relative stability of shape and a bulk 

density less than that of the gastric fluid. Accordingly, this will assist the floating 

process of these dosage forms, and slow drug release will be achieved by 

diffusion through the formed gel barrier (Sheth and Tossounian, 1984).  

Hydrodynamically Balanced System (HBSTM) is a single unit dosage form 

that was primarily developed by Sheth and Tossounian (1984) as non-effervescent 

floating systems. They are composed of one or more hydrophilic polymers (such 

as hydroxypropylmethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, 

sodium carboxymethyl cellulose, agar, carrageenan or alginic acid) in which the 

drug is embedded and the mixture is usually enclosed in a gelatin capsule 

(Figure 1-4). After administration, the capsule dissolves upon contact with the 

gastric fluid and the polymer (or polymeric mixture) swells to facilitate floating and 

to control the drug release by diffusion and erosion of the gel barrier (Sheth and 

Tossounian, 1984). The HBS maintains surface hydration and buoyancy due to 

continuous erosion of the surface which allows water penetration to the inner 

layers of the system (Reddy and Murthy, 2002). Low density HBS (Madopar ®) was 

developed by incorporation of fatty excipients to reduce water penetration and 

erosion of the system (Erni and Held, 1987; Jansen and Meerwaldtt, 1990). Later, 

a bilayer formulation was developed from swellable polymers and only one of them 

was loaded with misoprostol so that buoyancy and drug release could be 

optimized independently (Oth et al., 1992). Results demonstrated a mean gastric 

residence time > 3 h and > 10 h following a single meal and a succession of meals 

respectively.  
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Figure 1-4: Schematic presentation of Hydrodynamic Balanced System (Ushimaru 
et al., 1987) 
 

 

Krogel and Bodmeier (1999) designed a multifunctional drug delivery 

system based on a matrix of hydroxypropylmethyl cellulose loaded with drug and 

placed on both sides of an impermeable polymeric cylinder of polypropylene. The 

system was successful to achieve buoyancy due to the air entrapped in the core of 

the cylinder. Streubel et al. (2003) developed and evaluated floating controlled 

drug delivery systems based on low-density polypropylene foam powder, matrix-

forming polymer, drug and filler. Results showed that foam powder-containing 

tablets could float at least 8 h. Losi et al. (2006) designed a modular technology 

called Dome Matrix® which characterized by the presence of an empty chamber 

between the modules that assists the capacity of floatation. Later, Strusi et al. 

(2008) evaluated the device in healthy volunteers and presented capability of 

reaching up to 5 h of gastric residence time in humans. Hascicek et al. (2011) 

assumed flexibility of Dome Matrix® system as the shape of the module and its 

position in the assembled system could influence the floating and the drug release 

processes. Sauzet et al. (2009) designed and evaluated a low density floating 

tablets using a hydrophobic dusty powder excipient with stearic acid to control the 

drug release. The prepared tablets had a coherent porous structure with good 

ability to retard the drug release, in which the floating capacity was mainly due to 

the high porosity of the system.  
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  Non-effervescent floating multiunit dosage forms were also developed to 

increase gastric residence time. Watanabe et al. (1976) patented a bilayer floating 

coated shell, containing a hollow polystyrene sphere. Talukder and Fassihi (2001) 

developed a multiple unit system using Ca2+ and low methoxylated pectin, or Ca2+, 

low methoxylated pectin and sodium alginate. Drying was done either by air 

convection oven at 40 ˚C for 6 h or by freeze drying. Results showed that the 

freeze dried beads had hollow spaces inside them and were able to float > 12 h, 

while the air-dried beads sank. Also, the drug release was 100% and 50% in 10 h 

from the calcium–pectinate–alginate and the calcium–pectinate beads 

respectively. Calcium alginate beads loaded with riboflavin were successful to be 

considered as a potential gastroretentive dosage form (Stops et al., 2008). Singh 

et al. (2010) developed floating porous beads based on simultaneous ionotropic 

gelation of alginate and sterculia gum using calcium chloride as a cross-linker.  

Another possible approach for multiple unit systems is the use of an air 

compartment that can provide immediate floating process. Iannuccelli et al. 

1998a,b designed floating units composed of a calcium alginate core separated by 

an air compartment from a membrane of calcium alginate: polyvinyl alcohol. Li et 

al. (2014) designed novel gastro-floating multi-layer pellets consisted of a porous 

matrix core with entrapped air, a drug loaded layer (dipyridamole and 

hydroxypropylmethyl cellulose), a sub-coating layer (hydroxypropylmethyl 

cellulose), and a drug release retarding layer (Eudragit® NE 30D).  

 

1.3.6.2 Effervescent floating systems 

 

 Effervescent floating drug delivery systems are classified into raft-forming 

systems, volatile liquid containing systems and gas generating systems. The first 

type is a solution composed of an in situ gel forming polymer such as sodium 

alginate along with a gas forming agent such as carbonates or bicarbonates. It 

tends to form a viscous cohesive gel once swelled with entrapped carbon dioxide 

bubbles upon contact with gastric fluids. Raft-forming systems have a very low 

bulk density due to the entrapped carbon dioxide bubbles that enables them to 

float on the surface of the gastric contents for several hours (Prajapati et al., 

2013).  
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 Due to the ability of such systems to produce a layer over the gastric fluids, 

they are used to deliver antacid drugs such as aluminum hydroxide or calcium 

carbonate to to reduce gastric acidity and treat gastroesophageal reflux as with 

Liquid Gaviscon® and Almagate Flot-Coat® (Washington, 1990; Foldager et al., 

1991; Fabregas et al., 1994; Havelund et al., 1997). Hampson et al. (2010) 

evaluated in vitro and in vivo performance of Gaviscon double action liquid, in 

which calcium carbonate is the main antacid ingredient, in comparison with 

alginate/antacid suspensions. Results showed that the new double action 

formulation was as good as, or better than the other formulations.  Foster et al. 

(2013) developed an in situ gel forming system based on a mixture of 1% sodium 

alginate and 0.625% karaya gum in the presence of a calcium chelator which 

demonstrated a good in vitro / in vivo correlation. Recently, Abou Youssef et al. 

(2015) designed a floating raft system loaded with metronidazole using ion-

sensitive in situ gel forming polymers. Results demonstrated prolonged gastric 

residence time and good release rate of metronidazole. 

The second type of the effervescent floating drug delivery systems is the 

volatile liquid containing systems. They contain a chamber of volatile liquid such 

as ether or cyclopentane that converts into gas at body temperature causing 

inflation of the chamber in the stomach. The drug release control is achieved by an 

outer hydrophilic polymeric layer such as alginate and different types of 

hydroxypropylmethyl cellulose in which the drug is loaded (Sriamornsak et al., 

2007b; Baki et al., 2011). Kawashima et al. (1992) used an emulsion–solvent 

diffusion technique to prepare hollow microspheres of tranilast or ibuprofen. An 

emulsion (o/w) was prepared by adding a solution of drug and Eudragit® S in an 

ethanol/dichloromethane to an aqueous solution of polyvinyl alcohol. Evaporation 

of dichloromethane formed an internal cavity in the microspheres which floated for 

> 12 h on acidic dissolution media containing surfactant. Later, Thanoo et al. 

(1993) presented promising floating on simulated gastric and intestinal fluids of 

hollow polycarbonate microspheres loaded with aspirin, griseofulvin and p-nitro 

aniline, using a solvent evaporation method. Stithit et al. (1998) developed 

theophylline microspheres using a novel emulsion–solvent evaporation process. 

Dispersions of theophylline and polymeric mixture of cellulose acetate butyrate 

and Eudragit® RL 100 were pressurized under carbon dioxide.  
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Upon release of the pressure, bubbles of carbon dioxide generated 

microspheres with round cavities enclosed in the dispersed drug polymer droplets 

with > 24 h floating in pH 1.2 and 7.5 buffers. Streubel et al. (2002) designed 

verapamil HCl foam-based floating microparticles based on polypropylene foam 

powder, Eudragit® RS or polymethyl methacrylate polymers using the solvent 

evaporation method. Results showed in vitro floating for at least 8 h depending on 

the polymer type and initial drug loading of the system. The drug release rate was 

dependent on the type and amount of polymer used in the microspheres. Also, 

Sato et al. (2003) and Dube et al. (2014) prepared floating microballoons (or 

hollow microspheres) containing riboflavin and baclofen respectively. Under fed 

conditions, riboflavin excretion was sustained with the microballoons in 

comparison with other dosage forms (Sato et al., 2003). Moreover, Dube et al. 

(2014) showed that not less than 10 h gastric retention was obtained with baclofen 

floating microspheres. Oh et al. (2013) applied a new approach to improve 

bioavailability of metformin using camphor as a sublimation material and 

polyethylene oxide as a drug retarding agent in formulated floating gastroretentive 

tablets. Camphor sublimation at body temperature resulted in pores formation in 

the matrix that allows floating process.  

Regarding the third type of the effervescent floating drug delivery systems, 

gas generating systems, they are prepared with effervescent components such as 

sodium bicarbonate or calcium carbonate and swellable polymers such as 

methylcellulose, hydroxypropylmethyl cellulose or polysaccharides, such as 

chitosan. Due to the reaction of the carbonate gassing agent, present in these 

formulations, with the stomach gastric acid or with the co-formulated citric acid or 

tartaric acid in the presence of aqueous fluid, carbon dioxide gas is liberated. The 

gas bubbles are entrapped in the gel layer formed by hydrocolloids which causes 

an upward motion of the dosage form and maintains its buoyancy (Baumgartner et 

al., 2000). Involvement of carbonate gassing agents can provide an alkaline 

microenvironment for the polymer to initiate gel formation (Deshpande et al., 

1997). Moreover, the liberation of carbon dioxide can accelerate hydration of the 

polymer which is essential for formation of mucoadhesive hydrogel that can assist 

remaining of the dosage form inside the stomach (Asrani, 1994).  
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The gassing component can be mixed with the polymeric part in case of 

single layer tablets (Hashim and Li Wan Po, 1987; Strübing et al., 2008; Yin et al., 

2013), as well as capsules (Stockwell et al., 1986; Li et al., 2003; Moursy et al. 

2003; Ali et al., 2007). In bilayer tablets, one layer can be formulated for the drug 

release control and the other layer can contain a mixture of the gassing 

component and the polymeric material to promote floating (Ingani et al., 1987; 

Ozdemir et al. 2000; Wei et al., 2001). A special design of multiple unit 

effervescent floating pills was developed by Ichikawa et al. (1991). The system 

was based on pills for retarding p-amino benzoic acid release surrounded by 

double layers (Figure 1-5). The inner layer was for the gassing agent component 

containing both sodium bicarbonate and tartaric acid which were also separated 

by sub-layer to avoid direct contact between them. The outer layer was containing 

mainly polyvinyl acetate and purified shellac as swellable membrane layer to 

prevent escape of liberated gas bubbles and to control the drug release.  

Effervescent floating drug delivery systems were successfully prepared as 

multi-particulate or single unit dosage forms. Atyabi et al. (1996) developed 

floating beads using ion exchange resin loaded with sodium bicarbonate which 

were surrounded by a semipermeable membrane to avoid loss of liberated carbon 

dioxide gas. In vivo studies in twelve healthy volunteers of coated and uncoated 

beads showed that the gastric residence time was 24 h and 1-3 h respectively.  

 

 

 

 

 

Figure 1-5: Design of multiple unit oral effervescent floating system (Ichikawa et 
al., 1991)  
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Choi et al. (2002) evaluated effects of calcium carbonate and sodium 

bicarbonate as carbon dioxide gas forming agents on floating alginate beads. 

Authors revealed that the size, floating ability, pore structure, morphology, release 

rate, and mechanical strength of the floating beads were affected by type and 

amount of the gassing agent. Although calcium carbonate was less effective as a 

gas forming agent in comparison with sodium bicarbonate, it produced smaller but 

stronger floating beads with enhanced drug release control. Later, Amrutkar et al. 

(2012) developed zolpidem tartarate layered pellets coated with sodium 

bicarbonate effervescent layer and polymeric membrane of Eudragit® NE 30D. 

Results revealed that the floating ability and in vitro drug release of the pellets 

were dependent on amount of sodium bicarbonate and coating level of the 

polymeric membrane. The system showed complete floating within 5 min and 

maintained its floating for > 10 h. 

Multi-particulate effervescent floating formulations were found to be better 

than single unit dosage forms as they reduce the toxicity risk due to the lower 

probability of dose-dumping as well as they reduce dependency on the gastric 

emptying. Multi-particulate formulations were found to be more reliable for gastric 

emptying patterns than single unit formulations, which suffer from ―all or none 

concept‖. Units of multi-particulate systems can be distributed freely throughout 

the stomach and their transport is less affected by the gastric transit time 

compared to single unit formulations. Also, they can minimize the risk of local 

irritation due to avoidance of local high drug concentration (De Brabander et al., 

2000; Dey et al., 2008). However, polymers with rapid swelling rate can overcome 

premature passage of single unit dosage forms through the stomach pylorus 

especially when the gastric fluid level is low (Chen et al., 2013). Penners et al., 

(1997) patented an effervescent expandable tablet based on rapidly swelling 

polymeric mixture of polyvinyl lactams and polyacrylates with gas forming agent. 

Results demonstrated that the density of the system was reduced and 

consequently the system tended to float on the gastric contents. The use of 

hydrophilic matrices has become extremely popular in controlling the release of 

drugs from oral solid dosage forms as they can achieve a desirable drug profile 

and are cost effective (Alderman, 1984).  
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Upon contact with the aqueous medium the hydrophilic polymer swells to 

form a gel layer on the surface of the system from which the drug releases by 

dissolution, diffusion and/or erosion mechanism (Nokhodchi et al., 2012). 

Cellulose derivatives can accommodate tablet formulations due to their ease of 

compression, ability to load high percentage of drugs and processing variables 

show negligible influence on their drug release rates (Ebube and Jones, 2004). 

Hydrophilic polymers, such as cellulose ethers, are probably the most widely 

investigated polymers in literature as matrices for effervescent floating drug 

delivery systems. Yang et al. (1999) used tetracycline, metronidazole and bismuth 

salt (as a triple drug treatment strategy of Helicobacter pylori associated peptic 

ulcers) to design a floating triple layer tablets. Hydroxypropylmethyl cellulose and 

poly(ethylene oxide) were the drug release retarding polymers. Tetracycline and 

metronidazole were formulated for controlled delivery and incorporated into the 

middle layer of the triple-layer tablet. One of the outer layers which was used for 

gas generation contained a mixture of sodium bicarbonate: calcium carbonate (1:2 

ratio) and polymeric mixture of hydroxypropylmethyl cellulose and poly(ethylene 

oxide. The other outer layer was included bismuth salt as an immediate release 

layer. The in vitro drug release results showed continuous tablets floating with 

sustained release of tetracycline and metronidazole over 6–8 h.  

Ozdemir et al, (2000) developed floating bilayer tablets loaded with 

furosemide dispersed in 1:1 ratio with β cyclodextrin and evaluated them by in vitro 

and in vivo studies. The first layer composed of hydroxypropylmethyl cellulose 

(4000 and 100), and carboxymethyl cellulose polymers to retard the drug release. 

The second layer contained a mixture of sodium bicarbonate and citric acid as the 

gas generating agents. Results showed that tablets compressed at 15 MPa floated 

at 20 min whereas at higher force (32 MPa) the floating lag time (the time taken for 

tablets to appear and remain on the dissolution medium surface) was prolonged to 

45 min. The in vivo studies in six healthy male volunteers demonstrated a gastric 

retention for 6 h with higher drug bioavailability in comparison with conventional 

tablets. Baumgartner et al. (2000) developed a matrix-floating tablet containing 

pentoxifylline, hydroxypropylmethyl cellulose K4 M, Avicel® PH 101, and a mixture 

of citric acid and sodium bicarbonate as gas generating agents. The floating lag 

time was 30 seconds and in vivo studies in fasted beagle dogs revealed prolonged 

gastric residence time (240 ± 60 min).  
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Later, a continuous floating monitoring device and statistical experimental 

design were used to evaluate effect of formulation variables on the floating 

properties of gastroretentive drug delivery system based on calcium carbonate as 

a gassing agent (Li et al., 2002). Results showed that the higher viscosity grade of 

hydroxypropylmethyl cellulose improved insignificantly (P<0.05) the floating 

capacity, and different polymers with same viscosity, did not show any significant 

effect (P<0.05) on the floating process. Also, results demonstrated that 

magnesium stearate as a hydrophobic agent could significantly improve the 

floating capacity of the delivery system. Patel et al. (2007) prepared floating tablets 

using hydroxypropylmethyl cellulose, ethylcellulose, and sodium bicarbonate. All 

tablets floated > 12 h and the drug release rate of the optimized batch best fitted to 

the zero order kinetic release model.  Gupta and Aggarwal (2007) developed 

gastroretentive floating delivery system loaded with 5-fluorouracil using 

hydroxypropylmethyl cellulose, carbopol 934P, sodium bicarbonate, citric acid. In 

vitro studies showed sustained drug release for 24 h and floating for 16 h. In 

another work, Jaimini et al. (2007) investigated a gastroretentive drug delivery 

system of famotidine by employing two grades of hydroxypropylmethyl cellulose 

(Methocel® K100 and Methocel® K15M) and sodium bicarbonate. The effect of 

citric acid on floating and drug release properties was also investigated. It was 

reported that a mixture of 130 mg of sodium bicarbonate and 10 mg of citric acid 

was found to achieve optimum in vitro buoyancy; however, decreasing the citric 

acid level increased the floating lag time as well as the floating duration. Methocel 

K100 based tablets were found to float for longer durations in comparison with 

those containing Methocel® K15M.  

One year later, the in vitro controlled release floating matrices of captopril 

formulated with variable proportions of hydroxypropylmethyl cellulose (Metolose 

SH 4000 SR) and sodium bicarbonate, and pressed at different compaction 

pressures  were studied (Jiménez-Martínez et al., 2008). Results indicated that 

matrices without gassing agent floated > 8 h if compacted at 55 MPa, however, 

those compacted at 165 MPa could not float till sodium bicarbonate was included 

in the formulation. The matrices swelling rate increased in the presence of sodium 

bicarbonate in the formulation which reduced the drug release rate with time. 

Authors concluded that gas bubbles of carbon dioxide obstructed the drug 

diffusion path and decreased the matrix coherence.  
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On the contrary, Sungthongjeen et al. (2008) reported that increasing level 

of sodium bicarbonate did not show effect on lag time results; however, it 

increased the drug release rate. They designed floating multi-layer coated tablets 

based on theophylline core coated with a protective layer of hydroxypropylmethyl 

cellulose, a gassing agent layer of sodium bicarbonate and a gas-entrapment 

membrane of Eudragit® RL 30D. Tablet core was prepared either by direct 

compression or by compression after the wet granulation process. Shorter time to 

float (lag time) and faster drug release was reported with direct-compressed cores 

than those using wet-granulated cores. Increasing coating level of gas entrapment 

membrane increased lag time results but it had minimum effect on drug release 

rate. Varshosaz et al. (2006) prepared effervescent ciprofloxacin floating tablets 

based on sodium carboxymethyl cellulose, hydroxypropylmethyl cellulose, 

polyacrylic acid, polymetacrylic acid as drug retarding polymers, and citric acid and 

sodium bicarbonate as gassing components. Results revealed that increasing the 

gassing agent base from 5% to 10% (w/w) decreased the floating lag time; 

however changing the polymer type did not significantly (P<0.05) change the 

floating lag time. Moreover, carboxymethyl cellulose had higher mucoadhesion 

property than that of polyacrylic acid. The most desirable formulation contained 

10% (w/w) effervescent base, 80% (w/w) carboxymethyl cellulose/ 20% (w/w) 

hydroxypropylmethyl cellulose, or 80% (w/w) polyacrylic acid/ 20% (w/w) 

polymetacrylic acid.  

In another study, Bomma et al. (2009) developed floating matrix tablets of 

norfloxacin by the wet granulation technique, using hydroxpropylmethyl cellulose 

(K4M, K100M) and xanthan gum as matrix forming agents and sodium 

bicarbonate as gas generating agent. The tablets showed acceptable floating 

capacity (35 seconds) with extended drug release rate (20-25% in 1 h, 25-45% in 

2 h, 55-75% in 4 h, 65-85% in 6 h and 85% after 8 h). Later, Tadros (2010) 

developed ciprofloxacin gastroretentive controlled release drug delivery system 

with swelling, floating, and adhesive properties using hydroxypropylmethyl 

cellulose (HPMC K15M) and/or sodium alginate as polymeric release retarding 

excipient(s) and sodium bicarbonate or calcium carbonate as a gas generating 

agent.  
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Tablets formulated with 21.42% (w/w) HPMC K15M, 7.14% (w/w) sodium 

alginate and 20% (w/w) sodium bicarbonate or 20% (w/w) calcium carbonate were 

promising according to floating behaviours, extended adhesion periods and 

sustained drug release rate. However, stability studies conducted at 40˚C / 75% 

RH for 3 months showed better physical stability of tablets based on 20% (w/w) 

calcium carbonate. In vivo evaluation of these successful tablets in six healthy 

volunteers fed with a meal of low calorie after overnight fasting presented a mean 

gastric residence time of 5.50 ± 0.77 h. 

Other water-soluble cellulose derivatives rather than hydroxypropylmethyl 

cellulose were also investigated. For example, hydroxypropyl cellulose has been 

formulated in 1:2 ratios with amoxicillin trihydrate to prepare effervescent floating 

tablets based on sodium bicarbonate and sodium bicarbonate as gassing agents 

(Hilton and Deasy, 1992). Tablets kept floating for 6 h with good in vitro drug 

release control. However, in vivo comparative study with conventional capsules in 

fasted volunteers indicated lower relative bioavailability and lack of improved 

efficacy according to other pharmacokinetic parameters. Later, Tokumura and 

Machida (2006), designed floating tablets based on hydroxypropyl cellulose-H 

(HPC-H) as it has neither acidic nor basic functional group in its chemical structure 

and the hydrogel formation is pH independent. Tablets contained 50 mg of 

amoxicillin, 210 mg of HPC-H, 22.8 mg of sodium bicarbonate, and 17.2 mg of 

citric acid and coated with HPC-H. These tablets were buoyant for 24 h and 

showed a sustained-release pattern in water and buffer solutions of pH 1.2 and 

6.8. In another study, optimized floating tablets of ofloxacin were prepared via 

compression coating technique using a mixture of hydroxypropyl cellulose and 

sodium alginate combined with sodium bicarbonate. Tablets were found to float 

within 30 seconds and remain buoyant for > 12 h in simulated gastric fluid (SGF) 

without pepsin. In vivo study in rabbits indicated higher relative bioavailability of 

the ofloxacin after administration of floating tablets in comparison with marketed 

ofloxacin tablets (Qi et al., 2015). 
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Moreover, effervescent floating tablets have been formulated by using 

another water-soluble cellulose derivative. Mixtures of hydroxyethyl cellulose with 

sodium carboxymethyl cellulose (Chen et al., 2010b) and with chitosan (Chen et 

al., 2013) were studied. Chen et al. (2010a) aimed to develop an optimal 

gastroretentive drug delivery system for administering losartan through 

development of swellable and floatable tablets combining the rapidly swellable 

hydroxyethyl cellulose with a fine particle size grade (250HHX), sodium 

carboxymethyl cellulose, and sodium bicarbonate. The best formulation was the 

one based on 91.67% (w/w) hydroxyethyl cellulose, 3.33% (w/w) sodium 

bicarbonate and 8.33% (w/w) losartan as per in vivo characterization. Selected 

promising floating tablets showed that the relative bioavailability was 

approximately 164% in comparison to the immediate-release marketed product 

(Cozaar®). Later, Chen et al. (2013) developed losartan floating swellable tablets 

based on 250HHX hydroxyethyl cellulose, chitosan as swellable floatable 

polymers and sodium bicarbonate as a gassing agent. They evaluated floating lag 

time and duration and swelling characteristics of prepared tablets. Authors 

demonstrated that formulations with 3:7 ratio of hydroxyethyl cellulose: chitosan 

had the best swelling effect, however they had weak structure which is not 

applicable as a gastroretentive drug delivery system, nevertheless, adjusting the 

ratio into 5:5 hydroxyethyl cellulose: chitosan showed preferred properties of 

swelling. Adding sodium bicarbonate assisted the floating ability of all formulations. 

An optimized losartan formulation composed of 1:1 ratio of both polymers with 20 

mg of sodium bicarbonate resulted in the tablets floating for > 16 h and an 

adjustable in vitro drug release rate. 

Other polymers were involved in the development researches of 

effervescent gastroretentive tablets. For example, Talwar et al, (2001) patented a 

once daily ciprofloxacin floating tablet composed of 69.9% drug, 0.34% sodium 

alginate, 1.03% xanthan gum, 12.1% cross-linked polyvinylpyrrolidine, and 13.7% 

sodium bicarbonate. The tablet tended to float and be retained in the stomach or 

upper part of the small intestine with sustained release of the drug. Also, Moursy 

et al. (2003) designed floating capsules of nicardipine hydrochloride based on 

hydrocolloids of high viscosity grades and sodium bicarbonate. In vitro studies 

showed an increase in floating time with increase in proportion of hydrocolloid and 

presence of sodium bicarbonate.  
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In vivo studies in rabbit‘s revealed that drug duration after the administration 

of the designed floating capsules significantly exceeded that of the commercially 

available capsules. In another study, Nakagawa et al. (2006) prepared a double 

compressed tablet of 5-Fluorouracil as a core material with outer layer composed 

of povidone, Eudragit® RL, and sodium bicarbonate. Results showed sustained 

drug release by occurrence of a plasma-induced cross-link reaction on the outer 

layer of the tablet. Bani-Jaber et al. (2011) evaluated metronidazole matrix tablets 

made of Eudragit® E PO (EE) and/or Eudragit® L-100-55 (EL) at different weight 

ratios and sodium bicarbonate. The best floating and sustained drug release 

properties in 0.1 M HCl dissolution medium was achieved by effervescent floating 

tablets with 50EE/50EL (w/w); however the related non-floating tablets showed 

significantly faster drug release rate without any floating capacity.  

Loh and Elkordy (2015) studied metronidazole floating tablets using 

hydroxypropylmethyl cellulose K15M, xanthan gum, co-povidone, Eudragit® RL 

PO, Pluronic® F-127 and/or polypropylene foam powder as drug release 

controlling agents and sodium bicarbonate with or without citric acid as 

effervescent agents at different compositions. Results indicated that tablets based 

on 12.5% (w/w) hydroxypropylmethyl cellulose, 25% (w/w) xanthan gum, 12.5% 

(w/w) co-povidone and 31.7% (w/w) sodium bicarbonate showed short floating lag 

time, good floating duration and sustained the drug release for 8 h with a zero 

order drug release kinetic. Authors concluded that the combinations of 

hydroxypropylmethyl cellulose K15M and xanthan gum showed synergistic effect 

in sustaining the drug release. Recently, gastroretentive floating tablets of 

pregabalin model drug were designed and evaluated using different 

concentrations of the gums (xanthan gum and guar gum), carbopol 974P NF, 

hydroxypropylmethyl cellulose K100, and sodium bicarbonate (Kanwar et al., 

2016). The in vitro drug release studies indicated that matrices containing guar 

and xanthan gum had higher drug release rate than those containing carbopol 

974P NF. Abduljabbar (2016) and Yusif et al. (2016) developed gastroretentive 

floating-mucoadhesive tablets using mucoadhesive polymers and sodium 

bicarbonate as a gas forming agent. 
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1.3.7 Commercially available products  

 

Gastroretentive drug delivery systems like expandable, superporous 

hydrogel, mucoadhesive, high density, magnetic, and floating have been widely 

investigated by drug delivery researchers within the last three decades. Many of 

them have been reported to show promising in vitro / in vivo results. Yet, only a 

few of them have been evidenced with clinical trials and proved to be marketed 

commercially as presented in Table 1-1.  

AcuFormTM is one of the well-known polymeric swelling monolithic systems 

developed by Depomed, USA.  Possibility of high drug dose loading and the use of 

a classical manufacturing process are considered the main advantages of this 

technology (Prinderre et al., 2011). AcuFormTM platform is a gastric-retentive oral 

delivery technology for a variety of compounds based on polymer technology. 

Following ingestion, it has been shown to promote gastric retention and control 

drug delivery. Chen et al. (2011) reported that in fed state, AcuFormTM gabapentin 

tablet swells up to three to four times in the gastric fluid, with a diameter larger 

than that of the pylorus. This enabled gastric retention for about 8-9 h with 

controlled and prolonged release of gabapentin to the upper intestinal tract. Such 

results support a once- or twice-daily product with potentially less adverse events.  

Another example is Valrelease (15 mg diazepam) which is a slow release 

floating capsule based on hydrodynamically balanced system (HBS) technology. 

Conventional 5 mg diazepam tablets are given three times daily, however, 

Valrelease capsules are given once daily to provide an equivalent plasma 

diazepam concentration. By controlling the rate of release, Cmax is decreased 

relative to that observed when 15 mg is administered as a single dose in tablets. 

The gradual dissolving of Valrelease capsules over an 8-12 h in comparison with 

conventional diazepam tablets which dissolve within 15 min generate a smooth 

onset of action with a prolonged drug release rate (Notari, 1986).  

Also, Madopar HBS is a slow-release floating capsule of L-dopa and 

benserazide based on hydrodynamically balanced system (HBS) technology. 

Malcolm et al. (1987) presented pharmacokinetic studies in parkinsonian patients 

and healthy volunteers to evaluate the effect of food and antacid on the absorption 

of Madopar HBS.  
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In comparison with conventional Madopar, the drug (L-dopa) is released 

and absorbed over a period of 4-5 h. The absorption rate is reduced, providing 

lower peak concentrations of L-dopa but maintaining substantial plasma 

concentrations for 6-8 h after dosing. The bioavailability of L-dopa is reduced in 

comparison with conventional Madopar because of incomplete absorption of the 

drug. No effect of presence or absence of food in the stomach on the drug 

absorption from Madopar HBS is reported; still concomitant administration of 

antacids reduces the drug bioavailability. Another example is liquid Gaviscon® 

which is a raft-forming system with ability to produce a layer over the gastric fluids 

(raft) to deliver antacid drugs to reduce gastric acidity and treat gastroesophageal 

reflux (Washington, 1990). In vitro and in vivo performance of Gaviscon double 

action liquid in comparison with alginate/antacid suspensions showed that the 

double action formulation was as good as, or better than the other formulations 

(Hampson et al., 2010). 
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Table 1-1: List of some gastroretentive drug delivery systems commercially available.  

Product Drug Company Technology 

Cytotec Misoprostol Pharmacia/Pfizer, USA Bilayer floating capsules 

Baclofen GRS Baclofen Sun Pharma, India Coated multi-layer floating and swelling system 

Conviron Ferrous sulfate Ranbaxy, India Colloidal gel forming floating system 

Prazopress XL Prazosin HCl Sun Pharma, Japan Effervescent and swelling-based floating system 

Liquid Gaviscon 
Alginic acid and 

sodium bicarbonate 
Reckitt Benckiser 
Healthcare, UK 

Effervescent floating liquid alginate preparation 

Riomet OD Metformin HCl Ranbaxy, India Effervescent floating system 

Zanocin OD Ofloxacin Ranbaxy, India Effervescent floating system 

Cipro XR 
Ciprofloxacin HCl 

and betaine 
Bayer, USA Erodible matrix-based system 

Accordion PillTM 

(In phase II trials) 
Levodopa and 

carbidopa 
Intec Pharma Expandable film filled in capsule 

Valrelease Diazepam 
Hoffmann-LaRoche, 

Switzerland 
Floating capsule 

Eudratec GRS - 
Evonik Industries, 

Germany 
Floating capsulea 

SoctecTM - Vectura Group, UK Floating capsuleb 

Madopar HBS 
Levodopa and 
benserazide 

Hoffmann-LaRoche, 
Switzerland 

Floating CR capsule 

Adapted from: Sheth, and Tossounian, 1984; Washington et al., 1986; Erni and Held, 1987; Fabregas et al., 1994; Pawar et 
al., 2011b; Ishak, 2015. 
a (http://healthcare.evonik.com/product/health-care/en/custom-solutions/oral-drug-delivery/eudratec-grs/pages/default.aspx) 
   Accessed on 10/07/2017 
b (http://www.vectura.com/oral/oral-drug-delivery-technologies/) 
   Accessed on 10/07/2017 
 

http://healthcare.evonik.com/product/health-care/en/custom-solutions/oral-drug-delivery/eudratec-grs/pages/default.aspx
http://www.vectura.com/oral/oral-drug-delivery-technologies/
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Table 1-1 (continued): List of some gastroretentive drug delivery systems commercially available.  

Product Drug Company Technology 

Almagate Flotcoat 
Aluminum and 

magnesium antacid 
Laboratorios Almirall, 

Spain 
Floating lipophilic particles 

Topalkan 
Aluminum and 

magnesium antacid 
Pierre Fabre 

Medicament, France 
Floating liquid alginate 

Cifran OD Ciprofloxacin HCl Ranbaxy, India Floating tablets 

Inon Ace Simethicone Sato Pharma, Japan Foam-based floating system 

Coreg CR Carvedilol GlaxoSmithKline Gastro-retention with osmotic system 

Cefaclor LP Cefaclor Galenix, France Minextab Floating® 

Metformin Hcl LP Metformin HCl Galenix, France Minextab Floating® 

Tramadol LP Tramadol Galenix, France Minextab Floating® 

Glumetza Metformin HCl Depomed, USA Polymer-based swelling technology: AcuForm™ 

Gralise Gabapentin Depomed, USA Polymer-based swelling technology: AcuForm™ 

Janumet XR 
Metformine HCl and 

sitagliptin 
Merck, USA Polymer-based swelling technology: AcuForm™ 

Nucynta ER Tapentadol Janssen, Belgium Polymer-based swelling technology: AcuForm™ 

ProQuin XR Ciprofloxacin HCl Depomed, USA Polymer-based swelling technology: AcuForm™ 

Kadian Morphine sulfate 
Sumitomo Pharma, 

Japan 
Stick type capsule type filled with pellets 

Adapted from: Sheth, and Tossounian, 1984; Washington et al., 1986; Erni and Held, 1987; Fabregas et al., 1994; Pawar et 
al., 2011b; Ishak, 2015. 
a (http://healthcare.evonik.com/product/health-care/en/custom-solutions/oral-drug-delivery/eudratec-grs/pages/default.aspx) 
   Accessed on 10/07/2017 
b (http://www.vectura.com/oral/oral-drug-delivery-technologies/) 
   Accessed on 10/07/2017 
 

 

http://healthcare.evonik.com/product/health-care/en/custom-solutions/oral-drug-delivery/eudratec-grs/pages/default.aspx
http://www.vectura.com/oral/oral-drug-delivery-technologies/
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1.4 Formulation development 

 

Despite the proven advantages, through literature, of the gastroretentive 

systems for patients, as a few of them have been evidenced with clinical trials and 

proved to be marketed commercially, it is difficult to identify a single system as the 

best one for all drug candidates. A case by case evaluation for each drug or drug 

combination has to be assessed based on dose and the manufacturability of the 

system. Of all the gastroretentive delivery systems described in the literature, 

floating systems can show promising potential to achieve this goal. Particularly, 

combinations of different gastroretentive concepts, such as mucoadhesion and 

low-density floating, can be expected, for example by using suitable polymers, to 

be promising to have a significant effect on improving the therapeutic effect of the 

drug involved (Streubel et al., 2006). Besides, there is a lack of enough 

information in the literature about floating and drug release rate from pentoxifylline 

or cefalexin monohydrate gastroretentive drug delivery systems based on binary 

mixtures of hydroxyethyl cellulose and sodium alginate as drug retarding 

polymers, and sodium bicarbonate, calcium carbonate, or sodium carbonate as 

gassing components. This made them suitable for the study regarding research 

originality. 

 

1.4.1 Type of polymers 

 

Water-soluble cellulose derivatives can be considered one of the best 

options to design floating tablets with sustained release behaviour (Gerogiannis et 

al., 1993) and are probably the most widely investigated polymers. However, the 

increasing demand of pharmaceutical industry for suitable polymers, to achieve a 

suitable drug release rate, has facilitated screening of a large variety of both 

synthetic and natural polymers for their ability to sustain the drug release process. 

The cost of synthesizing a new polymeric substance and testing their safety are 

highly priced (Ebube and Jones, 2004). An extreme concentration on the use of 

pharmaceutically approved polymeric blends as matrix excipients to control the 

drug release has been widely investigated. This can provide several choices for 

pharmaceutical industry formulators to achieve the best dosage form design.  
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Accordingly, the aim of this work was to design floating gastroretentive drug 

delivery matrix tablets based on pharmaceutically approved binary polymeric 

mixture. Thus, both hydroxyethyl cellulose and sodium alginate were selected to 

design a floating drug delivery system. One of the most important challenges in 

developing gastroretentive single unit dosage forms is to avoid rapid gastric 

emptying and increase the gastric residence time. Polymers with rapid swelling 

rate upon contact with the gastric fluid have rapid reduction in their density, thus 

can overcome premature passage of single unit dosage forms through the 

stomach pylorus especially when the gastric fluid level is low. Cellulose ether 

hydration rate varies according to the nature of the functional group present as 

well as its degree of substitution (Roy and Rohera, 2002). Hydroxyethyl cellulose 

(Figure 1-6) is a hydrophilic cellulosic polymer with non-ionic nature which makes 

it a pH independent polymer (Angadi et al., 2010). Hydroxyethyl cellulose 

(Natrosol 250-HHX) has M.W of 1.3x106 which generates viscosity of 3400-5000 

cP at 25˚C at 1% concentration. Additionally, it is well known in the literature as a 

matrix-forming polymer (Chatlapalli and Rohera, 1998; Baumgartner et al., 2002; 

Larsson et al., 2008; Chen et al., 2010b; Chen et al., 2013). It has the advantage 

of more swelling rate than both hydroxypropyl cellulose and hydroxypropylmethyl 

cellulose in purified water (Baumgartner et al., 2006). It also has shown better 

swelling and floating ability than sodium carboxymethyl cellulose (Chen et al., 

2010b). These properties made it suitable over the other cellulose ether 

derivatives for this study.  

Nonetheless, Roy and Rohera (2002) reported that the relatively higher 

hydrophilicity of hydroxyethyl cellulose was the cause for the drug release rate 

from their matrices to be higher than that of hydroxypropyl cellulose matrices. 

Accordingly, sodium alginate with medium viscosity grade (at 25˚C at 1% 

concentration generates 15-25 cP) was selected in this study to be mixed with 

hydroxyethyl cellulose to slow down the drug release rate and to retain carbon 

dioxide gas liberated after acid-base interaction in order to control both floating lag 

time and floating duration capacities. This viscosity grade was chosen to avoid any 

drawbacks on the high swelling rate advantage of hydroxyethyl cellulose.  
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Additionally, sodium alginate is extensively used in the literature, as in situ 

gel forming polymer, in different gastroretentive drug delivery systems such as 

floating tablets (Talwar et al, 2001; Tadros, 2010; Qi et al., 2015), mucoadhesive 

tablets (Patil and Talele, 2015); superporous hydrogel (Omidian et al., 2006), and 

expandable tablets (El-Zahaby et al., 2014). 

Sodium alginate (Figure 1-7), is a non-cellulosic water soluble 

polysaccharide derived from brown seaweeds. It consists primarily of sodium salt 

of alginic acid, which is a linear copolymer of 1,4-linked β-D-mannuronic acid (M-

block) and α-L-guluronic acid (G-block) units (Peppas et al., 2006). Sodium 

alginate can be easily cross-linked with other multivalent cations such as calcium 

to form a stable complex assuming the ―egg box‖ model (Gacesa, 1988) 

(Figure 1-8). Alginate gel can be created during the formulation process (Miyazaki 

et al., 2000), or in gastric fluids, if suitable conditions of alkaline microenvironment 

and/or calcium ions are available. Accordingly, addition of sodium alginate to 

hydroxyethyl cellulose was expected to enhance drug release retardation 

properties of designed tablets especially in the presence of calcium carbonate. 

This gas forming agent is also a multivalent cations source, hence it was 

suggested to have a role in sodium alginate cross-linking to form a stable complex 

assuming the ―egg box‖ model. Moreover, involvement of carbonate gassing 

agents can provide a microenvironment for the polymer with an alkaline pH to 

initiate gel formation (Deshpande et al., 1997). Consequently, the liberated gas 

bubbles can be entrapped in the formed gel layer to assist an upward motion of 

designed tablets to achieve short lag time and to maintain their buoyancy over the 

gastric fluid. A binary mixture of hydroxyethyl cellulose and sodium alginate in 

(1:1) ratio, which used in the current study, was required to take full advantage of 

both polymers in the formulation. Still, in the future, more ratios of hydroxyethyl 

cellulose and sodium alginate mixture, such as 0:1, 0.25:0.75, 0.75:0.25, and 1:0 

respectively, could be investigated.   
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Figure 1-6: Chemical structure of hydroxyethyl cellulose (Zulkifli et al., 2014) 

 

 

 
Figure 1-7: Chemical structure of sodium alginate (Steele et al., 2014). 

 

 

 
Figure 1-8: Schematic presentation of the ‗egg box‘ model for calcium alginate gel 
(Kühbeck et al., 2015) 
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1.4.2 Method of preparation of floating tablets 

 

Sungthongjeen et al. (2008) designed floating multi-layer coated tablets with 

cores prepared either by direct compression or by compression after the wet 

granulation process. Results revealed shorter floating lag time and faster drug 

release rate with direct-compressed cores than those using wet-granulated cores. 

Ozdemir et al, (2000) showed that bilayer floating tablets compressed at 15 MPa 

floated at 20 min whereas at 32 MPa the floating lag time was prolonged to 45 

min. Also, Jiménez-Martínez et al. (2008) indicated that matrices without gassing 

agent floated > 8 h if compacted at 55 MPa, however, those compacted at 165 

MPa could not float till sodium bicarbonate was included in the formulation. 

Consequently, it was necessary in this research to study the effect of the wet 

granulation process on powder mixture properties and to evaluate the differences 

between application of three crushing strength levels (A: 49–54 N;   B: 54-59 N; 

and C: 59-64 N) on floating capacity of the prepared tablets and their drug release 

rate.  

 

1.4.3 Type of gas-generating agent 

 

Sodium bicarbonate or calcium carbonate is used to react with the stomach 

gastric acid or with the co-formulated citric acid or tartaric acid in the presence of 

aqueous fluid, to liberate carbon dioxide gas. Still, sodium bicarbonate is the 

predominant gassing agent involved in the design and development of 

effervescent floating drug delivery systems. Sodium carbonate has also the ability 

to produce carbon dioxide gas due to acid base reaction (Hapgood, 2009), but, 

available information in the literature about using it within the floating tablets is 

inadequate. Choi et al. (2002) evaluated floated beads based on sodium 

bicarbonate or calcium carbonate. Results showed different porosity percentages, 

bead gel strengths and floating capacities. It was concluded that calcium 

carbonate was better as a gas forming agent in alginate bead preparations in 

comparison with sodium bicarbonate. Additionally, Sriamornsak et al. (2007a) 

evaluated calcium pectinate gel beads containing sodium bicarbonate, calcium 

carbonate, potassium carbonate or sodium carbonate as gas forming agents.  
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Beads were successfully produced with sodium bicarbonate or calcium 

carbonate only. Porous beads in comparison with dense beads were resulted due 

to incorporation of sodium bicarbonate and calcium carbonate respectively. 

Therefore, in this study, it is worth testing sodium carbonate and calcium 

carbonate beside sodium bicarbonate to evaluate the effect of gassing agent type 

on the designed system.  

 

1.4.4 Concentration of gas-generating agent 

 

It was reported in the literature that increasing the mass content 

concentration of gas generating agents reduced significantly the floating lag time 

of gastroretentive systems (Varshosaz et al. 2006; Goole et al. 2007; Goole et al., 

2008) and extended their floating duration (Gupta and Aggarwal, 2007; Nama et 

al. 2008), but above a certain limit, a disruption in the system integrity and 

complete loss of floatation capability were noted. A hydrodynamically balanced 

system (HBS) based on sodium bicarbonate at 8% (w/w) along with 

hydroxypropylmethyl cellulose K4M showed an in vitro floating lag time < 3 min, 

floating duration > 12 h, and an in vivo gastric retention time of 220 min (Nama et 

al. 2008). Nonetheless, 20% (w/w) of sodium bicarbonate along with 

hydroxypropylmethyl cellulose K15M and sodium alginate was successful to show 

a mean gastric retention period of 5.5 h (Tadros, 2010). Thus two concentration 

levels (10 and 20% (w/w)) of sodium bicarbonate, calcium carbonate, or sodium 

carbonate were selected (in the current research) beside the control tablets (0% 

(w/w)) to explore the effect of gassing agent concentrations on the designed 

system.   
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1.4.5 Model drug 

 

Two model drugs were selected to be loaded in the designed effervescent 

gastroretentive tablets individually.  

 

1.4.6 Pentoxifylline 

 

Primarily, pentoxifylline (Figure 1-9) was used as a model drug. Its 

physicochemical characteristics are presented in Table 1-2. Pentoxifylline or 

oxpentifylline (Frampton and Brogden, 1995) is a methylxanthine derivative 

(Steinleitner et al., 1990) that inhibits production of inflammatory cytokines from 

immune cells and treats or prevents fibrosis (Berman and Duncan, 1989; Berman 

et al., 1992). Pentoxifylline inhibits phosphodiesterase through both protein 

kinase_A dependent and independent pathways, which increases intracellular 

levels of cyclic adenosine monophosphate (cAMP). It was reported that 

pentoxifylline can decrease oxidative stress during inflammation and suppress the 

superoxide production of macrophage (Bessler et al., 1986; Costantini et al., 

2009). In humans, pentoxifylline was reported to be effective with peripheral 

vascular disease (Ward and Clissold, 1987), mental dementia (Parnetti et al., 

1986), and alcoholic hepatitis (Haber et al., 2003). Studies showed that 

pentoxifylline at a dosage of 600 to 1200 mg/day, marked overall clinical 

improvements in about 85% in patients with cerebrovascular disorders (Ward and 

Clissold, 1987). 
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Figure 1-9: Chemical structure of pentoxifylline (BP, 2015) 

 

 

 

 

 

Table 1-2: Physicochemical characteristics of pentoxifylline.  
Parameter Remarks 

Description White or almost white, crystalline powder. 

CAS Number 6493-05-6 

Molecular weight 278.3 g/mole 

Molecular formula C13H18N4O3 

Chemical  
Name 

3,7-dimethyl-1-(5-oxohexyl)-3,7-dihydro-1H-purine-2,6-dione 

Solubility 

Soluble in water (191 mg/ml at 37°C)a, freely soluble in 
methylene chloride, sparingly soluble in ethanol (96 per 
cent). Solubility of pentoxifylline at pH 1.2 was larger than 
that at pH 6.8b.  

Note: The data is adapted from BP, 2015; a Mikac et al., 2010; b Otsuka and 

Matsuda, 1994. 
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After oral administration, pentoxifylline is rapidly absorbed with peak plasma 

level reached between 0.29 and 0.41 h and due to the extensive metabolic 

transformations, pentoxifylline has low and variable bioavailability averaged 20% 

to 30% (Beermann et al. 1985). It has variable plasma clearance from 1.3 to 1.8 

ml/min and less than 1% of the given dose is recovered unchanged from the urine 

(Hinze et al., 1972; Bryce et al., 1989). Hydroxypentoxifylline [1-(5'-hydroxhexyl)-3, 

7-dimethylxanthine] and carboxypentoxifylline [1-(carboxypropy1)-3,7-

dimethylxanthine] are the major circulating metabolites of pentoxifylline in human 

beings. Both pentoxifylline and hydroxypentoxifylline metabolite show the same 

pharmacologic properties and have an equivalent short elimination half-life (t1/2) of 

0.8 to 1.8 h (Hinze et al., 1972; Ings et al., 1982; Aviado and Dettelbach, 1984; 

Beermann et al., 1985). After an oral administration of a sustained-release 

pentoxifylline formulation to healthy volunteers, an increase 3.4 h in pentoxifylline 

terminal half-life (t1/2), with an absolute bioavailability equal to 20% was reported in 

comparison with immediate release pentoxifylline capsule (Beermann et al., 1985).  

The same study showed that pentoxifylline is completely absorbed from the 

gastrointestinal tract (GIT) when given either in the form of sustained release 

tablets or immediate release capsules. Pentoxifylline is a suitable candidate for 

oral sustained release delivery to improve patient compliance and reduce side 

effects due to better control of the therapeutic drug concentration. Sustained-

release 400 mg pentoxifylline tablets (e.g. Trental®) are commercially available in 

the market to avoid frequent dosing and to maintain therapeutic drug plasma 

levels. A pentoxifylline floating tablet based on hydroxypropylmethyl cellulose 

K4M, Avicel® PH 101 as a matrix, and a mixture of citric acid and sodium 

bicarbonate as a gas forming agents was developed (Baumgartner et al., 2000). 

The tablets floated within 30 seconds and prolonged gastric residence time was 

shown in fasted beagle dogs. Pentoxifylline has remarkable properties of high 

density (Baumgartner et al., 2000) and high water solubility (191 mg/ml at 37°C) 

(Mikac et al., 2010) which made it an ideal model drug in this study to challenge 

the ability of the designed gastroretentive tablets to show acceptable floating 

capacity and acceptable retarding of the drug release process. 
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1.4.7 Cefalexin monohydrate 

 

Also in this study, cefalexin monohydrate was selected as a second model 

drug (Figure 1-10). Its physicochemical characteristics are presented in Table 1-3. 

Cefalexin (BP 2015) or cephalexin (USP, 2012) is a semisynthetic β-lactam first 

generation cephalosporin antibiotic. It causes bacterial cell lysis as it interferes 

with the last step of bacterial cell wall synthesis (transpeptidation or cross-linkage). 

Cefalexin is a broad spectrum antibiotic used for treatment of many bacterial 

infections such as the upper and lower respiratory tract infections except in those 

infections caused by Haemophilus influenzae (Disney, 1983; Raff, 1983). Also, it is 

used for treatment of skin, soft tissues, and the genitourinary tract infections. 

Cefalexin is used in dosages of 1-2 g/day in adults and 20-100 mg/kg/day in 

children (Disney, 1983). After oral administration, cefalexin is completely and 

rapidly absorbed in the upper intestine, therefore, it does not disturb the lower 

bowel flora even with administration of relatively high oral doses, and it has 

minimal toxicity and adverse side effects (Griffith, 1983). It is a lipophilic weak acid 

with 5.2 and 7.3 pKa values, and is stable in gastric conditions but degrades in 

intestinal or alkaline conditions (Marrelli, 1975; Yin et al., 2013). 

Measurement of cefalexin uptake in membrane vesicle preparations or in 

intact enterocytes showed higher uptake in the duodenum than in the jejunum or 

ileum (Kramer et al., 1993; Tomita et al., 1995). Additionally, absorption of β-

lactam antibiotics containing a phenyl-glycine side chain, such as cefalexin, was 

reported to be a carrier mediated process and saturable at high dose (Tsuji et al., 

1979; Tsuji et al., 1981; Nakashima et al., 1984). It has low protein binding to 

human serum proteins and it has rapid distribution to the tissues other than the 

spinal fluid (Griffith, 1983). Cefalexin is not significantly metabolized and is not 

excreted in bile (Barbhaiya, 1996) but it is rapidly cleared from the body by the 

kidneys, and 70-100% of the dose is recovered in the urine within 6-8 h after each 

dose (Griffith, 1983).  
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Figure 1-10: Chemical structure of cefalexin monohydrate (BP, 2015) 

 

 

 

 

 

Table 1-3: Physicochemical characteristics of cefalexin monohydrate.  
Parameter Remarks 

Description White or almost white, crystalline powder. 

CAS Number 23325-78-2 

Molecular weight 365.4 g/mole 

Molecular formula C16H17N3O4S,H2O 

Chemical name 
(6R,7R)-7-[[(2R)-2-Amino-2-phenylacetyl] amino]-3-methyl-8-
oxo-5-thia-1-azabicyclo [4.2.0] oct-2-ene-2-carboxylic acid 
monohydrate. 

Solubilitya 
Solubility in water is 13.5 mg/ml at 25 ˚C. 

Solubility in water at pH 2.3 is 120 mg/ml at 37 ˚C.  

Note: The data is adapted from BP, 2015; a Marrelli, 1975. 
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On an empty stomach, cefalexin shows maximal serum concentration 

(Cmax) of 38.8 ± 8.1 mg/L at 65.2 ± 11.1 min (Tmax) after oral capsule administration 

of 1000 mg, however during a standard breakfast the Cmax decreases to 23.1 ± 6.6 

mg/L at 112 ± 23.4 min (Tmax) due to slower oral absorption  (Lode et al., 1979). It 

has a short half-life of approximately 1 h (Davies and Holt, 1972). Therefore, 

conventional cefalexin products should be administered 3–4 times a day to 

maintain drug therapeutic range which make it suitable candidate for sustained 

drug delivery.  

Researchers developed cefalexin controlled release double-layer tablets 

(Martinez-Pacheco et al., 1986), sustained release tablets (Dhopeshwarkar et al., 

1994), and controlled release beads (Agnihotri et al., 2006). No significant 

difference in the clinical responses of sustained release cefalexin granules (L-

Keflex) and regular cefalexin capsules (Keflex) in the field of dental infections were 

reported (Horii et al., 1980). Nonetheless, in vivo study results of optimized 

sustained release tablets along with a fast release capsule showed that the 

relative bioavailability of cefalexin was reduced by about 30% and very little 

absorption was seen after 6-8 h (Dhopeshwarkar et al., 1994).  

Recently, Yin et al. (2013) prepared cefalexin gastroretentive floating 

tablets using hydroxypropylmethyl cellulose K100M as a matrix and sodium 

bicarbonate as a gassing agent. The in vitro studies showed floating lag time 

within 15 seconds and floating duration > 12 h with a satisfactory sustained drug 

release rate for 12 h. An in vivo study was conducted in fed and fasted beagle 

dogs comparing floating tablets with conventional cefalexin capsules and 

sustained release tablets. The gastroretentive formulation enhanced cefalexin 

bioavailability. The relative bioavailability of floating tablets was 99.4% compared 

with the conventional capsules, whereas sustained release tablets showed only 

39.3%.   

Therefore, the cefalexin instability at intestinal pH (Marrelli, 1975; Yin et al., 

2013) and its narrow absorption window at the upper gastrointestinal tract (GIT) 

(Griffith, 1983; Kramer et al., 1993; Tomita et al., 1995) made it an ideal model 

drug in this current study for further investigations regarding gastroretentive 

delivery systems but not ordinary sustained release delivery systems. 

 

http://www.sciencedirect.com/science/article/pii/S1818087616300320#bib0365
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1.5 Posed research questions 

 

1- What is the effect of using binary mixture (1:1) of hydroxyethyl cellulose and 

sodium alginate on extending the drug release rate of different model drugs 

and floating capacity of tablets? 

2- What is the effect of different formulation parameters (the wet granulation, 

tablet crushing strength, gassing agent type, and gassing agent 

concentration) on drug release rate and floating capacity?  

 

1.6 Aims and objectives: 

 

 To prepare floating tablet compositions containing suitable model drug, 

binary mixture of hydroxyethyl cellulose and sodium alginate gel forming 

polymers, gassing agent, filler (if required), and lubricant. 

 To study the flow properties of different powder mixture formulations and 

the effect of the wet granulation process on powder mixture properties.  

 To investigate the influence of gassing agent type (sodium bicarbonate, 

calcium carbonate, or sodium carbonate) as well as gassing agent level (10 

or 20% w/w) on floating capacity and drug release rate. 

 To evaluate the differences between application of three crushing strength 

levels (A: 49–54 N;   B: 54-59 N; and C: 59-64 N) on floating capacity of the 

prepared tablets and drug release rate from those tablets.  

 To analyse the generated data statistically with the aim to evaluate possible 

significant outcomes of the different formulation parameters on floating and 

drug release rate. 

 To analyse the release kinetics by fitting the generated drug release data to 

different mathematical models (zero order, first order, Hixson-Crowell, 

Higuchi, and Korsmeyer–Peppas). 

 To investigate the most promising formulations by in vivo study to evaluate 

ability to sustain the drug release.  
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The thesis has been presented as following: 

Chapter one  

(Current chapter): 

 

Introduction 

Chapter two: Material and methods. 

Chapter three: Evaluation of the effect of sodium bicarbonate, calcium 

carbonate, and sodium carbonate as gassing agents on 

pentoxifylline floating tablets. 

Chapter four: Evaluation of the effect of sodium bicarbonate, calcium 

carbonate, and sodium carbonate as gassing agents on 

cefalexin monohydrate floating tablets. 

Chapter five: Preliminary In vivo study in rats. 

Chapter six: Conclusions and future work 

Chapter seven: References 
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2 Chapter Two: Materials and methods 
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2.1 Materials 

 

Calcium carbonate, cefalexin monohydrate, sodium carbonate, medium 

viscosity sodium alginate (15-20 cP at 1% at 25˚C), and pentoxifylline were 

supplied by Sigma-Aldrich (UK), silicified microcrystalline cellulose (Prosolv® 90) 

was obtained from JRS Pharma (Germany), magnesium stearate was supplied by 

MEDEX (UK), emitrecitabine, ammonia, formic acid, methanol, and ACE 5 C18 

column were obtained by the Jordan Centre for Pharmaceutical Research (Jordan), 

and hydroxyethyl cellulose (NatrosolTM 250-HHX, 3400-5000 cP at 1% at 25˚C) 

was generously provided by Ashland (USA).  

 

2.2 Methods 

2.2.1 Ultra violet spectroscopy analysis 

 

Spectrophotometric analysis was carried out between 190 and 600 nm to 

determine maximum absorbance wave length of pentoxifylline (Figure 2-1) and 

cefalexin monohydrate (Figure 2-2) in 0.1 M HCl solution using ATI Unicam UV2 

spectrophotometer, UK.  In addition, serial dilutions of 0.5 mg/ml stock solution of 

pentoxifylline or cefalexin monohydrate were carried out to construct calibration 

curves as shown in Figure 2-3 and Figure 2-4 respectively. Each dilution point was 

performed in triplicate and mean values ± standard deviation (SD) are presented. 
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Figure 2-1: UV absorbance spectrum of pentoxifylline in 0.1 M HCl. 
 

 

 

 
Figure 2-2: UV absorbance spectrum of cefalexin monohydrate in 0.1 M HCl. 
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Figure 2-3: Calibration curve of pentoxifylline. 
Note: Error bars cannot be seen because they are very small. 
 

 

 

 
Figure 2-4: Calibration curve of cefalexin monohydrate. 
Note: Error bars cannot be seen because they are very small. 
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2.2.2 Formulation development outline 

 

The formulation development aim, for the gastroretentive floating tablets, 

was to get formulations based on binary mixture of hydroxyethyl cellulose and 

sodium alginate (gel forming polymers); sodium bicarbonate, calcium carbonate, 

or sodium carbonate (gassing agent); filler (if required); and lubricant. The 

formulations should be suitable for the wet granulation process and for pressing at 

three crushing strength levels (A: 49–54 N;   B: 54-59 N; and C: 59-64 N). The 

influence of gassing agent concentration was also considered during the 

formulation development. Several excipients were tried to facilitate manufacturing 

of the required floating tablets using a single-punch tableting machine (Type 3, 

Manesty Machines Ltd, UK) equipped with flat-faced punches (9.60 mm), and the 

compression force was adjusted by decreasing the distance between punches to 

produce tablets with the required crushing strength levels which was measured 

using the crushing strength tester. A turbula mixer with a glass bottle, 250 mL, 

mixing vessel, was used to mix the powders. 

Table 2-1 to Table 2-6 show different trials with excipients used with the 

percentage (%) of each one. In stage I of the formulation development (Table 2-1), 

the binary mixture (1:1) of hydroxylethyl cellulose and sodium alginate was difficult 

to be pressed and resulted crushing strengths were below the required levels. 

Consequently, in stage II (Table 2-2), three different LubriToseTM fillers (MCC, 

mannitol, and lactose), co-processed with stearate lubricant derivatives,  were 

used at 25% (w/w) to improve powder mixture compressibility. The resulted 

crushing strengths were not appropriate; they were in range of 29.5-49 N. In the 

next stage (Table 2-3), the fillers were changed into microcrystalline cellulose 

(MCC) with different particle size property (Avicel® PH101, PH102, PH105, and 

Prosolv 90®). The crushing strength was improved to be > 49 N. Therefore, in 

stage IV of formulation development trials (Table 2-4), wet granulation process 

was processed using water or polyvinylpyrolidone (PVP) at different 

concentrations. Powder mixtures were wetted and mixed for 10 min using a 

Kenwood Chef Kneader before being manually passed through a 1,000 μm sieve. 

The prepared granules were dried using a drying oven at 60°C overnight (~12 h), 

and then dried granules passed through 853 μm sieve and granules ≤ 853 μm 

were used.  
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Resulted crushing strengths of the prepared granules were not appropriate; 

they were in range of 10-41 N. In stage V of the formulation development trials 

(Table 2-5), hydroxyethyl cellulose supplier was changed into Ashland (Natrosol 

250-HHX) which is well known in the literature as a matrix former (Chatlapalli and 

Rohera, 1998; Baumgartner  et al., 2002; Larsson et al., 2008; Chen et al., 2010b; 

Chen et al., 2013). Water as a binder was successful to provide granules with 

promising crushing strength results. Two levels (20 and 25% (w/w)) of filler 

(Avicel® PH102 and Prosolv 90®) were tried to enable maximum drug loading 

ability. At 25% (w/w) filler concentration, both fillers (Avicel® PH102 and Prosolv 

90®) were good, however at 20% (w/w), Prosolv 90® revealed better crushing 

strength results. Finally, in stage VI (Table 2-6), pentoxifylline was successfully 

loaded to the designed floating tablets. Higher quantity of cefalexin monohydrate 

were required to be loaded, thus, the filler (Prosolv 90®) was excluded successfully 

from cefalexin tablets. Water as a binder was effective to provide granules. In 

order to reduce friction during the automatic pressing (of granulated powders) 

using a single-punch tableting machine, 0.5% (w/w) magnesium stearate was 

used. Promising crushing strength results were obtained for the tablets of powder 

mixture or granules origin. 
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Table 2-1: Stage I of formulation development trials. 

Trial HECa Sodium alginateb 
Gassing agent 

Lubricant Model drug 
Sodium bicarbonatef 

1 50% 50% 0% 0% 0% 

2 45% 45% 10% 0% 0% 

3 40% 40% 20% 0% 0% 
a Hydroxyethyl cellulose supplied by Sigma-Aldrich (UK), viscosity at 25˚C at 2% is 4500-6500 cP, molecular weight is 7.2x104 

g/mole. 
b Supplied by Sigma-Aldrich (UK), viscosity at 25˚C at 1% is 15-25 cP (medium viscosity). 
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Table 2-2: Stage II of formulation development trials. 

Trial HECa Sodium alginateb 

Filler Gassing agent 

Lubricant Model drug LubriToseTM 
MCCc 

LubriToseTM 
mannitold 

LubriToseTM 
lactosee 

Sodium bicarbonatef 

4 37.5% 37.5% 25% 0% 0% 0% 0% 0% 

5 33.75% 33.75% 22.5% 0% 0% 10% 0% 0% 

6 30% 30% 20% 0% 0% 20% 0% 0% 

7 37.5% 37.5% 0% 25% 0% 0% 0% 0% 

8 33.75% 33.75% 0% 22.5% 0% 10% 0% 0% 

9 30% 30% 0% 20% 0% 20% 0% 0% 

10 37.5% 37.5% 0% 0% 25% 0% 0% 0% 

11 33.75% 33.75% 0% 0% 25% 10% 0% 0% 

12 30% 30% 0% 0% 25% 20% 0% 0% 
a Hydroxyethyl cellulose supplied by Sigma-Aldrich (UK), viscosity at 25˚C at 2% is 4500-6500 cP, molecular weight is 7.2x104 

g/mole. 
b Supplied by Sigma-Aldrich (UK), viscosity at 25˚C at 1% is 15-25 cP (medium viscosity). 
c Co-processed excipient consisting of NF/EP/JP compliant microcrystalline cellulose (MCC) and glyceryl monostearate NF 
d Co-processed excipient consisting of USP compliant spray dried mannitol and glyceryl monostearate NF 
e Co-processed excipient consisting of NF/EP/JP compliant spray dried monohydrate lactose and glyceryl monostearate NF 

f Supplied by Sigma-Aldrich (UK) 
 
 
 
 
 
 

 



 

 

 

5
9
 

Table 2-3: Stage III of formulation development trials. 

Trial HECa 
Sodium 
alginateb 

Filler Gassing agent 

Lubricant Model drug Avicel® 
PH101c 

Avicel® 
PH102d 

Avicel® 
PH105e 

Prosolv 90®f 
Sodium 

bicarbonateg 

13 37.5% 37.5% 25% 0% 0% 0% 0% 0% 0% 

14 33.75% 33.75% 22.5% 0% 0% 0% 10% 0% 0% 

15 30% 30% 20% 0% 0% 0% 20% 0% 0% 

16 37.5% 37.5% 0% 25% 0% 0% 0% 0% 0% 

17 33.75% 33.75% 0% 22.5% 0% 0% 10% 0% 0% 

18 30% 30% 0% 20% 0% 0% 20% 0% 0% 

19 37.5% 37.5% 0% 0% 25% 0% 0% 0% 0% 

20 33.75% 33.75% 0% 0% 22.5% 0% 10% 0% 0% 

21 30% 30% 0% 0% 20% 0% 20% 0% 0% 

22 37.5% 37.5% 0% 0% 0% 25% 0% 0% 0% 

23 33.75% 33.75% 0% 0% 0% 22.5% 10% 0% 0% 

24 30% 30% 0% 0% 0% 20% 20% 0% 0% 
a Hydroxyethyl cellulose supplied by Sigma-Aldrich (UK), viscosity at 25˚C at 2% is 4500-6500 cP, molecular weight is 7.2x104 

g/mole. 
b Supplied by Sigma-Aldrich (UK), viscosity at 25˚C at 1% is 15-25 cP (medium viscosity). 
c Supplied by FMC Biopolymer Corp (USA), particle size is 50 μm. 
d Supplied by FMC Biopolymer Corp (USA), particle size is 100 μm. 
e Supplied by FMC Biopolymer Corp (USA), particle size is 20 μm. 
f Supplied by JRS Pharma (Germany), silicified MCC, particle size is 125 μm. 
g Supplied by Sigma-Aldrich (UK). 
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Table 2-4: Stage IV of formulation development trials. 

Trial HECa 
Sodium 
alginateb 

Filler 
Gassing 

agent 
Lubricant 

Model 
drug 

Liquid binder 

Avicel® 
PH101c 

Avicel® 
PH102d 

Avicel® 
PH105e 

Prosolv 
90®f 

Water 
PVPg 
2.5% 

PVPg 
5.0% 

PVPg 
7.5% 

PVPg 
10% 

25 37.5% 37.5% 25% 0% 0% 0% 0% 0% 0% 
Sufficient liquid was added to 
prepare the wet mass before 

granulation. 

26 37.5% 37.5% 0% 25% 0% 0% 0% 0% 0% 

27 37.5% 37.5% 0% 0% 25% 0% 0% 0% 0% 

28 37.5% 37.5% 0% 0% 0% 25% 0% 0% 0% 
a Hydroxyethyl cellulose supplied by Sigma-Aldrich (UK), viscosity at 25˚C at 2% is 4500-6500 cP, molecular weight is 7.2x104 
g/mole. 
b Supplied by Sigma-Aldrich (UK), viscosity at 25˚C at 1% is 15-25 cP (medium viscosity). 
c Supplied by FMC Biopolymer Corp (USA), particle size is 50 μm. 
d Supplied by FMC Biopolymer Corp (USA), particle size is 100 μm. 
e Supplied by FMC Biopolymer Corp (USA), particle size is 20 μm. 
f Supplied by JRS Pharma (Germany), silicified MCC, particle size is 125 μm. 
g Polyvinylpyrolidone supplied by Sigma-Aldrich (UK), average molecular weight tried was 10,000 and 40,000 g/mole. 
   
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 

6
1
 

Table 2-5: Stage V of formulation development trials. 

Trial HECa 
Sodium 
alginateb 

Filler Gassing agent 

Lubricant Model drug 

Liquid binder 

Avicel® 
PH102c 

Prosolv 
90®d 

Sodium bicarbonatee Water 

29 37.5% 37.5% 25% 0% 0% 0% 0% 

Sufficient 
liquid was 
added to 

prepare the 
wet mass 

before 
granulation. 

30 33.75% 33.75% 22.5% 0% 10% 0% 0% 

31 30% 30% 20% 0% 20% 0% 0% 

32 37.5% 37.5% 0% 25% 0% 0% 0% 

33 33.75% 33.75% 0% 22.5% 10% 0% 0% 

34 30% 30% 0% 20% 20% 0% 0% 

35 40% 40% 20% 0% 0% 0% 0% 

36 36% 36% 18% 0% 10% 0% 0% 

37 32% 32% 16% 0% 20% 0% 0% 

38 40% 40% 0% 20% 0% 0% 0% 

39 36% 36% 0% 18% 10% 0% 0% 

40 32% 32% 0% 16% 20% 0% 0% 
a Hydroxyethyl cellulose (Natrosol 250-HHX) was generously supplied by Ashland (USA), viscosity at 25˚C at 1% is 3400-5000 
cP, molecular weight is 1.3x106 g/mole. 
b Supplied by Sigma-Aldrich (UK), viscosity at 25˚C at 1% is 15-25 cP (medium viscosity). 
c Supplied by FMC Biopolymer Corp (USA), particle size is 100 μm. 
d Supplied by JRS Pharma (Germany), silicified MCC, particle size is 125 μm. 
e Supplied by Sigma-Aldrich (UK). 
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Table 2-6: Stage VI of formulation development trials. 

Trial HECa 
Sodium 
alginateb 

Filler Gassing agent Lubricant Model drug Liquid binder 

Prosolv 
90®d 

Sodium 
bicarbonatee 

Magnesium 
stearatef 

Pentoxifyllineg 
Cefalexin 

monohydrateh 
Water 

41 27.86% 27.86% 19.9% 0% 0.5% 23.88% 0% 

Sufficient liquid was 
added to prepare 

the wet mass before 
granulation. 

42 25.10% 25.10% 17.93% 9.87% 0.5% 21.50% 0% 

43 22.28% 22.28% 15.96% 19.87% 0.5% 19.11% 0% 

44 17.66% 17.66% 0% 0% 0.5% 0% 64.18% 

45 15.91% 15.91% 0% 9.85% 0.5% 0% 57.83% 

46 14.13% 14.13% 0% 19.88% 0.5% 0% 51.36% 
a Hydroxyethyl cellulose (Natrosol 250-HHX) was generously supplied by Ashland (USA), viscosity at 25˚C at 1% is 3400-5000 
cP, molecular weight is 1.3x106 g/mole. 
b Supplied by Sigma-Aldrich (UK), viscosity at 25˚C at 1% is 15-25 cP (medium viscosity). 
c Supplied by FMC Biopolymer Corp (USA), particle size is 100 μm. 
d Supplied by JRS Pharma (Germany), silicified MCC, particle size is 125 μm. 
e Supplied by Sigma-Aldrich (UK). 
f Supplied by MEDEX (UK). 
g Supplied by Sigma-Aldrich (UK). 
h Supplied by Sigma-Aldrich (UK).
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To give an outline, Figure 2-5 presents a schematic diagram of this study. 

The aim was to design and evaluate floating gastroretentive drug delivery matrix 

tablets with sustained release behaviours for pentoxifylline and cefalexin 

monohydrate model drugs, using hydroxyethyl cellulose and sodium alginate 

polymers. Effect of different variables such as formulation variables (wet 

granulation, type and ratio of sodium bicarbonate, calcium carbonate, or sodium 

carbonate gas forming agent), and tablet physical properties (tablet crushing 

strength) on floating capacity and drug release rate was investigated. The kinetics 

of drug release were investigated in vitro in relation to these formulations in 0.1 M 

HCl dissolution medium and in vivo for most promising formulations. 
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Figure 2-5: Introduction schematic diagram of the practical work. 

Ingredients 
- Model drug: pentoxifylline, cefalexin monohydrate. 
- Gassing agent: sodium bicarbonate, calcium carbonate, sodium carbonate. 
- Hydrophilic polymer: hydroxyethyl cellulose, sodium alginate. 
- Filler: prosolv

® 
90 

 

Sieving through a 180 μm sieve 
(Sodium alginate through a 350 μm sieve) 

Weighing 

Powder mixture (A)  Mixing for 5 min (with 

magnesium stearate) 

Mixing for 10 min 

Wet granulation 
(with water as a binder) 

Granules (A) 

Pre-compression 
characterization 

- Flowability test (CI) 
- Moisture content 
- DSC 
- FTIR 

Granules (B) Powder mixture (B)  

Floating tablets  

of granules origin 

Floating tablets  

of powder mixture origin 

Evaluation of floating tablets 
- Quality control tests 
    - Crushing strength 
    - Friability 
    - Weight uniformity 
    - Drug content uniformity 
- Apparent density 
- Porosity 
- Floating capacity 
- Swelling and erosion 
- In vitro drug release study 
- In vivo pharmacokinetic study 

Compaction 
at three crushing strength levels 

Evaluation of floating tablets 
- Apparent density 
- Porosity 
- Floating capacity 

- In vitro drug release study 

3 months Stability studies 
(at 40°C ± 2°C and 80% ± 5% RH)  
- DSC 
- FTIR 

3 months Stability studies 
(at 40°C ± 2°C and 80% ± 5% RH)  
- Apparent density 
- Floating capacity 
- In vitro drug release study 

Mixing for 5 min (with 

magnesium stearate) 

Compaction 
at three crushing strength levels) 
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2.2.3 Preparation of powder mixture and granules containing 

model drugs 

 

Refer to section 1.4 and section 2.2.2 for the rationale behind selecting the 

ingredients and their amounts. Powder mixture compositions for the preparation of 

tablets are shown in Table 2-7 and Table 2-8. Powder blends were prepared using 

a (1:1) binary mixture of hydroxyethyl cellulose and sodium alginate gel forming 

agents. Sodium bicarbonate, calcium carbonate or sodium carbonate was added 

as a gas forming agent at 0%, 10% or 20% (w/w) concentration of the total tablet 

weight. Pentoxifylline or cefalexin monohydrate was used as a model drug. 

Primarily, the floating tablet formulations (F1-F7) were tested using only 60 mg of 

pentoxifylline to invistigate the ability of the designed tablets to show good floating 

capacity and dug release retardation as pentoxifylline is considered dense and 

highly water soluble. Later, cefalexin monohydrate was loaded in the formulations 

(F8-F14) using the same tablets design principle regarding (1:1) binary mixture of 

the gel forming agents as well as the type and concentration of the gas forming 

agents. 

 However, Prosolv® 90 which was used as a filler to enhance the 

compression process of pentoxifylline formulations was removed from cefalexin 

monohydrate formulations because they were easier to tablet. Additionally, it was 

a target to increase cefalexin monohydrate content in the tablets to simulate the 

effective dose available in the market (500 mg), however because of the tableting 

machine die volume capacity, only 250 mg drug content was achieved. This 

increase in the drug content of cefalexin monohydrate was expected to apply 

further challenge on the properties of the designed floating tablets due to the 

reduction in the polymeric mixture content. All ingredients were passed through a 

180 μm sieve before mixing; sodium alginate was passed through a 350 μm sieve, 

size suitable for tablet compression. A turbula mixer (Glen Creston Ltd, UK) set at 

60 rpm, with a glass bottle, 250 ml, mixing vessel, was used to mix the powders 

for 10 min.  
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The wet granulation process was used to modify powder flowability to 

facilitate automatic compaction of the powder. Powder mixtures were wetted with a 

sufficient quantity of water and mixed for 10 min using a Kenwood Chef Kneader 

(Thorn Domestic Appliances Ltd, UK) before being manually passed through a 

1,000 μm sieve. The prepared granules were dried using a drying oven (SciQuio 

Ltd, UK) at 60°C overnight (~12 h) (Larsson et al., 2008), and then dried granules 

passed through 853 μm sieve and granules ≤ 853 μm were used.   
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Table 2-7: Composition of prepared pentoxifylline tablets 

Ingredients/Formulation 
F1 

(mg) 
F2 

(mg) 
F3 

(mg) 
F4 

(mg) 
F5 

(mg) 
F6 

(mg) 
F7 

(mg) 

Pentoxifylline 60 60 60 60 60 60 60 

Hydroxyethyl cellulose 70 70 70 70 70 70 70 

Sodium alginate 70 70 70 70 70 70 70 

Prosolv® 90 50 50 50 50 50 50 50 

Sodium bicarbonate 27.5 62.5      

Calcium carbonate    27.5 62.5    

Sodium carbonate     27.5 62.5  

Magnesium stearate 
(0.5%) 

1.4 1.6 1.4 1.6 1.4 1.6 1.3 

Total weight 278.9a 314.1a 278.9a 314.1a 278.9a 314.1a 251.3 
a Difference in weight was due to raising gassing agent content from 10% to 20% 
(w/w).                                                                                                                                  
Note: number of moles of the gassing agents used in the formulations is 3.3x10-4 
(F1), 7.4x10-4 (F2), 2.7x10-4 (F3), 6.2x10-4 (F4), 2.6x10-4 (F5), and 5.9x10-4 (F6). 
 

 

 

Table 2-8: Composition of prepared cefalexin monohydrate tablets 

Ingredients/Formulation 
F8 

(mg) 
F9 

(mg) 
F10 
(mg) 

F11 
(mg) 

F12 
(mg) 

F13 
(mg) 

F14 
(mg) 

Cefalexin monohydrate 250 250 250 250 250 250 250 

Hydroxyethyl cellulose 68.8 68.8 68.8 68.8 68.8 68.8 68.8 

Sodium alginate 68.8 68.8 68.8 68.8 68.8 68.8 68.8 

Sodium bicarbonate 42.6 96.8      

Calcium carbonate    42.6 96.8    

Sodium carbonate     42.6 96.8  

Magnesium stearate 
(0.5%) 

2.2 2.4 2.2 2.4 2.2 2.4 1.9 

Total weight 432.4a 486.8a 432.4a 486.8a 432.6a 486.8a 389.5 
a Difference in weight was due to raising gassing agent content from 10% to 20% 
(w/w).       
Note: number of moles of the gassing agents used in the formulations is 5.1x10-4 
(F8), 11.5x10-4 (F9), 4.3x10-4 (F10), 9.7x10-4 (F11), 4.0x10-4 (F12), and 9.1x10-4 
(F13).                            
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2.2.4 Preparation of floating tablets  

 

To evaluate the effect of the gassing agent concentration on tablet porosity, 

floating capacity, swelling, erosion and dissolution behaviours, pentoxifylline or 

cefalexin monohydrate tablets were automatically pressed (from granulated 

powders) using a single-punch tableting machine (Type 3, Manesty Machines Ltd, 

UK) equipped with flat-faced punches (9.60 mm), and the compression speed was 

85 rpm. The compression force was adjusted by decreasing the distance between 

punches to produce tablets with three crushing strength levels (A: 49–54 N;   B: 

54-59 N; and C: 59-64 N), as measured using the crushing strength tester (Model 

2E/205, Schleuniger & Co., Switzerland). Tablets were successfully pressed 

automatically. However, F5 formulation could not be pressed automatically at the 

required crushing strength levels (A: 49–54 N;   B: 54-59 N; and C: 59-64 N), 

hence these were pressed manually; the required granules weight was fed directly 

from the hopper into the die of the single-punch tableting machine and compacted 

manually.  

In order to compare between tablets with same excipient composition 

before and after granulation, in other words to investigate the possible effects of 

the wet granulation process on tablet porosity, floating capacity and dissolution 

behaviour, a group of manually pressed tablets of F1-F14 formulations were 

prepared. These tablets were pressed from powder blends before granulation 

where the required powder mixture was weighed, and fed manually into the die of 

the single-punch tableting machine to produce the desired tablets. Accordingly, 

granulated powders were compacted automatically but un-granulated powder 

mixtures were pressed manually. A flow chart for floating tablets preparation is 

presented in Figure 2-6. 
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Figure 2-6: Flow chart for prepared floating tablets. 

 

2.2.5 Evaluation of the prepared powders and granules 

 

2.2.5.1 Flowability test 

 

Bulk and tapped volumes of 50 g samples of the prepared powder mixture 

and granules were measured by the tapping apparatus (Copley JV1000, UK). Bulk 

and tapped densities were calculated as the ratio of the powder weights to the 

related powder volumes. Carr‘s compressibility index (CI) was calculated using 

equation (1) (Carr, 1965): 

 

 
   (

                           

              
)      

Eq. (1) 

 

Measurements were performed in triplicate and the mean values ± SD are 

presented. 
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2.2.5.2 Moisture content  

 

A Mettler Toledo HG53 Halogen Moisture Analyser (Switzerland) was used 

to measure the moisture content in a 1 g powder mixture before and after 

granulation. Measurements were taken in triplicate and mean values ± SD are 

presented.  

 

2.2.5.3 Differential scanning calorimetry (DSC) study 

 

DSC of model drugs, excipients, and all the formulations (prepared from 

powder mixture and granules) were obtained using a DSC Refrigerated Cooling 

System (Model Q1000, TA Instruments, UK). Samples of pure materials (2–6 mg) 

were weighed and transferred into the equipment for analysis in sealed standard 

aluminum pans, and the calorimetric enthalpy readings were calculated using 

Q1000, TA software (Suliman et al., 2014). The thermal behaviour of the samples 

was investigated at a scanning rate of 10˚C / min, from 0 to 260˚C for 

pentoxifylline and from 0 to 250˚C for cefalexin monohydrate. 

 

2.2.5.4 Fourier-transform infrared (FTIR) spectroscopy 

 

Infrared spectra of model drugs and all the formulations (prepared from 

powder mixture or granules) were obtained using a Perkin Elmer FT-IR system 

Spectrum BX series (Beaconsfield, Buckinghamshire, UK) in the frequency range 

of 4000–620 cm-1 at 4 cm-1 resolution. A few milligrams of each sample were 

placed in the middle of the sample stage using a micro-spatula, before being 

compressed by twisting the top of the arm of the sample stage clockwise (Suliman 

et al., 2014). The data were obtained by Spectrum BX series software version 

5.3.1. 
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2.2.6 Evaluation of floating tablets 

 

Tablets prepared from granules were evaluated for tablet crushing strength, 

friability, weight uniformity, drug content uniformity, apparent density, porosity, 

floating capacity, swelling and erosion, dissolution, release data modeling, and 

stability testing. Tablets prepared from powder mixtures were evaluated only for 

apparent density, porosity, floating capacity, dissolution, and release data 

modeling, as these tablets had been compacted manually. 

 

2.2.6.1 Tablet crushing strength, friability, weight uniformity, drug 

content uniformity 

 

To establish tablet crushing strength, ten tablets were randomly selected, 

their crushing strength examined using a tablet crushing strength tester, and mean 

values ± SD are presented. For friability, twenty tablets were randomly selected 

and tested at 100 revolutions using friability test apparatus (Copley FRV 1000, 

UK). The percentage of weight loss (F) was calculated by equation (2) (BP, 2015): 

 

   
     
  

      Eq. (2) 

     

Where w1 is the tablet weight before friability test, w2 is the tablet weight 

after the test. 

For the weight uniformity test, 20 tablets were randomly selected and 

accurately weighed individually, and the mean weight of all the tablets and 

percentage deviation from the mean for each tablet are presented. Regarding drug 

content uniformity, ten tablets were randomly selected, each individual tablet was 

weighed then crushed, a quantity of the powder was extracted with 100 ml, 0.1 M 

HCl, and the solution was filtered through a cellulose acetate membrane (0.45 

μm). After a suitable dilution in 0.1 M HCl, the absorbance of pentoxifylline and 

cefalexin monohydrate samples were determined using a UV/Vis 

spectrophotometer (Model M501, Camspec Ltd, Cambridge, UK) at 274 nm and 

257 nm respectively.  
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Drug content was calculated using the generated calibration data of each 

model drug (Figure 2-3 and Figure 2-4); the percentages of individual drug content 

were calculated against the average drug content according to the British 

Pharmacopoeia (BP) specifications. 

 

2.2.6.2 Tablet apparent density and porosity  

 

Tablet height (h) and diameter (m) were measured using Vernier caliper 

(Moore and Wright Sheffield England Metric, UK). Tablet weight (w) and the 

circular constant (π) were also used to calculate the apparent density (D) of the 

tablets by equation (3) (Ali et al., 2007): 

 

  (
 

   
)  

 

(
 
 )

 

    
 Eq. (3) 

 

The test was performed in six replicate and mean values ± SD are 

presented. 

Tablet porosity (ε), was calculated using equation (4) ( Sun, 2006): 

 

   [  (            ⁄ )]      Eq. (4) 

 

Where ρtablet is the tablet‘s apparent density and ρtrue is the true density of 

the powder mixture or granule sample measured using a multipycnometer (MVP-

D160-E, Quantachrome Instruments, USA). Five replicate measurements of 

almost 1.8 g and 1.3 g samples of pentoxifylline and cefalexin monohydrate 

respectively were used. The helium pressure was set to 17 psi, and the difference 

in helium pressure before and after sample loading was reported to determine the 

true volume of the samples. Mean values ± SD are presented. 

 

 

 

 



 

73 

 

2.2.6.3 Tablet floating capacity 

 

Floating capacity was determined under the same conditions and using the 

same apparatus as for the in vitro studies (Section 2.2.6.5). The time taken for 

tablets to appear and remain on the dissolution medium surface (floating lag time), 

and the period of time that the tablets constantly floated on the dissolution medium 

surface (floating duration) were determined visually throughout the drug release 

studies (Yin et al., 2013). Measurements were taken in triplicate and mean values 

± SD are presented.  

 

2.2.6.4 Swelling and erosion studies 

 

The initial weights of three randomly chosen tablets were reported. The 

dissolution medium uptake (DMU) and mass loss (ML) percentage of the tablets 

were determined using USP Dissolution Apparatus II (Erweka GmbH, Germany) 

under the same conditions as the drug release study (Section 2.2.6.5). Tablets 

were carefully withdrawn using a spoon from the medium at same time intervals 

conditions as the drug release study (at 0.5, 1, 2, 4, 6, 8, 12, and 24 h for 

pentoxifylline and at 0.5, 1, 2, 4, 6, 8, 10 and 12 h for cefalexin monohydrate). 

Excess liquid present on the surface of tablets was removed using a filter paper 

and the tablets were weighed and then dried at 60°C in a drying oven until a 

constant dry weight was achieved.  

Swelling and mass loss percentages were calculated by equations (5) and 

(6) (Roy and Rohera, 2002): 

 

 
     (

     
  

)      
Eq. (5) 

 

 
    (

     
  

)      
Eq. (6) 

 

Where Wi is the initial weight of the tablet, Ww is the wet weight of the 

tablet, and Wd is the dry weight of the tablet and mean values ± SD are presented.  
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2.2.6.5 In vitro drug release studies 

 

Drug release studies of the prepared tablets were carried out using USP 

dissolution apparatus II (Erweka GmbH, Germany) at 37°C ± 0.5°C, and a paddle 

speed of 50 rpm and 100 rpm for pentoxifylline and cefalexin monohydrate 

respectively. Pentoxifylline tablets were tested at 50 rpm rotation speed to meet 

USP dissolution test 6 of pentoxifylline sustained release tablets (USP 2012). For 

cefalexin, no official monograph is available for sustained release tablets; thus the 

paddle rotation speed was adapted from the literature (Agnihotri, et al., 2006; Yin 

et al., 2013). Tablets were placed into 900 ml of 0.1 M HCl (pH 1.2) as a simulated 

gastric fluid without the presence of gastric enzymes (Tadros, 2010; Oh et al., 

2013; Yin et al., 2013; Qi et al., 2015). Samples (10 ml) were withdrawn from the 

dissolution at 0.5, 1, 2, 4, 6, 8, 12, and 24 h for pentoxifylline and at 0.5, 1, 2, 4, 6, 

8, 10 and 12 h for cefalexin monohydrate. Withdrawn samples were replaced with 

fresh medium, and drug content was determined and the cumulative drug release 

percentage was calculated. The test was performed in triplicate and mean values 

± SD are presented. The pH of the dissolution medium at each sampling time 

interval was measured by pH-meter (Hanna Instruments HI 8424N Digital, 

Portable pH Meter, USA). Sink conditions were met for both pentoxifylline and 

cefalexin monohydrate as the concentration of the active substance in the 

saturated medium will be greater than the used concentrations.  

 

2.2.6.6 Release data modeling and analysis  

 

In order to study the release kinetics, data of in vitro drug release studies 

were fitted to different mathematical models. The zero order model equation (7) 

which describes systems where the drug release rate is independent on its 

concentration. However, systems representing a concentration dependent release 

rate are described by the first order model equation (8). The Hixson-Crowell cube 

root law equation (9) describes the release kinetics from systems showing a 

change in surface area and diameter of particles or tablets.  

Moreover, Higuchi kinetic model equation (10) represents the release of 

drugs from insoluble matrix as a square root of time dependent process based on 

Fickian diffusion (Costa and Sousa Lobo, 2001).  
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Where Q is the amount of drug released at time t, Qo is the initial amount of 

the drug in tablet, ko is the zero order release rate constant, k1 is the first order 

release rate constant, kHC is the Hixson-Crowell release rate constant, and kH is 

the Higuchi release rate constant. 

In order to characterise the model drug release mechanism (release data 

modeling and analysis), the power law model of Korsmeyer–Peppas equation (11) 

was fitted to the first 60% release data (Korsmeyer et al., 1983). 

 

   
  

     
  

Eq. (11) 

 

Where Qt/Q∞ represents the fractional drug released at time t, Kp is the 

Korsmeyer–Peppas release rate constant, and n is the release exponent. 

The drug release data were plotted in various kinetic models, including 

zero-order, first order, Hixson Crowell, Higuchi, and Korsmeyer-Peppas equations.  
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2.2.7 Stability studies 

 

Regarding the guidance for industry, Q1A(R2), for stability testing of new 

drug substances and products (ICH, 2003), stress testing of the drug product can 

help identifying the likely changes that can influence quality, safety, and/or 

degradation behaviours of the drug substance. The drug product can be 

maintained under accelerated storage conditions including the effect of elevated 

temperature and humidity (40°C ± 2°C and 75% ± 5% RH) for 6 months while 

stored in suitable container closure system that mimics the appropriate marketing 

package.   

In this work, the stability studies were conducted for shorter period of time 

(3 months) which met those of other gastroretentive dosage form stability studies 

(Tadros 2010; Acharya et al., 2014), however the stability chambers were 

maintained at higher relative humidity level (80% ± 5%) instead of ICH 

requirements (75% ± 5%) to apply further stressful conditions. Furthermore, 

storage in closed containers is reflective to the storage conditions of the packed 

pharmaceutical products; however, storage in open containers will raise the stress 

as the product will be in direct contact with the elevated temperature and humidity. 

Accordingly, granules and tablets prepared from the granules for all the 

formulations were packed in open or closed polyethylene (high density type) 

containers and stored in a stability chamber. Granules were withdrawn after 3 

months and analysed by DSC and FTIR spectroscopy as described in 

sections 2.2.5.3, and 2.2.5.4 respectively. Also, after 3 months, tablets were 

withdrawn and evaluated for their apparent density, floating capacity, and drug 

release rate as described in sections 2.2.6.2, 2.2.6.3, and 2.2.6.5 respectively. 

 

2.2.8 Preliminary in vivo pharmacokinetic study 

 

Twelve male albino rats weighing 180 ± 20 g were provided by Applied 

Science Private University, Jordan. The animals were kept in the animal house at 

an ambient temperature (25 ± 1 °C) for a 12 h dark and 12 h light cycle. The 

animals were fed a pellet diet and had access to water ad libitum.  
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The experimental protocol was approved by the Research Ethics 

Committee (University of Sunderland), and all methods were conducted according 

to the University of Applied Science Private University guidelines. Pentoxifylline 

tablets (weighing 30 ± 1 mg equivalent to 5.73 mg drug) of F4 formulation were 

pressed manually (for granulated powders) using a single-punch tableting machine 

(Type 3, Manesty Machines Ltd, UK) equipped with concave-faced punches (4.00 

mm), and the compression force was adjusted to produce tablets with a crushing 

strength level of 20 ± 1 N, as measured using the crushing strength tester (Model 

2E/205, Schleuniger & Co., Switzerland). An aqueous solution of pentoxifylline 

(2.88 mg/ml) was prepared as a reference. 

Rats were randomly divided into two groups and fasted for about 12 h prior 

to the experiment with a free access to water. The first group (G1) received the 

oral tablets, and the second group (G2) received the oral reference solution. The 

preparations (tablet and solution) were loaded directly into the stomach by intra-

gastric gavage at a single dose of 5.75 ± 0.15 mg. Blood samples were collected 

using the tail-bleeding technique into a 0.5 ml mini-collect tubes (K3E K3EDTA) at 

0.5, 1, 2, 4, 6, 8, 12 and 24 h, then subjected to centrifugation for 5 min at 13000 

rpm (Model M-24, Boeco, Germany) and aliquots of plasma were frozen at − 20 °C 

before analysis.  

Plasma samples (0.2 ml) mixed with 50 μl of an internal standard (20 μg/ml of 

emitrecitabine) by vortex, before adding 0.55 ml of methanol and mixing, then 

subjecting the mixture to centrifugation for 10 min at 14000 rpm using a centrifuge 

(Model 5417C, Eppendorf - Nrtheler - Hinz GmbH, Germany). The resulting 

supernatant was transferred to a glass insert for analysis, and 2 μl was directly 

injected into a HPLC-MS/MS system (Model 1200, Agilent Technologies Co., Ltd., 

Santa Clara, USA) which was equipped with a mass spectrometer (Model API 

4000, SCIEX, Toronto, Canada).  

Chromatographic separation was based on an ACE 5 C18 column (50 mm x 

2.1 mm, 5µm) with a  mobile phase composed of [0.2% ammonia (10%), 0.04% 

formic Acid (10%)] 50% : methanol 50% pumped at a constant flow rate of 0.6 

ml/min.  
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In this pharmacokinetic study, the maximum plasma concentration (Cmax) 

and the time required to reach this concentration (Tmax) were obtained by actual 

observations of the plasma concentration-time data. The elimination rate constant 

(ke) was calculated from the slope of the linear terminal line of the logarithmic 

plasma concentration-time data, and, the half-life (t1/2) was calculated by equation 

(12) (Jambhekar and Breen, 2009): 

 

 
  

 ⁄
 
     

  
 

Eq. (12) 

 

The area under the curve (AUC0-t) was calculated using the trapezoidal rule 

from 0 to 24 h, and the area under the curve from zero to infinity (AUC0-∞) was 

calculated from (AUC0-t) plus the extrapolated portion Cp/ke by equation (13) 

(Kagan et al., 2006):  

 

 
              

   
  

 
Eq. (13) 

 

Where Cpt is the plasma drug concentration observed at time t. All data are 

presented as the mean value ± SD.  

The relative bioavailability values (Frel) were calculated by equation (14) 

(Jambhekar and Breen, 2009): 

 

 
     

         
           

 
            
          

 
Eq. (14) 

 

2.2.9 Statistical analysis 

 

The statistical software package, SPSS 22 (SPSS Inc., Chicago, USA) was 

used to perform the statistical analysis by applying the paired-sample t-test, and 

one-way analysis of variance, depending upon the type of data. Post hoc multiple 

comparisons were applied when necessary, and a P-value of <0.05 was 

considered significant.  
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3 Chapter Three: Evaluation of the effect of 

sodium bicarbonate, calcium carbonate, and 

sodium carbonate as gassing agents on 

pentoxifylline floating tablets 
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In this chapter a swellable, floatable, gastroretentive drug delivery systems 

utilising an effervescent mechanism was developed and evaluated. Tablets were 

based on a binary (1:1) gel forming polymer mixture of hydroxyethyl cellulose and 

sodium alginate, and sodium bicarbonate or calcium carbonate or sodium 

carbonate as a gas generating agent. Pentoxifylline was used as a model drug 

since it has a short half-life (t1/2) of 0.8–1.8 h (Ings et al., 1982), high density 

(Baumgartner et al., 2000), and is highly soluble in water (191 mg/ml at 37°C) 

(Mikac et al., 2010). Consequently, these characteristics made it a suitable 

candidate for oral sustained release delivery to improve patient compliance and 

reduce side effects due to better control of therapeutic drug concentration and also 

made it ideal to challenge the ability of the designed gastroretentive tablets to 

show acceptable floating capacity and acceptable retarding of the drug release 

process. The variables that may affect drug release and floating properties were 

investigated, such as the wet granulation (to compare effects of powder mixtures 

versus those of granules), type and ratio of the gas forming agent (sodium 

bicarbonate, calcium carbonate and sodium carbonate). Only 60 mg of 

pentoxifylline was used in the study to evaluate efficiency of the designed floating 

tablets; however the drug dose could be scaled up in the future.   

 

3.1 Evaluation of the prepared powders and granules (pre-

compression characterisation) 

 

All the prepared powder mixtures and granules of the formulations F1-F7 

were evaluated for flowability CI index, moisture content percentage, DSC, and 

FTIR. The formulations F1-F7 compositions are presented in Table 3-1 (and also 

Table 2-7). 
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Table 3-1: Composition of prepared F1-F7 tablets 

Ingredients/Formulation F1 (mg) F2 (mg) F3 (mg) F4 (mg) F5 (mg) F6 (mg) F7 (mg) 

Pentoxifylline 60 60 60 60 60 60 60 

Hydroxyethyl cellulose 70 70 70 70 70 70 70 

Sodium alginate 70 70 70 70 70 70 70 

Prosolv® 90 50 50 50 50 50 50 50 

Sodium bicarbonate 27.5 62.5      

Calcium carbonate    27.5 62.5    

Sodium carbonate     27.5 62.5  

Magnesium stearate (0.5%) 1.4 1.6 1.4 1.6 1.4 1.6 1.3 

Total weight 278.9a 314.1a 278.9a 314.1a 278.9a 314.1a 251.3 
a Difference in weight was due to raising gassing agent content from 10% to 20% (w/w). 
Note: number of moles of the gassing agents used in the formulations is 3.3x10-4 (F1), 7.4x10-4 (F2), 2.7x10-4 (F3), 6.2x10-4 
(F4), 2.6x10-4 (F5), and 5.9x10-4 (F6). 
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3.1.1 Flowability and moisture content for powders and granules 

 

 It is important for oral solid dosage forms development (such as tablets) to 

investigate powder or granules flow properties by making a correlation between 

rheological test results and manufacturing properties. Many methods are available 

to test the rheology such as angle of repose, compressibility index (Carr‘s index) 

and flow rate through an orifice. Packing studies of powder and granules (bulk 

density measurements) could be carried out with a tapping apparatus where 

powder or granules specific volumes before and after tapping is measured and 

divided by the used masses to calculate bulk and tapped apparent densities to 

give information about sample rheological properties (Yamashiro et al., 1983). It 

has been proposed that a small change in apparent density before and after 

tapping indicates good flow properties (Chan and Heng, 2005). The granulation 

process is one of the agglomeration techniques where fine solid particles are 

converted into larger ones by mixing them in the presence of binding liquids using 

suitable equipment (Wong et al., 2005). It has been reported that the formed 

granules could improve powder flowability and mechanical strength and could also 

narrow bulk density and porosity values (Tardos et al., 1997; Iveson et al., 2001). 

The CI values significantly decreased (P<0.05) following granulation for all the 

prepared formulations (F1-F7, Table 3-2) which reveals better flow properties of 

the granules compared to the powder mixture (Gaisford, 2013).  

Results for the moisture content and CI value of the formulations F1-F7 

before and after granulation are shown in Table 3-2. It is clear that the moisture 

content percentage significantly decreased (P<0.05) after granulation from 5.37%, 

4.76%, 5.83%, 4.91%, 5.70%, 5.51%, and 5.80% to 4.13%, 3.49%, 4.84%, 4.56%, 

4.53%, 4.11%, and 3.14% in the formulations F1-F7, respectively. It is important to 

control the level of moisture content of powder and granules as it can adversely 

affect on their rheology. Using a drying oven at 60°C overnight (~12 h) until a 

constant dry weight of the granules was achieved simply by evaporating the free 

moisture content (unbound water) resulted from the wet granulation process.  

The CI values significantly decreased (P<0.05) following granulation for all the 

prepared formulations (F1-F7,Table 3-2) which reveals better flow properties of the 

granules compared to the powder mixture (Gaisford, 2013). 
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Table 3-2: Moisture content and Carr‘s index with statistical analysis (p-value) 
results of the formulations F1-F7 before and after granulation. 

Test Formulation 
Origin of prepared tablets 

P-value Powder 
mixture 

Granules 

Moisture content (%) 

F1 5.37 ± 0.06 4.13 ± 0.17 0.005 

F2 4.76 ± 0.08 3.49 ± 0.14 0.003 

F3 5.83 ± 0.06 4.84 ± 0.05 0.001 

F4 4.91 ± 0.02 4.56 ± 0.04 0.010 

F5 5.70 ± 0.14 4.53 ± 0.19 0.003 

F6 5.51 ± 0.12 4.11 ± 0.16 0.004 

F7 5.80 ± 0.09 3.14 ± 0.93 0.043 

Carr‘s Index (CI) (%) 

F1 27.74 ± 0.46 16.87 ± 0.33 0.001 

F2 28.53 ± 2.81 17.65 ± 0.64 0.016 

F3 26.57 ± 2.53 16.63 ± 1.69 0.011 

F4 29.81 ± 3.09 16.33 ± 0.43 0.015 

F5 31.06 ± 1.58 15.26 ± 1.85 0.003 

F6 27.02 ± 1.32 16.83 ± 2.05 0.014 

F7 29.67 ± 1.60 15.29 ± 1.67 0.010 

Note: The data represents the mean ± SD of three determinations.  
For formulation composition, refer to Table 3-1 or Table 2-7.  
 

 

 

 

3.1.2 Differential scanning calorimetry (DSC) 

 

It is important to study the potential interactions between drugs and 

excipients in the pre-formulation stage during the development of all 

pharmaceutical dosage forms. Such interactions can alter chemical nature, 

stability, bioavailability, therapeutic efficacy and safety of drugs. Excipients are 

important to modify the pharmaceutical formulations; however, they might interact 

with drugs causing unwanted degradation. DSC is one of the techniques which 

can screen possible incompatibilities resulting from the appearance, shifts or 

disappearances of peaks and/or changes in the corresponding thermal enthalpies 

(Vueba et al., 2005). 
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Figure 3-1 to Figure 3-7 represent DSC thermograms of pure pentoxifylline, 

sodium alginate, hydroxyethyl cellulose, Prosolv® 90, sodium bicarbonate, calcium 

carbonate, and sodium carbonate raw materials respectively. As shown in 

(Figure 3-1), pure pentoxifylline showed a sharp endothermic peak at 104.80˚C 

due to drug melting. Sodium alginate had a broad endothermic peak around 

114.24˚C and two exothermic peaks at 212.89˚C and 240.02˚C (Figure 3-2). 

Hydroxyethyl cellulose, Prosolv® 90, sodium bicarbonate, and sodium carbonate 

presented endothermic peaks at about 94.88˚C (Figure 3-3), 94.50˚C (Figure 3-4), 

145.81˚C (Figure 3-5), and 85.75˚C (Figure 3-7) respectively. Calcium carbonate 

as a gassing agent did not show any thermal activity as presented in (Figure 3-6). 

The compatibility of pentoxifylline with excipients in the formulations F1-F7 before 

and after granulation was studied using DSC. An overlapping between 

hydroxyethyl cellulose, Prosolv® 90, and pentoxifylline endothermic peaks was 

noted in all the formulations F1-F7. However, the endothermic peak of sodium 

alginate was shifted from 114.24°C (pure sample) to 124.49-146.86°C and to 

120.51-147.26°C in the formulations F1-F7 prepared from the powder mixture and 

the granules respectively. Sodium bicarbonate endothermic peaks at 157.97°C 

and 156.27°C were reported for the powder mixture and the granules, 

respectively: (F1, Figure 3-8) and 158.64°C and 171.70°C (F2, Figure 3-9). The 

peak of sodium carbonate gassing agent was overlapped with pentoxifylline, 

hydroxyethyl cellulose and Prosolv® 90 in F5 (Figure 3-12) and F6 (Figure 3-13) 

formulations prepared either from the powder mixture or the granules. 

Although pure pentoxifylline showed a sharp endothermic peak at 

104.80°C, a shift to a lower temperature and a decrease in peak intensity were 

noted for F1 powder mixture and F1 granules with endothermic peaks at 91.84°C 

and 94.64°C, respectively, and enthalpy values were 25.05 J/g and 23.65 J/g 

respectively (Figure 3-8). These changes in thermal behaviour of the drug were 

presented in all other formulations (F2-F7).  

 

 

 

 

 



 

85 

 

Endothermic peaks at 90.27°C and 94.10°C were reported for the powder 

mixture and granules, respectively: (F2, Figure 3-9), 97.60°C and 95.23°C (F3, 

Figure 3-10), 95.10°C, and 93.64°C (F4, Figure 3-11), 94.06°C, and 92.80°C (F5, 

Figure 3-12), 95.34°C, and 97.28°C (F6, Figure 3-13), and 95.85°C, and 96.26°C 

(F7, Figure 3-14). Moreover, enthalpy for the powder mixture and granules were 

reported respectively 22.76 J/g and 19.15 J/g for F2, 29.09 J/g and 28.21 J/g for 

F3, 27.14 J/g and 20.82 J/g for F4, 32.20 J/g and 20.70 J/g for F5, 32.41 J/g and 

21.66 J/g for F6, and 34.79 J/g and 30.73 J/g for F7. 

These observations reflect the existence of an interaction between the drug 

and the other components; however, it was not due to any of the gassing agents. 

As shown in Figure 3-14, the compatibility of pentoxifylline with excipients in the 

control formulation (F7), with 0% (w/w) gassing agent, before and after granulation 

represented also a shift to a lower temperature and a decrease in the peak 

intensity for both F7 powder mixture and F7 granules. Therefore, these changes in 

the thermograms of the formulations F1-F7 may indicate a certain loss of drug 

crystallinity, which means some of pentoxifylline crystals converted into the 

amorphous form during the preparation of both the powder mixture as well as the 

granules (Vueba et al., 2004). No other thermal event occurred and these 

interactions do not necessarily indicate incompatibility, but conclusions based on 

DSC results alone can be often misleading and inconclusive (Mura et al., 1995). 

Therefore results obtained with DSC should always be confirmed with other tests. 

Regarding the ICH (Q6A) guidance for specifications: test procedures and 

acceptance criteria for new drug substances and new drug products, infrared 

spectroscopy is considered one of the specific tests for drug substance 

identification (ICH, 1999). Accordingly, FTIR was used in addition to DSC to 

evaluate potential interactions between the drug and the excipients. Results of 

FTIR (section 3.1.3) confirmed presence of pentoxifylline characteristic bands for 

all the formulations F1-F7. Such results approve absence of incompatibility 

between the drug and the formulation excipients (hydroxyethyl cellulose, sodium 

alginate, Prosolv® 90, sodium bicarbonate, calcium carbonate, sodium carbonate, 

and magnesium stearate).  
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Figure 3-1: DSC thermogram of pure pentoxifylline. 
 

 

 
Figure 3-2: DSC thermogram of sodium alginate. 
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Figure 3-3: DSC thermogram of hydroxyethyl cellulose. 
 

 

 
Figure 3-4: DSC thermogram of Prosolv® 90. 
. 
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Figure 3-5: DSC thermogram of sodium bicarbonate. 
 

 

 
Figure 3-6: DSC thermogram of calcium carbonate.  
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Figure 3-7: DSC thermogram of sodium carbonate 
 

 

 
Figure 3-8: DSC thermograms of pure pentoxifylline, F1 powder mixture and F1 
granules.  
For formulation composition, refer to Table 3-1 or Table 2-7. 
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Figure 3-9: DSC thermograms of pure pentoxifylline, F2 powder mixture and F2 
granules.  
 
 
 

 
Figure 3-10: DSC thermograms of pure pentoxifylline, F3 powder mixture and F3 
granules.  
For formulation composition, refer to Table 3-1 or Table 2-7. 
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Figure 3-11: DSC thermograms of pure pentoxifylline, F4 powder mixture and F4 
granules. 
 
 
 

 
Figure 3-12: DSC thermograms of pure pentoxifylline, F5 powder mixture and F5 
granules.  
For formulation composition, refer to Table 3-1 or Table 2-7. 
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Figure 3-13: DSC thermograms of pure pentoxifylline, F6 powder mixture and F6 
granules.  
 
 
 

 
Figure 3-14: DSC thermograms of pure pentoxifylline, F7 powder mixture and F7 
granules.  
For formulation composition, refer to Table 3-1 or Table 2-7. 
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The granules of the formulations F1-F7 were stored for 3 months at 40°C ± 

2°C and 80% ± 5% RH in closed or open containers and evaluated by DSC to 

investigate possible effects of elevated temperature and humidity on the drug. 

Figure 3-15 to Figure 3-21 represent DSC thermograms of F1-F7 stability samples 

respectively. Endothermic peaks at 89.59°C, and 95.81°C were reported for the 

stability samples in closed and open containers, respectively: (F1, Figure 3-15), 

92.44°C, and 95.87°C (F2, Figure 3-16), 87.45°C, and 95.23°C (F3, Figure 3-17), 

92.97°C, and 97.03°C (F4, Figure 3-18), 89.03°C and 96.80°C (F5, Figure 3-19), 

92.94°C and 96.25°C (F6, Figure 3-20), and 91.89°C and 92.53°C (F7, 

Figure 3-21). Moreover, enthalpy for the stability samples in closed and open 

containers were reported respectively 28.41 J/g and 24.09 J/g for F1, 27.20 J/g 

and 25.16 J/g for F2, 26.52 J/g and 22.88 J/g for F3, 20.99 J/g and 20.91 J/g for 

F4, 21.67 J/g and 21.98 J/g for F5, 21.43 J/g and 21.15 J/g for F6, and 25.51 J/g 

and 26.10 J/g for F7. 

Results were almost similar to the endothermic peak temperature and the 

enthalpy of the freshly prepared granules which were respectively: 94.64°C, 23.65 

J/g (F1, Figure 3-8) and 94.10°C, 19.15 J/g (F2, Figure 3-9), 95.23°C, 28.21 J/g 

(F3, Figure 3-10) and 93.64°C, 20.82 J/g (F4, Figure 3-11), 92.80°C, 20.70 J/g 

(F5, Figure 3-12), 97.28°C, 21.66 J/g (F6, Figure 3-13), and 96.26°C, 30.73 J/g 

(F7, Figure 3-14). An exception was noted for F3 stability sample in closed 

container where endothermic temperature decreased from 95.23˚C (fresh 

granules) to 87.45˚C. However, the FTIR spectra (section 3.1.3) of the stability 

samples confirmed the presence of pentoxifylline characteristic bands in all the 

formulations (F1-F7). Generally, this suggests physical stability of pentoxifylline 

loaded in F1-F7 tablets for 3 months at 40°C ± 2°C and 80% ± 5% RH in either 

closed or open containers. 
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Figure 3-15: DSC thermograms of pure pentoxifylline, F1 granules after storage 
for 3 months at 40°C ± 2°C and 80% ± 5% RH in closed or open containers.  
 
 
 

 
Figure 3-16: DSC thermograms of pure pentoxifylline, F2 granules after storage 
for 3 months at 40°C ± 2°C and 80% ± 5% RH in closed or open containers. 
For formulation composition, refer to Table 3-1 or Table 2-7. 
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Figure 3-17: DSC thermograms of pure pentoxifylline, F3 granules after storage 
for 3 months at 40°C ± 2°C and 80% ± 5% RH in closed or open containers.  
 
 
 

 
Figure 3-18: DSC thermograms of pure pentoxifylline, F4 granules after storage 
for 3 months at 40°C ± 2°C and 80% ± 5% RH in closed or open containers.  
For formulation composition, refer to Table 3-1 or Table 2-7. 
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Figure 3-19: DSC thermograms of pure pentoxifylline, F5 granules after storage 
for 3 months at 40°C ± 2°C and 80% ± 5% RH in closed or open containers.  
 
 
 

 
Figure 3-20: DSC thermograms of pure pentoxifylline, F6 granules after storage 
for 3 months at 40°C ± 2°C and 80% ± 5% RH in closed or open containers.  
For formulation composition, refer to Table 3-1 or Table 2-7. 
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Figure 3-21: DSC thermograms of pure pentoxifylline, F7 granules after storage 
for 3 months at 40°C ± 2°C and 80% ± 5% RH in closed or open containers.  
For formulation composition, refer to Table 3-1 or Table 2-7. 
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3.1.3 Fourier-transform infrared spectroscopy (FTIR) 

 

Fourier-transform infrared spectroscopy was used to study the compatibility 

of pentoxifylline with excipients (hydroxyethyl cellulose, sodium alginate, Prosolv® 

90, sodium bicarbonate, calcium carbonate, sodium carbonate, and magnesium 

stearate) within the formulations F1-F7 before and after granulation. Figure 3-22 to 

Figure 3-28 represent the IR spectra of pure pentoxifylline, powder mixture, and 

granules for all the formulations (F1-F7). Indrayanto et al. (1998) reported that the 

spectrum of pentoxifylline shows characteristic bands at 2945, 1701, and 1658 

cm−1 for –CH, –CO, and amide –CO stretching mode, with additional bands 

present at 1433 cm−1 for –CH3 deformation and at 802 cm−1 for –(CH2)n– skeletal 

vibration. These characteristic bands were presented (almost at the same wave 

numbers) at 2943, 1696, and 1655 cm−1 for –CH, –CO, and amide –CO stretching 

mode, with additional bands presented at 1431 cm−1 for –CH3 deformation and at 

751 cm−1 for –(CH2)n– skeletal vibration in the spectra of drug-loaded powder 

mixture and granules of the formulations F1-F7. This confirms the absence of 

incompatibility between the drug and the formulation excipients. 

 

 

 

 
Figure 3-22: FTIR spectra of pure pentoxifylline, F1 powder mixture and F1 
granules.  
For formulation composition, refer to Table 3-1 or Table 2-7. 
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Figure 3-23: FTIR spectra of pure pentoxifylline, F2 powder mixture and F2 
granules.  
 

 

 

 
Figure 3-24: FTIR spectra of pure pentoxifylline, F3 powder mixture and F3 
granules.  
For formulation composition, refer to Table 3-1 or Table 2-7. 
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Figure 3-25: FTIR spectra of pure pentoxifylline, F4 powder mixture and F4 
granules.  
 

 

 

 
Figure 3-26: FTIR spectra of pure pentoxifylline, F5 powder mixture and F5 
granules.  
For formulation composition, refer to Table 3-1 or Table 2-7. 
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Figure 3-27: FTIR spectra of pure pentoxifylline, F6 powder mixture and F6 
granules.  

 
 

 

 
Figure 3-28: FTIR spectra of pure pentoxifylline, F7 powder mixture and F7 
granules.  
For formulation composition, refer to Table 3-1 or Table 2-7. 
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Granules of all the formulations (F1-F7) were stored for 3 months at 40°C ± 

2°C and 80% ± 5% RH in closed or open containers and evaluated by FTIR to 

investigate possible effects of the stressed conditions on the drug. The IR spectra 

of (F1-F7) granules after storage are shown in Figure 3-29 to Figure 3-35. The 

drug characteristic bands of the stability samples (in closed or open containers) of 

the formulations F1-F7 were presented at 2916–2944 cm−1, 1696–1697 cm−1 and 

1654–1657 cm−1 for –CH, –CO, and amide –CO stretching mode respectively. 

Additional bands were presented at 1430–1432 cm−1 for –CH3 deformation and at 

751 cm−1 for –(CH2)n– skeletal vibration. The IR band at 2359 cm-1 was due to 

carbon dioxide, however, the bands at 3339, 3451, and 3462 cm-1 were for water –

O–H stretching mode (Stuart, 2004). Generally, a slight variation was noted in 

comparison with the freshly prepared samples of the formulations F1-F7 

(Figure 3-22 to Figure 3-28), still this commonly indicates physical stability of the 

drug loaded in such formulations for 3 months at 40°C ± 2°C and 80% ± 5% RH in 

either closed or open containers. 

 

 

 
Figure 3-29: FTIR spectra of F1 granules after storage for 3 months at 40°C ± 2°C 
and 80% ± 5% RH in closed or open containers.  
For formulation composition, refer to Table 3-1 or Table 2-7. 
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Figure 3-30: FTIR spectra of F2 granules after storage for 3 months at 40°C ± 2°C 
and 80% ± 5% RH in closed or open containers.  
 

 

 

 
Figure 3-31: FTIR spectra of F3 granules after storage for 3 months at 40°C ± 2°C 
and 80% ± 5% RH in closed or open containers. 
For formulation composition, refer to Table 3-1 or Table 2-7. 
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Figure 3-32: FTIR spectra of F4 granules after storage for 3 months at 40°C ± 2°C 
and 80% ± 5% RH in closed or open containers. 
 

 

 

 

 
Figure 3-33: FTIR spectra of F5 granules after storage for 3 months at 40°C ± 2°C 
and 80% ± 5% RH in closed or open containers. 
For formulation composition, refer to Table 3-1 or Table 2-7. 
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Figure 3-34: FTIR spectra of F6 granules after storage for 3 months at 40°C ± 2°C 
and 80% ± 5% RH in closed or open containers. 
 

 

 

 
Figure 3-35: FTIR spectra of F7 granules after storage for 3 months at 40°C ± 2°C 
and 80% ± 5% RH in closed or open containers. 
For formulation composition, refer to Table 3-1 or Table 2-7. 
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3.2 Evaluation of floating tablets 

 

Tablets prepared from the granules were evaluated for tablet crushing 

strength, friability, weight uniformity, drug content uniformity, apparent density, 

porosity, floating capacity, swelling and erosion, dissolution, release data 

modeling, and stability testing. But, tablets prepared from powder mixtures were 

evaluated only for porosity, floating capacity, dissolution, and release data 

modeling, as these tablets had been compacted manually. 

 

3.2.1 Tablet crushing strength, friability, weight uniformity, and 

drug content 

 

A pharmaceutical dosage form must satisfy certain standards to claim it to 

be a quality product. Thus, the finished product quality characteristics related to its 

manufacturing process such as crushing strength, friability, weight uniformity, and 

drug content should be taken into account. Pharmacopoeias have laid down the 

specified limits within which the specification value should fall in order to be 

compliant as per the standards. 

After granulation, tablets of the formulations F1 and F2 were prepared 

successfully at level A (49–54 N), and level B (54–59 N) of the targeted crushing 

strength as presented in Table 3-3. Both the formulations could not be prepared at 

the crushing strength level of 59–64 N; however, this level of crushing strength 

was achieved with tablets prepared from the powder mixture. It has been reported 

that the chemical composition of alginates affects their compression behaviour, 

where alginates with low guluronic acid content behave more elastically than 

alginates with low mannuronic acid content. In this study the ratio of mannuronic 

acid to guluronic acid was 1.56. Furthermore, the plasticity of potassium alginates 

is higher than that of sodium alginates; however, alginates deform elastically 

(Schmid and Picker-Freyer, 2009). Generally, the granulation process may 

enhance elastic recovery of alginate molecules after compression, which could 

explain the inability to prepare tablets of both the formulations F1 and F2 at level 

(C) of crushing strength after granulation.  
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Accordingly, the floating capacity, swelling, and drug release rate of drug-

loaded matrix of F1 and F2 tablets were evaluated at two crushing strength levels 

(A and B) instead of A, B, and C. 

Tablets of the formulations F3-F7 were successfully pressed automatically 

at levels A (49-54 N), B (54-59 N), and C (59-64 N) of crushing strength except 

those of the formulation F5 which were pressed manually. It has been reported in 

some studies that the crushing strength of tablets prepared from a mixture of two 

materials can be predicted from the crushing strength of tablets prepared from 

each of these materials as a linear relationship could be drawn for the composition 

of the mixture (Rubinstein and Jackson, 1987; Sheikh-Salem et al., 1988). In other 

studies, tablet crushing strength exceeds the crushing strength of tablets prepared 

from individual materials (Gren and Nyström, 1996; Olsson et al., 1998), or it 

becomes lower than that of the individual components (Sheikh-Salem et al., 1988; 

Leuenberger, 1982).  

F3 and F4 formulations based on calcium carbonate were pressed 

successfully at all crushing strength levels and the good bonding capacity under 

compression of calcium carbonate (Mattsson and Nyström, 2000) and its role as 

filler in pharmaceutical formulations (Armstrong, 2009) could explain this. Although 

pressing sodium carbonate alone shows a good bonding capacity (Sonnergaard, 

2006); tablets which contain sodium carbonate at 10% (w/w) (F5) could not be 

pressed automatically. Increasing the concentration to 20% (w/w) (F6) overcame 

this issue, and tablets were successfully pressed at levels A, B, and C of crushing 

strength. Generally, this suggests that compressibility of these floating 

formulations (F5 and F6) is dependent by the concentration of sodium carbonate. 

Tablets of F7 formulation without any gassing agent were successfully pressed at 

all required levels of crushing strength. However, the granulation process may 

enhance the elastic recovery of alginate molecules after compression, which could 

explain the inability to prepare tablets based on sodium bicarbonate as a gassing 

agent even at a higher level (59–64 N) of crushing strength following the 

granulation. In addition, it has been reported that sodium bicarbonate has a lower 

bonding capacity than sodium carbonate (Sonnergaard, 2006) and calcium 

carbonate (Mattsson and Nyström, 2000).  
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Hence, it is worth testing sodium carbonate and calcium carbonate as 

gassing agents as per this study, especially as the available information in the 

literature on using them within the floating tablets is inadequate. 

Results of friability (%), average weight (g), and average drug content (mg) 

of prepared matrix tablets of the formulations F1-F7 are presented in Table 3-3. 

For the friability test, there were no signs of cracked, split, or broken tablets at the 

end of the test. Additionally, the friability results of the formulations F1, F2, F3, F6, 

and F7 fitted the (BP) limits, as the tablets had friability values < 1% (BP, 2015), 

however, the formulations F4 and F5 exceeded the BP limit of friability as results 

were (1.11% - 1.34%), and (1.14% - 1.16%) respectively. Generally, as the tablet 

crushing strength level increases, the mass loss percentage decreases in all the 

formulations. Consequently, using higher compression force can change the 

friability results to fit BP limits. 

All prepared tablets of the formulations F1-F7 (Table 3-3) complied with BP 

specifications (BP, 2015) with respect to weight uniformity test. For content 

uniformity test (Table 3-3) results were in the acceptable range, indicating that all 

matrix tablets fitted the (BP) criteria in which each tablet drug content was 

between 85% and 115% of related average content (BP, 2015). 
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Table 3-3: Properties of pentoxifylline floating tablets of the formulations F1-F7. 

Formulation 
Crushing 
strength 

level 

Crushing 
strength 

(N)
a
 

Friability 
(%) 

Tablet weight 
(g)

b
 

Drug content 
(mg)

a
 

F1 

(A) 
 

50.99 ± 0.27 0.80 0.297 ± 0.00 57.82 ± 1.63 

(B) 
 

55.90 ± 0.33 0.60 0.292 ± 0.00 57.13 ± 0.64 

F2 

(A) 
 

49.03 ± 0.24 0.88 0.318 ± 0.01 56.63 ± 0.97 

(B) 
 

57.86 ± 0.31 0.66 0.306 ± 0.00 53.43 ± 1.45 

F3 

(A) 
 

51.98 ± 0.16 0.96 0.305 ± 0.00 61.22 ± 0.57 

(B) 
 

55.90 ± 0.24 0.94 0.302 ± 0.00 60.89 ± 0.93 

(C) 
 

59.82 ± 0.17 0.82 0.302 ± 0.00 63.24 ± 1.51 

F4 

(A) 
 

53.94 ± 0.40 1.34 0.343 ± 0.00 61.78 ± 1.28 

(B) 
 

55.90 ± 0.34 1.28 0.342 ± 0.00 63.99 ± 1.57 

(C) 
 

62.76 ± 0.23 1.11 0.343 ± 0.00 65.69 ± 1.53 

F5 

(A) 
 

50.03 ± 0.27 1.16 0.299 ± 0.00 58.34 ± 1.81 

(B) 
 

55.90 ± 0.69 1.15 0.300 ± 0.00 59.74 ± 2.13 

(C) 
 

59.82 ± 0.85 1.14 0.298 ± 0.00 58.57 ± 2.90 

F6 

(A) 
 

52.96 ± 0.80 0.89 0.315 ± 0.00 56.91 ± 2.12 

(B) 
 

57.86 ± 0.35 0.57 0.335 ± 0.01 57.55 ± 1.89 

(C) 
 

63.74 ± 0.44 0.56 0.349 ± 0.00 56.95 ± 1.77 

F7 

(A) 
 

49.03 ± 0.52 0.79 0.296 ± 0.00 69.15 ± 0.80 

(B) 
 

54.13 ± 0.36 0.57 0.296 ± 0.01 69.38 ± 1.15 

(C) 
 

59.04 ± 0.23 0.47 0.305 ± 0.02 69.47 ± 0.76 

Notes: aThe data represents the mean ± SD of 10 determinations. bThe data 
represents the mean ± SD of 20 determinations. The compression force of the 
prepared tablets was adjusted to give two crushing strength levels: A (49–54 N), 
and B (54–59 N) for F1 and F2 formulations, and three crushing strength levels: A 
(49–54 N), B (54–59 N), and C (59-64 N) for F3-F7 formulations. For formulation 
composition, refer to Table 3-1 or Table 2-7. 
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3.2.2 Tablet apparent density and porosity 

 

For floating drug delivery systems it is important to have a density < 1.004 

g/cm3 in order to initiate buoyancy on the release medium (Whitehead et al., 1998; 

Bardonnet et al., 2006). Upon water uptake, chains of hydrophilic polymers move 

apart from each other resulting in both weight and volume increases. Although, 

this will reduce the density of the swollen matrix, the rate of medium uptake 

depends upon the matrix porosity level. Therefore, the apparent density and 

porosity results of the tablets were used to evaluate the magnitude of the different 

formulation factors (crushing strength, the wet granulation, type and ratio of gas 

forming agents) on the prepared tablets. 

The apparent density of the prepared tablets of the formulations F1-F7 were 

calculated by equation (3) (Chapter 2, section 2.2.6.2), and the results are shown 

in Figure 3-36 (for F1 and F2), Figure 3-37 (for F3 and F4), Figure 3-38 (for F5 and 

F6), and Figure 3-39 (for F7). Generally, increasing tablet crushing strength level 

increased significantly (p<0.05) the apparent density of all the tablets prepared 

from the powder mixture or the granules of the formulations F1, F2, F3, F4 and F7. 

However, the effect was not significant (P>0.05) for those of the formulations F5 

and F6 except between the extreme margins of the crushing strength (levels A and 

C). This may be explained by the reduction in tablet thicknesses as particles 

became more adjacent to each other by increasing the compression force as 

shown in Table 3-4. 

The granulation process caused a significant (P<0.05) decrease in tablet 

apparent density of F1 formulation at both crushing strength levels. In addition, a 

significant (P=0.001) decrease was noted in tablet apparent density results of F2 

formulation prepared at crushing strength level (A); however, a non-significant 

(P=0.363) decrease was noted at level (B) of crushing strength. A non-significant 

(P>0.05) decrease in the apparent density results was observed in the 

formulations F6 and F7. In contrast, the granulation process caused a significant 

(P<0.05) increase in tablet apparent density of the formulations F3, F4, and F5 at 

all crushing strength levels.  
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For the formulations F1 and F2 (based on sodium bicarbonate gassing 

agent), as shown in Table 3-4, tablet thicknesses after the granulation process 

were increased in comparison to those before the granulation process which agree 

with the effect of the granulation process on alginate molecules elastic recovery 

after compression. This tablet thickness difference was reduced when sodium 

bicarbonate level was increased to 20% (w/w) (for F2 formulation) especially at 

crushing strength level (B). This indicates that the elastic recovery effect of sodium 

alginate (after the granulation process) was reduced. The high true density of 

sodium bicarbonate (Cable, 2009), which is 2.173 g/cm3, in addition to the high 

compression pressure of level (B) may inverse the elastic recovery effect of the 

granulation process on the apparent density results of F2 formulation 

(Figure 3-36). The enhancement of sodium alginate molecules elastic recovery 

after compression following the granulation also explains the results of the 

formulation F7 (0% (w/w) gassing agent), where tablet thicknesses after 

granulation increased (Table 3-4) whilst the apparent densities decreased 

(Figure 3-39). This also explains the apparent density results of F6 (20% (w/w) 

sodium carbonate) (Figure 3-38).   

The apparent density of F5 (10% (w/w) sodium carbonate) tablets 

(Figure 3-38) increased after the granulation. It has been reported that the amount 

of stress developed at the points of local deformation depend upon several factors 

such as physical properties of the material, force magnitude, rate of application, 

and contact time (Wray, 1992). F5 formulation was pressed manually after the 

granulation; therefore, the longer contact time between the granules and the 

punches of the tableting machine may overcome the alginate elastic recovery and 

explains the increase in the apparent density results.     

The tablet thicknesses of F3 (10% (w/w)) and F4 (20% (w/w)) calcium 

carbonate based tablets decreased after the granulation (Table 3-4) which 

increased their apparent densities (Figure 3-37). This may be explained by the 

good compressibility of calcium carbonate that may overcome the effect of sodium 

alginate elastic recovery after compression following the granulation process; this 

also explains the benefits of using calcium carbonate in effervescent floating 

tablets.   
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Changing calcium carbonate concentration from 10% to 20% (w/w) 

significantly (P<0.05) increased the apparent density of all the tablets prepared 

from the powder mixture or the granules. Raising sodium carbonate concentration 

to 20% (w/w) significantly (P<0.05) increased the apparent densities of those 

tablets prepared from the powder mixture only. This may be explained by the high 

specific gravities of calcium carbonate and sodium carbonate which are 2.70 

(Armstrong, 2009) and 2.53 (Hapgood, 2009) respectively, which also agrees with 

the results of sodium bicarbonate based tablets discussed earlier. 

A non-significant (P>0.05) decrease in the apparent densities of tablets 

prepared from granules due to changing sodium carbonate concentration from 

10% to 20% (w/w) was noted. As stated above, the manual pressing of F5 (10% 

(w/w) sodium carbonate) formulation could enhance the reduction of their tablet 

thicknesses with a higher ratio than that of F6 (20% (w/w) sodium carbonate) 

tablets which could explain this reduction in their densities. 
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Figure 3-36: Apparent density of F1 and F2 tablets before granulation, after 
granulation, and after stability (tablets prepared from granules stored at 40°C ± 
2°C and 80% ± 5% RH for 3 months in closed or open container).  
Note: The data represents the mean ± SD of six determinations. The compression 
force of the prepared tablets was adjusted to give two crushing strength levels: A 
(49–54 N), and B (54–59 N).  
 

 

 

 
Figure 3-37: Apparent density of F3 and F4 tablets before granulation, after 
granulation, and after stability (tablets prepared from granules stored at 40°C ± 
2°C and 80% ± 5% RH for 3 months in closed or open container).  
Note: The data represents the mean ± SD of six determinations. The compression 
force of the prepared tablets was adjusted to give three crushing strength levels: A 
(49-54 N), B (54-59 N), and C (59-64 N).   
For formulation composition, refer to Table 3-1 or Table 2-7. 
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Figure 3-38: Apparent density of F5 and F6 tablets before granulation, after 
granulation, and after stability (tablets prepared from granules stored at 40°C ± 
2°C and 80% ± 5% RH for 3 months in closed or open container).  
Note: The data represents the mean ± SD of six determinations. The compression 
force of the prepared tablets was adjusted to give three crushing strength levels: A 
(49-54 N), B (54-59 N), and C (59-64 N). 
 

 

 

 
Figure 3-39: Apparent density of F7 tablets before granulation, after granulation, 
and after stability (tablets prepared from granules stored at 40°C ± 2°C and 80% ± 
5% RH for 3 months in closed or open container).  
Note: The data represents the mean ± SD of six determinations. The compression 
force of the prepared tablets was adjusted to give three crushing strength levels: A 
(49-54 N), B (54-59 N), and C (59-64 N). 
For formulation composition, refer to Table 3-1 or Table 2-7. 
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Table 3-4: F1-F7 tablets thickness before granulation, after granulation, and after stability (tablets prepared from granules 
stored at 40°C ± 2°C and 80% ± 5% RH for 3 months in closed or open container). 

Formulation 
Crushing 

strength level 

Tablet thickness (cm) 

Origin of prepared tablets 

Before granulation After granulation 
After stability 

(closed container) 
After stability 

(open container) 

F1 
(A) 0.294 ± 0.01 0.303 ± 0.01 0.323 ± 0.01 0.326 ± 0.03 

(B) 0.289 ± 0.01 0.298 ± 0.02 0.315 ± 0.01 0.326 ± 0.02 

F2 
(A) 0322 ± 0.01 0.327 ± 0.00 0.345 ± 0.00 0.366 ± 0.01 

(B) 0.316 ± 0.01 0.318 ± 0.02 0.340 ± 0.02 0.357 ± 0.03 

F3 

(A) 0.299 ± 0.01 0.285 ± 0.02 0.317 ± 0.01 0.342 ± 0.03 

(B) 0.293 ± 0.01 0.282 ± 0.01 0.312 ± 0.01 0.336 ± 0.02 

(C) 0.290 ± 0.01 0.282 ± 0.01 0.307 ± 0.01 0.323 ± 0.02 

F4 

(A) 0.326 ± 0.01 0.311 ± 0.01 0.334 ± 0.02 0.369 ± 0.03 

(B) 0.319 ± 0.01 0.307 ± 0.01 0.331 ± 0.01 0.363 ± 0.04 

(C) 0.317 ± 0.01 0.304 ± 0.01 0.326 ± 0.03 0.357 ± 0.02 

F5 

(A) 0.298 ± 0.00 0.286 ± 0.01 0.332 ± 0.02 0.351 ± 0.01 

(B) 0.295 ± 0.00 0.283 ± 0.04 0.327 ± 0.02 0.350 ± 0.04 

(C) 0.292 ± 0.01 0.282 ± 0.04 0.327 ± 0.01 0.347 ± 0.03 

F6 

(A) 0.326 ± 0.01 0.329 ± 0.08 0.365 ± 0.02 0.421 ± 0.04 

(B) 0.322 ± 0.02 0.324 ± 0.01 0.354 ± 0.02 0.412 ± 0.02 

(C) 0.319 ± 0.01 0.320 ± 0.01 0.347 ± 0.01 0.405 ± 0.02 

F7 

(A) 0.305 ± 0.01 0.318 ± 0.02 0.342 ± 0.01 0.358 ± 0.02 

(B) 0.301 ± 0.01 0.313 ± 0.01 0.336 ± 0.01 0.353 ± 0.05 

(C) 0.297 ± 0.02 0.303 ± 0.01 0.326 ± 0.01 0.350 ± 0.01 
Note: The data represents the mean ± SD. of three determinations. The compression force of the prepared tablets was adjusted to 
give two crushing strength levels: A (49–54 N), and B (54–59 N) for F1 and F2 formulations, and three crushing strength levels: A 
(49–54 N), B (54–59 N), and C (59-64 N) for F3-F7 formulations. For formulation composition, refer to Table 3-1 or Table 2-7. 
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A statistical analysis of the tablets apparent density after storage for 3 

months at 40°C ± 2°C and 80% ± 5% RH in closed or open containers was 

undertaken. Generally, storage in closed containers is reflective to the storage 

conditions of the packed pharmaceutical products; however, storage in open 

containers may apply further harsh conditions on the pharmaceutical dosage 

forms as they become in direct contact with an elevated level of heat and humidity 

which may accelerate degradation of unstable ingredients. Consequently, it is 

worth to study samples physical stability in both closed and open containers. As 

discussed earlier (Chapter 2, section 2.2.4), tablets were compacted manually 

using the powder mixtures and automatically using the granules. The good flow 

properties of the granules which facilitate their automatic pressing made them 

more suitable to benefit the pharmaceutical industry, therefore, only the tablets 

prepared from the granules were subjected to stability studies. 

Tablet apparent densities after stability (in closed or open container) are 

presented in Figure 3-36 to Figure 3-39. The tablets apparent densities decreased 

significantly (P<0.001) in all the formulations (F1-F7) in either open or closed 

containers in comparison to the freshly prepared samples. This is also explained 

by the increase in tablets thicknesses after 3 months storage as presented in 

Table 3-4. It has been reported that the crushing strength, disintegration and 

dissolution rate of tablets could change with time as part of the aging process of 

pharmaceutical tablets (Lowenthal, 1972; Karehill and Nystrom, 1990; Babu and 

Pandit, 1999). Tablets stress relaxation after compression which depends upon 

the deformation mechanism could enhance this aging process (Hwang et al., 

2001). Moreover, an elastically deformed material usually possesses a significant 

internal pressure following compression, and this internal pressure will be released 

over time (Rubinstein and Jackson, 1987). Consequently, during storage, this 

excess internal pressure may reach equilibrium with the external conditions such 

as temperature and humidity resulting in various physicomechanical 

characteristics. Hwang et al. (2001) studied tablet relaxation and 

physicomechanical stability of lactose, microcrystalline cellulose, and dibasic 

calcium phosphate directly compressed tablets by evaluating the percentage of 

change in thickness, crushing strength, and friability of freshly prepared tablets 

and those stored for one month at 25°C and 60% RH and 40°C and 75% RH.  
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In this work, the resulted change in the tablets thickness was used to 

evaluate the stress relaxation effect by calculating tablet apparent density values. 

The reduction of the apparent density results was higher in open containers than 

those of closed ones. A study by Aljaberi et al (2013) suggested that the direct 

exposure to a stressful humidity level (75% RH) causes a higher increase in 

tablet‗s dimensions when compared to those stored in closed containers. 

Regarding porosity, tablet porosity percentages of the formulations F1-F7 

are presented in Figure 3-40. Generally, increasing tablet crushing strength level 

decreased the porosity percentages of all the formulations F1-F7. This effect was 

significant (P<0.05) in F1 and F2 formulations and non-significant (P>0.05) in F3-

F7 formulations except between the extreme levels of crushing strength (A and C). 

This reduction in the tablet porosity percentages may be explained by the tablet 

thickness results presented in Table 3-4, where increasing the tablet crushing 

strength level reduced the tablet thicknesses as particles became strongly bonding 

due to being closer which agrees with a previous study of effect of the tablet radial 

tensile strength to the tablet porosity (Sebahatu and Alderborn, 1999). 

The granulation process decreased the tablet porosity significantly (P<0.05) 

in the formulations F1, F5, and F7, and non-significantly (P>0.05) in F2 

formulation. In contrast, the porosity significantly increased (P<0.05) in the 

formulations F3 and F6, and non-significantly (P>0.05) in F4 formulation following 

the granulation process (Figure 3-40).   

The effect of different treatment conditions on the production of cross-linked 

drug alginate granules has been reported by (Mukhopadhyay et al., 2008). This 

study demonstrated that increasing the water binder volume decreases porosity 

during the wet massing stage and this reduction in porosity could delay dissolution 

medium entrapment through the matrix at an early stage of the dissolution test.  

This may explain the results of F7 (0% w/w gassing agent) formulation where the 

granulation reduced the tablet porosity. However, tablet porosity of calcium 

carbonate based formulations (F3 and F4) increased after the granulation. This 

may be related to calcium carbonate insolubility in water (Armstrong, 2009) which 

could enhance the formation of voids between adjacent molecules during the wet 

massing stage with water. 
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In contrast, sodium carbonate as a gassing agent is a water-soluble 

material (Hapgood, 2009) which may form a homogenous mass with the 

hydrophilic polymeric (1:1) binary mixture of hydroxyethyl cellulose and sodium 

alginate during the wet massing process. This could explain the tablets porosity 

reduction at 10% (w/w) level for F5 formulation after the granulation. This complies 

with the results of the formulations F1 and F2 based on sodium bicarbonate which 

is also water-soluble (Cable, 2009). However, the significant (P<0.05) elevation in 

porosity results of F6 tablets could be explained by  the hygroscopic properties of 

sodium carbonate, where one mole of sodium carbonate could gradually absorb 

one mole of water on exposure to air (Hapgood, 2009). Raising sodium carbonate 

concentration means more water molecules may be absorbed during the wet 

massing step and evaporated easily due to the drying step of the granulation 

process. Therefore the granules porosity will be increased. This agrees with the 

moisture content (%) results before and after the granulation (Table 3-2). The 

moisture content (%) for the formulations F5 (10% (w/w)) and F6 (20% (w/w)) 

based on sodium carbonate gassing agent were 5.70% ± 0.14 and 5.51% ± 0.12 

before granulation and became 4.53% ± 0.19 and 4.11% ± 0.16 after the 

granulation respectively. Obviously, the moisture content (%) decreased in both 

formulations after the granulation, but more moisture lost was noted in F6 

formulation based on 20% (w/w) sodium carbonate. 

Increasing calcium carbonate concentration from 10% (w/w) (F3) to 20% 

(w/w) (F4) significantly (P<0.05) increased the porosity percentage of the tablets 

prepared either from the powder mixture or the granules (Figure 3-40). It has been 

reported that calcium carbonate mainly undergoes fragmentation when 

compressed (Roberts and Rowe, 1985); fragmentation establishes a large number 

of bonding points between calcium carbonate molecules during volume reduction, 

which will maintain the porosity of such tablets relatively high (Mattsson and 

Nyström, 2000). This may explain the increase in the tablet porosity results due to 

the change in calcium carbonate concentration in tablets prepared from either the 

powder mixture or the granules. 
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A significant (P<0.05) increase in porosity was noted when sodium 

carbonate concentration was raised from 10% (w/w) (F5) to 20% (w/w) (F6) in the 

tablets prepared from the granules, nonetheless, the porosity significantly (P<0.05) 

decreased for the tablets prepared from the powder mixture (Figure 3-40). 

Regarding the tablets prepared from the powder mixture, raising sodium carbonate 

concentration from 10% (w/w) (F5) to 20% (w/w) (F6) could enhance more voids 

between molecules being filled after compression, which may reduce the porosity. 

This also conforms to the results of sodium bicarbonate based tablets as 

increasing the level of sodium bicarbonate from 10% (w/w) (F1) to 20% (w/w) (F2) 

significantly (P<0.05) decreased all the tablet porosity results prepared from the 

powder mixture or the granules. However, the significant (P<0.05) increase in the 

porosity values of the tablets prepared from the granules may be explained by the 

hygroscopic properties of sodium carbonate as discussed earlier.  

 

 

 

 
Figure 3-40: Porosity percentage of the formulations F1-F7 before and after 
granulation. 
Note: The data represents the mean ± SD. of three determinations. The 
compression force of the prepared tablets was adjusted to give two crushing 
strength levels: A (49–54 N), and B (54–59 N) for F1 and F2 formulations, and 
three crushing strength levels: A (49–54 N), B (54–59 N), and C (59-64 N) for F3-
F7 formulations. 
For formulation composition, refer to Table 3-1 or Table 2-7. 
 

 



 

120 

 

3.2.3 Tablet floating capacity 

 

Floating drug delivery systems, as shown in (Figure 3-41), aim to maintain 

floating for a long period of time on the release medium of the stomach without 

affecting the gastric emptying time. Normally in human, the gastric emptying of 

large single unit dosage forms is changeable in the fasted state. It depends on the 

time of arrival in the stomach in relation to activity of inter digestive myloelectric 

cycle, but a longer time is required for the gastric emptying in the fed conditions. 

All undigested materials are normally emptied out of the stomach and down the 

small intestine at the end of the gastric emptying process (Wilson and Washington, 

1989). It is important for floating tablets to avoid premature sweeping from their 

major absorption zone of the stomach and upper intestine, which could be 

managed by achieving the least possible lag time, and longer floating duration. 

All the tablets (F1-F7) were tested for the floating capacity under the same 

conditions and using the same apparatus for the in vitro studies. F7 tablets had no 

floating capacity, as they do not contain any gassing agent. Sodium bicarbonate, 

calcium carbonate and sodium carbonate as gassing agents enhanced the floating 

behaviour of the formulated tablets. Carbon dioxide is generated by reaction with 

the acidic dissolution medium (0.1 M HCl) and entrapped in the formed gel layer 

around the swollen tablets. Figure 3-42 reveals the floating of F4 tablets prepared 

at 49–54 N crushing strength, as an example, a floating lag time was ~ 7 min and 

tablets kept floating for > 24 h. Table 3-5 and Table 3-6 represent all the prepared 

tablets floating lag time and floating duration results respectively. 
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Figure 3-41: Schematic presentation of gastroretentive floating system.  
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Figure 3-42: Floating process of F4 tablet prepared at 49–54 N crushing strength 
(marked with a circle) during drug release. 
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Table 3-5: Floating lag-time of the formulations F1-F7 at different crushing strength levels before granulation, after granulation, 
and after stability (tablets prepared from granules stored at 40°C ± 2°C and 80% ± 5% RH for 3 months in closed or open 
container). 

Formulation 
Crushing 

strength level 

Floating lag time (min) 

Origin of prepared tablet 

Before granulation After granulation 
After stability 

(closed container) 
After stability 

(open container) 

F1 
(A) 0.84 ± 0.08 6.54 ± 1.19 2.14 ± 0.13 3.51 ± 1.31 

(B) 1.81 ± 0.25 9.78 ± 1.77 5.91 ± 1.68 4.91 ± 1.72 

F2 
(A) 0.44 ± 0.03 4.13 ± 0.35 2.17 ± 0.24 0.48 ± 0.04 

(B) 0.92 ± 0.05 4.48 ± 0.67 2.42 ± 0.04 1.06 ± 0.39 

F3 

(A) 0.32 ± 0.07 21.81 ± 4.00 7.49 ± 1.19 5.40 ± 0.44 

(B) 0.81 ± 0.03 24.17 ± 1.62 17.06 ± 4.94 28.18 ± 0.31 

(C) 7.19 ± 0.57 27.46 ± 4.42 23.92 ± 4.81 30.33 ± 1.86 

F4 

(A) 0.21 ± 0.04 6.93 ± 1.03 4.18 ± 0.58 6.71 ± 0.18 

(B) 0.26 ± 0.03 9.99 ± 1.36 5.57 ± 0.85 6.82 ± 0.24 

(C) 0.31 ± 0.01 13.11 ± 1.38 6.65 ± 0.71 7.69 ± 1.83 

Notes: The data represents the mean ± SD of three determinations. The compression force of the prepared tablets was 

adjusted to give two crushing strength levels: A (49–54 N), and B (54–59 N) for F1 and F2 formulations, and three crushing 

strength levels: A (49–54 N), B (54–59 N), and C (59-64 N) for F3-F7 formulations. 
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Table 3-5 (continued): Floating lag-time of the formulations F1-F7 at different crushing strength levels before granulation, 
after granulation, and after stability (tablets prepared from granules stored at 40°C ± 2°C and 80% ± 5% RH for 3 months in 
closed or open container). 

Formulation 
Crushing 

strength level 

Floating lag time (min) 

Origin of prepared tablet 

Before granulation After granulation 
After stability 

(closed container) 
After stability 

(open container) 

F5 

(A) 1.88 ± 0.65 6.95 ± 0.91 9.08 ± 0.84 0.41 ± 0.44 

(B) 3.46 ± 0.21 7.43 ± 0.70 10.82 ± 0.45 0.91 ± 0.62 

(C) 3.74 ± 0.21 10.09 ± 0.96 12.72 ± 1.06 1.55 ± 0.21 

F6 

(A) 4.20 ± 0.73 8.27 ± 1.25 9.49 ± 0.65 0.19 ± 0.04 

(B) 5.44 ± 1.33 11.09 ± 1.19 11.73 ± 1.12 0.20 ± 0.02 

(C) 7.19 ± 0.24 12.38 ± 1.86 12.83 ± 1.55 0.20 ± 0.02 

F7 

(A) 
Complete disintegration 

(within 30 min) 
No floating No floating No floating 

(B) No floating No floating No floating No floating 

(C) No floating No floating No floating No floating 

Notes: The data represents the mean ± SD of three determinations. The compression force of the prepared tablets was 
adjusted to give two crushing strength levels: A (49–54 N), and B (54–59 N) for F1 and F2 formulations, and three crushing 
strength levels: A (49–54 N), B (54–59 N), and C (59-64 N) for F3-F7 formulations. 
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Table 3-6: Floating duration of the formulations F1-F7 at different crushing strength levels before granulation, after 
granulation, and after stability (tablets prepared from granules stored at 40°C ± 2°C and 80% ± 5% RH for 3 months in closed 
or open container). 

Formulation 
Crushing 

strength level 

Total floating duration (h) 

Origin of prepared tablet 

Before granulation After granulation 
After stability 

(closed container) 
After stability 

(open container) 

F1 
(A) > 12 > 8 > 24 > 24 

(B) > 12 > 8 > 24 > 24 

F2 
(A) > 24 > 24 > 24 > 24 

(B) > 24 > 24 > 24 > 24 

F3 

(A) 
Complete disintegration 

(within 30 min) 
> 5 > 8 > 8 

(B) 
Complete disintegration 

(within 30 min) 
> 5 > 8 > 8 

(C) > 4 > 8 > 12 > 8 

F4 

(A) 
Complete disintegration 

(within 30 min) 
> 24 > 24 > 24 

(B) 
Complete disintegration 

(within 30 min) 
> 24 > 24 > 24 

(C) 
Complete disintegration 

(within 30 min) 
> 24 > 24 > 24 

Notes: The compression force of the prepared tablets was adjusted to give two crushing strength levels: A (49–54 N), and B 
(54–59 N) for F1 and F2 formulations, and three crushing strength levels: A (49–54 N), B (54–59 N), and C (59-64 N) for F3-
F7 formulations. For formulation composition, refer to Table 3-1 or Table 2-7. 
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Table 3-6 (continued): Floating duration of the formulations F1-F7 at different crushing strength levels before granulation, 
after granulation, and after stability (tablets prepared from granules stored at 40°C ± 2°C and 80% ± 5% RH for 3 months in 
closed or open container). 

Formulation 
Crushing 

strength level 

Total floating duration (h) 

Origin of prepared tablet 

Before granulation After granulation 
After stability 

(closed container) 
After stability 

(open container) 

F5 

(A) > 12 > 12 > 24 > 24 

(B) > 12 > 12 > 24 > 24 

(C) > 12 > 12 > 24 > 24 

F6 

(A) > 24 > 24 > 24 > 24 

(B) > 24 > 24 > 24 > 24 

(C) > 24 > 24 > 24 > 24 

F7 

(A) 
Complete disintegration 

(within 30 min) 
No floating No floating No floating 

(B) No floating No floating No floating No floating 

(C) No floating No floating No floating No floating 

Notes: The compression force of the prepared tablets was adjusted to give two crushing strength levels: A (49–54 N), and B 
(54–59 N) for F1 and F2 formulations, and three crushing strength levels: A (49–54 N), B (54–59 N), and C (59-64 N) for F3-
F7 formulations. For formulation composition, refer to Table 3-1 or Table 2-7. 
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Increasing the crushing strength level of the floating tablets (F1-F6) 

increased the floating lag time results. Regarding the formulations prepared from 

the powder mixture, a significant (P<0.05) increase in the floating lag time was 

noted for F1 and F2 formulations. A non-significant (P>0.05) effect was shown in 

all the other formulations except those of F3 where a significant (P<0.05) increase 

was noted at level C of crushing strength. Additionally, a non-significant (P>0.05) 

increase in the lag time results was seen in all the floating tablets (F1-F6) 

prepared from granules, except between the extreme margins of crushing strength 

(level A and C) of F3-F6 tablets (Table 3-5). These results could be explained by 

the porosity results (Section 3.2.2) where reducing the tablet porosity, as a result 

of increased compaction force, delayed the penetration of the acidic medium and 

hence delayed the gas generation process. 

The granulation process caused a significant (P<0.05) increase in the 

floating lag time of all the tablet (F1-F6) compared to that of the tablets prepared 

from the powder mixture before the granulation (Table 3-5).  A complete 

disintegration effect (within 30 min) was seen in the tablets prepared from the 

powder mixture based on calcium carbonate as a gassing agent (F3 and F4). 

These tablets rapidly moved in an upward motion and disintegrated on the surface 

of the dissolution medium. All the tablets based on sodium bicarbonate (F1 and 

F2) or sodium carbonate (F5 and F6) as a gassing agent either prepared from the 

powder mixture or the granules did not show any disintegration behaviour. This 

disintegration behaviour may be explained by the stronger effervescent activity of 

calcium carbonate compared to sodium bicarbonate and sodium carbonate, which 

ruptured the tablet structure of the formulations F3 and F4 prepared from powder 

mixture (Table 3-5). During the granulation process, liquid bridges of adhesives 

such as hydroxyethyl cellulose are formed between particles during the wet 

massing step and these harden due to the drying step (Summers and Aulton, 

2007). This could make the internal structure of the tablets much more resistant to 

the disintegration effect of calcium carbonate effervescent reaction, and provide 

sufficient time for swelling and gel layer formation.  
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It has been reported that carbonates could generate an alkaline 

microenvironment for pH sensitive polymers to initiate gel formation (Deshpande 

et al., 1997). The absence of the disintegration behaviour for F5 and F6 tablets 

prepared from powder mixture could be explained by the better ability of sodium 

carbonate compared to calcium carbonate to provide a suitable microenvironment 

for the polymer to start gelling as 1% (w/v) aqueous solution of sodium carbonate 

generates a pH of 11.4 at 25°C (Hapgood, 2009) while 10% (w/v) aqueous 

dispersion of calcium carbonate produces a pH of 9.0 (Armstrong, 2009).  

The increase in the lag time results of F1 and F2 (10% and 20% (w/w) 

sodium bicarbonate respectively), and F5 (10% (w/w) sodium carbonate) tablets 

after the granulation (Table 3-5) may be due to the reduction in the porosity 

(Section 3.2.2). Although the porosity level of F6 (20% (w/w) sodium carbonate) 

formulation increased following the granulation process, its floating lag time also 

increased. The increase in the porosity level may enhance rapid contact between 

the gassing agent and the acidic medium, but it also could accelerate the escape 

of liberated gas bubbles from the matrix structure before the formation of a 

coherent gel layer around the tablet, which may delay the floating process.  

Changing sodium bicarbonate concentration from 10% (w/w) (F1) to 20% 

(w/w) (F2) caused a significant (P<0.05) decrease in the lag time data of the 

tablets prepared from the powder mixture at both crushing strength levels. 

However, the reduction in the lag time values was not significant (P>0.05) in the 

tablets prepared from the granules. Increasing calcium carbonate concentration 

from 10% (w/w) (F3) to 20% (w/w) (F4) in tablets prepared from the powder 

mixture decreased the lag time non-significantly (P>0.05) except at level C of 

crushing strength. Moreover, a significant (P<0.05) reduction in the floating lag 

time was noted in the tablets prepared from the granules when calcium carbonate 

level was increased from 10% to 20% (w/w). Increasing the gassing agent content 

available for an acidic medium enhanced the efficiency of the effervescent 

reaction, which was represented by a shorter floating lag time. Changing sodium 

carbonate concentration from 10% (F5) to 20% (w/w) (F6), increased the lag time 

non-significantly (P>0.05) in all the tablets.  
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The ability of sodium carbonate to generate an alkaline microenvironment 

to accelerate swelling and gel formation may reduce the dissolution medium 

entrapment rate and the quantity of acidic medium available for the effervescent 

reaction. Moreover, raising sodium carbonate level to 20% (w/w) increased tablets 

density (Section 3.2.2), and more time was taken for the floating process. 

Regarding the floating duration (Table 3-6), although, F1 tablets prepared 

from the powder mixture floated for > 12 h, there were 4 h reduction in their 

floating duration after the granulation process. In addition, there was no difference 

in the floating duration of F2 formulation before and after the granulation, where 

they floated for > 24 h. It is clear that 20% (w/w) concentration was more effective 

than 10% (w/w) concentration to maintain tablets on the surface of the dissolution 

medium for a longer duration of time.  

As stated above, tablets based on calcium carbonate as a gassing agent of 

the formulations F3 and F4 prepared from the powder mixture showed complete 

disintegration behaviour within short time (30 min) after floating. However, 

following the granulation process, the tablets of F3 (10% (w/w)) formulation floated 

for > 5 h, while F4 (20% (w/w)) formulation floated for > 24 h due to the high 

gassing agent reservoir available for the floating process. The granulation process 

did not cause any difference in the floating duration results of F5 and F6 tablets 

based on sodium carbonate as a gassing agent, as > 12 h and > 24 h were 

reported, respectively. This may be related to the absence of the disintegration 

effect due to the ability of sodium carbonate to generate an alkaline 

microenvironment to accelerate gel formation; however the longer floating duration 

could be related to the high gassing agent reservoir during the test for F6. 
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Regarding stability studies, the effect of storage at 40°C ± 2°C and 80% ± 

5% RH for 3 months on the tablets floating lag time and floating duration has been 

evaluated and presented in Table 3-5 and Table 3-6 respectively. The floating lag 

time results of both the formulations based on sodium bicarbonate F1 (10% (w/w) 

and F2 (20% w/w) decreased after storage in closed and open containers. In 

closed containers, the effect was significant (P<0.05) for F1 tablets at both 

crushing strength levels, however it was not significant (P>0.05) for F2 tablets. 

Furthermore, in open containers, a significant (P<0.05) effect was only noted for 

F1 tablets at crushing strength level (B) and F2 tablets at crushing strength level 

(A). The floating lag time results of the tablets based on 10% (w/w) calcium 

carbonate as a gassing agent (F3) in closed containers decreased at all crushing 

strength levels. The effect was non-significant (P>0.05) except at level A of 

crushing strength. In contrast, storage in open containers increased the floating 

lag time non-significantly (P>0.05) in comparison with freshly prepared ones. But, 

at level A of crushing strength the floating lag time was significantly (P<0.05) 

decreased. For F4 (20% (w/w) calcium carbonate) tablets, the floating lag time 

non-significantly decreased (P>0.05) after storage in either closed or open 

containers at all crushing strength levels. An exception was reported at level C of 

crushing strength in open containers where the effect was significant (P<0.05) 

(Table 3-5).  

The decrease in floating lag time may be explained by the increase in the 

tablet thicknesses due to the aging process which facilitated dissolution medium 

entrapment at early stages of the dissolution process. This means rapid contact 

between the gassing agent and the acidic medium to start the effervescent and the 

floating processes. For calcium carbonate based tablets, the reduction in the lag 

time results was higher in closed containers than in open ones. The storage in 

open containers caused a direct exposure to a stressful humidity level (80% RH) 

which caused a higher increase in tablets‘ dimensions when compared to those 

stored in closed containers (Table 3-4). Even calcium carbonate has a higher 

effervescent activity; it has less ability to generate an alkaline microenvironment. 

Therefore, this may lead to escape of generated carbon dioxide bubbles at early 

stages of contact with the acidic medium and delay the floating process which 

explains the higher reduction in the floating lag time values in closed containers 

than that in open ones.  
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The lag time results of the formulations F5 and F6 based on sodium 

carbonate non-significantly (P>0.05) increased after a storage in closed 

containers. Conversely, a significant (P<0.05) decrease was noted after storage in 

the open ones. This increase in the lag time results of the tablets of F5 and F6 

formulation may be related to the high hygroscopic properties of sodium carbonate 

(Section 3.2.2). The relatively high moisture level during the storage may decrease 

the concentration of sodium carbonate molecules available for the effervescent 

reaction at the commencement of the dissolution test which was reflected by the 

increase in the floating lag time results. Even storage in open containers 

stressfully caused a direct exposure to humidity, however the lag time results were 

sharply decreased. This could be explained by the sharp reduction in their 

apparent density results at levels A, B, and C of crushing strength where 0.92, 

0.97, and 0.98 g/cm3 were respectively reported (Figure 3-38) which enhanced 

rapid floating. 

Additionally, in both closed and open containers, the floating duration was 

sharply increased from > 8 h to > 24 h for F1 formulation (10% (w/w) sodium 

bicarbonate); but, it did not change for F2 formulation (20% (w/w) sodium 

bicarbonate) where results remained > 24 h. Additionally, the floating duration was 

increased from > 5 h to > 8 h for F3 (10% (w/w) calcium carbonate) tablets and 

sharply increased from > 12 h to > 24 h for F5 (10% (w/w) sodium carbonate) 

tablets after storage in either closed or open containers. Yet, the floating duration 

of the formulations F4 (20% (w/w) calcium carbonate) and F6 (20% (w/w) sodium 

carbonate) did not change after the storage and they continued to float for > 24 h 

(Table 3-6). This agrees with the tablet relaxation behaviour during the storage 

which could enhance faster dissolution medium entrapment through the dilated 

inter-particulate voids of the relaxed tablet structure. This enhanced a rapid 

reaction with the superficial gassing agent molecules and shortened the lag time 

results of the formulations F1-F6. However, the gassing agent was also uniformly 

distributed all over the tablet matrix. Consequently, a sufficient deep penetration of 

the acidic medium through the relaxed matrix voids would be expected to make a 

contact with the deeply impeded gassing agent molecules. Extra bubbles of 

carbon dioxide would be generated to maintain the floating process for longer 

floating time duration. Moreover, 20% (w/w) of the gassing agents was already 

enough for the tablets to float > 24 h.    
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3.2.4 Swelling and erosion studies 

 

The hydration layer plays a key role in the controlled drug release of gel 

forming tablets. Also, drug solubility plays a major role in the release mechanism. 

Water soluble drugs are released by diffusion through the formed gel layer, 

nonetheless, for poor water-soluble drugs, matrix erosion is considered as the rate 

limiting step for the drug release. Since the designed floating tablets based on gel 

forming polymeric mixture (hydroxyethyl cellulose and sodium alginate), it was 

important to evaluate swelling and erosion data. Swelling studies were conducted 

according to the method described earlier (Chapter 2, section 2.2.6.4). Results 

were utilized to make a correlation with the drug release rate and the release 

mechanism. Only the tablets prepared from the granules were subjected to 

swelling studies due to the good flow properties that facilitate their automatic 

pressing by the single-punch tableting machine which made them more suitable to 

benefit the pharmaceutical industry.  

The % of dissolution medium uptake (DMU) for all the tablets prepared from 

the granules (F1-F7) in 0.1 M HCl medium was calculated by equation (5) 

(Chapter 2, section 2.2.6.4), and data is presented in Figure 3-43 to Figure 3-46. 

For all the tablets the percentage of dissolution medium uptake (DMU), in 0.1 M 

HCl medium, showed a continuous increase until 12 h of the experiment time 

except for the control tablets (F7) where the increase continued till 8 h only. 

Increasing the tablet crushing strength in all the formulations (F1-F7) did not cause 

a significant (P>0.05) effect in the swelling rate results at majority of the time 

points. Viridén et al. (2009) showed that the tablet strength had only a small effect 

on the swelling rate of hydrophilic tablets. Tablets of F2 formulation showed a 

significant (P<0.05) decrease in DMU (compared to F1 formulation) at most of the 

time points (Figure 3-43). When a tablet floats on the dissolution medium, its upper 

surface does not come in contact with the medium, while other surfaces are 

placed under the dissolution medium surface. Once it sinks after a period of time, 

all surfaces of this tablet becomes completely available for DMU. Accordingly, the 

surface area available for water uptake and the floating duration could explain the 

lower swelling rate of F2 tablets in comparison with F1 tablets. As stated 

previously, tablets of F2 formulation floated for > 24 h while F1 tablets floated for 

only > 8 h and then sank for the rest of the experiment time.  
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This means that the upper tablet surface of F1 formulation became 

available for DMU after sinking and the tablet showed higher swelling rate by the 

end of the experiment. As presented in Figure 3-46, F7 control tablets that 

remained under the surface of the dissolution medium throughout the experiment 

time showed an almost similar swelling rate profile of those of F1 tablets 

(Figure 3-43) and the difference was not significant (P>0.05) at majority of the time 

points. Nevertheless, F2 tablets showed a significant (P<0.05) lower swelling rate 

results (Figure 3-43) than those of F7 tablets at larger part of the time points.  

Raising calcium carbonate levels from 10% (w/w) (F3) to 20% (w/w) (F4) 

caused a significant (P<0.05) decrease in the tablet swelling at most of the time 

points (Figure 3-44). However, increasing sodium carbonate level did not cause a 

significant (P>0.05) effect on the swelling of F5 and F6 tablets at majority of the 

time points (Figure 3-45). F4 tablets floated for > 24 h while F3 tablets floated for 

only > 5 h. This means that the upper tablet surface of F3 sample became 

available for DMU after sinking and the tablet showed great swelling by the end of 

the experiment. Although, tablets of F5 (10% (w/w)) and F6 (20% (w/w)) 

formulations, based on sodium carbonate as a gassing agent, floated for > 12 and 

> 24 h respectively (Table 3-6), the DMU results were almost the same. Data of 

the formulations F5 and F6 (Figure 3-45) showed a continuous increase in 

swelling rate until 12 h only which could explain the absence of a significant 

(P>0.05) difference between the formulations F5 and F6 at bulk of the time points.  

Pentoxifylline control tablets of F7 formulation (Figure 3-46) that remained 

under the surface of the dissolution medium for the entire period of the experiment 

and demonstrated a significantly (P<0.05) higher swelling rate profile compared to 

the formulations F3 and F4 based on calcium carbonate as a gassing agent at 

most of the time points. However, this difference was not significant (P>0.05) in 

comparison to the formulations F5 and F6 which were based on sodium carbonate 

at larger part of the time points. Sodium carbonate is a stronger alkaline material 

than calcium carbonate (Section 3.2.3) which may explain the ability of the 

formulations F5 and F6 to swell at an almost similar rate to F7 formulation even 

after the long period of floating. Figure 3-47 reveals images of F4 and F7 tablets 

prepared at 49-54 N crushing strength (as examples) during their swelling 

characterization test for 24 h.  
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Figure 3-43: Percentage of medium uptake for the formulations F1 and F2 
(prepared from granules) in 0.1 M HCl medium. 
Notes: The data represents the mean ± SD of three determinations. The 
compression force of the prepared tablets was adjusted to give two crushing 
strength levels: A (49–54 N), and B (54–59 N).  
 

 

 

 
Figure 3-44: Percentage of medium uptake for the formulations F3, and F4 
(prepared from granules) in 0.1 M HCl medium.  
Notes: The data represents the mean ± SD of three determinations. The 
compression force of the prepared tablets was adjusted to give three crushing 
strength levels: A (49-54 N), B (54-59 N), and C (59-64 N). 
For formulation composition, refer to Table 3-1 or Table 2-7. 
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Figure 3-45: Percentage of medium uptake for the formulations F5, and F6 
(prepared from granules) in 0.1 M HCl medium.  
Notes: The data represents the mean ± SD of three determinations. The 
compression force of the prepared tablets was adjusted to give three crushing 
strength levels: A (49-54 N), B (54-59 N), and C (59-64 N).  
 

 

 

 
Figure 3-46: Percentage of medium uptake for F7 formulation (prepared from 
granules) in 0.1 M HCl medium.  
Notes: The data represents the mean ± SD of three determinations. The 
compression force of the prepared tablets was adjusted to give three crushing 
strength levels: A (49-54 N), B (54-59 N), and C (59-64 N). 
For formulation composition, refer to Table 3-1 or Table 2-7. 
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Figure 3-47: Images of F4 and F7 tablets during their swelling for 24 hours.  
For formulation composition, refer to Table 3-1 or Table 2-7. 

 

 

 

Regarding erosion studies, they were accomplished according to the 

method described earlier (Chapter 2, section 2.2.6.4). Only the tablets prepared 

from the granules were subjected to erosion studies due to the good flow 

properties that facilitate their automatic pressing by the single-punch tableting 

machine. The % of mass loss for all the tablets was calculated by equation (6) 

(Chapter 2, section 2.2.6.4). Figure 3-48 to Figure 3-51 represent the percentage 

of the mass loss of all the tablets (F1-F7) prepared from the granules where all the 

tablets showed gradual loss in their masses up to almost half of their original 

weight at the end of 24 h. Increasing crushing strength levels did not cause a 

significant (P>0.05) effect on the mass loss values of all the formulations (F1-F7) 

at majority of the time points. Increasing the gassing agent concentration of 

sodium bicarbonate (Figure 3-48), calcium carbonate (Figure 3-49) and sodium 

carbonate (Figure 3-50) from 10% to 20% (w/w) significantly (P<0.05) increased 

the mass loss values at most of the time points. Pentoxifylline control tablets (F7) 

demonstrated the lowest mass loss percentage profile as shown in (Figure 3-51) 

and their results were significantly (P<0.05) lower than all the other formulations at 

larger part of the time points. This may be explained by the higher effervescent 

effect due to the higher gassing agent level, which liberates more carbon dioxide 

bubbles. This means more mass loss from the tablet matrix due to the 

effervescent process.  
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Figure 3-48: Percentage of mass loss for the formulations F1 and F2 (prepared 
from granules) in 0.1 M HCl medium.  
Notes: The data represents the mean ± SD of three determinations. The 
compression force of the prepared tablets was adjusted to give two crushing 
strength levels: A (49–54 N), and B (54–59 N).  
 

 

 

 
Figure 3-49: Percentage of mass loss for the formulations F3, and F4 (prepared 
from granules) in 0.1 M HCl medium.  
Notes: The data represents the mean ± SD of three determinations. The 
compression force of the prepared tablets was adjusted to give three crushing 
strength levels: A (49-54 N), B (54-59 N), and C (59-64 N).  
For formulation composition, refer to Table 3-1 or Table 2-7. 
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Figure 3-50: Percentage of mass loss for the formulations F5, and F6 (prepared 
from granules) in 0.1 M HCl medium.  
Notes: The data represents the mean ± SD of three determinations. The compression 
force of the prepared tablets was adjusted to give three crushing strength levels: A (49-54 
N), B (54-59 N), and C (59-64 N). 

 

 

 

 
Figure 3-51: Percentage of mass loss for F7 formulation (prepared from granules) 
in 0.1 M HCl medium.  
Notes: The data represents the mean ± SD of three determinations. The 
compression force of the prepared tablets was adjusted to give three crushing 
strength levels: A (49-54 N), B (54-59 N), and C (59-64 N).  
For formulation composition, refer to Table 3-1 or Table 2-7. 
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3.2.5 In vitro drug release studies 

 

In vitro drug release study is an important analytical method to investigate 

and develop product behaviour during various stages of new drug product 

development. Moreover, the resulted release profile can reveal essential 

information regarding the release mechanism and kinetics, enabling a rational and 

scientific approach to drug product development. Dissolution profiles of all the 

tablets (F1-F7) prepared from the powder mixtures are presented in Figure 3-52 to 

Figure 3-55.  

Statistically, the tablets of F1 (10% (w/w) sodium bicarbonate) and F2 (20% 

(w/w) sodium bicarbonate) showed a significant (P<0.05) decrease in their drug 

release rate when their crushing strength level increased from level (A) to level (B) 

at majority of the time points (Figure 3-52). Additionally, a significant (P<0.05) 

difference was found between the release profiles of pentoxifylline control tablets 

(F7) at different crushing strength levels at most of the time points (Figure 3-55). 

The tablets of F3 (10%) and F4 (20%) based on calcium carbonate as a gassing 

agent showed only a small difference between their drug release rate due to their 

complete disintegration. An exception was noted in those of F3 at level C of 

crushing strength where a significant (P<0.05) slower release rate occurred up to 

12 h at bulk of the time points (Figure 3-53). The tablets of F5 and F6 which 

contained sodium carbonate as a gassing agent did not disintegrate and the 

difference between their drug release rate was not significant (P>0.05) at larger 

part of the time points (Figure 3-54).  
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Figure 3-52: Percentage of drug release of F1 and F2 floating tablets pressed at 
levels (A) and (B) of crushing strength in 0.1 M HCl medium before granulation. 
Notes: The data represents the mean ± SD of three determinations. The 
compression force of the prepared tablets was adjusted to give two crushing 
strength levels: A (49–54 N), and B (54–59 N).  No significant change in the 
dissolution medium, macroenvironment, pH was recorded through the experiment 
time.   
 

 

 
Figure 3-53: Percentage of drug release of F3, and F4 floating tablets pressed at 
levels (A), (B), and (C) of crushing strength in 0.1 M HCl medium before 
granulation. 
Notes: The data represents the mean ± SD of three determinations. The 
compression force of the prepared tablets was adjusted to give three crushing 
strength levels: A (49-54 N), B (54-59 N), and C (59-64 N).  No significant change 
in the dissolution medium, macroenvironment, pH was recorded through the 
experiment time.   
For formulation composition, refer to Table 3-1 or Table 2-7 
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Figure 3-54: Percentage of drug release of F5, and F6 floating tablets pressed at 
levels (A), (B), and (C) of crushing strength in 0.1 M HCl medium before 
granulation. 
Notes: The data represents the mean ± SD of three determinations. The 
compression force of the prepared tablets was adjusted to give three crushing 
strength levels: A (49-54 N), B (54-59 N), and C (59-64 N).  No significant change 
in the dissolution medium, macroenvironment, pH was recorded through the 
experiment time.   
 

 

 
Figure 3-55: Percentage of drug release of F7 control tablets pressed at levels 
(A), (B), and (C) of crushing strength in 0.1 M HCl medium before granulation. 
Notes: The data represents the mean ± SD of three determinations. The 
compression force of the prepared tablets was adjusted to give three crushing 
strength levels: A (49-54 N), B (54-59 N), and C (59-64 N).  No significant change 
in the dissolution medium, macroenvironment, pH was recorded through the 
experiment time. 
For formulation composition, refer to Table 3-1 or Table 2-7. 
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Figure 3-56: Percentage of drug release of F1, and F2 floating tablets pressed at 
levels (A), and (B) of crushing strength in 0.1 M HCl medium after granulation. 
Notes: The data represents the mean ± SD of three determinations. The 
compression force of the prepared tablets was adjusted to give two crushing 
strength levels: A (49-54 N) and B (54-59 N).  No significant change in the 
dissolution medium, macroenvironment, pH was recorded through the experiment 
time. 
 

 

 
Figure 3-57: Percentage of drug release of F3, and F4 floating tablets pressed at 
levels (A), (B), and (C) of crushing strength in 0.1 M HCl medium after granulation. 
Notes: The data represents the mean ± SD of three determinations. The 
compression force of the prepared tablets was adjusted to give three crushing 
strength levels: A (49-54 N), B (54-59 N), and C (59-64 N).  No significant change 
in the dissolution medium, macroenvironment, pH was recorded through the 
experiment time. 
For formulation composition, refer to Table 3-1 or Table 2-7 
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Figure 3-58: Percentage of drug release of F5, and F6 floating tablets pressed at 
levels (A), (B), and (C) of crushing strength in 0.1 M HCl medium after granulation. 
Notes: The data represents the mean ± SD of three determinations. The 
compression force of the prepared tablets was adjusted to give three crushing 
strength levels: A (49-54 N), B (54-59 N), and C (59-64 N).  No significant change 
in the dissolution medium, macroenvironment, pH was recorded through the 
experiment time. 
 

 

 
Figure 3-59: Percentage of drug release of F7 control tablets pressed at levels 
(A), (B), and (C) of crushing strength in 0.1 M HCl medium after granulation. 
Notes: The data represents the mean ± SD of three determinations. The 
compression force of the prepared tablets was adjusted to give three crushing 
strength levels: A (49-54 N), B (54-59 N), and C (59-64 N).  No significant change 
in the dissolution medium, macroenvironment, pH was recorded through the 
experiment time. 
For formulation composition, refer to Table 3-1 or Table 2-7. 
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Although Liew et al (2006) proposed that both gel layer generation around a 

matrix tablet as well as the gel layer porosity can control the drug release process, 

but not the dry matrix porosity; however, Mandal et al (2009) reported a significant 

difference in drug release from highly compressed tablets, indicating that there is a 

limit of crushing strength above which the porosity of a dry matrix will affect the 

penetration of the dissolution medium inside the tablet. This agrees with the 

porosity results of F1, F2, and F7 tablets (Section 3.2.2), where increasing the 

compression force made the powder mixture particles closer to each other and 

reduced the porosity percentage significantly (P<0.05). Therefore, the penetration 

of the dissolution medium into the matrix to dissolve pentoxifylline was more 

difficult, and the drug release process was delayed. Calcium carbonate may show 

higher effervescent behaviour compared to sodium carbonate (Section 3.2.3), but 

the ability of sodium carbonate to generate an alkaline microenvironment to 

accelerate swelling and gel formation is better than that of calcium carbonate. 

Thus, an insufficient gel layer formation may lead to partial or complete tablet 

disintegration in case of calcium carbonate based tablets. 

The drug release rate of (F1-F7) tablets prepared from the granules is 

shown in Figure 3-56 to Figure 3-59. Increasing the tablets crushing strength level 

in all the formulations (F1-F7) caused a non-significant (P>0.05) difference in their 

drug release rate at majority of the time points. This comes in agreement with 

DMU results (Section 3.2.4) where the tablet strength had only a small effect on 

the tablets swelling rate behaviour. In addition, Ebube and Jones (2004) 

concluded a minimal effect of compression force on acetaminophen release rate 

from either hydroxypropylmethyl cellulose or hydroxypropyl cellulose matrices 

prepared from granules. Consequently, this gives an advantage to control other 

formulation parameters such as high friability percentages by raising the 

compression force without disturbing the drug release rate. 
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The effect of the granulation process on the drug release rate from the 

formulations F1-F7 reveals that the granulation extended the drug release rate of 

all the prepared tablets. A significant (P<0.05) decrease at larger part of the time 

points was noted in the release profiles in both the formulations F1 and F2 except 

at level (B) of crushing strength for F1 formulation which was not significant 

(P>0.05) at bulk of the time points. Additionally, the granulation effect was 

significant (P<0.05) in the formulations F3, F4, and F7, yet, it was not significant 

(P>0.05) in the formulations F5 and F6 at most of the time points. A lower 

standard deviation (SD) values were reported for the formulations F5, F6, and F7 

following the granulation which reveals a homogenous drug release rate in 

comparison with tablets prepared from the powder mixtures.  

The granulation process enhanced the internal structure resistance of the 

formulations F3 and F4 to rupture due to calcium carbonate effervescent 

behaviour and gave enough time for swelling and gel layer formation to control the 

drug release process. Results of the tablets based on sodium bicarbonate as a 

gassing agent (F1 and F2) and the control tablets (F7) may be explained by 

results of Mukhopadhyay et al. (2008) study where increasing the water binder 

volume decreased the porosity during the wet massing stage, and this reduction 

decreased the dissolution medium entrapment rate through the matrix at an early 

stage of the dissolution test, which decreased the drug release process. The 

insignificant (P>0.05) effect of the granulation process on F5 and F6 tablets at 

most of the time points may be explained by the high alkalinity of sodium 

carbonate as a gassing agent which may explain the ability of the tablets either 

before or after the granulation to swell at a similar rate. Although the porosity of F6 

formulation increased after the granulation as discussed earlier (Section 3.2.2), it 

has been proposed that dissolution medium can pass through tablet surface pores 

to initiate gel layer formation through the swelling process (Alderman, 1984). 

Within the formed gel blocks, the liquid can fill pores in less than 15 min, after 

which water can be primarily transported through the created coherent gel layer 

(Bajwa et al., 2006). Accordingly, swelling rate may control the drug release rate 

and explain the insignificant (P>0.05) effect of granulation. 
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Increasing the concentration of sodium bicarbonate from 10% to 20% (w/w) 

increased significantly (P<0.05) the drug release rates of the formulations 

prepared from the powder mixture at majority of the time points (Figure 3-52). 

More pore formation in the wet matrix structure due to the effervescent process 

and the liberation of more carbon dioxide bubbles explains the higher drug release 

rate. In contrast, increasing sodium bicarbonate concentration significantly 

(P<0.05) decreased the drug release rate of the formulations prepared from the 

granules at bulk of the time points (Figure 3-56). This conforms to the DMU results 

(Section 3.2.4), where the swelling rate of F1 formulation was higher than that of 

F2 (Figure 3-43). Accordingly, a higher swelling rate indicates more dissolution 

medium entrapment in the matrix structure, which may dissolve and release more 

drug molecules. A non-significant (P>0.05) effect of raising the concentration of 

calcium carbonate as a gassing agent on the drug release rate of the tablets 

prepared from the powder mixture at larger part of the time points was noted 

except at level C of crushing strength as shown in (Figure 3-53). This may be 

explained by the complete disintegration behaviour of the tablets (within 30 min). 

However, the effect was significant (P<0.05) in the tablets prepared from the 

granules at majority of the time points (Figure 3-57). Increasing calcium carbonate 

concentration from 10% to 20% (w/w) increased pore formation in the formed gel 

layer around the tablets due to the entrapped gas bubbles, and this caused a 

higher drug release rate. Increasing sodium carbonate concentration produced a 

non-significant (P>0.05) increase in the rate of drug release from the tablets 

prepared either from the powder mixture (Figure 3-54) or the granules 

(Figure 3-58) at most of the time points. This agrees with the effect of sodium 

carbonate alkalinity on the swelling behaviour of tablets (Section 3.2.4).  

The effect of adding a gassing agent on the drug release rate of the tablets 

prepared from the powder mixture or the granules was evaluated by comparing F7 

(0% w/w gassing agent) results with all the other formulations. As presented in 

Figure 3-55 and Figure 3-59, pentoxifylline control tablets (F7) prepared from the 

powder mixture or the granules respectively, showed a drug release rate almost 

similar (P>0.05) to that of F1 formulation, but significantly (P<0.05) higher than 

that of F2 formulation at bulk of the time points.  
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This also agrees with the swelling study results (Section 3.2.4), where the 

swelling rate of F7 formulation (Figure 3-46) was almost similar (P>0.05) to that of 

F1 formulation and significantly (P<0.05) higher than that of F2 formulation at 

majority of the time points (Figure 3-43). Adding calcium carbonate at both 

concentrations caused a higher drug release rate due to liberation of carbon 

dioxide bubbles. Generally, the effect was significant (P<0.05) at larger part of the 

time points for the tablets prepared from the powder mixture  following the 

disintegration behaviour in most of F3 and F4 tablets (Figure 3-53) except at level 

A of crushing strength where F7 tablets also showed complete disintegration 

(Figure 3-55). For the tablets prepared from the granules, the effect was not 

significant (P>0.05) at 10% (w/w) (F3) but significant (P<0.05) at 20% (w/w) (F4) of 

calcium carbonate (Figure 3-57) compared to F7 tablets (Figure 3-59) at most of 

the time points. In contrast, adding sodium carbonate (gassing agent) at 10% (F5) 

and 20% (w/w) (F6) decreased the release rate compared to that of pentoxifylline 

control tablets (F7) of both the powder mixture (Figure 3-54 and Figure 3-55) and 

the granules origin (Figure 3-58 and Figure 3-59) respectively. Generally, the 

effect was not significant (P>0.05) at majority of the time points except for the 

tablets prepared from the powder mixture at level A of crushing strength where F7 

tablets showed complete disintegration behaviour (within 30 min). Although, the 

tablets of the formulations F5 and F6 floated for > 12 and > 24 h respectively 

(Table 3-6); their DMU results (Section 3.2.4) were almost similar to that of F7 

formulation due to the alkalinity of sodium carbonate which may explain the non-

significant (P>0.05) difference in their drug release rate. 
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Regarding the stability studies, storage for 3 months at 40°C ± 2°C and 

80% ± 5% RH in closed containers slightly (P>0.05) decreased the drug release 

rate of all the tablets of F1 (Figure 3-60) and F2 (Figure 3-61) formulations in 

comparison with the freshly prepared tablets at majority of the time points. 

However, storage in open containers increased the drug release rate non-

significantly (P>0.05) for F1 tablets and significantly (P<0.05) for F2 tablets at both 

crushing strength levels at most of the time points. The in vitro drug release results 

of the stability studies in open containers agrees with the reduction in the lag time 

results after storage (Section 3.2.3) where the dissolution medium easily 

penetrated the relaxed tablet matrices to dissolve the drug and release it at a 

higher rate in comparison to the freshly prepared tablets. 

Storage for 3 months at 40°C ± 2°C and 80% ± 5% RH in closed containers 

caused a decrease in the drug release rate of tablets based on calcium carbonate 

(gassing agent) as presented in Figure 3-62 and Figure 3-63. Although the effect 

was not significant (P>0.05) at bulk of the time points for F3 (10% (w/w) calcium 

carbonate) formulation, it was significant (P<0.05) for F4 (20% (w/w) calcium 

carbonate) formulation at majority of the time points. Storage for three months in 

the open containers caused a significant (P<0.05) increase in the drug release rate 

of F3 (10% (w/w) calcium carbonate) formulation at larger part of the time points. A 

significant (P<0.05) decrease in the in vitro drug release results of F4 (20% (w/w) 

calcium carbonate) formulation at bulk of the time points was noted except at level 

C of crushing strength where the effect was not significant (P>0.05) at most of the 

time points. These results support the later proposal (Section 3.2.6) that the in situ 

ability of anionic alginate molecules to form a gel in the presence of multivalent 

cations such as calcium ions in aqueous medium especially under a relatively high 

moisture level during storage will generate an insoluble gel that may decrease the 

drug release rate. Nevertheless, the cross linking process with 10% (w/w) (F3) 

calcium carbonate may be insufficient to overcome the increase in the tablets 

dimensions due to tablet aging behaviour.     
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The stability drug release rate of sodium carbonate (gassing agent) 

formulations (F5, 10% (w/w) and F6, 20% (w/w)) were presented in Figure 3-64 

and Figure 3-65 respectively. Storage for three months in either closed or open 

containers significantly increased (P<0.05) the in vitro drug release rate of both F5 

and F6 at all crushing strength levels at bulk of the time points. An exception was 

reported at the lower gassing agent concentration (F5) in the closed containers 

where the effect was not significant (P>0.05) at majority of the time points.   

For F7 formulation (0% gassing agent), a significant (P<0.05) increase in 

the drug release rate was reported at levels A, B, and C of crushing strength at 

larger part of the time points (Figure 3-66). This increase in the drug release rate 

of F5, F6, and F7 tablets may be explained by the tablet relaxation during the 

storage process which enhanced more entrapment of the dissolution medium in 

the matrices, leading to dissolve more pentoxifylline molecules and generating 

higher dissolution profiles. 

Generally, tablets stored in the closed containers showed an increase in 

their dimensions; still a lower change in their drug release rate was noted in 

comparison to those stored in the open containers. This may indicate a better 

physical stability of such formulations in closed containers rather than under the 

harsh storage conditions (open containers). Generally, solid oral dosage forms, 

such as tablets, needs protection from moisture, and sometimes from light or 

reactive gases. Because moisture may enhance the drug substance 

decomposition rate or the dissolution rate of the dosage form, a typical container 

closure system for such drug products should have low moisture permeation rate 

such as plastic bottle with a screw-on or snap-off closure or a flexible packaging 

system, like a pouch or a blister package. Essentially, a suitable eye-catching label 

to direct patients for good practice should be recommended for floating tablet 

formulations. 
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Figure 3-60: Percentage of drug release of F1 floating tablets pressed at levels 
(A) and (B) of crushing strength in 0.1 M HCl medium after storage for 3 months at 
40°C ± 2°C and 80% ± 5% RH in closed or open containers. 
Notes: The data represents the mean ± SD of three determinations. The 
compression force of the prepared tablets was adjusted to give two crushing 
strength levels: A (49–54 N), and B (54–59 N).  No significant change in the 
dissolution medium, macroenvironment, pH was recorded through the experiment 
time. 
 

 

 
Figure 3-61: Percentage of drug release of F2 floating tablets pressed at levels 
(A) and (B) of crushing strength in 0.1 M HCl medium after storage for 3 months at 
40°C ± 2°C and 80% ± 5% RH in closed or open containers. 
Notes: The data represents the mean ± SD of three determinations. The 
compression force of the prepared tablets was adjusted to give two crushing 
strength levels: A (49–54 N), and B (54–59 N).  No significant change in the 
dissolution medium, macroenvironment, pH was recorded through the experiment 
time. 
For formulation composition, refer to Table 3-1 or Table 2-7. 
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Figure 3-62: Percentage of drug release of F3 floating tablets pressed at levels 
(A) and (B) of crushing strength in 0.1 M HCl medium after storage for 3 months at 
40°C ± 2°C and 80% ± 5% RH in closed or open containers. 
Notes: The data represents the mean ± SD of three determinations. The 
compression force of the prepared tablets was adjusted to give three crushing 
strength levels: A (49-54 N), B (54-59 N), and C (59-64 N).  No significant change 
in the dissolution medium, macroenvironment, pH was recorded through the 
experiment time. 

 

 

 
Figure 3-63: Percentage of drug release of F4 floating tablets pressed at levels 
(A) and (B) of crushing strength in 0.1 M HCl medium after storage for 3 months at 
40°C ± 2°C and 80% ± 5% RH in closed or open containers. 
Notes: The data represents the mean ± SD of three determinations. The 
compression force of the prepared tablets was adjusted to give three crushing 
strength levels: A (49-54 N), B (54-59 N), and C (59-64 N).  No significant change 
in the dissolution medium, macroenvironment, pH was recorded through the 
experiment time. 
For formulation composition, refer to Table 3-1 or Table 2-7. 
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Figure 3-64: Percentage of drug release of F5 floating tablets pressed at levels 
(A) and (B) of crushing strength in 0.1 M HCl medium after storage for 3 months at 
40°C ± 2°C and 80% ± 5% RH in closed or open containers. 
Notes: The data represents the mean ± SD of three determinations. The 
compression force of the prepared tablets was adjusted to give three crushing 
strength levels: A (49-54 N), B (54-59 N), and C (59-64 N).  No significant change 
in the dissolution medium, macroenvironment, pH was recorded through the 
experiment time. 

 

 

 
Figure 3-65: Percentage of drug release of F6 floating tablets pressed at levels 
(A) and (B) of crushing strength in 0.1 M HCl medium after storage for 3 months at 
40°C ± 2°C and 80% ± 5% RH in closed or open containers. 
Notes: The data represents the mean ± SD of three determinations. The 
compression force of the prepared tablets was adjusted to give three crushing 
strength levels: A (49-54 N), B (54-59 N), and C (59-64 N).  No significant change 
in the dissolution medium, macroenvironment, pH was recorded through the 
experiment time. 
For formulation composition, refer to Table 3-1 or Table 2-7. 
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Figure 3-66: Percentage of drug release of F7 control tablets pressed at levels (A) 
and (B) of crushing strength in 0.1 M HCl medium after storage for 3 months at 
40°C ± 2°C and 80% ± 5% RH in closed or open containers. 
Notes: The data represents the mean ± SD of three determinations. The 
compression force of the prepared tablets was adjusted to give three crushing 
strength levels: A (49-54 N), B (54-59 N), and C (59-64 N).  No significant change 
in the dissolution medium, macroenvironment, pH was recorded through the 
experiment time. 
For formulation composition, refer to Table 3-1 or Table 2-7. 
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Regarding the ICH (Q6A), any change in the qualitative characteristics of 

the dosage form, such as the colour, during storage should be investigated 

appropriately (ICH, 1999). The morphological changes due to storage for 3 months 

at 40°C ± 2°C and 80% ± 5% RH in closed or open containers had been observed 

(Figure 3-67). Pictures of the tablets based on sodium bicarbonate (F1 and F2) 

gave an impression that the tablets became pink and spotted after the storage, 

however they were not. Pictures were taken at different time intervals during the 

study and it was difficult to have the same quality of the pictures at each time 

interval. Additionally, no change in the tablets colour of the formulations based on 

calcium carbonate (F3 and F4) was observed after the storage neither in the 

closed nor in the open containers. This agrees with earlier results of DSC 

(Section 3.1.2) and FTIR (Section 3.1.3) that confirmed stability of pentoxifylline in 

the formulations F1-F4 after storage for 3 months at 40°C ± 2°C and 80% ± 5% 

RH in closed or open containers. In contrast, small spots with brown colour were 

shown on the surface of F5 (10% sodium carbonate) and F6 (20% sodium 

carbonate) tablets only after storage in open containers. Although, both DSC 

(Section 3.1.2) and FTIR results (Section 3.1.3) indicates stability of pentoxifylline 

in such formulations, this is not acceptable and needs further investigations in the 

future using a specific stability-indicating assay method such as HPLC to 

determine the drug content and any possible degradation products.  
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Figure 3-67: Pictures of F1-F7 tablets freshly prepared and after storage for 3 
months at 40°C ± 2°C and 80% ± 5% RH in closed or open containers.  
For formulation composition, refer to Table 3-1or Table 2-7. 
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3.2.6 Release data modeling and analysis  

 

Hydrophilic polymers such as hydroxyethyl cellulose, hydroxypropyl 

cellulose, hydroxypropylmethyl cellulose, methylcellulose, sodium carboxymethyl 

cellulose, and alginates are commonly used to fabricate three dimensional 

networks (matrices) to extend the drug release. Within these systems, drug and 

other substances like excipients required for the formulation are embedded 

(Kydonieus, 1992; Wise, 2000). On contact with aqueous media, water penetrates 

the polymer network inducing stresses within the matrix polymer causing 

relaxation shown as swelling by converting the hydrated polymer from a glassy 

state (or crystalline phase) to a rubbery state (Kararli et al., 1990; Ju et al., 1995; 

Linder et al., 1996). The resulted gel layer will control further diffusion of water into 

the matrix as well as diffusion of the drug out of the matrix. With time, this gel layer 

will dissolve (erode) in the medium by slow disentanglement of the polymer 

chains. After erosion, the new matrix surface will again be hydrated to form a new 

gel layer. In general, polymer dissolution (erosion) and diffusion of drug molecules 

across the gel layer have been identified as the rate-controlling mechanisms (Li 

and Jasti, 2006). 

Presence of cross-links between the polymeric chains enhances swelling of 

the network and delays its dissolution in the liquid medium. In case of strong 

cross-links between polymeric chains, covalent bonds are present, and the 

network is not modifying with time. However, in case of weak cross-links, van der 

Waals, dipole–dipole, hydrophobic and hydrogen bonding exist; and this kind of 

network can easily undergo erosion due to polymer-polymer junction weakness. 

Further complicated situation is present in matrices based on two different 

polymers as two interpenetrating structures (networks) are created. Normally, 

these systems are created by an early swelling of a monomer and reacting to form 

a second intermeshing network structure (Aso et al. 1999, Xuequan et al., 2000).  

Matrices can be classified regarding their porosity into macroporous, 

microporous and non-porous systems. In macroporous and microporous systems, 

drug diffusion occurs essentially through pores ranging in size between 0.1-1 mm 

and between 50-200 Å respectively. Conversely, in non-porous systems drug 

molecules diffuse through network meshes as only the polymeric phase exists and 

no pores are present (Kydonieus, 1992).  
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Figure 3-68 represent polymer swelling/erosion and drug delivery process 

from matrix systems. During the drug release process, eroding, swelling, and 

diffusion fronts can be shown (Lee and Kim, 1991). The eroding front separates 

the release environment (dissolution medium) from the matrix. Position of the 

eroding front depends on hydrodynamic conditions of the release environment and 

on cross-linking strength of the matrix. It moves outwards when swelling kinetics is 

predominant on the erosion process, and moves inwards in the opposite situation. 

The swelling front separates the swollen matrix layer from the dry glassy core. It 

moves inward with a speed depends on the viscoelastic properties of the polymer / 

solvent couple of non-porous matrices, while it depends additionally on matrix 

porosity for porous systems. 

Drug release kinetics can be influenced by drug / polymer ratio, drug 

distribution inside the matrix, drug dissolution / diffusion characteristics, polymer 

swelling and erosion characteristics, and system geometry (Conte et al., 1988; 

Colombo et al., 1999). Drug solubility plays a major role in the release mechanism. 

Soluble drugs are released by diffusion through the formed gel layer, while 

insoluble drug release is done by erosion followed by dissolution and diffusion of 

drug molecules. 

 

 

Figure 3-68: Polymer swelling/erosion and drug delivery process from matrix 
systems (Lopes et al., 2005) 
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Extended drug release systems such as matrices are able to control drug 

release rate and its duration of action by maintaining drug concentration in the 

blood or in targeted tissues at a desired level as long as possible (Langer and 

Wise, 1984, Robinson and Lee, 1987). Newly developed pharmaceutical products 

are extensively evaluated by the pharmaceutical industry and the registration 

authorities to ensure that drug release / dissolution occurs in an appropriate 

manner (Costa and Sousa Lobo, 2001). Drug is released continuously from most 

oral sustained drug release systems in a linear or non-linear release fashion 

(Bussemer and Bodmeier, 2003) as drug cristallinity, polymorphic form, particle 

size, solubility and amount in the dosage form can influence the release kinetics 

(Salomon and Doelker, 1980; El-Arini and Leuenberger, 1995). Thus, the 

quantitative analysis of the drug release data obtained from in vitro dissolution 

tests is easier when mathematical models are applied. This approach enables 

prediction of the drug delivery system release kinetics and consequently has a 

very important role in the drug delivery systems optimisation. Well-defined drug 

release kinetics is required in order to supply the drug maintenance dose to 

achieve the desired therapeutic level (Grassi and Grassi, 2005). In this work, zero 

order, first order, Hixson-Crowell, Higuchi, and Korsmeyer–Peppas mathematical 

release models were used to describe drug release process from the designed 

floating systems. 

Pharmaceutical dosage forms that do not disaggregate (assuming that area 

does not change) and release the drug slowly can be represented by zero order 

models. This model can be used to describe the drug dissolution of some 

transdermal systems, as well as matrix tablets with low soluble drugs, coated 

forms, and osmotic systems (Varelas et al., 1995). The same amount of drug by 

unit of time can be achieved by this order of release and it is the ideal method of 

drug release in order to achieve a pharmacological prolonged action (Costa and 

Sousa Lobo, 2001). Release of water-soluble drugs loaded in porous matrices can 

be fitted into first order release model in which the drug is released in a way that is 

proportional to the amount of drug remaining in its interior (Costa and Sousa Lobo, 

2001). Higuchi (1963) developed another mathematical model using an equation 

to describe the drug release from an insoluble matrix as the square root of a time-

dependent process based on Fickian diffusion.  
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Several types of modified release pharmaceutical dosage forms can be 

fitted into this model such as some transdermal systems (Costa et al., 1996) and 

matrix tablets with water soluble drugs (Desai et al., 1966a,b; Schwartz et al., 

1968a,b). The Hixson-Crowell model is a cube root law describes the drug release 

from delivery systems where there is a change in surface area and diameter of 

particles or tablets (Hixson and Crowell, 1931). Korsmeyer-pepas model is used to 

describe the release of polymeric pharmaceutical dosage forms, when the release 

mechanism is not well known or when more than one type of release phenomena 

could be involved (Korsmeyer et al., 1983). Drug release mechanism could be 

predicted from values of exponent (n). For a cylindrical tablet, a value of n ≤ 0.45 

indicates Case I transport or Fickian release (release by diffusion), 0.45 < n < 0.89 

indicates anomalous or non-Fickian release (release by diffusion and polymer 

relaxation), n = 0.89 indicates Case II transport (release by polymer erosion and 

zero-order kinetics), and n > 0.89 indicates Super Case II transport (release by 

polymer erosion) (Peppas, 1985; Mura et al., 1995). 

Table 3-7 summarizes the release rate constants (k), and correlation 

coefficients (R2) calculated after fitting the release profiles of the formulations F1-

F7 into zero order, first order, Hixson-Crowell, and Higuchi drug release 

mathematical models. Due to the rapid dissolution profiles of the tablets prepared 

from the powder mixtures at levels A of crushing strength of F2 (Figure 3-52), at 

levels A and B of F3 (Figure 3-53), at levels A, B, and C of F4 (Figure 3-53), and at 

level A of F7 (Figure 3-55) their profiles were excluded from Table 3-7 evaluation.  

The in vitro drug release rate of the formulations F1-F7 were best explained 

by first order, Hixson-Crowell, and Higuchi‗s equations, as greater than 0.98 

linearity (R2) values were obtained. Results indicates a concentration dependent 

drug release process and a change in diameter and surface area of the matrices 

with the progressive dissolution process as a function of time. Additionally, the 

release of pentoxifylline from the evaluated floating matrices (F1-F7) as a square 

root of time dependent process was based on Fickian diffusion. 

The drug release data were fitted into Korsmeyer–Peppas equation 

(Equation 11, chapter 2, section 2.2.6.6), which describes the drug release from 

polymeric systems, to evaluate the effect of different variables such as tablet 

crushing strength, the granulation process, and gassing agent concentration on 

the drug release mechanism of the prepared tablet (F1-F7).  
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Table 3-7: Release rate constants (k), and correlation coefficients (R2) calculated after fitting the release profiles of F1-F7 into 
of zero order, first order, Hixson-Crowell, and Higuchi drug release mathematical models. 

Formulation 
Origin of 
prepared 
tablets 

Crushing 
strength 

Level 

Drug release mathematical model 

Zero order First order Hixson-Crowell Higuchi 

R2 
K0 

(mg*h-1) 
R2 

K1 

(h-1) 
R2 

KHC 

(mg1/3*h-1) 
R2 

KH 

(mg1/2*h-1) 

F1 

Powder 
(A) 0.9363 5.0306 0.9988 0.1564 0.9905 0.1617 0.9925 21.582 

(B) 0.9569 6.3404 0.9885 0.1810 0.9982 0.1908 0.9974 26.974 

Granules 
(A) 0.9350 6.3000 0.9980 0.1451 0.9860 0.1670 0.9930 27.050 

(B) 0.9440 6.7200 0.9970 0.1773 0.9960 0.1920 0.9960 28.760 

F2 

Powder 
(A) 0.6237 0.8232 0.6670 0.0712 0.6539 0.0533 0.7917 3.865 

(B) 0.9719 3.5910 0.9985 0.1092 0.9952 0.1153 0.9923 15.120 

Granules 
(A) 0.9870 5.9810 0.9930 0.1152 0.9980 0.1410 0.9870 24.910 

(B) 0.9850 5.6540 0.9960 0.1082 0.9990 0.1330 0.9900 23.610 

The compression force of the prepared tablets was adjusted to give two crushing strength levels: A (49–54 N), and B (54–59 

N) for F1 and F2 formulations, and three crushing strength levels: A (49–54 N), B (54–59 N), and C (59-64 N) for F3-F7 

formulations. For formulation composition, refer to Table 3-1 or Table 2-7. Figure 3-69 shows the release kinetic plots with 

equations. 
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Table 3-7 (continued): Release rate constants (k), and correlation coefficients (R2) calculated after fitting the release profiles 
of F1-F7 into of zero order, first order, Hixson-Crowell, and Higuchi drug release mathematical models. 

Formulation 
Origin of 
prepared 
tablets 

Crushing 
strength 

Level 

Drug release mathematical model 

Zero order First order Hixson-Crowell Higuchi 

R2 
K0 

(mg*h-1) 
R2 

K1 

(h-1) 
R2 

KHC 

(mg1/3*h-1) 
R2 

KH 

(mg1/2*h-1) 

F3 

Powder 

(A) 0.5492 -0.3801 0.5058 -0.0560 0.5199 -0.0349 1.0000 1.000 

(B) 0.5623 -0.3834 0.5172 -0.0617 0.5337 -0.0376 0.4637 -1.450 

(C) 0.9193 5.4102 0.9832 0.2229 0.9760 0.2061 0.9795 23.270 

Granules 

(A) 0.9768 6.4900 0.9632 0.1891 0.9933 0.1968 0.9985 27.342 

(B) 0.9671 6.2208 0.9803 0.1670 0.9938 0.1802 0.9986 26..34 

(C) 0.9682 6.2580 0.9718 0.1614 0.9912 0.1768 0.9973 26.466 

F4 

Powder 

(A) 0.3708 0.9083 0.3764 0.0949 0.3823 0.0658 0.5424 4.578 

(B) 0.4099 0.6645 0.4778 0.0903 0.4577 0.0580 0.5787 3.290 

(C) 0.6909 1.2145 0.8202 0.1004 0.7843 0.0808 0.8178 5.506 

Granules 

(A) 0.9781 5.7699 0.9311 0.2250 0.9829 0.2085 0.9977 24.283 

(B) 0.9657 5.8074 0.9552 0.2054 0.9901 0.1987 0.9984 24.604 

(C) 0.9730 6.3913 0.9450 0.2351 0.9909 0.2215 0.9978 26.969 

The compression force of the prepared tablets was adjusted to give two crushing strength levels: A (49–54 N), and B (54–59 

N) for F1 and F2 formulations, and three crushing strength levels: A (49–54 N), B (54–59 N), and C (59-64 N) for F3-F7 

formulations. For formulation composition, refer to Table 3-1 or Table 2-7. Figure 3-69 shows the release kinetic plots with 

equations. 
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Table 3-7 (continued): Release rate constants (k), and correlation coefficients (R2) calculated after fitting the release profiles 
of F1-F7 into of zero order, first order, Hixson-Crowell, and Higuchi drug release mathematical models. 

Formulation 
Origin of 
prepared 
tablets 

Crushing 
strength 

Level 

Drug release mathematical model 

Zero order First order Hixson-Crowell Higuchi 

R2 
K0 

(mg*h-1) 
R2 

K1 

(h-1) 
R2 

KHC 

(mg1/3*h-1) 
R2 

KH 

(mg1/2*h-1) 

F5 

Powder 

(A) 0.9722 6.5091 0.9943 0.1462 0.9974 0.1691 0.9918 27.394 

(B) 0.9674 6.5549 0.9964 0.1492 0.9979 0.1718 0.9939 27.686 

(C) 0.9705 6.3234 0.9983 0.1303 0.9980 0.1557 0.9954 26.686 

Granules 

(A) 0.9968 6.5989 0.9523 0.1490 0.9831 0.1712 0.9818 27.290 

(B) 0.9849 6.3283 0.9864 0.1333 0.9983 0.1578 0.9950 26.505 

(C) 0.9804 6.2525 0.9848 0.1327 0.9963 0.1565 0.9955 26.255 

F6 

Powder 

(A) 0.9627 5.1328 0.9944 0.1343 0.9913 0.1483 0.9906 21.695 

(B) 0.9780 5.6887 0.9884 0.1557 0.9979 0.1680 0.9912 23.864 

(C) 0.9800 5.8058 0.9910 0.1446 0.9993 0.1615 0.9934 24.358 

Granules 

(A) 0.9848 6.4070 0.9687 0.1416 0.9900 0.1643 0.9919 26.794 

(B) 0.9784 6.2527 0.9926 0.1315 0.9994 0.1559 0.9969 26.300 

(C) 0.9789 5.9492 0.9922 0.1195 0.9979 0.1443 0.9963 25.010 

F7 

Powder 

(A) 0.6161 -0.1697 0.4580 -0.0707 0.5119 -0.0311 0.5679 -0.679 

(B) 0.9280 4.9154 0.9327 0.3222 0.8799 0.3822 0.9924 21.187 

(C) 0.9352 6.1052 0.9858 0.2126 0.9970 0.2069 0.9946 26.236 

Granules 

(A) 0.9313 5.5089 0.9873 0.1124 0.9734 0.1355 0.9910 23.680 

(B) 0.9718 5.7306 0.9963 0.1207 0.9973 0.1434 0.9974 24.192 

(C) 0.9749 5.6694 0.9950 0.1207 0.9971 0.1430 0.9958 23.880 

The compression force of the prepared tablets was adjusted to give two crushing strength levels: A (49–54 N), and B (54–59 
N) for F1 and F2 formulations, and three crushing strength levels: A (49–54 N), B (54–59 N), and C (59-64 N) for F3-F7 
formulations. For formulation composition, refer to Table 3-1 or Table 2-7. Figure 3-69 shows the release kinetic plots with 
equations. 
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Figure 3-69: Mathematical model plots of F2 floating tablets (as an example) 
pressed at level (A) of crushing strength in 0.1 M HCl medium after granulation. 
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As shown in Table 3-8, drug release results of F1-F7 tablets fitted into 

Korsmeyer–Peppas equation as correlation coefficients (R2) greater than 0.98 

were obtained in most cases except for those tablets prepared from the powder 

mixture of F1 formulation (10% (w/w) sodium bicarbonate) at crushing strength 

level (A), F2 formulation (20% (w/w) sodium bicarbonate) at crushing strength 

level (B), and F3 formulation (10% (w/w) calcium carbonate) at crushing strength 

level (C) where (R2) values were 0.9710, 0.9459, and 0.9392 respectively. There 

were insufficient data points on the release profile ≤ 60% drug release in order to 

provide accurate values for tablets prepared from the powder mixture of F2 

(Figure 3-52), F3, F4 (Figure 3-53), and F7 (Figure 3-55) due to their rapid drug 

release rate.  

The values of release rate constant (KP) conforms to the in vitro drug 

release results discussed earlier (Section 3.2.5). Generally, increasing tablet 

crushing strength showed a decrease in KP values of the tablets prepared from the 

powder mixture but slightly changed those of the granules origin. This complies 

with in vitro drug release studies, where increasing the compression force made 

the powder mixture particles closer to each and reduced the porosity percentage 

values. This also delayed penetration of the dissolution medium into the matrix to 

dissolve the drug, which decreased the drug release rates. 

The granulation process decreased the release rate constant (KP) of all the 

formulations (F1-F7). This agrees with previous discussion for the effect of the 

granulation process on the drug release process (Section 3.2.5), where the 

granulation decreased porosity during the wet massing stage, and this reduction 

delayed the dissolution medium entrapment through the matrix at an early stage of 

the dissolution test, and decreased the drug release rate. 

It has been noted that as sodium bicarbonate concentration increased from 

0% to 20% (w/w), drug release rate (Kp) decreased in all the tablets prepared from 

the granules. This complies with the drug release rate (Section 3.2.5) as 

increasing sodium bicarbonate concentration increased the floating duration, 

which decreased the available surface area of tablets for DMU. Consequently, a 

lower swelling rate was obtained (Section 3.2.4), which means less dissolution 

medium entrapment in matrix tablet bodies, which was presented by reduction in 

the drug release rate.  
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Regarding the other formulations (F3-F6), increasing gassing agent 

concentration from 0% (w/w) to 20 % (w/w) increased KP values of all the tablets 

except those based on sodium carbonate as a gassing agent (F5 and F6) 

prepared from the powder mixture or the granules which obeys with the drug 

release rate discussed earlier (Section 3.2.5). 

The effect of the tablet crushing strength, the granulation process, and the 

gassing agent concentration on the drug release mechanism of the prepared tablet 

(F1-F7) was also evaluated through the release exponent (n) values. As shown in 

Table 3-8, increasing tablet crushing strength for F1 formulation prepared from 

powder mixture changed the release exponent (n) values from 0.2532 to 0.5057. 

This indicates a change in the mechanism of the drug release from Fickian to non-

Fickian, which means involvement of polymer swelling or relaxation in the release 

process beside drug diffusion. However, the results of F2 formulation were not 

clear regarding release kinetics due to the insufficient data points at level (A) of 

crushing strength. Changing the crushing strength level in the tablets prepared 

from the granules slightly changed the exponent (n) values in both the 

formulations F1 and F2, where values were in the range of 0.5799 - 0.6822, which 

indicates anomalous or non-Fickian release mechanism. Regarding the 

formulations F3-F7, changing the crushing strength level slightly changed (n) 

values but without changing the release mechanism of all the prepared tablets. An 

exception was noted in those of F7 (0% gassing agent) formulation prepared from 

the powder mixture where (n) values indicates a change from Fickian to non-

Fickian release. This reveals involvement of polymer swelling or relaxation in the 

release beside drug diffusion.  

Generally, as presented in Table 3-8, the granulation process changed the 

exponent (n) values for both the formulations F1 and F2 at both crushing strength 

levels from Fickian to a non-Fickian release mechanism, which suggests the 

involvement of polymer relaxation in the release process in addition to drug 

diffusion.  
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Effect of the granulation process on the release kinetics of F3, F4 and F7 

tablets was not clear because of insufficient data points. For the tablets based on 

sodium carbonate as a gassing agent (F5 and F6), the granulation process 

changed the drug release mechanism only for F6 (20% (w/w) sodium carbonate) 

formulation from Fickian to non-Fickian release, however the release mechanism 

for F5 (10% (w/w) sodium carbonate) formulation remained non-Fickian release.     

The effect of increasing the gassing agent concentration from 0% to 20% 

(w/w) on the release kinetics was not clear in the tablets prepared from the powder 

mixture due to the insufficient data points. However, for the tablets prepared from 

the granules the effect was much clearer. It was noted that at the absence of a 

gassing agent, the drug release was through diffusion and polymer relaxation 

(non-Fickian release). The addition of gassing agents (sodium bicarbonate, 

calcium carbonate, or sodium carbonate) slightly increased the exponent (n) 

values, which reveals a little more contribution of polymer relaxation and erosion to 

release mechanism (Jiménez-Martinez et al., 2008). This may be related to the 

movement of generated carbon dioxide bubbles from internal to peripheral sides of 

floating tablets, which increased the mass loss or polymer erosion behaviour. The 

release mechanism did not change on the addition of gassing agents, but, adding 

calcium carbonate at 20% (w/w) level changed the release mechanism to diffusion 

mechanism (Fickian release). This may be explained by the in situ ability of the 

anionic alginate molecules to form a gel in the presence of multivalent cations 

such as calcium ions in aqueous medium, which fit in to the guluronate block 

structure like eggs in an egg box (Gacesa, 1988; Grant et al., 1973). In addition, 

theophylline release from polymeric matrices contained calcium ions was studied 

by Nokhodchi and Tailor (2004). They proposed that when calcium ions 

concentration increases the drug release rate increases to an optimum level 

before declining due to insufficient calcium ions being available to cross-link with 

the anionic alginate molecules to form an insoluble gel. This explain the change in 

the drug release mechanism from diffusion and polymer relaxation (F3) to diffusion 

only (F4) which may be due to better and stronger gel formation. 
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Table 3-8: Korsmeyer-Peppas kinetic parameters of the formulations F1-F7 
pentoxifylline tablet formulations. 

Formulation 
Origin of 
prepared 
tablets 

Crushing 
strength 

Level 

Korsmeyer-Pepas 

R2 n 
Kp 

(h-n) 

F1 

Powder 
(A) 0.9710 0.2532 0.3809 

(B) 0.9969 0.5057 0.2512 

Granules 
(A) 0.9989 0.5799 0.1907 

(B) 0.9990 0.6690 0.1990 

F2 

Powder 
(A) N.A N.A N.A 

(B) 0.9459 0.1503 0.4747 

Granules 
(A) 0.9921 0.6822 0.1359 

(B) 0.9907 0.6113 0.1566 

F3 

Powder 

(A) N.A N.A N.A 

(B) N.A N.A N.A 

(C) 0.9392 0.2310 0.4161 

Granules 

(A) 0.9993 0.5280 0.2336 

(B) 1 0.5441 0.2319 

(C) 0.9995 0.5800 0.2144 

F4 

Powder 

(A) N.A N.A N.A 

(B) N.A N.A N.A 

(C) N.A N.A N.A 

Granules 

(A) 0.9910 0.3355 0.3522 

(B) 0.9927 0.3768 0.3342 

(C) 0.9880 0.4202 0.2949 

F5 

Powder 

(A) 0.9929 0.6470 0.1662 

(B) 0.9944 0.6656 0.1673 

(C) 0.9982 0.7289 0.1410 

Granules 

(A) 0.9995 0.7032 0.1359 

(B) 0.9997 0.7210 0.1397 

(C) 0.9969 0.7083 0.1458 

F6 

Powder 

(A) 0.9899 0.3012 0.3246 

(B) 0.9881 0.3458 0.2928 

(C) 0.9835 0.4379 0.2534 

Granules 

(A) 0.9980 0.7116 0.1452 

(B) 0.9972 0.7005 0.1481 

(C) 0.9979 0.6739 0.1487 

F7 

Powder 

(A) NA NA NA 

(B) 0.9986 0.2511 0.5098 

(C) 0.9963 0.4564 0.3163 

Granules 

(A) 0.9985 0.5859 0.1994 

(B) 0.9961 0.5889 0.1855 

(C) 0.9980 0.5457 0.1968 

Notes: N.A: There are insufficient data points on the release profiles ≤ 60% drug 
release in order to provide accurate values. The compression force of the 
prepared tablets was adjusted to give two crushing strength levels: A (49–54 N), 
and B (54–59 N) for F1 and F2 formulations, and three crushing strength levels: A 
(49–54 N), B (54–59 N), and C (59-64 N) for F3-F7 formulations. For formulation 
composition, refer to Table 3-1 or Table 2-7.  
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3.3 Conclusions 

 

In this chapter, floating tablets of pentoxifylline were prepared using a (1:1) 

ratio of hydroxyethyl cellulose and sodium alginate polymeric mixture based on 

sodium bicarbonate, calcium carbonate or sodium carbonate gas forming agent. 

The granulation process may enhance elastic recovery of alginate molecules after 

compression, which explains the inability to prepare tablets of both the 

formulations F1 (10% (w/w) sodium bicarbonate) and F2 (20% (w/w) sodium 

bicarbonate) at 59-64 N, (level C), crushing strength after the granulation. All the 

prepared tablets (F1-F7) through the granulation showed acceptable physical 

properties via complying with the BP requirements of friability, weight and drug 

content uniformity. The results of the formulations F4 (20% (w/w) calcium 

carbonate) and F5 (10% (w/w) sodium carbonate) exceeded the BP limit of 

friability (< 1%), however, as the tablet crushing strength level increased as the 

mass loss percentage decreased. Increasing the compression force showed 

negligible influence on the drug release rate after the granulation. This gives an 

advantage to control the other formulation parameters such as high friability 

percentages by raising the compression force without disturbing the drug release 

rate.  

The effect of the granulation process on the drug release rate from all the 

formulations F1-F7 reveals that the granulation extended the drug release rate of 

all the prepared tablets. Increasing the concentration of the gassing agent 

decreased the floating lag time results of the tablets based on sodium bicarbonate 

or calcium carbonate due to the higher effervescent efficiency. In contrast, the lag 

time results increased in the tablets based on sodium carbonate due to increasing 

the tablets apparent densities. Raising sodium bicarbonate concentration in the 

tablets prepared after the granulation increased the floating duration which 

decreased the available surface area for the dissolution medium uptake. 

Consequently, a decrease in the swelling and the drug release rates were noted. 

In contrast, an increase in the drug release rate was noted in calcium carbonate 

based tablets when its concentration was increased due to the amplified pore 

formation in the generated gel layer around the tablets.  
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However, sodium carbonate, regardless its concentration, generated an 

alkaline microenvironment which accelerated the swelling and the gel formation 

rate. Hence, altering sodium carbonate concentration did not change the drug 

release rate from the prepared tablets.  

The drug release rate of all the formulations (F1-F7) fitted into non-Fickian 

release mechanism except F4 tablets, containing 20% (w/w) calcium carbonate as 

a gassing agent, which fitted into Fickian release mechanism due to the in situ 

ability of the anionic alginate molecules to be cross linked in the presence of 

enough concentration of calcium ions. The tablets could float on the surface of 

dissolution medium and sustain the drug release over 24 h. F4 tablets prepared 

with 20% (w/w) calcium carbonate showed satisfactory results with respect their 

quality control tests, floating lag time, total floating duration, swelling ability, and 

sustained drug release rate. Stability studies point to suitability of closed 

containers for such formulations. Generally, from the results, calcium carbonate 

was the most effective gassing agent to produce efficient floating tablets and this 

can add to the pharmaceutical filed as there is sparse literature about calcium 

carbonate application in floating gastroretentive drug delivery systems. Therefore, 

calcium carbonate containing formulation, F4, was chosen for preliminary in vivo 

studies (Chapter 5).   

In the following chapter (Chapter 4), another model drug, cefalexin 

monohydrate, which can be better to benefit from the gastroretentive systems, was 

loaded in floating tablet dosage forms using the gassing agents used with 

pentoxifylline floating tablets.   
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4 Chapter Four: Evaluation of the effect of sodium 

bicarbonate, calcium carbonate, and sodium 

carbonate as gassing agents on cefalexin 

monohydrate floating tablets 
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In this chapter, tablets based on a gel forming polymeric mixture of (1:1) ratio 

of hydroxyethyl cellulose and sodium alginate, and a gassing component based on 

sodium bicarbonate, calcium carbonate or sodium carbonate were developed and 

evaluated as an effervescent gastroretentive drug delivery system. Cefalexin 

monohydrate was used as a model drug since it has a short half-life of 

approximately 1 h (Davies and Holt, 1972). Consequently, it is suitable for 

sustained drug delivery. Still, its instability at intestinal pH and its narrow 

absorption window at the upper gastrointestinal tract (GIT) made it ideal model 

drug for the gastroretentive delivery systems but not the ordinary sustained 

release delivery systems (Yin et al., 2013). The variables that may affect drug 

release and floating properties were evaluated, such as the wet granulation (to 

compare effects of powders versus those of granules), and type and ratio of the 

gas forming agent.  

In order to increase the challenge level over the designed floating tablets, the 

(1:1) binary mixture of hydroxyethyl cellulose and sodium alginate content was 

reduced by almost 36% (w/w) in cefalexin monohydrate tablets compared to 

pentoxifylline tablets (Chapter 3) due to the change in their drug content. In 

chapter 3, the dose of pentoxifylline was only 60 mg to evaluate the designed 

floating tablets, but in this chapter cefalexin monohydrate dose was raised up to 

250 mg.  

 

4.1 Evaluation of the prepared powders and granules (pre-

compression characterisation) 

 

All the prepared powder mixtures and granules of the formulations F8-F14 

were evaluated for flowability CI index, moisture content percentage, DSC, and 

FTIR. The formulations F8-F14 compositions are presented in Table 4-1 (and also 

Table 2-8). 
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Table 4-1: Composition of prepared F8-F14 tablets 

Ingredients/Formulation F8 (mg) F9 (mg) F10 (mg) F11 (mg) F12 (mg) F13 (mg) F14 (mg) 

Cefalexin monohydrate 250 250 250 250 250 250 250 

Hydroxyethyl cellulose 68.8 68.8 68.8 68.8 68.8 68.8 68.8 

Sodium alginate 68.8 68.8 68.8 68.8 68.8 68.8 68.8 

Sodium bicarbonate 42.6 96.8      

Calcium carbonate    42.6 96.8    

Sodium carbonate     42.6 96.8  

Magnesium stearate (0.5%) 2.2 2.4 2.2 2.4 2.2 2.4 1.9 

Total weight 432.4a 486.8a 432.4a 486.8a 432.6a 486.8a 389.5 
a Difference in weight was due to raising gassing agent content from 10% to 20% (w/w). 
Note: number of moles of the gassing agents used in the formulations is 5.1x10-4 (F8), 11.5x10-4 (F9), 4.3x10-4 (F10), 9.7x10-4 
(F11), 4.0x10-4 (F12), and 9.1x10-4 (F13).   
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4.1.1 Flowability and moisture content for powders and granules 

 

The results of the moisture content and the CI value of the formulations F8- 

F14 before and after granulation are shown in Table 4-2. The granulation process 

caused a significant (P<0.05) decrease in the percentage of the moisture content 

of all the formulations except F13 where p=0.380.  

 Moreover, CI decreased following the granulation in all the formulations 

(F8-F14, Table 4-2) which reveals better flow properties of the granules compared 

to the powder mixture (Gaisford, 2013). The effect was significant (P<0.05) in the 

formulations based on sodium bicarbonate (F8 and F9) and sodium carbonate 

(F12 and F13) as gassing agents, but not significant (P>0.05) in all the other 

formulations (F10, F11, and F14). 

The water solubility of sodium bicarbonate (Chapter 3, section 3.2.2) could 

enhance formation of a homogenous mass with the hydrophilic polymeric binary 

mixture of hydroxyethyl cellulose and sodium alginate during the wet massing 

process. This could assist agglomeration techniques of the granulation process 

where fine solid particles are converted into larger ones by mixing them in the 

presence of water binding liquid. This acts in accordance with the significant 

(P<0.05) decrease in CI results of F12 and F13 based on sodium carbonate as a 

gassing agent which is also water-soluble (Chapter 3, section 3.2.2). Additionally, 

this may explain the non-significant (P>0.05) effect of the granulation process on 

the formulations F10 and F11 based on calcium carbonate which is less water-

soluble (Chapter 3, section 3.2.2). Hamed et al. (2005) proposed that changing 

proportions of water soluble excipients in formulations could significantly modify 

granules‘ properties which may explain the absence of significant effect of the 

granulation on the CI results of cefalexin monohydrate control formulation (F14).  
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Table 4-2: Moisture content and Carr‘s index with statistical analysis (p-value) 
results of the formulations F8-F14 before and after granulation. 

Test Formulation 
Origin of prepared tablets 

P-value 
Powder mixture Granules 

Moisture content (%) 

F8 6.25 ± 0.20 4.36 ± 0.13 0.001 

F9 5.68 ± 0.12 4.95 ± 0.16 0.013 

F10 6.74 ± 0.08 5.31 ± 0.42 0.023 

F11 5.97 ± 0.17 4.28 ± 0.08 0.001 

F12 6.80 ± 0.12 5.09 ± 0.13 0.004 

F13 6.17 ± 0.17 6.02 ± 0.11 0.380 

F14 7.20 ± 0.14 5.02 ± 0.26 0.001 

Carr‘s Index (CI) (%) 

F8 43.09 ± 0.78 23.67 ± 0.32 0.001 

F9 38.37 ± 1.87 22.34 ± 0.57 0.003 

F10 37.14 ± 4.89 30.97 ± 1.09 0.194 

F11 38.79 ± 1.83 33.97 ± 0.31 0.052 

F12 39.89 ± 1.54 28.02 ± 1.10 0.016 

F13 40.39 ± 2.26 18.92 ± 1.48 0.001 

F14 37.46 ± 4.29 31.72 ± 1.70 0.066 

Note: The data represents the mean ± SD of three determinations.  
For formulation composition, refer to Table 4-1 or Table 2-8.    
 

 

 

4.1.2 Differential scanning calorimetry (DSC) 

 

The compatibility of cefalexin monohydrate with excipients within the 

formulations F8-F14 before and after the granulation was studied using DSC. 

Cefalexin melting point and decomposition temperature was not clearly defined in 

literature. El-Shattawy et al. (1982) reported that cefalexin showed exothermic 

peaks at 178°C and at 198°C when it decomposed. Also, Doadrio et al. (2004) 

presented that samples containing cefalexin had an endothermic melting peak at 

50°C and an exothermic decomposition peak at 200°C. However, Agnihotri, et al. 

(2006) stated that for pure cefalexin, an endothermic peak appeared at 194°C due 

to the melting of the drug. Recently, Chuong et al., (2016) concluded that the 

melting of cefalexin is atypical, and cefalexin monohydrate had ability to absorb 

energy from 31.5 to 121.9°C to permit both free and bound water to evaporate, 

and more enthalpy to assist degradation ranging from 176.2 to 200.3°C. 
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As shown in Figure 4-1, pure cefalexin monohydrate showed a broad 

endothermic peak at about 102.72˚C due to water evaporation, and a sharper 

positive transition (heat release) at 192.57˚C due to the drug degradation. Sodium 

alginate had a broad endothermic peak around 114.24˚C and two exothermic 

peaks at 212.89˚C and 240.02˚C (Chapter 3, Figure 3-2). Hydroxyethyl cellulose, 

sodium bicarbonate, and sodium carbonate showed endothermic peaks at about 

94.88˚C (Chapter 3, Figure 3-3), 145.81˚C (Chapter 3, Figure 3-5), and 85.80˚C 

(Chapter 3, Figure 3-7) respectively. However, calcium carbonate as a gassing 

agent did not show any thermal activity as presented in (Chapter 3, Figure 3-6). 

Figure 4-2 and Figure 4-3 show DSC thermograms of placebo powder mixtures 

and placebo granules samples of F12 and F13 formulations respectively. 

The DSC thermograms of the powder mixture and the granules of the 

formulations F8-F14 are shown in Figure 4-4 to Figure 4-10 respectively. A slight 

shift was noted in the drug exothermic peak to a lower temperature in the powder 

mixture samples (192.26˚C, 192.34˚C, 192.07˚C, and 192.15˚C), and to a higher 

temperature in the granules samples (194.35˚C, 194.68˚C, 194.42˚C and 

193.95˚C) of the formulations F8 (Figure 4-4) and F9 (Figure 4-5) based on 

sodium bicarbonate as a gassing agent and the formulations F12 (Figure 4-8) and 

F13 (Figure 4-9) based on sodium carbonate respectively. Additionally, the DSC 

thermograms of the powder mixtures and the granules of F10, F11 (based on 

calcium carbonate), and the control formulation (F14) are shown in Figure 4-6, 

Figure 4-7, Figure 4-10 respectively. A slight shift in the drug exothermic peak to a 

lower temperature in the powder mixture samples (192.24˚C, 192.52˚C, and 

191.94˚C), and the granules samples (191.91˚C, 191.66˚C, and 191.24˚C) was 

noted in the formulations F10, F11, and F14 respectively. This could be due to 

minor morphological changes of cefalexin monohydrate that took place after 

physical mixing and the granulation process (Agnihotri et al., 2006). 

An overlapping between the broad endothermic peaks of cefalexin 

monohydrate, and the binary polymeric mixture (hydroxyethyl cellulose and 

sodium alginate) was shown at about 103.34˚C, 106.15˚C, 102.74˚C, 100.18˚C, 

104.28˚C, 103.15˚C, and 106.27˚C for the powder mixture samples and a round 

99.20˚C, 97.61˚C, 103.13˚C, 101.93˚C, 115.77˚C, 106.06˚C, and 104.43˚C for the 

granules samples of the formulations F8-F14 respectively.  
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The gassing agent (sodium bicarbonate) endothermic peak was noted at 

156.62˚C, and 154.81˚C for the powder mixture samples and at 153.34˚C and 

151.40˚C for the granules samples of the formulations F8 and F9 respectively. 

However, the gassing agent (calcium carbonate) was not involved in the thermal 

changes of the formulations F10 and F11 as it did not show any thermal activity as 

discussed earlier. Regarding F12 and F13 formulations based on sodium 

carbonate, thermograms presented more thermal activities especially after the 

granulation process. The endothermic peaks presented at 101.30˚C, 142.69˚C for 

F12 granules (Figure 4-8) and at 136.92˚C for F13 granules (Figure 4-9) were not 

related to the drug-excipient interactions. These thermal activities were related to 

the physical interaction between the formulation excipients as shown in Figure 4-2 

for F12 and Figure 4-3 for F13 placebo samples. Moreover, sodium alginate 

exothermic peak noted at 205.40˚C for F12 and at 205.72˚C for F13 granules 

samples was related to the formulation excipients interactions.  

Moreover, these thermal changes were not due to the gassing agents 

(sodium bicarbonate, calcium carbonate, or sodium carbonate) as the thermogram 

of cefalexin monohydrate with the excipients in the control formulation (F14) 

before and after the granulation displayed a slight decrease in the drug exothermic 

peak, from 192.57˚C (Figure 4-1), to 191.94˚C and 191.24˚C in the powder mixture 

and the granules samples respectively. Additionally, a broad endothermic peak 

due to overlapping between the endothermic peaks of the drug and the hydrophilic 

polymers was noted at 106.27˚C and 104.43˚C (Figure 4-10).  

No additional thermal changes were reported in the DSC thermograms of 

the formulations F8-F14, but results obtained with DSC should always be 

confirmed with other tests, like IR, to avoid misleading conclusions (Chapter 3, 

section 3.1.2). The FTIR spectra (Section 4.1.3) confirmed presence of cefalexin 

monohydrate characteristic bands for the formulations F8-F14 indicating absence 

of incompatibility between the drug, the gassing agents (sodium bicarbonate, 

calcium carbonate, or sodium carbonate) and the formulation excipients 

(hydroxyethyl cellulose, sodium alginate, and magnesium stearate). 
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Figure 4-1: DSC thermogram of pure cefalexin monohydrate. 

 

 

 
Figure 4-2: DSC thermogram of F12 formulation placebo powder mixture and 
placebo granules. 
For formulation composition, refer to Table 4-1 or Table 2-8.    
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Figure 4-3: DSC thermogram of F13 formulation placebo powder mixture and 
placebo granules. 

 

 

 
Figure 4-4: DSC thermograms of F8 powder mixture and F8 granules. 
For formulation composition, refer to Table 4-1 or Table 2-8.    
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Figure 4-5: DSC thermograms of F9 powder mixture and F9 granules. 
 

 

 
Figure 4-6: DSC thermograms of F10 powder mixture and F10 granules. 
For formulation composition, refer to Table 4-1 or Table 2-8. 
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Figure 4-7: DSC thermograms of F11 powder mixture and F11 granules. 
 

 

 
Figure 4-8: DSC thermograms of F12 powder mixture and F12 granules. 
For formulation composition, refer to Table 4-1 or Table 2-8. 
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Figure 4-9: DSC thermograms of F13 powder mixture and F13 granules. 
 

 

 
Figure 4-10: DSC thermograms of F14 powder mixture and F14 granules. 
For formulation composition, refer to Table 4-1 or Table 2-8. 

 



 

181 

 

The granules of all the formulations (F8-F14) were stored for 3 months at 

40°C ± 2°C and 80% ± 5% RH in closed or open containers and evaluated by DSC 

to investigate possible effects of the stressed conditions on the drug. Figure 4-11 

to Figure 4-17 represent DSC thermograms of F8-F14 stability samples.  

For the closed container stability samples, all characteristic peaks of 

cefalexin monohydrate and excipients used in the formulations F8-F14 showed 

almost similar thermal behaviour in comparison with the related freshly prepared 

granules (Figure 4-4 to Figure 4-10). The exothermic peak of cefalexin 

monohydrate was presented at 192.46°C, 196.45°C, 192.09°C, 192.03°C, 

196.79°C, 196.03°C, and 191.31°C, and the overlapping endothermic peak of the 

drug and the hydrophilic polymers was noted at 120.45°C, 107.75°C, 102.71°C, 

97.94°C, 110.67°C, 110.82°C, and 106.60°C for the formulations F8-F14 

respectively (Figure 4-11 to Figure 4-17). Moreover, the endothermic peak of 

sodium bicarbonate and sodium carbonate gassing agents was shown at 

170.52°C, 160.22°C, 142.18°C and 141.10°C for the formulations F8 

(Figure 4-11), F9 (Figure 4-12), F12 (Figure 4-15) and F13 (Figure 4-16) 

respectively. 

Similar behaviour was reported in the open container stability samples of 

the formulations F10 (Figure 4-13) and F11 (Figure 4-14) based on calcium 

carbonate gassing agent, and the control formulation (F14) (Figure 4-17) with 

exothermic degradation peak presented at 191.90°C, 192.08°C, and 190.77°C, 

and overlapping endothermic peak at 103.13°C, 100.85°C, and 113.26°C 

respectively. This represents the stability indicating effect of calcium carbonate. 

Thermogram of open container stability sample of F8 (10% (w/w) sodium 

bicarbonate) showed the drug exothermic peak and the endothermic overlapping 

peak of the drug and the polymeric mixture with lower peaks intensity. Moreover, a 

complete disappearance of the characteristic endothermic peak of sodium 

bicarbonate was noted (Figure 4-11). In contrast, as shown in Figure 4-12, 

thermogram of F9 (20% (w/w) sodium bicarbonate) open container sample 

showed complete disappearance of the drug exothermic peak and sharp reduction 

in the endothermic peak of sodium bicarbonate, however the overlapping 

endothermic peak was still present.  
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Thermograms of sodium carbonate based formulations (F12 (Figure 4-15) 

and F13 (Figure 4-16)) stored in open container at 40°C ± 2°C and 80% ± 5% RH 

showed complete disappearance of both the drug exothermic peak and the 

endothermic peak of sodium carbonate, however the overlapping endothermic 

peak was still present.  

The changes in the thermal behaviour of sodium carbonate in the open 

container stability samples agrees with its water solubility (Chapter 3, 

section 3.2.2) where direct exposure to the stressful humidity level (80%) for 3 

months caused complete loss of its crystallinity where an increase in the matrix 

microenvironment pH resulted in degradation of cefalexin monohydrate as noted in 

the FTIR results (Section 4.1.3). Nevertheless, calcium carbonate insolubility in 

water (Chapter 3, section 3.2.2) and absence of the gassing agent in the control 

formulation explain the physical stability of cefalexin monohydrate in the 

formulations F10 (10% (w/w) calcium carbonate), F11 (20% (w/w) calcium 

carbonate), and F14 stored under same stressful conditions. 

Generally, the results of DSC suggest dependency of cefalexin 

monohydrate physical stability in open containers for 3 months at 40°C ± 2°C and 

80% ± 5% RH on the gassing agent water solubility and the resulted matrix 

microenvironment pH. Thus, better physical stability of cefalexin monohydrate 

loaded in sodium bicarbonate or sodium carbonate floating tablets for 3 months at 

40°C ± 2°C and 80% ± 5% RH in closed containers than that in open ones was 

noted. This suggests that, all cefalexin monohydrate floating systems based on 

such gas forming agents should be packaged by pharmaceutical companies in 

tightly closed containers with an eye-catching label to direct patients for good 

practice. 
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Figure 4-11: DSC thermograms of F8 granules after storage for 3 months at 40°C 
± 2°C and 80% ± 5% RH in closed or open containers.  
 

 

  
Figure 4-12: DSC thermograms of F9 granules after storage for 3 months at 40°C 
± 2°C and 80% ± 5% RH in closed or open containers.  
For formulation composition, refer to Table 4-1 or Table 2-8.    
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Figure 4-13: DSC thermograms of F10 granules after storage for 3 months at 
40°C ± 2°C and 80% ± 5% RH in closed or open containers. 

 

 

 
Figure 4-14: DSC thermograms of F11 granules after storage for 3 months at 
40°C ± 2°C and 80% ± 5% RH in closed or open containers. 
For formulation composition, refer to Table 4-1 or Table 2-8. 
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Figure 4-15: DSC thermograms of F12 granules after storage for 3 months at 
40°C ± 2°C and 80% ± 5% RH in closed or open containers. 

 

 

 
Figure 4-16: DSC thermograms of F13 granules after storage for 3 months at 
40°C ± 2°C and 80% ± 5% RH in closed or open containers.  
For formulation composition, refer to Table 4-1 or Table 2-8. 
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Figure 4-17: DSC thermograms of F14 granules after storage for 3 months at 
40°C ± 2°C and 80% ± 5% RH in closed or open containers.  
For formulation composition, refer to Table 4-1 or Table 2-8. 
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4.1.3 Fourier-transform infrared spectroscopy (FTIR) 

 

The Fourier-transform infrared spectroscopy was used to study the 

compatibility of cefalexin monohydrate with excipients (hydroxyethyl cellulose, 

sodium alginate, sodium bicarbonate, calcium carbonate, sodium carbonate, and 

magnesium stearate) within the formulations F8-F14 before and after the 

granulation. Figure 4-18 to Figure 4-24 represent the IR spectra of pure cefalexin 

monohydrate, the powder mixtures, and the granules of all the formulations F8-

F14. The spectrum of cefalexin monohydrate shows characteristic bands at 3037 

and 1280 cm−1 for carboxylic acid –O–H, and carboxylic acid –C–O stretching 

mode respectively. Bands presented at 1803 and 1686 cm−1 are due to the four-

membered lactam –C=O and secondary amide –C=O stretching mode 

respectively.  Bending of both primary amide –NH2, and secondary amide –N–H 

as well as secondary amide –C–N stretching are shown at 1578 cm−1. In addition 

bands at 1454 and 953 cm−1 are for carboxylic acid –C–O–H in and out of plan 

bending respectively (Stuart, 2004, Agnihotri et al., 2006).  

The drug peaks were also presented at the same wave numbers in the 

spectra of the drug-loaded powder mixtures and granules of all the formulations F8 

F14. A slight shift in the bands due the four-membered lactam –C=O and 

secondary amide –C=O stretching mode were noted at 1753 and 1687 cm−1 

respectively, and the bending of both primary amide –NH2, and secondary amide –

N–H as well as secondary amide –C–N stretching were shifted to 1572 cm−1. 

Characteristic peaks representing primary amide –NH2 asymmetric and symmetric 

stretching modes were shown only in the granules of F8 and F9 formulations near 

3671, 2985, and 2900 cm−1. The IR peak at 2358 cm−1 was due to carbon dioxide 

(Stuart, 2004). Accordingly, FTIR results suggest the absence of incompatibility 

between the drug and the formulation excipients. 
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Figure 4-18: FTIR spectra of pure cefalexin monohydrate, F8 powder mixture and 
F8 granules.  
 

 

 
Figure 4-19: FTIR spectra of pure cefalexin monohydrate, F9 powder mixture and 
F9 granules.  
For formulation composition, refer to Table 4-1 or Table 2-8.   
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Figure 4-20: FTIR spectra of pure cefalexin monohydrate, F10 powder mixture 
and F10 granules. 
 

 

 
Figure 4-21: FTIR spectra of pure cefalexin monohydrate, F11 powder mixture 
and F11 granules.  
For formulation composition, refer to Table 4-1 or Table 2-8.   
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Figure 4-22: FTIR spectra of pure cefalexin monohydrate, F12 powder mixture 

and F12 granules. 

 

 

 
Figure 4-23: FTIR spectra of pure cefalexin monohydrate, F13 powder mixture 
and F13 granules. 
For formulation composition, refer to Table 4-1 or Table 2-8.   
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Figure 4-24: FTIR spectra of pure cefalexin monohydrate, F14 powder mixture 
and F14 granules. 
For formulation composition, refer to Table 4-1 or Table 2-8. 
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The granules of all the formulations (F8-F14) were stored for 3 months at 

40°C ± 2°C and 80% ± 5% RH in closed or open containers and evaluated by 

FTIR to investigate possible effects of the stressed conditions on the drug. 

Figure 4-25 to Figure 4-31 represent after the storage (in closed or open 

containers) IR spectra of F8-F14 granules respectively. Generally, the drug 

characteristic bands of the stability samples (in closed or open containers) were 

presented at almost the same wave numbers of the freshly prepared granules of 

the formulations F8-F14 (Figure 4-18 to Figure 4-24). Cefalexin monohydrate 

characteristic bands were presented at 3040–3368 cm−1 and 1249–1280 cm−1 for 

carboxylic acid –O–H, and carboxylic acid –C–O stretching mode respectively. 

Bands presented at 1753–1755 cm−1 and 1654–1688 cm−1 were due to the four-

membered lactam –C=O and secondary amide –C=O stretching mode 

respectively. Bending of both primary amide –NH2, and secondary amide –N–H as 

well as secondary amide –C–N stretching were shown at 1570–1598 cm−1. In 

addition bands at 1450–1491 cm−1 and 862–1004 cm−1 were for carboxylic acid –

C–O–H in and out of plan bending respectively (Figure 4-25 to Figure 4-31). For 

F9 (20% (w/w) sodium bicarbonate) open container samples the four-membered 

lactam –C=O band was completely disappeared (Figure 4-26).  

As discussed earlier (Section 4.1.2), the change in the formulation F8 

(disappearance of sodium bicarbonate melting peak) in the open container stability 

samples agrees with sodium bicarbonate water solubility (Chapter 3, section 3.2.2) 

where direct exposure to the stressful humidity level (80%) for 3 months caused 

complete (Figure 4-11) or incomplete (Figure 4-12) loss of sodium bicarbonate 

crystallinity depending upon its reservoir (10% or 20% (w/w)). This may increase 

the pH of the matrix microenvironment in a concentration dependent rhythm and 

may cause degradation for cefalexin monohydrate which was represented by the 

loss of the four-membered lactam –C=O band (Figure 4-26). This also complies 

with the results of the open container samples of sodium carbonate based 

formulations (F12 and F13), which is water soluble, where the four-membered 

lactam –C=O band was completely disappeared (Figure 4-29 and Figure 4-30 

respectively). On the other hand, FTIR data (Figure 4-27 and Figure 4-28) confirm 

the physical stability of the drug within F10 and F11 calcium carbonate as a gas 

forming agent in the gastroretentive drug delivery systems with cefalexin 

monohydrate as well as with pentoxifylline (Chapter 3, section 3.1.3).  
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Overall, the results of the FTIR suggest better physical stability of cefalexin 

monohydrate floating tablets for 3 months at 40°C ± 2°C and 80% ± 5% RH in 

closed containers rather than that in open ones. Still, cefalexin monohydrate 

physical stability in open containers for 3 months at 40°C ± 2°C and 80% ± 5% RH 

is suggested to be reliant on the gassing agent water solubility and the resulted 

matrix microenvironment pH. 

 

 

 

 

 

 

 
Figure 4-25: FTIR spectra of F8 granules after storage for 3 months at 40°C ± 2°C 
and 80% ± 5% RH in closed or open containers.  
For formulation composition, refer to Table 4-1 or Table 2-8.    
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Figure 4-26: FTIR spectra of F9 granules after storage for 3 months at 40°C ± 2°C 
and 80% ± 5% RH in closed or open containers.  
 
 
 

 
Figure 4-27: FTIR spectra of F10 granules after storage for 3 months at 40°C ± 
2°C and 80% ± 5% RH in closed or open containers. 
For formulation composition, refer to Table 4-1 or Table 2-8.    
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Figure 4-28: FTIR spectra of F11 granules after storage for 3 months at 40°C ± 
2°C and 80% ± 5% RH in closed or open containers. 
 
 
 

 
Figure 4-29: FTIR spectra of F12 granules after storage for 3 months at 40°C ± 
2°C and 80% ± 5% RH in closed or open containers. 
For formulation composition, refer to Table 4-1 or Table 2-8.    
 



 

196 

 

 

 
Figure 4-30: FTIR spectra of F13 granules and storage for 3 months at 40°C ± 
2°C and 80% ± 5% RH in closed or open containers. 
 
 
 

 
Figure 4-31: FTIR spectra of F14 granules after storage for 3 months at 40°C ± 
2°C and 80% ± 5% RH in closed or open containers. 
For formulation composition, refer to Table 4-1 or Table 2-8.    
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4.2 Evaluation of floating tablets 

 

Tablets prepared from the granules were evaluated for tablet crushing 

strength, friability, weight uniformity, drug content uniformity, apparent density, 

porosity, floating capacity, swelling and erosion, dissolution, release data 

modeling, and stability testing. Tablets prepared from the powder mixtures were 

evaluated only for porosity, floating capacity, dissolution, and release data 

modeling, as these tablets had been compacted manually. 

 

4.2.1 Tablet crushing strength, friability, weight uniformity, and 

drug content 

 

All the prepared tablets‘ results of crushing strength (N), friability (%), 

average weight (g), and average drug content (mg) are presented in Table 4-3. All 

the tablets of the formulations F8-F14 were successfully pressed automatically at 

levels A (49-54 N), B (54-59 N), and C (59-64 N) of crushing strength. 

For the friability test, although there were no signs of cracked, split, or 

broken tablets at the end of the test, results at 59-64 N crushing strength were 

1.10% (F8), 1.67% (F9), 1.10% (F10), 1.67% (F11), and 1.23% (F14) which did 

not fit the (BP) limit, as the friability values were slightly more than 1% (BP, 2015). 

However, the results of both F12 and F13 formulations fit the BP limit of friability 

except at level A of crushing strength (Table 4-3). Generally, as the tablet crushing 

strength level increased as the friability percentage decreased in all the 

formulations. Consequently, formulators can use higher compression force to 

change the friability results to fit the BP limit (< 1%). All the prepared tablets of the 

formulations F8-F14 (Table 4-3) complied with BP specifications (BP, 2015) with 

respect to weight uniformity test. With regards to content uniformity test, Table 4-3, 

results were in the acceptable range, indicating that all matrix tablets fitted the 

(BP) criteria in which each tablet drug content was between 85% and 115% of 

related average content (BP, 2015). 
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Table 4-3: Properties of cefalexin monohydrate floating tablets of the formulations 
F8-F14. 

Formulation 
Crushing 
strength 

level 

Crushing 
strength 

(N)
a
 

Friability 
(%) 

Tablet weight 
(g)

b
 

Drug content 
(mg)

a
 

F8 

(A) 
 

50.99 ± 0.61 3.68 0.439 ± 0.01 273.13 ± 5.11 

(B) 
 

56.88 ± 0.79 2.16 0.455 ± 0.01 232.04 ± 6.67 

(C) 
 

63.74 ± 0.81 1.10 0.457 ± 0.01 280.61 ± 5.92 

F9 

(A) 
 

50.99 ± 0.45 3.44 0.518 ± 0.01 274.03 ± 5.49 

(B) 
 

57.86 ± 0.49 2.03 0.526 ± 0.00 272.91 ± 5.47 

(C) 
 

62.76 ± 0.69 1.67 0.523 ± 0.01 273.55 ± 6.39 

F10 

(A) 

 
50.99 ± 0.61 3.68 0.439 ± 0.01 273.13 ± 5.11 

(B) 
 

56.88 ± 0.79 2.16 0.455 ± 0.01 232.04 ± 6.67 

(C) 
 

63.74 ± 0.81 1.10 0.457 ± 0.01 280.61 ± 5.91 

F11 

(A) 
 

50.99 ± 0.45 3.44 0.518 ± 0.01 274.03 ± 5.49 

(B) 
 

57.86 ± 0.49 2.03 0.526 ± 0.00 272.91 ± 5.47 

(C) 
 

62.76 ± 0.69 1.67 0.523 ± 0.01 273.55 ± 6.39 

F12 

(A) 
 

50.01 ± 0.20 1.02 0.468 ± 0.01 277.77 ± 7.84 

(B) 
 

56.88 ± 0.18 0.85 0.472 ± 0.00 280.93 ± 8.53 

(C) 
 

63.74 ± 0.28 0.69 0.464 ± 0.01 283.40 ± 8.21 

F13 

(A) 
 

49.03 ± 0.21 1.11 0.515 ± 0.01 287.99 ± 4.98 

(B) 
 

54.92 ± 0.22 0.96 0.518 ± 0.01 285.07 ± 6.30 

(C) 
 

60.80 ± 0.25 0.85 0.520 ± 0.01 284.18 ± 8.02 

F14 

(A) 
 

49.03 ± 0.36 1.50 0.420 ± 0.01 273.78 ± 8.59 

(B) 
 

54.92 ± 0.24 1.33 0.423 ± 0.00 273.98 ± 9.15 

(C) 
 

63.74 ± 0.30 1.23 0.417 ± 0.00 269.32 ± 8.44 

Notes: aThe data represents the mean ± SD of 10 determinations. bThe data 
represents the mean ± SD of 20 determinations. The compression force of the 
prepared tablets was adjusted to give three crushing strength levels: A (49-54 N), 
B (54-59 N), and C (59-64 N). For formulation composition, refer to Table 4-1 or 
Table 2-8.    
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4.2.2 Tablet apparent density and porosity 

 

In order to evaluate the magnitude of different formulation factors (crushing 

strength, the wet granulation, type and ratio of gas forming agents) on the 

prepared tablets the apparent density and porosity results of the tablets were 

used. The apparent density of all the prepared tablets F8-F14 were calculated by 

equation (3) (Chapter 2, section 2.2.6.2), and the results are shown in Figure 4-32 

to Figure 4-35 respectively. Generally, increasing the tablet crushing strength level 

in the tablets prepared from the powder mixtures of F8-F13, significantly (P<0.05) 

increased their apparent density results. Exceptionally, the effect was not 

significant (P>0.05) between the crushing strength levels A and B of F8, F10, F12, 

and F13 tablets, and between the crushing strength levels B and C of F9 and F11 

tablets where the effect was not significant (P>0.05). Neither the effect was 

significant (P>0.05) for F14 tablets between all the crushing strength levels. For 

the tablets prepared from the granules, changing the crushing strength level 

increased tablet apparent density. Mostly the effect was significant (P<0.05) in all 

the formulations except for F12 tablets (at all crushing strength levels), for tablets 

of F8 and F10 (at levels B and C), and for F9 and F13 tablets (at levels A and B) 

where P>0.05. This agrees with the reduction in the tablet thicknesses (Table 4-4) 

as particles became more adjacent to each other by increasing the compression 

force. Also, these results are similar to that of pentoxifylline tablets (Chapter 3, 

section 3.2.2) based on sodium bicarbonate (F1 and F2), calcium carbonate (F3 

and F4), sodium carbonate (F5 and F6), and the control ones (F7). 

The granulation process decreased significantly (P<0.001) the apparent 

density values of all the prepared tablets of the formulations F8-F14 (Figure 4-32 

to Figure 4-35 respectively). These results were similar to the related apparent 

density results of pentoxifylline floating tablet F1, F2 (10% and 20% (w/w) sodium 

bicarbonate respectively), F6 (20% (w/w) sodium carbonate), and F7 (the control 

tablets) (Chapter 3, section 3.2.2) where the enhancement of sodium alginate 

elastic recovery after compression following the granulation explains their 

apparent density reduction as the tablet thicknesses after the granulation 

increased (Chapter 3, Table 3-4).  
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It is clear that the drug content was increased from 60 mg of pentoxifylline 

(F1-F7) to 250 mg of cefalexin monohydrate (F8-F14), and the binary (1:1) mixture 

level of hydroxyethyl cellulose and sodium alginate was kept at almost 140 mg 

(Chapter 2, For formulation composition, refer to Table 2-7 and Table 2-8) in all 

the formulations (F1-F14). Although, this should decrease the elastic recovery 

effect of alginate following the granulation because the polymeric content was 

reduced by almost 36% (w/w), Kaneniwa et al. (1984) reported that pressing 

cefalexin powder with small diameter punch (0.7 cm) showed greater elastic 

behaviour than pressing it with larger diameter one (2.0 cm). This suggests 

additional elastic recovery effect to that of sodium alginate as the tablet 

thicknesses of the formulations F8-F14 increased after the granulation (Table 4-4). 

Changing the concentration of the gassing agent (sodium bicarbonate 

(Figure 4-32), calcium carbonate (Figure 4-33), or sodium carbonate (Figure 4-34)) 

from 10% (w/w) to 20% (w/w) significantly (P<0.05) increased the apparent density 

results of all the tablets either prepared from the powder mixtures or the granules. 

An exception was noted in the tablets prepared from the powder mixture of the 

formulations based on sodium bicarbonate at level C of crushing strength where 

the effect was not significant (P>0.05) (Figure 4-32). The high specific gravity of 

sodium bicarbonate (2.173 g/cm3), calcium carbonate (2.70 g/cm3) and sodium 

carbonate (2.53 g/cm3) may explain such increased density results which also 

agree with the related results of pentoxifylline floating tablets based on same 

gassing agents. An exception was noted in pentoxifylline floating tablets prepared 

from the granules where increasing sodium carbonate concentration from 10% 

(w/w) (F5) to 20% (w/w) (F6) decreased the apparent density results. This may be 

explained by the manual pressing of F5 tablets that enhanced higher reduction of 

their tablet thicknesses in comparison with the automatically pressed F6 tablets 

(Chapter 3, section 3.2.2).  
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Figure 4-32: Apparent density of F8 and F9 tablets before granulation, after 
granulation, and after stability (tablets prepared from granules stored at 40°C ± 
2°C and 80% ± 5% RH for 3 months in closed or open container).   
Note: The data represents the mean ± SD of six determinations. The compression 
force of the prepared tablets was adjusted to give three crushing strength levels: A 
(49-54 N), B (54-59 N), and C (59-64 N).   
 
 

 

 
Figure 4-33: Apparent density of F10 and F11 tablets before granulation, after 
granulation, and after stability (tablets prepared from granules stored at 40°C ± 
2°C and 80% ± 5% RH for 3 months in closed or open container).   
Note: The data represents the mean ± SD of six determinations. The compression 
force of the prepared tablets was adjusted to give three crushing strength levels: A 
(49-54 N), B (54-59 N), and C (59-64 N).   
For formulation composition, refer to Table 4-1 or Table 2-8.    
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Figure 4-34: Apparent density of F12 and F13 tablets before granulation, after 
granulation, and after stability (tablets prepared from granules stored at 40°C ± 
2°C and 80% ± 5% RH for 3 months in closed or open container).   
Note: The data represents the mean ± SD of six determinations. The compression 
force of the prepared tablets was adjusted to give three crushing strength levels: A 
(49-54 N), B (54-59 N), and C (59-64 N).   
 

 

 

 
Figure 4-35: Apparent density of F14 tablets before granulation, after granulation, 
and after stability (tablets prepared from granules stored at 40°C ± 2°C and 80% ± 
5% RH for 3 months in closed or open container).   
Note: The data represents the mean ± SD of six determinations. The compression 
force of the prepared tablets was adjusted to give three crushing strength levels: A 
(49-54 N), B (54-59 N), and C (59-64 N). 
For formulation composition, refer to Table 4-1 or Table 2-8.   



 

 

 

2
0

3 

Table 4-4: F8-F14 tablets thickness before granulation, after granulation, and after stability (tablets prepared from granules stored at 40°C 
± 2°C and 80% ± 5% RH for 3 months in closed or open container).  

Formulation 
Crushing 

strength level 

Tablet thickness (cm) 

Origin of prepared tablets 

Before granulation After granulation 
After stability 

(closed container) 
After stability 

(open container) 

F8 

(A) 0.482 ± 0.00 0.507 ± 0.03 0.513 ± 0.02 0.550 ± 0.01 

(B) 0.471 ± 0.01 0.500 ± 0.02 0.509 ± 0.04 0.549 ± 0.03 

(C) 0.467 ± 0.03 0.496 ± 0.01 0.505 ± 0.01 0.537 ± 0.03 

F9 

(A) 0.533 ± 0.01 0.559 ± 0.03 0.565 ± 0.02 0.550 ± 0.06 

(B) 0.521 ± 0.01 0.552 ± 0.02 0.558 ± 0.02 0.550 ± 0.05 

(C) 0.517 ± 0.01 0.543 ± 0.02 0.549 ± 0.03 0.547 ± 0.09 

F10 

(A) 0.483 ± 0.01 0.552 ± 0.01 0.557 ± 0.01 0.571 ± 0.01 

(B) 0.469 ± 0.01 0.545 ± 0.01 0.550 ± 0.00 0.565 ± 0.04 

(C) 0.463 ± 0.01 0.544 ± 0.01 0.550 ± 0.01 0.562 ± 0.01 

F11 

(A) 0.531 ± 0.01 0.589 ± 0.01 0.594 ± 0.01 0.612 ± 0.03 

(B) 0.519 ± 0.01 0.576 ± 0.01 0.582 ± 0.01 0.602 ± 0.03 

(C) 0.516 ± 0.00 0.566 ± 0.01 0.572 ± 0.01 0.593 ± 0.02 

F12 

(A) 0.481 ± 0.01 0.521 ± 0.02 0.528 ± 0.02 0.559 ± 0.02 

(B) 0.472 ± 0.01 0.520 ± 0.01 0.525 ± 0.01 0.560 ± 0.02 

(C) 0.470 ± 0.00 0.516 ± 0.01 0.522 ± 0.02 0.558 ± 0.05 

F13 

(A) 0.531 ± 0.01 0.568 ± 0.02 0.620 ± 0.01 0.638 ± 0.06 

(B) 0.526 ± 0.00 0.559 ± 0.01 0.611 ± 0.01 0.631 ± 0.15 

(C) 0.517 ± 0.01 0.554 ± 0.01 0.606 ± 0.02 0.625 ± 0.15 

F14 

(A) 0.443 ± 0.02 0.490 ± 0.01 0.499 ± 0.01 0.523 ± 0.04 

(B) 0.441 ± 0.03 0.485 ± 0.01 0.491 ± 0.02 0.517 ± 0.02 

(C) 0.437 ± 0.01 0.471 ± 0.02 0.481 ± 0.03 0.503 ± 0.02 

Note: The data represents the mean ± SD. of three determinations. The compression force of the prepared tablets was adjusted to 
give three crushing strength levels: A (49-54 N), B (54-59 N), and C (59-64 N).  
For formulation composition, refer to Table 4-1 or Table 2-8.    
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Tablets apparent density after storage for 3 months at 40°C ± 2°C and 80% 

± 5% RH in closed or open containers was analysed statistically. Figure 4-32 to 

Figure 4-35 show tablets apparent densities of the formulations F8-F14 

respectively after stability studies in closed or open containers. Generally, the 

tablets apparent density of all the formulations F8-F14 decreased after storage at 

40°C ± 2°C and 80% ± 5% RH in both closed and open containers.   

A significant (P<0.05) decrease in the tablets apparent density was noted 

for F8 formulation in both container types. Nevertheless, a non-significant (P>0.05) 

decrease was reported for F9 tablets in both storage conditions except at level C 

of crushing strength in the open containers where P=0.07. Additionally, tablets 

apparent density non-significantly (P>0.05) decreased in all the other formulations 

(F10-F14) after storage at 40°C ± 2°C and 80% ± 5% RH in the closed containers 

and significantly (P<0.05) after storage in the open ones. An exception was noted 

for F13 (20% (w/w) sodium carbonate) tablets where the effect was not significant 

(P>0.05) after storage in the closed containers except at level A of crushing 

strength (P=0.006) and significant (P<0.05) after storage in the open ones at all 

the crushing strength levels. This conforms to the increase in the tablet thickness 

results after 3 months storage as shown in Table 4-4.  

The reduction in the apparent density results was higher in the open 

containers than that in the closed ones for all the formulations except for F13 (20% 

sodium carbonate) tablets where the effect was reversed. Although F13 tablets 

had higher tablet thicknesses after storage in the open containers than that in the 

closed ones, their apparent densities were also higher (Figure 4-34). This may be 

explained by the decrease in the tablet diameter (Figure 4-60) which may be 

caused due to the presence of the hygroscopic sodium carbonate under stressful 

humidity (80%) conditions. Additionally, such decrease in tablets diameters were 

absent in case of F12 (10% (w/w) sodium carbonate) tablets which suggests a 

concentration dependent effect of sodium carbonate. Generally, the results of all 

the formulations except those of F13 (20% sodium carbonate) tablets agrees with 

the related results of pentoxifylline tablets (F1-F7) (Chapter 3, section 3.2.2) where 

the tablets stress relaxation during storage and the direct exposure to the stressful 

humidity level (80% RH) induced these apparent density changes.   
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The tablet porosity percentages of the formulations F8-F14 are presented in 

Figure 4-36. Increasing the crushing strength level of all the tablets prepared from 

the powder mixtures or the granules decreased their porosity results. However, the 

effect was not significant (P>0.05) for the tablets prepared from the powder 

mixture (at levels A and B of F8 (10% (w/w)), and at levels B and C of F9 (20% 

(w/w)), and of the tablets prepared from granules (at levels B and C of F8, and at 

levels A and B of F9). Moreover, the porosity percentages were decreased non-

significantly (P>0.05) for the tablets based on calcium carbonate (F10 (10% (w/w) 

and F11 (20% (w/w)) and sodium carbonate (F12 (10% (w/w) and F13 (20% 

(w/w)) prepared from the powder mixture or the granules except between the 

extreme levels of crushing strength (A and C) of F10, F12, and F13 prepared from 

the powder mixtures and F13 prepared from the granules where the effect was 

significant (P<0.05). For cefalexin monohydrate control tablets (F14), the effect 

was not significant (P>0.05) in the tablets prepared from the powder mixture, but it 

was significant (P<0.05) in those prepared from the granules (Figure 4-36). This 

reduction in the porosity data complies with the reduction in the tablet thicknesses 

presented in Table 4-4, where increasing the tablet crushing strength made the 

particles to become strongly bonding due to being closer. This also, complies with 

the related results of pentoxifylline tablets (Chapter 3, section 3.2.2) based on 

sodium bicarbonate (F1 and F2), calcium carbonate (F3 and F4), sodium 

carbonate (F5 and F6), and the control ones (F7). 

The granulation process increased the porosity levels of the formulations 

F9, F10, F13, and F14, and decreased the porosity of F8, F11, and F12 tablets 

(Figure 4-36). Regarding the control tablets of pentoxifylline (F7) and the tablets 

based on sodium bicarbonate as a gassing agent (F1 and F2) (Chapter 3, 

section 3.2.2), their porosity percentages decreased following the granulation 

process because increasing the water binder volume decreases porosity during 

the wet massing stage (Mukhopadhyay et al., 2008).  
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Nevertheless, Gokhale et al. (2005) proposed that the drug loading and the 

amount of excipients could affect the rate and the final degree of densification of 

the resulted granules. As discussed earlier, the polymeric content was reduced by 

almost 36% (w/w) in cefalexin monohydrate formulations due to the increase in 

their drug content (Chapter 2, for formulation composition, refer to Table 2-7 and 

Table 2-8). Therefore, the difference in the effect of the wet granulation process on 

the porosity levels of the control formulations of pentoxifylline (F7) and cefalexin 

monohydrate (F14) may be explained. It is clear as presented in Figure 4-36 that 

adding 10% (w/w) sodium bicarbonate (F8) counter acted the effect of the high 

drug loading (250 mg cefalexin monohydrate) on the granulation process by 

decreasing the porosity level. The water solubility of sodium bicarbonate 

(Chapter 3, section 3.2.2) may enhance the formation of a homogenous mixture 

with the hydrophilic polymers to assist voids filling of F8 matrices, which reduced 

their final porosity levels. But, the tablet porosity results of F9 (20% (w/w) sodium 

bicarbonate) formulation increased following the granulation process which agrees 

with Gokhale et al. (2005) discussion above. The presence of sodium bicarbonate 

at a higher level (20% (w/w)) compared to that used in F8 formulation (10% (w/w) 

during the granulation process may dilute the concentration of the (1:1) binary 

mixture of hydroxyethyl cellulose and sodium alginate and may reduce the efficacy 

of decreasing porosity levels during the wet massing stage of the granulation.  

For the tablets based on calcium carbonate (F10 and F11), the porosity 

percentages increased after the granulation for F10 (10% (w/w)) (Figure 4-36). 

This may be related to calcium carbonate water insolubility, as explained also in 

chapter 3, section 3.2.2, that enhanced voids formation between adjacent 

molecules during the wet massing stage. This complies with the related results of 

F3 (10% (w/w)) and F4 (20% (w/w)) pentoxifylline tablets based calcium carbonate 

(Chapter 3, section 3.2.2). In contrast, the porosity level decreased after the 

granulation in F11 (20% (w/w) calcium carbonate) tablets. The good bonding 

capacity under compression of calcium carbonate and its role as a filler in the 

pharmaceutical formulations in addition to the granulation process improvement 

role on tablets mechanical properties (Summers and Aulton, 2007) explain the 

decrease in the porosity level of F11 formulation.    
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Porosity results (after granulation) of the tablets based on sodium 

carbonate as a gassing agent (F12 and F13) were consistent with the results of 

pentoxifylline tablets (Chapter 3, section 3.2.2) based on the relevant gassing 

agent (F5 and F6). Water solubility of sodium carbonate (Chapter 3, section 3.2.2) 

especially at the lower concentration (F12) assisted a homogeneous mixture 

formation with the hydrophilic polymers during the wet massing stage of the 

granulation that reduced the final porosity percentages. However, at 20% (w/w) 

concentration (F13), the hygroscopicity of sodium carbonate may support more 

water molecules loss through the granulation drying step which increased their 

porosity percentages (Figure 4-36). 

Raising the concentration of sodium bicarbonate from 10% (w/w) (F8) to 

20% (w/w) (F9) in the tablets prepared from granules significantly (P<0.05) 

increased the porosity levels except at level C of crushing strength which was not 

significant (P>0.05). Regarding the tablets prepared from the powder mixture, 

raising sodium bicarbonate concentration significantly (P<0.001) decreased the 

tablet porosity percentages (Figure 4-36). This fits into the related pentoxifylline 

tablet results of F1 (10% (w/w)) and F2 (20% (w/w)) formulations (Chapter 3, 

section 3.2.2) where sodium bicarbonate enhanced voids filling between 

molecules to reduce the percentage of porosity. 

Increasing calcium carbonate concentration from 10% (w/w) (F10) to 20% 

(w/w) (F11) increased significantly (P<0.001) the porosity percentages of the 

tablets prepared either from the powder mixtures or the granules (Figure 4-36). 

This also conforms to the related pentoxifylline tablet results based on 10% (w/w) 

(F3) and 20% (w/w) (F4) calcium carbonate (Chapter 3, section 3.2.2) where 

fragmentation behaviour under compression of calcium carbonate maintained the 

porosity of such tablets relatively high. In contrast, a significant (P<0.05) decrease 

in the porosity levels was noted when sodium carbonate concentration raised from 

10% (w/w) (F12) to 20% (w/w) (F13) in the tablets prepared from the powder 

mixtures or the granules. An exception was noted at level A of crushing strength in 

the tablets prepared from the granules where P=0.378 (Figure 4-36).  

The results of F12 and F13 tablets prepared from the powder mixtures were 

consistent with the related results of pentoxifylline tablets prepared with 10% (w/w) 

(F5) and 20% (w/w) (F6) sodium carbonate (Chapter 3, section 3.2.2) where ability 

of sodium carbonate to fill voids between molecules after compression clarifies the 
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reduction in the tablets porosity due to increasing its concentration. For the tablets 

prepared from the granules, raising sodium carbonate concentration from 10% 

(F12) to 20% (F13) (w/w) decreased the porosity of cefalexin monohydrate tablets 

(Figure 4-36), however, it increased the porosity of pentoxifylline tablets 

(Chapter 3, section 3.2.2). The hygroscopic behaviour of sodium carbonate 

especially at the higher concentration (20% (w/w)) explains the results of 

pentoxifylline tablets where higher water loss due to granules drying leads to 

higher porosity levels.  Nevertheless, the results of cefalexin monohydrate tablets 

were different. As shown in (Table 4-2), the percentage of moisture content of F13 

(20% (w/w) sodium carbonate) formulation slightly decreased after the granulation 

from 6.17% to 6.02% which could be related to the mono-hydration nature of 

cefalexin molecules. This may inverse the hygroscopicity effect of sodium 

carbonate during the granulation where higher moisture content was kept inside 

the granules of F13 formulation (after drying till reaching a constant weight). This 

high moisture content clarifies the decrease in the porosity due to raising sodium 

carbonate concentration in the granules origin tablets. 

 

 

 

 
Figure 4-36: Porosity percentage of the formulations F8-F14 before and after 
granulation.  
The compression force of the prepared tablets was adjusted to give three crushing 
strength levels: A (49-54 N), B (54-59 N), and C (59-64 N).  
For formulation composition, refer to Table 4-1 or Table 2-8. 
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4.2.3 Tablet floating capacity 

 

It is vital for floating tablets to avoid premature evacuation from their major 

absorption area of the stomach and upper intestine, which could be accomplished 

by achieving the least possible lag time, and longer floating duration. Gassing 

agents such as sodium bicarbonate, calcium carbonate and sodium carbonate 

enhanced the floating behaviour of tablets due to the release of carbon dioxide 

gas, which entrapped in the formed gel layer around the tablets and results in 

reducing tablet density to facilitate the floating process (Chapter 3, section 3.2.3). 

Table 4-5 and Table 4-6 represent floating lag time and floating duration results of 

all prepared tablets respectively. All the formulations (F8-F14) were tested for 

floating capacity under the same conditions and using the same apparatus for the 

in vitro studies.  

A statistical analysis (P-value) of changing the crushing strength level on 

the tablet floating lag time of the formulations F8-F13 prepared from the powder 

mixture or the granules revealed that changing the crushing strength level in all the 

prepared tablets caused generally a non-significant (P>0.05) increase in the 

floating lag time. An exception was noted between the extreme level of crushing 

strength (A and C) of F10 and F11 prepared from the granules where P<0.05 

(Table 4-5). This agrees with the related results of pentoxifylline tablets 

(Chapter 3, section 3.2.3) based on sodium bicarbonate (F1 and F2), calcium 

carbonate (F3 and F4) and sodium carbonate (F5 and F6) where reducing the 

tablet porosity, as a result of increased compaction force, delayed the penetration 

of the acidic medium and hence delayed the gas generation process. 

The granulation process increased the floating lag time results of all the 

tablets F8-F13 compared to that of the tablets prepared from the powder mixture 

before the granulation (Table 4-5). The effect of the granulation process was 

significant (P<0.05) for F8, F10, and F12 tablets and non-significant (P>0.05) for 

F9, F11, and F13 tablets except at level C of crushing strength of F9 and F11 

where P<0.05.  
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Table 4-5: Floating lag-time of the formulations F8-F14 at different crushing strength levels before granulation, after 
granulation, and after stability (tablets prepared from granules stored at 40°C ± 2°C and 80% ± 5% RH for 3 months in closed 
or open container).  

Formulation 
Crushing 

strength level 

Floating lag time (min) 

Origin of prepared tablet 

Before granulation After granulation 
After stability 

(closed container) 
After stability 

(open container) 

F8 

(A) 0.02 ± 0.01 8.29 ± 3.18 2.67 ± 0.54 No floating 

(B) 0.03 ± 0.01 10.76 ± 2.81 5.18 ± 1.01 No floating 

(C) 0.05 ± 0.02 12.71 ± 3.56 6.46 ± 1.89 No floating 

F9 

(A) 0.02 ± 0.00 3.05 ± 0.49 2.56 ± 0.27 
complete disintegration 

within 30 min 

(B) 0.03 ± 0.02 4.03 ± 0.85 2.92 ± 0.12 
complete disintegration 

within 30 min 

(C) 0.04 ± 0.01 4.69 ± 0.48 5.27 ± 0.74 
complete disintegration 

within 30 min 

F10 

(A) 0.12 ± 0.03 1.01 ± 0.06 0.29 ± 0.06 0.16 ± 0.03 

(B) 0.13 ± 0.05 1.58 ± 0.41 0.34 ± 0.06 0.18 ± 0.08 

(C) 0.15 ± 0.08 2.28 ± 0.59 0.38 ± 0.08 0.18 ± 0.01 

F11 

(A) 0.08 ± 0.03 0.34 ± 0.06 0.20 ± 0.03 0.15 ± 0.03 

(B) 0.12 ± 0.04 0.69 ± 0.09 0.30 ± 0.03 0.16 ± 0.01 

(C) 0.13 ± 0.04 1.17 ± 0.22 0.35 ± 0.09 0.18 ± 0.01 
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Table 4-5 (continued): Floating lag-time of the formulations F8-F14 at different crushing strength levels before granulation, after 

granulation, and after stability (tablets prepared from granules stored at 40°C ± 2°C and 80% ± 5% RH for 3 months in closed or open 
container). 

Formulation 
Crushing 

strength level 

Floating lag time (min) 

Origin of prepared tablet 

Before granulation After granulation 
After stability 

(closed container) 
After stability 

(open container) 

F12 

(A) 1.78 ± 0.25 8.19 ± 3.92 No floating No floating 

(B) 1.81 ± 0.30 10.28 ± 3.16 No floating No floating 

(C) 1.87 ± 0.16 10.92 ± 1.80 No floating No floating 

F13 

(A) 4.72 ± 0.20 3.63 ± 0.55 No floating No floating 

(B) 4.79 ± 0.19 5.30 ± 0.92 No floating No floating 

(C) 4.83 ± 0.14 7.22 ± 1.41 No floating No floating 

F14 

(A) No floating 12.43 ± 3.81 No floating No floating 

(B) 
complete 

disintegration 
within 30 min 

14.43 ± 3.02 No floating No floating 

(C) 
complete 

disintegration 
within 30 min 

17.57 ± 1.96 No floating No floating 

Notes: The data represents the mean ± SD of three determinations. The compression force of the prepared tablets was 
adjusted to give three crushing strength levels: A (49-54 N), B (54-59 N), and C (59-64 N). For formulation composition, refer 
to Table 4-1 or Table 2-8.   
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Table 4-6: Floating duration of the formulations F8-F14 at different crushing strength levels before granulation, after 
granulation, and after stability (tablets prepared from granules stored at 40°C ± 2°C and 80% ± 5% RH for 3 months in closed 
or open container).  

Formulation 
Crushing 

strength level 

Total floating duration (h) 

Origin of prepared tablet 

Before granulation After granulation 
After stability 

(closed container) 
After stability 

(open container) 

F8 

(A) > 8 > 4 > 2 No floating 

(B) > 8 > 4 > 2 No floating 

(C) > 8 > 4 > 2 No floating 

F9 

(A) > 8 > 10 
complete disintegration 

within 30 min 
complete disintegration 

within 30 min 

(B) > 8 > 10 
complete disintegration 

within 30 min 
complete disintegration 

within 30 min 

(C) > 8 > 10 
complete disintegration 

within 30 min 
complete disintegration 

within 30 min 

Notes: The compression force of the prepared tablets was adjusted to give three crushing strength levels: A (49-54 N), B (54-

59 N), and C (59-64 N). For formulation composition, refer to Table 4-1 or Table 2-8. 
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Table 4-6 (continued): Floating duration of the formulations F8-F14 at different crushing strength levels before granulation, after 

granulation, and after stability (tablets prepared from granules stored at 40°C ± 2°C and 80% ± 5% RH for 3 months in closed or open 
container). 

Formulation 
Crushing 

strength level 

Total floating duration (h) 

Origin of prepared tablet 

Before granulation After granulation 
After stability 

(closed container) 
After stability 

(open container) 

F10 

(A) 
complete 

disintegration 
within 30 min 

> 8 Partial disintegration Partial disintegration 

(B) 
complete 

disintegration 
within 30 min 

> 8 Partial disintegration Partial disintegration 

(C) 
complete 

disintegration 
within 30 min 

> 8 Partial disintegration Partial disintegration 

F11 

(A) 
complete 

disintegration 
within 30 min 

> 12 
complete disintegration 

within 30 min 
complete disintegration 

within 30 min 

(B) 
complete 

disintegration 
within 30 min 

> 12 
complete disintegration 

within 30 min 
complete disintegration 

within 30 min 

(C) 
complete 

disintegration 
within 30 min 

> 12 
complete disintegration 

within 30 min 
complete disintegration 

within 30 min 

Notes: The compression force of the prepared tablets was adjusted to give three crushing strength levels: A (49-54 N), B (54-

59 N), and C (59-64 N). For formulation composition, refer to Table 4-1 or Table 2-8. 
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Table 4-6 (continued): Floating duration of the formulations F8-F14 at different crushing strength levels before granulation, after 

granulation, and after stability (tablets prepared from granules stored at 40°C ± 2°C and 80% ± 5% RH for 3 months in closed or open 
container). 

Formulation 
Crushing 

strength level 

Total floating duration (h) 

Origin of prepared tablet 

Before granulation After granulation 
After stability 

(closed container) 
After stability 

(open container) 

F12 

(A) > 8 > 10 
complete disintegration 

within 30 min 
No floating 

(B) > 8 > 10 
complete disintegration 

within 30 min 
No floating 

(C) > 8 > 10 
complete disintegration 

within 30 min 
No floating 

F13 

(A) > 8 > 12 
complete disintegration 

within 30 min 
complete disintegration 

within 30 min 

(B) > 8 > 12 
complete disintegration 

within 30 min 
complete disintegration 

within 30 min 

(C) > 8 > 12 
complete disintegration 

within 30 min 
complete disintegration 

within 30 min 

F14 

(A) No floating > 12 
complete disintegration 

within 30 min 
complete disintegration 

within 30 min 

(B) 
complete 

disintegration 
within 30 min 

> 12 
complete disintegration 

within 30 min 
complete disintegration 

within 30 min 

(C) 
complete 

disintegration 
within 30 min 

> 12 
complete disintegration 

within 30 min 
complete disintegration 

within 30 min 

Notes: The compression force of the prepared tablets was adjusted to give three crushing strength levels: A (49-54 N), B (54-
59 N), and C (59-64 N). For formulation composition, refer to Table 4-1 or Table 2-8.   
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The results of F8 (10% (w/w) sodium bicarbonate) tablets may be explained 

by the decrease in their porosity levels after the granulation process, which also 

conforms to the results of F1 (10% (w/w) sodium bicarbonate) formulation based 

on pentoxifylline (Chapter 3, section 3.2.3). The floating lag time of F9 (20% w/w 

sodium bicarbonate tablets increased after the granulation (Table 4-5) which also 

complies with the results of F2 (20% (w/w) sodium bicarbonate) tablets. But, unlike 

F2 tablets, the porosity of F9 tablets increased by the granulation process 

(Figure 4-36). This may be explained by the higher swelling ability of F9 tablets 

compared to that of F8 tablets (Section 4.2.4, Figure 4-37) which may counteract 

the increase in F9 tablets porosities by decreasing the acidic media penetration 

rate inside their matrices and delaying the effervescent reaction and their floating 

process. Hodsdon et al. (1995) explained the faster release of chlorpheniramine 

maleate (highly soluble model drug) from alginate matrices in the simulated gastric 

fluid (SGF) than in the simulated intestinal fluid (SIF) by difference in the formed 

internal microscopic structure of the alginate hydrated surface layer and by 

different hydration kinetics of the polymer in these two media. They concluded that 

the highly hydrated continuous gel layer formed by alginate in SIF in comparison 

to the particulate and porous hydrated layer formed in SGF was responsible for 

retarding the drug release. Furthermore, 0.1 M aqueous solution of sodium 

bicarbonate generates pH=8.3 at 25°C (Cable, 2009), which suggests better ability 

of the higher concentration of sodium bicarbonate (F9) than that of the lower 

concentration (F8) to provide an alkaline microenvironment for sodium alginate 

molecules to initiate a stronger hydrated gel. This clarifies the slower drug release 

results of F9 tablets compared to that of F8 tablets (Section 4.2.5) and explains 

the increase in their floating lag time results following the granulation process. 

The results of F10 (10% (w/w)) and F11 (20% (w/w)) tablets based on 

calcium carbonate as a gassing agent were similar to the related results of 

pentoxifylline tablets (F3 and F4) (Chapter 3, section 3.2.3). The absence of the 

disintegration behaviour due to strengthening the tablets internal structure after the 

granulation delayed the entrapment of the acidic medium and increased their lag 

time results.  
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Moreover, the increase in the lag time values of the tablets based on 

sodium carbonate as a gassing agent (F12 (10% (w/w) and F13 (20% (w/w)) 

complies with the relevant pentoxifylline tablets (F5 and F6) (Chapter 3, 

section 3.2.3). Although, the decrease in F12 porosity percentages following the 

granulation (Figure 4-36) hindered the initiation of the effervescent process, the 

increase in F13 porosity percentages (after the granulation) reduced their matrices 

ability to retain the liberated gas bubbles and delayed their floating process. 

Changing the concentration of sodium bicarbonate from 10% (F8) to 20% 

(w/w) (F9) and calcium carbonate from 10% (F10) to 20% (w/w) (F11) decreased 

the lag time results significantly (P<0.05) for the tablets prepared from the 

granules, nonetheless, the effect was not significant (P>0.05) for the tablets 

prepared from the powder mixtures (Table 4-5). This complies with the related 

results of pentoxifylline tablets based on sodium bicarbonate (F1 and F2) and 

calcium carbonate (F3 and F4) (Chapter 3, section 3.2.3) where increasing the 

gassing agent content available for the acidic medium enhanced the rate as well 

as the efficiency of the effervescent reaction, which was represented by the 

shorter floating lag time values.  

Regarding sodium carbonate gassing agent, changing its concentration 

from 10% (F12) to 20% (w/w) (F13), increased the lag time values non-

significantly (P>0.05) in the tablets prepared from the powder mixtures (Table 4-5). 

This is similar to the related results of F5 (10% (w/w)) and F6 (20% (w/w)) 

pentoxifylline tablets (Chapter 3, section 3.2.3) where the alkalinity of sodium 

carbonate enhanced the swelling rate (at 20% w/w) and delayed the effervescent 

process due to the reduction in the dissolution medium entrapment rate. 

Additionally, the apparent density of F13 tablets increased due to raising the 

concentration of sodium carbonate (Figure 4-34) which hindered their floating 

process. Concerning the tablets prepared from the granules, increasing sodium 

carbonate concentration from 10% (F12) to 20% (w/w) (F13) decreased the lag 

time values non-significantly (P>0.05) except at level B of crushing strength where 

P=0.037 (Table 4-5). This did not agree with the related pentoxifylline tablet results 

of F5 (10% (w/w)) and F6 (20% (w/w)) where the lag time values increased by 

changing sodium carbonate concentration.  
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More time was taken for the floating process due to sodium carbonate 

alkalinity effect on the dissolution medium entrapment rate and due to the increase 

in the tablet apparent density at the higher concentration level (20% (w/w)) of 

sodium carbonate (Chapter 3, section 3.2.3).     

As discussed earlier, the polymeric content was reduced by almost 36% 

(w/w) in cefalexin monohydrate formulations due to the increase in their drug 

content (Chapter 2, for formulation composition, refer to Table 2-7 and Table 2-8). 

This changed the gassing agent: polymeric mixture ratio from (4.5:10) for 

pentoxifylline based formulations to (7:10) for cefalexin monohydrate formulations. 

Consequently, more sodium carbonate molecules became available alongside the 

hydrophilic polymeric mixture to accelerate the swelling process, and also to 

generate better effervescent process efficiency for cefalexin formulations. Upon 

quicker water uptake, chains of the polymeric mixture moved apart from each 

other resulted in both weight and volume growth which rapidly reduced the density 

of the swollen matrix and decreased their floating lag time values.  

Table 4-6 shows floating duration results of all the formulations F8-F14. 

Although, F8 (10% (w/w) sodium bicarbonate) tablets prepared from the powder 

mixture at all crushing strength levels floated for > 8 h, their floating duration after 

the granulation process was reduced by half. In contrast, the floating duration of 

F9 (20% (w/w) sodium bicarbonate) formulation increased from > 8 h before the 

granulation to > 10 h after the granulation at all crushing strength levels. This is 

also similar to the related results of the formulations F1 and F2 based on 

pentoxifylline (Chapter 3, section 3.2.3). Obviously, the higher concentration of 

sodium bicarbonate (20% (w/w)) was more effective than the lowest one (10% 

(w/w)) to maintain the tablets from the granules origin on the surface of the 

dissolution medium for a longer duration of time. Increasing sodium bicarbonate 

level in the tablets prepared from the powder mixture did not cause a difference in 

the floating duration results where both the formulations (F8 and F9) floated for > 8 

h. Although the porosity percentages decreased by increasing the gassing agent 

reservoir (Figure 4-36), the increase in their apparent density values (Figure 4-32) 

may inverse the effect of both the porosity reduction and the high gassing agent 

reservoir, and maintain the floating duration > 8 h.     
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The tablets based on calcium carbonate as a gassing agent of the 

formulations F10 and F11 prepared from the powder mixtures showed complete 

disintegration behaviour within short time (30 min) after the floating process. 

Following the granulation process, F10 (10% (w/w)) tablets floated for > 8 h and 

the tablets of F11 (20% (w/w)) floated for > 12 h (Table 4-6). This complies with 

the related results of F3 (10% (w/w)) and F4 (20% (w/w)) pentoxifylline based 

tablets (Chapter 3, section 3.2.3) where the higher calcium carbonate reservoir 

available for the floating process increased the floating duration. 

For the tablets based on sodium carbonate as a gassing agent, the 

granulation process increased the floating duration results for F12 (10% (w/w)) 

from > 8 to > 10 h and for F13 (20% (w/w)) from > 8 to > 12 h (Table 4-6). Still, 

pentoxifylline tablets based on sodium carbonate presented better floating duration 

where F5 (10% (w/w)) tablets floated for > 12 h and F6 (20% (w/w)) tablets floated 

for > 24 h without a difference between the results before or after the granulation 

(Chapter 3, section 3.2.3). The reduction (by almost 36% (w/w)) in the polymeric 

content of cefalexin monohydrate tablets (F12 and F13) reduced their swelling rate 

(Section 4.2.4) in comparison to that of pentoxifylline tablets (F5 and F6) 

(Chapter 3, section 3.2.4) which affected the ability of such tablets to hold the 

generated gas bubbles for longer time. Raising sodium carbonate concentration 

increased the floating duration from > 10 h (F12) to > 12 h (F13) for the tablets 

prepared from the granules and kept the floating duration without change (> 8 h) 

for the tablets prepared from the powder mixtures (Table 4-6). This is similar to the 

related results of F5 (10% (w/w)) and F6 (20% (w/w)) pentoxifylline tablets based 

on sodium carbonate where the higher gassing agent concentration (20% (w/w)) 

was more effective than the lower one (10% (w/w)) to maintain the tablets floated 

on the surface of the dissolution medium for longer duration of time (Chapter 3, 

section 3.2.3). 

As shown in Table 4-6, the control tablets of cefalexin monohydrate (F14) 

prepared from the powder mixture did not show any floating behaviour which 

agrees with the related results of pentoxifylline control tablets (F7) where absence 

of gassing agents explains this. Moreover, the complete disintegration of F14 

tablets was noted within short time (30 min) after immersion in to the dissolution 

medium except for those compacted at level A of crushing strength which kept 

sinking through the experiment time.  
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The reported elastic behaviour of cefalexin under compression with 

elevated pressure (Kaneniwa et al., 1984) may justify the disintegration behaviour 

of F14 tablets pressed at levels B and C of crushing strength. Although cefalexin 

monohydrate control tablets (F14) prepared from the granules had 0% (w/w) 

content of gassing agents, those tablets compacted at the levels A, B, and C of 

crushing strength floated at 12.43, 14.43, and 17.57 min. respectively (Table 4-5) 

and all of them kept floating for > 12 h on the surface of the dissolution medium 

(Table 4-6). This did not agree with the related results of F7 control tablets of 

pentoxifylline prepared from the granules. The granulation process improved F14 

tablets internal structure, decreased their apparent density results (Figure 4-35) 

and increased their porosity percentages (Figure 4-36). This may entrap more 

dissolution medium and consequently enhanced rapid swelling rate behaviour 

(Section 4.2.4) which further reduced their tablets density to initiate and to 

maintain the floating process. In contrast, the granulation process decreased the 

porosity level of F7 control tablets (Chapter 3, Figure 3-40). Moreover, although 

the granulation process decreased F7 tablets apparent density results (Chapter 3, 

Figure 3-39); their values were higher than the apparent density results of F14 

tablets (Figure 4-35). This clarifies the better floating ability of F14 tablets in 

comparison with F7 tablets. 
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Regarding stability studies, the effect of storage at 40°C ± 2°C and 80% ± 

5% RH for 3 months on the tablets floating lag time and the floating duration was 

evaluated and presented in Table 4-5 and Table 4-6 respectively. For the tablets 

based on sodium bicarbonate as a gassing agent, storage in closed containers 

significantly decreased (P<0.05) the floating lag time of F8 (10% (w/w)) tablets and 

non-significantly (P>0.05) decreased the floating lag time of F9 (20% (w/w)) tablets 

(Table 4-5). Tablets of F8 formulation floated for only > 2 h, but F9 tablets 

completely disintegrated after short time (within 30 min) of the floating process 

(Table 4-6). The increase in the tablet thicknesses after the storage (Table 4-4) 

may cause a rapid contact between the gassing agent (sodium bicarbonate) and 

the acidic medium to start rapidly the effervescent and the floating processes 

which was consistent with the floating lag time results of the related pentoxifylline 

tablets (F1 and F2) (Chapter 3, section 3.2.3). Nevertheless the floating duration 

results of F8 and F9 tablets were different from those of F1 and F2 tablets. The 

reduction by almost 36% (w/w) in the polymeric content of cefalexin monohydrate 

formulations (F8 and F9) in addition to the tablet relaxation behaviour due the 

aging process decreased the matrices ability to hold the liberated gas baubles for 

longer time. Moreover, the higher content of sodium bicarbonate for F9 tablets 

(20% (w/w)) assisted rupturing of the relaxed tablets which clarifies the floating 

duration results of F8 and F9 formulations after storage at 40°C ± 2°C and 80% ± 

5% RH for 3 months in the closed containers.   

In the open containers, the tablets of F8 (10% (w/w)) formulation lost their 

ability to float, however, the tablets of F9 (20% (w/w)) disintegrated after a short 

period of time (within 30 min) of immersion inside the dissolution medium 

(Table 4-5) and (Table 4-6). These results were different from the related results of 

F1 and F2 pentoxifylline based formulations (Chapter 3, section 3.2.3). The loss in 

the floating ability of F8 tablets complies with its open container DSC stability 

thermogram (Figure 4-11) where the complete loss of sodium bicarbonate 

crystallinity affected its role in the effervescent reaction. Moreover, the open 

container DSC stability results of F9 formulation (Figure 4-12) showed partial 

presence of sodium bicarbonate in the crystalline form which was responsible for 

the complete disintegration behaviour of the relaxed aged tablets. 
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Concerning the tablets based on calcium carbonate as a gassing agent 

(F10 and F11), storage in closed or open containers decreased their floating lag 

time results significantly (P<0.05) for F10 (10% (w/w)) at all crushing strength 

levels in comparison with the freshly prepared tablets. Conversely, the effect was 

not significant (P>0.05) for F11 (20% (w/w)) except at level C of crushing strength 

where P<0.05 (Table 4-5). Moreover, both F10 and F11 tablets could not maintain 

the floating on the surface of the dissolution medium as both formulations showed 

partial and complete disintegration behaviour respectively after short time (30 min) 

of their floating process (Table 4-6).  This decrease in the stability floating lag time 

results is similar to the related stability results of F3 and F4 tablets based on 

pentoxifylline (Chapter 3, section 3.2.3) where the increase in the tablet 

thicknesses after the storage (Table 4-4) caused a rapid contact between the 

gassing agent and the acidic medium to start the effervescent and the floating 

processes rapidly. The absence of the significance effect for F11 (20% (w/w) 

calcium carbonate) tablets could be the related to their higher gassing agent 

reservoir. The floating duration results of F10 and F11 tablets (Table 4-6) were 

different from those of F3 and F4 tablets (Chapter 3, section 3.2.3). This because 

of the reduction in the polymeric content of cefalexin monohydrate formulations 

(F10 and F11) in addition to the high effervescent activity of calcium carbonate 

caused the partial or complete rupture of the aged relaxed tablets according to 

calcium carbonate concentration. However, calcium carbonate is still the most 

effective gassing agent to keep floating integrity compared to other gassing agents 

(sodium bicarbonate and sodium carbonate).  

 A complete loss of the floating ability was noted in sodium carbonate based 

formulations (F12 and F13) after storage at 40°C ± 2°C and 80% ± 5% RH for 3 

months in either closed or open containers (Table 4-5). This was accompanied 

with a complete disintegration behaviour in all the tablets except those of F12 

(10% (w/w)) formulation stored in the open containers (Table 4-6) which sank till 

the end of the experiment. This did not agree with the related results of 

pentoxifylline tablets (F5 and F6) based on sodium carbonate which kept their 

floating properties after storage under the same conditions (Chapter 3, 

section 3.2.3). Storage under the stressful humidity conditions may decrease the 

available sodium carbonate molecules (due to hygroscopicity) for the effervescent 

process and consequently delayed the floating process.  
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This also clarifies the absence of the floating behaviour in the closed 

container stability samples of F12 (10% (w/w) sodium carbonate) and F13 (20% 

(w/w) sodium carbonate) tablets which could not float, and their relaxed aged 

structure completely ruptured within a short time (30 min) of immersion in the 

dissolution medium. Moreover, the aged matrices of the formulations F12 and F13 

were weaker (due to their polymeric content) than those of F5 (10% (w/w) sodium 

carbonate) and F6 (20% (w/w) sodium carbonate) pentoxifylline tablets. The loss 

in the floating ability of F12 tablets complies with its open container DSC stability 

thermogram (Figure 4-15) which indicates absence of sodium carbonate crystals 

and its role in the effervescent reaction. Although the open container DSC stability 

thermogram of F13 formulation (Figure 4-16) also indicates absence of the 

crystallinity of sodium carbonate, F13 tablets completely disintegrated while F12 

tablets did not. This may be explained by the morphological changes in F13 

tablets after storage under the stressful conditions which suggests a concentration 

dependent interaction of sodium carbonate.     

Results of the control tablets (F14) stored either in closed or open 

containers presented complete disintegration behaviour within a short period of 

time (30 min) of starting the test. This is not similar to the related results of 

pentoxifylline control tablets (F7) which conform the effect of their polymeric 

content on their ability to control the drug release rate (Section 4.2.5).    
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4.2.4 Swelling and erosion studies 

 

Swelling and erosion studies were carried out to make a correlation with the 

drug release rate and the release mechanisms. The percentage of dissolution 

medium uptake and the percentage of mass loss of all the tablets prepared from 

the granules (F8-F14) in 0.1 M HCl medium are presented in Figure 4-37 to 

Figure 4-40 and in Figure 4-41 to Figure 4-44 respectively. Increasing the tablet 

crushing strength in all the formulations did not cause a significant (P>0.05) effect 

neither in the swelling rate results nor in the mass loss ones at majority of the time 

points. This is similar to the related results of pentoxifylline tablets based on 

sodium bicarbonate (F1 and F2), calcium carbonate (F3 and F4), sodium 

carbonate (F5 and F6), and the control tablets (F7) where the tablet strength had 

only a small effect on the swelling rate and the mass loss percentage of the 

hydrophilic tablets (Chapter 3, section 3.2.4).  

Raising the level of calcium carbonate from 10% (w/w) (F10) to 20% (w/w) 

(F11) caused a significant (P<0.05) decrease in the tablet swelling rate at most of 

the time points (Figure 4-38) and a significant (P<0.05) increase in the mass loss 

percentages at bulk of the time points (Figure 4-42). This complies with the related 

pentoxifylline tablets results (F3 and F4) (Chapter 3, section 3.2.4) where the 

swelling rate was inversely proportional with the floating duration of F10 and F11 

tablets (Table 4-6). Moreover, the high effervescent activity of calcium carbonate 

explains the higher erosional behaviour in 20% (w/w) tablets in comparison with 

that in 10% (w/w) concentration.   

In contrast, changing the concentration of the gassing agent from 10% 

(w/w) to 20% (w/w) in the formulations based on sodium bicarbonate (F8 and F9) 

and the formulations based on sodium carbonate (F12 and F13) significantly 

(P<0.05) increased the DMU results at majority of the time points (Figure 4-37 and 

Figure 4-39 respectively). A non-significant (P>0.05) decrease in the percentage of 

the mass loss was noted for the formulations based on sodium bicarbonate at 

larger part of the time points (Figure 4-41), nevertheless, a non-significant 

(P>0.05) increase except at the level C of crushing strength where P<0.05 was 

noted for the formulations based on sodium carbonate at bulk of the time points 

(Figure 4-43).  
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These results are not similar to those of the related pentoxifylline tablets 

based on sodium bicarbonate (F1 and F2), where the DMU decreased and the 

mass loss percentage increased as the concentration of the gassing agent 

increased. Regarding the tablets based sodium carbonate gassing agent, the 

results were statistically different from those of the related pentoxifylline tablets (F5 

and F6), yet, the effect was similar (Chapter 3, section 3.2.4).  Alginates have 

better ability to swell in a higher pH environment, hence, the higher sodium 

bicarbonate or sodium carbonate concentration may influence the swelling rate 

behaviour. Besides, the strength of the hydrated microstructure of the swollen 

matrix tablets may be altered by the concentration of the gassing agent available 

in the gassing agent: polymeric mixture ratio (Section 4.2.3). Therefore, the 

coherent gel layer formed around F9 (20% (w/w) sodium bicarbonate) and F13 

(20% (w/w) sodium carbonate) matrices may assist a higher swelling rate 

(Figure 4-37 and Figure 4-39 respectively) and a better resistance to the erosional 

behaviour due to the effervescent reaction (Figure 4-41 and Figure 4-43 

respectively) in comparison with 10% (w/w) gassing agent based formulations.  

Regarding cefalexin monohydrate control tablets (F14), their swelling rate at 

majority of the time points (Figure 4-40) was significantly (P<0.05) the highest at 

bulk of the time points in comparison with all the other formulations except with 

F13 (20% (w/w) sodium carbonate) tablets where P>0.05 at most of the time 

points. Additionally, their mass loss percentages were almost the lowest 

(Figure 4-44), but the difference was not significant (P>0.05) at larger part of the 

time points in comparison with all the other tablets except with F11 (20% (w/w) 

calcium carbonate) tablets where P<0.05 at most of the time points. Although, 

cefalexin monohydrate control tablets (F14) floated on the surface of the 

dissolution medium for all the experiment time, they had the highest swelling rate 

(Figure 4-40). The absence of the gassing agents in such tablets may explain their 

highest swelling rate and lowest mass loss results as it excluded additional 

accelerated erosional process by the gas bubbles (liberated through the 

effervescent reaction) and enhanced normal polymeric swelling process.    
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Figure 4-37: Percentage of medium uptake for the formulations F8 and F9 
(prepared from granules) in 0.1 M HCl medium. 
Notes: The data represents the mean ± SD of three determinations. The 
compression force of the prepared tablets was adjusted to give three crushing 
strength levels: A (49-54 N), B (54-59 N), and C (59-64 N).  
 

 

 

 
Figure 4-38: Percentage of medium uptake for the formulations F10 and F11 
(prepared from granules) in 0.1 M HCl medium. 
Notes: The data represents the mean ± SD of three determinations. The 
compression force of the prepared tablets was adjusted to give three crushing 
strength levels: A (49-54 N), B (54-59 N), and C (59-64 N).  
For formulation composition, refer to Table 4-1 or Table 2-8. 
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Figure 4-39: Percentage of medium uptake for the formulations F12 and F13 
(prepared from granules) in 0.1 M HCl medium. 
Notes: The data represents the mean ± SD of three determinations. The 
compression force of the prepared tablets was adjusted to give three crushing 
strength levels: A (49-54 N), B (54-59 N), and C (59-64 N).  
 

 

 

 
Figure 4-40: Percentage of medium uptake for the formulation F14 (prepared from 
granules) in 0.1 M HCl medium. 
Notes: The data represents the mean ± SD of three determinations. The 
compression force of the prepared tablets was adjusted to give three crushing 
strength levels: A (49-54 N), B (54-59 N), and C (59-64 N).  
For formulation composition, refer to Table 4-1 or Table 2-8. 
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Figure 4-41: Percentage of mass loss for the formulations F8, and F9 (prepared 
from granules) in 0.1 M HCl medium.  
Notes: The data represents the mean ± SD of three determinations. The 
compression force of the prepared tablets was adjusted to give three crushing 
strength levels: A (49-54 N), B (54-59 N), and C (59-64 N).  
 

 

 

 
Figure 4-42: Percentage of mass loss for the formulations F10, and F11 (prepared 
from granules) in 0.1 M HCl medium.  
Notes: The data represents the mean ± SD of three determinations. The 
compression force of the prepared tablets was adjusted to give three crushing 
strength levels: A (49-54 N), B (54-59 N), and C (59-64 N). 
For formulation composition, refer to Table 4-1 or Table 2-8.  
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Figure 4-43: Percentage of mass loss for the formulations F12, and F13 (prepared 
from granules) in 0.1 M HCl medium.  
Notes: The data represents the mean ± SD of three determinations. The 
compression force of the prepared tablets was adjusted to give three crushing 
strength levels: A (49-54 N), B (54-59 N), and C (59-64 N). 
 

 

 

 
Figure 4-44: Percentage of mass loss for the formulation F14 (prepared from 
granules) in 0.1 M HCl medium.  
Notes: The data represents the mean ± SD of three determinations. The 
compression force of the prepared tablets was adjusted to give three crushing 
strength levels: A (49-54 N), B (54-59 N), and C (59-64 N). 
For formulation composition, refer to Table 4-1 or Table 2-8.  
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4.2.5 In vitro drug release studies 

 

The dissolution profiles of all the tablets (F8-F14) prepared from the powder 

mixtures are presented in Figure 4-45 to Figure 4-48 respectively. Generally, 

increasing the tablet crushing strength level increased the drug release rate of F8 

(10% w/w) and F9 (20% w/w) tablets based on sodium bicarbonate (Figure 4-45). 

Statistically, a significant (P<0.05) effect at majority of the time points was noted 

except between the tablets prepared at the levels A and B of F8, and at the levels 

B and C of F9 where the effect was not significant (P>0.05) at most of the time 

points. This does not agree with the related results of pentoxifylline tablets (F1 and 

F2) as a significant (P<0.05) decrease in their drug release rate when their 

crushing strength level increased from level (A) to level (B) was noted at bulk of 

the time points (Chapter 3, section 3.2.5). Increasing the tablet crushing strength 

decreased the porosity percentage of both F8 and F9 tablets prepared from the 

powder mixture (Figure 4-36) which should reduce the penetration of the 

dissolution medium inside their matrices and decrease their drug release rate. But 

their dissolution profiles were not clear enough to match them with the porosity 

results.  

Kaneniwa et al. (1984) reported that cefalexin showed elastic behaviour on 

high compression pressure which may clarify inability of the relaxed dry matrices 

to reduce the drug release rate at the higher crushing strength levels. Increasing 

the tablet crushing strength level did not show any significant (P>0.05) effect on 

both the formulations F10 (10%) and F11 (20%) at larger part of the time points 

because the high effervescent activity of the gassing agent (calcium carbonate) 

facilitated the disintegration process of these tablets (Figure 4-46), which complies 

with the related results of F3 and F4 pentoxifylline tablets (Chapter 3, 

section 3.2.5). Regarding the formulations based on sodium carbonate as a 

gassing agent (F12 and F13), neither disintegration behaviour nor significant 

difference (P>0.05) between their drug release rate was noted (Figure 4-47). This 

also agrees with the related results of pentoxifylline tablets (F5 and F6) 

(Chapter 3, section 3.2.5) where the ability of sodium carbonate to generate an 

alkaline microenvironment in the swelled matrices protected their tablets from the 

disintegration process due to the rapid gel formation.  
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Figure 4-45: Percentage of drug release of F8, and F9 floating tablets pressed at 
levels (A), (B), and (C) of crushing strength in 0.1 M HCl medium before 
granulation. 
Notes: The data represents the mean ± SD of three determinations. The 
compression force of the prepared tablets was adjusted to give three crushing 
strength levels: A (49-54 N), B (54-59 N), and C (59-64 N).  No significant change 
in the dissolution medium, macroenvironment, pH was recorded through the 
experiment time. 
 

 

 
Figure 4-46: Percentage of drug release of F10, and F11 floating tablets pressed 
at levels (A), (B), and (C) of crushing strength in 0.1 M HCl medium before 
granulation.  
Notes: The data represents the mean ± SD of three determinations. The 
compression force of the prepared tablets was adjusted to give three crushing 
strength levels: A (49-54 N), B (54-59 N), and C (59-64 N).  No significant change 
in the dissolution medium, macroenvironment, pH was recorded through the 
experiment time. 
For formulation composition, refer to Table 4-1 or Table 2-8. 
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Figure 4-47: Percentage of drug release of F12, and F13 floating tablets pressed 
at levels (A), (B), and (C) of crushing strength in 0.1 M HCl medium before 
granulation.  
Notes: The data represents the mean ± SD of three determinations. The 
compression force of the prepared tablets was adjusted to give three crushing 
strength levels: A (49-54 N), B (54-59 N), and C (59-64 N).  No significant change 
in the dissolution medium, macroenvironment, pH was recorded through the 
experiment time. 
 

 

 
Figure 4-48: Percentage of drug release of F14 control tablets pressed at levels 
(A), (B), and (C) of crushing strength in 0.1 M HCl medium before granulation.  
Notes: The data represents the mean ± SD of three determinations. The 
compression force of the prepared tablets was adjusted to give three crushing 
strength levels: A (49-54 N), B (54-59 N), and C (59-64 N).  No significant change 
in the dissolution medium, macroenvironment, pH was recorded through the 
experiment time. 
For formulation composition, refer to Table 4-1 or Table 2-8. 
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Figure 4-49: Percentage of drug release of F8, and F9 floating tablets pressed at 
levels (A), (B), and (C) of crushing strength in 0.1 M HCl medium after granulation.  
Notes: The data represents the mean ± SD of three determinations. The 
compression force of the prepared tablets was adjusted to give three crushing 
strength levels: A (49-54 N), B (54-59 N), and C (59-64 N).  No significant change 
in the dissolution medium, macroenvironment, pH was recorded through the 
experiment time. 
 

 

 
Figure 4-50: Percentage of drug release of F10, and F11 floating tablets pressed 
at levels (A), (B), and (C) of crushing strength in 0.1 M HCl medium after 
granulation.  
Notes: The data represents the mean ± SD of three determinations. The 
compression force of the prepared tablets was adjusted to give three crushing 
strength levels: A (49-54 N), B (54-59 N), and C (59-64 N).  No significant change 
in the dissolution medium, macroenvironment, pH was recorded through the 
experiment time. 
For formulation composition, refer to Table 4-1 or Table 2-8. 
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Figure 4-51: Percentage of drug release of F12, and F13 floating tablets pressed 
at levels (A), (B), and (C) of crushing strength in 0.1 M HCl medium after 
granulation.  
Notes: The data represents the mean ± SD of three determinations. The 
compression force of the prepared tablets was adjusted to give three crushing 
strength levels: A (49-54 N), B (54-59 N), and C (59-64 N).  No significant change 
in the dissolution medium, macroenvironment, pH was recorded through the 
experiment time. 
 

 

 
Figure 4-52: Percentage of drug release of F14 control tablets pressed at levels 
(A), (B), and (C) of crushing strength in 0.1 M HCl medium after granulation.  
Notes: The data represents the mean ± SD of three determinations. The 
compression force of the prepared tablets was adjusted to give three crushing 
strength levels: A (49-54 N), B (54-59 N), and C (59-64 N).  No significant change 
in the dissolution medium, macroenvironment, pH was recorded through the 
experiment time. 
For formulation composition, refer to Table 4-1 or Table 2-8. 
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Cefalexin monohydrate control tablets (F14), showed a significant (P<0.05) 

difference between the release profiles of the tablets pressed at the levels A and B 

and the levels A and C of crushing strength at majority of the time points 

(Figure 4-48). This may be explained by the complete disintegration behaviour of 

F14 tablets compacted at the levels B and C of crushing strength. However, for 

pentoxifylline control tablets (F7), only those tablets compacted at the level A of 

crushing strength showed a disintegration behaviour while those compacted at the 

levels B and C did not (Chapter 3, section 3.2.5). The elastic behaviour of 

cefalexin powder (Kaneniwa et al., 1984) may explain the disintegration behaviour 

of those tablets pressed at the higher compression force.   

For the tablets prepared from the granules, the dissolution profiles of all the 

tablets (F8-F14) are presented in Figure 4-49 to Figure 4-52 respectively. 

Generally, increasing the tablets crushing strength level in all the formulations (F8-

F14) caused a non-significant (P>0.05) difference in their drug release rate at bulk 

of the time points. This fits into the DMU results (Section 4.2.4) as well as the 

related pentoxifylline tablet results based on sodium bicarbonate (F1 and F2), 

calcium carbonate (F3 and F4), sodium carbonate (F5 and F6), and the control 

tablets (F7) (Chapter 3, section 3.2.5) where the tablet strength had only a small 

effect on the in vitro drug release rate. This negligible influence of increasing the 

compression force on the drug release rate following the granulation gives an 

advantage to control the high tablet friability percentages (Section 4.2.1) without 

disturbing the drug release rate.  

The effect of the granulation process on drug release rate from the tablets 

(F8-F14) revealed that the granulation extended the drug release rate of all the 

prepared tablets significantly (P<0.05) at most of the time points (Figure 4-49 to 

Figure 4-52 respectively). Results of F8 (10% (w/w) sodium bicarbonate) tablets 

were consistent with the reduction in their porosity percentages following the 

granulation (Figure 4-36). Additionally, this agrees with the related results of F1 

(10% (w/w)) formulation based on pentoxifylline (Chapter 3, section 3.2.5). The 

decrease in their porosity levels occurred during the wet massing stage of the 

granulation process could delay the dissolution medium entrapment through the 

matrix at an early stage of the dissolution test and decreased the drug release 

process.  



 

235 

 

Although the porosity levels of F9 (20% (w/w) sodium bicarbonate) tablets 

increased after the granulation (Figure 4-36), their dissolution profiles decreased. 

The better gel hydration ability of F9 tablets because of their higher sodium 

bicarbonate content (Section 4.2.3) may inverse the increase in their porosity 

percentages and decrease their drug release rate. The granulation process made 

the formulations F10 (10% (w/w)) and F11 (10% (w/w)) more resistant to rupture 

due to calcium carbonate effervescent behaviour and gave sufficient time for 

swelling and gel layer formation to control the drug release process (Figure 4-50) 

which is similar to the related results of F3 and F4 pentoxifylline tablets (Chapter 3, 

section 3.2.5). For the tablets based on sodium carbonate (F12 and F13), the 

decrease in their drug release rate following the granulation complies with the 

reduction in their porosity percentages after the granulation (Figure 4-36) where 

penetration rate of the dissolution medium inside these tablets decreased as well 

as drug release rate (Figure 4-51).  

In comparison with the related results of pentoxifylline tablets, although the 

granulation process decreased the porosity levels of F5 (10% (w/w) sodium 

carbonate) tablets and increased the porosity of F6 (20% (w/w) sodium carbonate) 

tablets based on pentoxifylline, the difference in their drug release rate before and 

after the granulation was not significant (P>0.05) at majority of the time points 

(Chapter 3, section 3.2.5). For F14 tablets, after the granulation, their porosity 

level increased (Figure 4-36) and their internal structure became stronger. This 

rapidly initiated a gel layer (due to more dissolution medium entrapment rate) that 

prevented the tablet rupture by the disintegration and reduced the drug release 

rate (Figure 4-52) in comparison with the tablets prepared from the powder 

mixture. The drug release rate of pentoxifylline control tablets (F7) also decreased 

following the granulation (Chapter 3, section 3.2.5); however, this effect was 

explained by the reduction in their porosity levels in comparison with the tablets 

prepared from the powder mixture (Chapter 3, Figure 3-40). The (1:1) binary 

mixture of hydroxyethyl cellulose and sodium alginate content was reduced by 

almost 36% (w/w) in cefalexin monohydrate tablets (F8-F14) compared to 

pentoxifylline tablets (F1-F7) due to the change in their drug content (Chapter 2, 

Table 2-7 and Table 2-8) which made the lower polymeric content tablets (F8-F14) 

more sensitive to the effect of granulation process and explain these differences. 
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Increasing the concentration of sodium bicarbonate from 10% (w/w) (F8) to 

20% (w/w) (F9) increased the drug release rates of the tablets prepared from the 

powder mixture (Figure 4-45). At majority of the time points, the effect was not 

significant (P>0.05) except at the level B of crushing strength where P<0.05. This 

is similar to the related results of F1 (10% (w/w)) and F2 (20% (w/w)) tablets 

(Chapter 3, section 3.2.5) where increasing the gassing agent level increased the 

pore formation in the wet matrix tablets due to liberation of more carbon dioxide 

bubbles, which caused higher drug release rate. In contrast, for tablets prepared 

from the granules, increasing the concentration of sodium bicarbonate significantly 

(P<0.05) decreased their dissolution behavior at bulk of the time points 

(Figure 4-49). This conforms to the related results of F1 and F2 tablets based on 

pentoxifylline. F1 tablets (10% (w/w)) demonstrated a higher swelling rate in 

comparison with F2 (20% (w/w)) tablets (Chapter 3, section 3.2.4) which indicates 

more entrapment of the dissolution medium in their matrices that dissolves and 

releases more drug molecules. In contrast, the swelling rate of F9 (20% (w/w) 

sodium bicarbonate) formulation was higher than that of F8 (10% (w/w) sodium 

bicarbonate) (Section 4.2.4). As discussed earlier (Section 4.2.3), a coherent 

microstructure of the swollen gel layer may be formed due to the higher gassing 

agent level which explains the lower drug release rate of F9 tablets prepared from 

the granules.  

As shown in Figure 4-46, increasing the concentration of calcium carbonate 

from 10% (w/w) (F10) to 20% (w/w) (F11) in the tablets prepared from the powder 

mixture did not affect significantly (P>0.05) on their drug release rate at most of 

the time points because of the complete disintegration behavior. This is similar to 

the related pentoxifylline tablet results of the formulations F3 (10% (w/w)) and F4 

(20% (w/w)) (Chapter 3, section 3.2.5). Yet, at larger part of the time points for the 

tablets prepared from the granules, increasing calcium carbonate concentration 

caused a significant (P<0.05) increase in the drug release except at level C of 

crushing strength where P>0.05 (Figure 4-50). This also conforms with the related 

results of pentoxifylline tablets (Chapter 3, section 3.2.5) where increasing the 

concentration of calcium carbonate from 10% (F3) to 20% (w/w) (F4) increased 

pore formation in the formed gel layer due to the entrapped gas bubbles, and this 

resulted in the higher drug release rate.  
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Increasing sodium carbonate concentration from 10% (F12) to 20% (w/w) 

(F13) caused a non-significant (P>0.05) decrease in the drug release rate from the 

tablets prepared from the powder mixtures at majority of the time points 

(Figure 4-47) and a non-significant (P>0.05) increase from the tablets prepared 

from the granules at larger part of the time points (Figure 4-51). This agrees with 

the related results of the formulations F5 (10% (w/w) sodium carbonate) and F6 

(20% (w/w) sodium carbonate) based on pentoxifylline  (Chapter 3, section 3.2.5) 

where the ability of sodium carbonate to generate an alkaline microenvironment 

enhanced pentoxifylline tablets (F5 and F6) to swell and to release the drug in 

almost similar rate. Nevertheless, as discussed earlier (Section 4.2.4), a higher 

swelling rate was noted with cefalexin monohydrate tablets based on 20% (w/w) 

sodium carbonate (F13) compared to 10% (w/w) (F12). This agrees with the 

increase in the number of parts of sodium carbonate available for the hydrophilic 

polymeric mixture in these formulations (Section 4.2.4) which enhanced their 

swelling rate behaviour. This difference in the swelling rate did not cause a 

difference in the drug release rate of F12 and F13 tablets suggesting that the 

coherent hydrated gel microstructure that was formed at 10% (w/w) sodium 

carbonate (F12) reached a point of strength after which no further decrease in the 

drug release rate can be noted.  

The effect of adding a gassing agent on the drug release rate of the tablets 

prepared from the powder mixture or the granules was evaluated by comparing 

the control formulation (F14) results with all the other formulations (F8-F13). A 

significant (P<0.05) higher release rate at bulk of the time points of cefalexin 

monohydrate from F14 control tablets prepared from the powder mixture 

(Figure 4-48) or the granules (Figure 4-52) compared to both the formulations F8 

(10% (w/w)) and F9 (20% (w/w) was noted. This conforms to the related results of 

pentoxifylline tablets based on sodium bicarbonate (F1 and F2) and the control 

ones (F7) where the swelling rate of the control tablets (F14) showed a higher 

swelling rate compared to the tablets of F8 and F9 formulations.  
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Conversely, increasing the number of parts of sodium bicarbonate available 

for the hydrophilic polymeric mixture in the formulations based on cefalexin 

monohydrate (Section 4.2.4) could alter the strength of the hydrated 

microstructure of the swollen matrix tablets due to the prospected difference in the 

microenvironment alkalinity level generated during the dissolution process. 

Accordingly, absence of the gassing agent (sodium bicarbonate) from F14 tablets 

generated thicker but weaker gel structure that could not retard the drug molecules 

as those of the formulations F8 and F9.  

Regarding the addition of calcium carbonate, a significant (P<0.05) lower 

dissolution rate of cefalexin monohydrate from F14 control tablets prepared from 

the powder mixture at most of the time points was noted (Figure 4-48) compared 

to both the formulations F10 (10% (w/w)) and F11 (20% only at the level A of 

crushing strength as F14 tablets did not disintegrate). But, at the levels B and C of 

crushing strength the effect was not significant (P>0.05) at majority of the time 

points due to the complete disintegration behaviour of the tablets F10, F11, and 

F14. Nonetheless, for the tablets prepared from the granules, the drug release rate 

significantly (P<0.05) decreased at larger part of the time points on the addition of 

10% (w/w) calcium carbonate and non-significantly (P>0.05) decreased on the 

addition of 20% (w/w) of it. 

This was not similar to the related results of pentoxifylline tablets prepared 

from the granules where adding calcium carbonate at 10% (w/w) (F3) or at 20% 

(w/w) (F4) increased the drug release rate due to the liberation of the gas bubbles 

that enhanced more pore formation (Chapter 3, section 3.2.5).  Changing the 

(gassing agent: polymeric mixture) ratio in cefalexin monohydrate tablets 

facilitated the formation of a more cohesive hydrated gel microstructure. This 

explains the significant decrease in the drug release rate upon addition of 10% 

(w/w) calcium carbonate. Still, the absence of the significance effect at the higher 

level (20 % w/w) suggests that the effervescent activity of calcium carbonate 

increased the pore formation in the hydrated gel layer which may inverse the effect 

of the (gassing agent: polymeric mixture) ratio.  

 

 

 



 

239 

 

Adding sodium carbonate as a gassing agent at 10% (w/w) (F12) or at 20% 

(w/w) (F13) decreased significantly (P<0.05), at majority of the time points, the 

drug release rate from the tablets either prepared from the powder mixture or the 

granules, which is similar to the related results of pentoxifylline tablets but the 

effect was generally not significant (Chapter 3, section 3.2.5). Although (sodium 

carbonate: polymeric mixture) ratio was higher in cefalexin monohydrate 

formulations than that used in pentoxifylline formulations, the drug release rate 

decreased on addition of sodium carbonate in both formulations. This complies 

with the earlier suggestion that sodium carbonate may form a coherent gel 

microstructure regardless of the used concentration. Generally, it is worth in the 

future to do further evaluation regarding the swollen gel microenvironment pH, 

strength, and morphology which will support the previously mentioned 

explanations. 

Cefalexin monohydrate tablets (F8-F14) generally showed faster drug 

release rate in comparison with pentoxifylline tablets (F1-F7). Changing the drug 

content from 60 mg (pentoxifylline) to 250 mg (cefalexin monohydrate) changed 

the (polymeric mixture: tablet weight) ratio. For example, it was changed from 

(5.0:10) for F1 and (4.5:10) for F2 to (3.2:10) for F8 and (2.8:10) for F9. This 

reduction (by almost 36% (w/w)) in the polymeric content reduced ability of the 

later tablet matrices to sustain the drug release process. Still, further investigations 

on cefalexin monohydrate floating tablets based on higher polymeric mixture 

content could be tried in the future to enhance their dissolution profiles. 
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Concerning the stability studies of the formulations F8-F14, effect of the 

storage for 3 months at 40°C ± 2°C and 80% ± 5% RH in closed or open 

containers is shown in Figure 4-53 to Figure 4-59 respectively. A significant 

(P<0.05) increase in the drug release rate of the tablets F8 (10% (w/w) sodium 

bicarbonate) and F9 (20% (w/w) sodium bicarbonate) at bulk of the time points in 

comparison to the freshly prepared ones was noted after storage in the closed 

containers (Figure 4-53 and Figure 4-54 respectively). This rapid drug release rate 

of F8 and F9 tablets complies with reduction in their floating lag time results after 

storage. The dissolution medium easily penetrated the relaxed tablet matrices to 

dissolve the drug and release it in a higher rate than that of the freshly prepared 

tablets. In contrast, the stability results of F8 formulation in the open containers 

showed a significant (P<0.05) reduction in their dissolution profiles at majority of 

the time points (Figure 4-53) in comparison with their freshly prepared samples. 

Almost 80% of the drug was released after 12 h; however, after 24 h a complete 

drug release was reported. Moreover, these tablets (F8) lost their ability to float 

and kept sinking during the experiment time. As discussed earlier (Section 4.1.3), 

the stressful humidity level (80%) may generate a concentration dependent 

alkaline microenvironment, which may facilitate a rapid generation of a coherent 

gel microstructure around the tablets once they contacted the dissolution medium 

to retard the drug release rate. Also, the loss of the effervescent activity of sodium 

bicarbonate, after the storage, decreased the erosional behaviour of these 

tablets which may explain the sharp decrease in the drug release process.  

For F9 tablets, storage for 3 months at 40°C ± 2°C and 80% ± 5% RH in the 

open containers (Figure 4-54) indicates cefalexin monohydrate degradation as 

presented in the related DSC thermogram (Figure 4-12) and the IR spectra 

(Figure 4-26). Accordingly, the release profiles of F9 tablets after storage in the 

open containers may be related to degradation product(s). Also, sodium carbonate 

based formulations (F12 (10% (w/w) and F13 (20% (w/w)), as shown respectively 

in their DSC thermograms (Figure 4-15 and Figure 4-16) and their IR spectra 

(Figure 4-29 and Figure 4-30), storage for 3 months at 40°C ± 2°C and 80% ± 5% 

RH in the open containers indicates degradation of cefalexin monohydrate. 

Accordingly, the related release profiles (Figure 4-57 and Figure 4-58) could 

represent degradation product(s). 
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Conversely, the stability studies of the tablets based on calcium carbonate 

as a gassing agent (F10 and F11) and the control tablets (F14) stored either in the 

closed or the open containers showed a significant (P<0.05) increase in their drug 

release rate at majority of the time points. This complies with earlier discussion 

about the relaxation behaviour of the tablets during the storage time where a 

complete disintegration was reported. An exception was noted for F10 tablets 

(10% calcium carbonate) which presented a partial control of the drug release 

(Figure 4-55). This conforms to the in situ ability of the anionic alginate molecules 

to form a gel in the presence of multivalent cations such as calcium ions in 

aqueous medium. During the storage process, especially under a relatively high 

moisture level (80%), this may generate an insoluble gel that could decrease the 

drug release rate. But, the lower polymeric content in cefalexin monohydrate 

based tablets and the higher calcium carbonate level for F11 (20% (w/w)) tablets 

counteracted the in situ cross linking effect and resulted in a complete 

disintegration behaviour (Figure 4-56). 
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Figure 4-53: Percentage of drug release of F8 floating tablets pressed at levels 
(A), (B), and (C) of crushing strength in 0.1 M HCl medium after storage for 3 
months at 40°C ± 2°C and 80% ± 5% RH in closed or open containers. 
Notes: The data represents the mean ± SD of three determinations. The 
compression force of the prepared tablets was adjusted to give three crushing 
strength levels: A (49-54 N), B (54-59 N), and C (59-64 N).  No significant change 
in the dissolution medium, macroenvironment, pH was recorded through the 
experiment time. 
For formulation composition, refer to Table 4-1 or Table 2-8. 
 

 

 
Figure 4-54: Percentage of drug release of F9 floating tablets pressed at levels 
(A), (B), and (C) of crushing strength in 0.1 M HCl medium after storage for 3 
months at 40°C ± 2°C and 80% ± 5% RH in closed or open containers. 
Notes: The data represents the mean ± SD of three determinations. The 
compression force of the prepared tablets was adjusted to give three crushing 
strength levels: A (49-54 N), B (54-59 N), and C (59-64 N).  No significant change 
in the dissolution medium, macroenvironment, pH was recorded through the 
experiment time. 
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Figure 4-55: Percentage of drug release of F10 floating tablets pressed at levels 
(A), (B), and (C) of crushing strength in 0.1 M HCl medium after storage for 3 
months at 40°C ± 2°C and 80% ± 5% RH in closed or open containers. 
Notes: The data represents the mean ± SD of three determinations. The 
compression force of the prepared tablets was adjusted to give three crushing 
strength levels: A (49-54 N), B (54-59 N), and C (59-64 N).  No significant change 
in the dissolution medium, macroenvironment, pH was recorded through the 
experiment time. 
For formulation composition, refer to Table 4-1 or Table 2-8. 
This makes this formulation with calcium carbonate successful and confirms the 
feasibility of using calcium carbonate as an stability indicating gassing agent within 
floating drug delivery systems. 
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Figure 4-56: Percentage of drug release of F11 floating tablets pressed at levels 
(A), (B), and (C) of crushing strength in 0.1 M HCl medium after storage for 3 
months at 40°C ± 2°C and 80% ± 5% RH in closed or open containers. 
Notes: The data represents the mean ± SD of three determinations. The 
compression force of the prepared tablets was adjusted to give three crushing 
strength levels: A (49-54 N), B (54-59 N), and C (59-64 N).  No significant change 
in the dissolution medium, macroenvironment, pH was recorded through the 
experiment time. 

 

 

 
Figure 4-57: Percentage of drug release of F12 floating tablets pressed at levels 
(A), (B), and (C) of crushing strength in 0.1 M HCl medium after storage for 3 
months at 40°C ± 2°C and 80% ± 5% RH in closed or open containers. 
Notes: The data represents the mean ± SD of three determinations. The 
compression force of the prepared tablets was adjusted to give three crushing 
strength levels: A (49-54 N), B (54-59 N), and C (59-64 N).  No significant change 
in the dissolution medium, macroenvironment, pH was recorded through the 
experiment time. 
For formulation composition, refer to Table 4-1 or Table 2-8. 
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Figure 4-58: Percentage of drug release of F13 floating tablets pressed at levels 
(A), (B), and (C) of crushing strength in 0.1 M HCl medium after storage for 3 
months at 40°C ± 2°C and 80% ± 5% RH in closed or open containers. 
Notes: The data represents the mean ± SD of three determinations. The 
compression force of the prepared tablets was adjusted to give three crushing 
strength levels: A (49-54 N), B (54-59 N), and C (59-64 N).  No significant change 
in the dissolution medium, macroenvironment, pH was recorded through the 
experiment time. 

 

 

 
Figure 4-59: Percentage of drug release of F14 floating tablets pressed at levels 
(A), (B), and (C) of crushing strength in 0.1 M HCl medium after storage for 3 
months at 40°C ± 2°C and 80% ± 5% RH in closed or open containers. 
Notes: The data represents the mean ± SD of three determinations. The 
compression force of the prepared tablets was adjusted to give three crushing 
strength levels: A (49-54 N), B (54-59 N), and C (59-64 N).  No significant change 
in the dissolution medium, macroenvironment, pH was recorded through the 
experiment time. 
For formulation composition, refer to Table 4-1 or Table 2-8. 
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In order to investigate morphological changes of all the tablets (F8-F14) 

before and after storage for 3 months at 40°C ± 2°C and 80% ± 5% RH in closed 

or open containers, pictures were evaluated (Figure 4-60). Concerning the tablets 

based on sodium bicarbonate as a gassing agent, a change in the colour from 

white to yellow (F8) or dark brown (F9) was observed in the open container 

tablets. However a very slight change in the colour was noted in the tablets stored 

in the closed ones. The formulations which were loaded with sodium carbonate 

showed a change in the colour from white to yellow (F12) or dark brown (F13) in 

the open container tablets, and a very slight change in colour was seen in tablets 

stored in closed ones. The intensity of the colour was proportional to both sodium 

bicarbonate and sodium carbonate concentrations in the related formulations. This 

agrees with the results of DSC (Section 4.1.2) and FTIR (Section 4.1.3) that an 

interaction occurred between these gassing agents and cefalexin monohydrate 

after storage in the open containers. Since sodium bicarbonate and sodium 

carbonate are water soluble, direct exposure to a stressful humidity level (80%) for 

3 months could increase the pH of the matrix microenvironment in a concentration 

dependent rhythm causing degradation for cefalexin monohydrate as it is unstable 

in such conditions (Marrelli, 1975; Yin et al., 2013). F10 and F11 calcium 

carbonate based formulations and F14 control formulation did not show change in 

colour which approves that calcium carbonate is a promising gassing agent. 

According to the ICH guidelines, a specific stability-indicating assay method such 

as HPLC to determine the drug content and any possible degradation products in 

the formulations will be required in the future to do more investigations (ICH, 

1999). Consequently, it is suggested that all cefalexin monohydrate floating 

systems based on such gas forming agents should be packaged by the 

pharmaceutical companies in tightly closed containers with an eye-catching label 

to direct patients for good practice. 
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Figure 4-60: Pictures of F8-F14 tablets freshly prepared and after storage for 3 
months at 40°C ± 2°C and 80% ± 5% RH in closed or open containers.  
For formulation composition, refer to Table 4-1 or Table 2-8.   
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4.2.6 Release data modeling and analysis  

 

Table 4-7 shows the release rate constants (k), and the correlation 

coefficients (R2) calculated after fitting the dissolution profiles of the formulations 

F8-F14 into zero order, first order, Hixson-Crowell, and Higuchi drug release 

mathematical models. Because of the rapid dissolution profiles of F8, F9 

(Figure 4-45) F10, F11 (Figure 4-46), and F14 (Figure 4-48) tablets, prepared from 

the powder mixtures, only their drug release rate of the tablets prepared from the 

granules were considered beside those of F12, and F13 tablets prepared from 

either the powder mixtures or the granules for Table 4-7 evaluation. 

The in vitro drug release rate of the formulations F8-F14 were best 

explained by Higuchi‘s and Hixson-Crowell equations, as the highest linearity (R2) 

values were obtained. This indicates that the release of cefalexin monohydrate 

from the evaluated floating matrices (F8-F14) as a square root of time was 

dependent process based on Fickian diffusion alongside with a change in diameter 

and surface area of the matrices with the progressive dissolution process as a 

function of time. Korsmeyer–Peppas equation (Equation 11, chapter 2, 

section 2.2.6.6) was used, as it describes the drug release from polymeric 

systems, to evaluate the effect of tablet crushing strength, the granulation process, 

and the gassing agent concentration on the drug release mechanism of the 

prepared tablet formulations (F8-F14).  
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Table 4-7: Release rate constants (k), and correlation coefficients (R2) calculated after fitting the release profiles of F8-F14 
into of zero order, first order, Hixson-Crowell, and Higuchi drug release mathematical models. 

Formulation 
Origin of 

prepared tablets 

Crushing 
strength 

level 

Drug release mathematical model 

Zero order First order Hixson-Crowell Higuchi 

R2 
K0 

(mg*h-1) 
R2 

K1 

(h-1) 
R2 

KHC 

(mg1/3*h-1) 
R2 

KH 

(mg1/2*h-1) 

F8 

Powder 

(A) 0.8863 3.9990 0.9465 0.5048 0.9977 0.2882 0.9686 16.307 

(B) 0.8343 4.4056 0.8208 0.4115 0.6709 0.3711 0.9308 18.152 

(C) 0.7018 2.0625 0.3286 0.4021 0.6056 0.2742 0.8360 8.781 

Granules 

(A) 0.9449 8.9962 0.9681 0.3554 0.9819 0.3240 0.9856 35.839 

(B) 0.9301 9.1435 0.9687 0.3986 0.9804 0.3461 0.9818 36.642 

(C) 0.9797 9.4911 0.8994 0.4178 0.8179 0.5362 0.9994 37.392 

F9 

Powder 

(A) 0.8460 2.9198 0.8595 0.3547 0.8800 0.2226 0.9354 11.976 

(B) 0.7878 2.3566 0.9581 0.8012 0.8746 0.4919 0.9003 9.826 

(C) 0.6743 1.4251 0.8802 0.4599 0.7616 0.3289 0.8041 6.070 

Granules 

(A) 0.9934 9.0537 0.8716 0.3314 0.9601 0.3052 0.9913 35.279 

(B) 0.9896 9.1997 0.8466 0.4016 0.8228 0.4717 0.9950 35.982 

(C) 0.9905 8.6846 0.8860 0.3051 0.9632 0.2887 0.9861 33.801 

The compression force of the prepared tablets was adjusted to give three crushing strength levels: A (49-54 N), B (54-59 N), 

and C (59-64 N). For formulation composition, refer to Table 4-1 or Table 2-8. 
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Table 4-7 (continued): Release rate constants (k), and correlation coefficients (R2) calculated after fitting the release profiles 
of F8-F14 into of zero order, first order, Hixson-Crowell, and Higuchi drug release mathematical models. 

Formulation 
Origin of 

prepared tablets 

Crushing 
strength 

level 

Drug release mathematical model 

Zero order First order Hixson-Crowell Higuchi 

R2 
K0 

(mg*h-1) 
R2 

K1 

(h-1) 
R2 

KHC 

(mg1/3*h-1) 
R2 

KH 

(mg1/2*h-1) 

F10 

Powder 

(A) 0.9551 -0.5019 0.4439 0.1573 0.7697 -0.1805 0.4109 0.566 

(B) 0.7933 -0.6129 0.1798 -0.0242 0.5346 -0.2081 0.8333 -2.451 

(C) 0.8903 -0.4031 N.A N.A 0.8770 -0.0856 0.8780 -1.561 

Granules 

(A) 0.9610 8.1567 0.9872 0.2642 0.9998 0.2640 0.9965 32.400 

(B) 0.9588 8.1645 0.9438 0.3332 0.9940 0.2986 0.9979 32.490 

(C) 0.9605 8.3348 0.9030 0.3763 0.9850 0.3179 0.9981 33.142 

F11 

Powder 

(A) 0.9315 -0.6329 N.A N.A 0.8798 -0.0952 0.8998 -2.426 

(B) 0.9121 -0.6109 N.A N.A 0.9137 -0.0715 0.9392 -2.418 

(C) 0.9171 -0.5527 N.A N.A 0.8955 -0.0874 0.9291 -2.170 

Granules 

(A) 0.9672 6.4713 0.9838 0.2589 0.9994 0.2415 0.9967 25.624 

(B) 0.9734 6.6079 0.9315 0.3079 0.9881 0.2661 0.9984 26.105 

(C) 0.9781 7.0334 0.9311 0.3022 0.9869 0.2691 0.9972 27.702 

The compression force of the prepared tablets was adjusted to give three crushing strength levels: A (49-54 N), B (54-59 N), 

and C (59-64 N). For formulation composition, refer to Table 4-1 or Table 2-8. 
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Table 4-7 (continued): Release rate constants (k), and correlation coefficients (R2) calculated after fitting the release profiles 
of F8-F14 into of zero order, first order, Hixson-Crowell, and Higuchi drug release mathematical models. 

Formulation 
Origin of 

prepared tablets 

Crushing 
strength 

level 

Drug release mathematical model 

Zero order First order Hixson-Crowell Higuchi 

R2 
K0 

(mg*h-1) 
R2 

K1 

(h-1) 
R2 

KHC 

(mg1/3*h-1) 
R2 

KH 

(mg1/2*h-1) 

F12 

Powder 

(A) 0.8232 6.9840 0.9120 0.8749 0.9628 0.5901 0.9265 28.902 

(B) 0.8433 7.0862 0.9900 0.5576 0.8010 0.4668 0.9397 29.178 

(C) 0.8477 7.0778 0.9777 0.4670 0.9500 0.3441 0.9406 29.082 

Granules 

(A) 0.9709 8.6529 0.8518 0.4058 0.9680 0.3306 0.9994 34.245 

(B) 0.9606 8.4918 0.9389 0.3284 0.9919 0.2999 0.9981 33.764 

(C) 0.9809 8.0994 0.9436 0.2692 0.9884 0.2646 0.9995 31.972 

F13 

Powder 

(A) 0.8593 7.3927 0.9665 0.6243 0.9893 0.4883 0.9504 30.327 

(B) 0.8618 7.4746 0.9808 0.5852 0.9698 0.6097 0.9535 30.668 

(C) 0.8560 7.4062 0.9204 0.6941 0.9916 0.4969 0.9501 30.436 

Granules 

(A) 0.9799 7.9649 0.9769 0.2388 0.9968 0.2467 0.9954 31.313 

(B) 0.9658 8.0112 0.9847 0.2658 0.9991 0.2635 0.9962 31.736 

(C) 0.9674 7.8763 0.9840 0.2671 0.9965 0.2632 0.9945 31.151 

F14 

Powder 

(A) 0.7257 3.4234 0.9045 0.4210 0.5643 0.2860 0.8580 14.520 

(B) 0.7384 -0.3480 0.1798 0.0520 0.4553 -0.1451 0.6525 -1.274 

(C) 0.7387 -0.4828 0.5993 0.0811 0.6453 -0.2584 0.8332 -2.000 

Granules 

(A) 0.9428 6.8051 0.9859 0.3047 0.9987 0.2689 0.9900 27.002 

(B) 0.9427 7.4179 0.9137 0.4928 0.9937 0.3490 0.9915 29.680 

(C) 0.9419 7.4527 0.9236 0.4459 0.9957 0.3343 0.9919 29.832 

The compression force of the prepared tablets was adjusted to give three crushing strength levels: A (49-54 N), B (54-59 N), 
and C (59-64 N). For formulation composition, refer to Table 4-1 or Table 2-8.  
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As shown in Table 4-8, the drug release results of F8-F14 tablets fitted into 

Korsmeyer–Peppas equation as the correlation coefficients (R2) greater than 0.98 

were obtained in all the tablets except for the tablets prepared from the granules of 

the formulations F9 (20% (w/w) sodium bicarbonate) at the crushing strength level 

C, F11 (20% (w/w) calcium carbonate) at all the crushing strength levels, and F14 

(the control tablets) at the crushing strength level A. But, there were insufficient 

data points on the release profile ≤ 60% drug release in order to provide accurate 

values for the tablets prepared from the powder mixture of the formulations F8, F9 

(Figure 4-45), F10, F11 (Figure 4-46), and F14 (Figure 4-48). The values of the 

release rate constant (KP) were consistent with the in vitro drug release results 

(Section 4.2.5). Generally, increasing the tablet crushing strength, slightly changed 

KP values of the tablets prepared from the powder mixtures or the granules. The 

granulation process decreased the release rate constant (KP) of the tablets F12 

and F13 based on sodium carbonate as a gassing agent, however the effect was 

not clear for the other formulations due to the insufficient data points.  

For the tablets prepared form the powder mixtures, the effect of increasing 

the gassing agent concentration from 0% to 20 % (w/w) on the release kinetics 

was not clear due to the rapid drug release rate; but, increasing sodium carbonate 

concentration from 10% to 20% (w/w) decreased their KP values (Table 4-8). 

Regarding the tablets prepared from the granules the effect was much clearer. 

Raising sodium bicarbonate concentration decreased the release rate constant 

(Kp). For calcium carbonate, increasing its level decreased the release rate 

constant (KP) at 10% (w/w) concentration (F10), but, at 20% (w/w) concentration 

(F11), it increased KP values up to almost similar level of the control tablets (F14, 

0% (w/w)). Additionally, raising sodium carbonate content decreased the drug 

release rate constant (KP) at 10% (w/w) level (F12) and slightly increased it at the 

higher level (F13).  

The effect of these factors on the drug release mechanism was also 

evaluated through the release exponent (n) values. As shown in Table 4-8 

changing the crushing strength level slightly changed (n) values but without 

changing the release mechanism of all the prepared tablets (with sufficient data 

points). 
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The granulation process changed the drug release mechanism for the 

formulation F12 (10% (w/w) sodium carbonate) from release by diffusion (Fickian) 

to release by diffusion and polymer relaxation (non-Fickian) and retained it by non-

Fickian release for the formulation F13 (20% (w/w) sodium carbonate). This is 

almost similar to the related results of pentoxifylline tablets (F5 and F6) where 

more involvement of polymer relaxation in addition to drug diffusion was 

predominant in the release process from such matrices (Chapter 3, section 3.2.6). 

The effect of raising the gassing agent concentration (sodium bicarbonate, 

calcium carbonate or sodium carbonate) from 10% to 20% (w/w) was also 

evaluated in all the tablets with sufficient data points (Table 4-8). Regarding 

sodium bicarbonate, no change in the release mechanism was reported by raising 

its concentration which agrees with the related results of F1 and F2 tablets based 

on pentoxifylline where release by diffusion and polymer relaxation (non-Fickian) 

was reported (Chapter 3, section 3.2.6). Increasing calcium carbonate 

concentration in the tablets of the granules origin changed the release mechanism 

from non-Fickian at 10% (w/w) (F10) to Fickian release at 20% (w/w) (F11). This 

conforms to the related results of F3 (10% (w/w)) and F4 (20% (w/w)) tablets of 

pentoxifylline based on calcium carbonate (Chapter 3, section 3.2.6). Although the 

(calcium carbonate: polymeric mixture) ratio was different between these 

formulations, where it was (2:10) for F3, (4.5:10) for F4, (3.1:10) for F10, and 

(7:10) for F11 (Chapter 2, Table 2-7 and Table 2-8), the release mechanism 

results of pentoxifylline tablets (F3 and F4) were similar to the related ones of 

cefalexin monohydrate tablets (F10 and F11). This suggests that calcium ion 

concentration available in the formulations F3 and F11 (10% (w/w)) was 

insufficient to properly cross-link with the anionic alginate molecules of the 

polymeric mixture. Still, the concentration was enough in the formulations F4 and 

F12 (20% (w/w)) as only diffusion mechanism became the controller of the drug 

release.  

For the tablets based on sodium carbonate as a gassing agent (F12 and 

F13), a change in the drug release mechanism from Fickian to non-Fickian release 

was noted by increasing its concentration from 10% to 20% (w/w) in the tablets 

prepared from the powder mixtures. In contrast, the release mechanism changed 

in the related results of pentoxifylline tablets from non-Fickian at 10% (w/w) (F5) to 

Fickian release at 20% (w/w) (F6) (Chapter 3, section 3.2.6).  
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Concerning the tablets prepared from the granules, no change in the 

release mechanism was reported by raising sodium carbonate concentration 

which agrees with the related results of F5 and F6 tablets based on pentoxifylline 

where release was by diffusion and polymer relaxation (non-Fickian) (Chapter 3, 

section 3.2.6). Accordingly the change in the (gassing agent: polymeric mixture) 

ratio suggests that the role of sodium carbonate in the tablets of the powder 

mixture origin was concentration dependent. As sodium carbonate concentration 

increased the coherency of the hydrated gel microstructure increased to an 

optimum level (release by diffusion) after which polymer relaxation started to 

involve in the release mechanism due to more gas bubbles liberation. However, 

following the granulation, the matrices became less sensitive to the change in 

sodium carbonate concentration and more contribution of polymeric relaxation in 

the release mechanism was noted. 

Fickian release mechanism (release by diffusion) was reported in the 

control tablets (F14) prepared from the granules. Nonetheless, non-Fickian 

release mechanism (release by diffusion and polymer relaxation) was noted in 

pentoxifylline control tablets (F7) (Chapter 3, section 3.2.6). Adding the gassing 

agents (sodium bicarbonate, calcium carbonate, or sodium carbonate) changed 

the release mechanism from release by diffusion (F14) to release by diffusion and 

polymer relaxation in the tablets prepared from the granules (F8-F13 respectively). 

This could be related to the movement of the generated carbon dioxide bubbles 

from the internal to the peripheral sides of the floating tablets, which increased the 

mass loss or the polymeric erosional behaviour (Section 4.2.4). This does not 

agree with the related results of pentoxifylline tablets (F1-F7) where the release 

mechanism was kept by diffusion and polymer relaxation, but, adding calcium 

carbonate at 20% (w/w) level changed the release mechanism to diffusion 

mechanism (Chapter 3, section 3.2.6). The reduction by almost 36% (w/w) in the 

polymeric content of cefalexin monohydrate control tablets (F14) compared to 

pentoxifylline control tablets (F7) explains this difference in their drug release 

mechanisms. 
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Table 4-8: Korsmeyer-Peppas kinetic parameters of F8-F14 cefalexin 
monohydrate tablet formulations. 

Formulation 
Origin of 
prepared 
tablets 

Crushing 
strength 

level 

Korsmeyer-Pepas 

R
2
 n 

Kp 

(h
-n

) 

F8 

Powder 

(A) N.A N.A N.A 

(B) N.A N.A N.A 

(C) N.A N.A N.A 

Granules 

(A) 0.9995 0.655 0.2424 

(B) 0.9997 0.7257 0.2444 

(C) 0.9949 0.7136 0.2294 

F9 

Powder 

(A) N.A N.A N.A 

(B) N.A N.A N.A 

(C) N.A N.A N.A 

Granules 

(A) 0.999 0.6986 0.1884 

(B) 0.9985 0.6674 0.2138 

(C) 0.9528 0.6199 0.2104 

F10 

Powder 

(A) N.A N.A N.A 

(B) N.A N.A N.A 

(C) N.A N.A N.A 

Granules 

(A) 0.9986 0.5937 0.2582 

(B) 0.9999 0.5637 0.2888 

(C) 0.9978 0.5837 0.2831 

F11 

Powder 

(A) N.A N.A N.A 

(B) N.A N.A N.A 

(C) N.A N.A N.A 

Granules 

(A) 0.9718 0.2637 0.4115 

(B) 0.9772 0.2709 0.4166 

(C) 0.9492 0.3107 0.376 

F12 

Powder 

(A) 0.9947 0.4172 0.4683 

(B) 0.9971 0.4315 0.4506 

(C) 0.9995 0.4052 0.4341 

Granules 

(A) 0.9934 0.6457 0.2486 

(B) 0.9905 0.6587 0.2501 

(C) 0.9945 0.6009 0.2505 

F13 

Powder 

(A) 1 0.4673 0.4221 

(B) 0.9984 0.5214 0.4327 

(C) 0.9999 0.5267 0.4198 

Granules 

(A) 0.9997 0.5301 0.2514 

(B) 0.9985 0.5324 0.2807 

(C) 0.9961 0.4877 0.2924 

F14 

Powder 

(A) N.A N.A N.A 

(B) N.A N.A N.A 

(C) N.A N.A N.A 

Granules 

(A) 0.952 0.3015 0.4138 

(B) 0.999 0.3793 0.3948 

(C) 0.991 0.3985 0.3856 

Notes: N.A: There are insufficient data points on the release profiles ≤ 60% drug 
release in order to provide accurate values. The compression force of the prepared 
tablets was adjusted to give three crushing strength levels: A (49-54 N), B (54-59 N), 
and C (59-64 N). For formulation composition, refer to Table 4-1 or Table 2-8.  
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4.3 Conclusions 

 

In this chapter, effervescent floating tablets of cefalexin monohydrate were 

successfully compacted using sodium bicarbonate, calcium carbonate, or sodium 

carbonate as a gas forming agent and a (1:1) binary mixture of hydroxyethyl 

cellulose and sodium alginate as a drug retarding polymeric matrix. All the 

prepared tablets through the granulation showed acceptable physical properties 

regarding weight and drug content uniformity tests. Friability results of sodium 

bicarbonate based formulations F8 (10% (w/w)) and F9 (20% (w/w)), calcium 

carbonate based formulations F10 (10% (w/w)) and F11 (20% (w/w)), and 

cefalexin monohydrate control tablets F14 exceeded the BP limit of friability (< 

1%), however, as the tablet crushing strength level increased as the mass loss 

percentage decreased in all the formulations.  

Increasing the compression force showed minor influence on the drug 

release rate of the tablets prepared after the granulation. Raising the gassing 

agent (sodium bicarbonate, calcium carbonate, or sodium carbonate) 

concentration, in the tablets prepared from the granules, decreased their floating 

lag time results and increased their floating duration time. Cefalexin monohydrate 

control tablets prepared following the granulation showed acceptable floating 

capacity behaviour due to the rapid swelling rate profiles which reduced their 

tablets density to initiate and to maintain the floating process. The drug release 

rate indicates a release by non-Fickian mechanism except for F11 tablets based 

on 20% (w/w) calcium carbonate as a gassing agent and the control tablets of 

cefalexin monohydrate (F14) which fitted to Fickian release mechanism. The 

addition of the gassing agents enhanced the movement of the generated carbon 

dioxide bubbles from the internal to the peripheral sides of the floating tablets 

which influenced the polymer erosional behaviour and changed cefalexin 

monohydrate release mechanism from release by diffusion (Fickian) to release by 

diffusion and polymer relaxation (non-Fickian). However 20% (w/w) concentration 

of calcium carbonate was enough to influence the in situ ability of the anionic 

alginate molecules to be cross linked and changed the drug release mechanism to 

release by diffusion (Fickian). The tablets could float on the surface of the 

dissolution medium and the drug release was sustained over 10 h.  
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DSC and FTIR indicates instability of the formulation based on sodium 

bicarbonate (F8 and F9) or sodium carbonate (F12 and F13) after storage for 3 

months at 40°C ± 2°C and 80% ± 5% RH in the open containers. Still, the closed 

containers showed better physical stability of cefalexin monohydrate loaded in 

such formulations. A specific stability-indicating assay method such as HPLC to 

determine the drug content and any possible degradation products in the 

formulations will be required in the future to do more investigations. The tablets 

prepared with 10% (w/w) calcium carbonate (F10) at 59-64 N crushing strength 

were promising with respect to their floating lag time, floating duration, swelling 

ability, sustained drug release rate, and physical stability results. Accordingly, 

calcium carbonate revealed promising results not only with cefalexin monohydrate 

but also with pentoxifylline and this makes the chosen ingredients (for this 

research)and their quantities feasible to be applied with other drugs intend for 

gastroretentive delivery systems.  
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5 Chapter Five: preliminary in vivo study in rats  
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5.1 Preliminary in vivo pharmacokinetic study  

 

Tablets manufactured from the granules with 20% (w/w) calcium carbonate 

(F4) were promising with respect to their floating lag time (~ 7 min), floating 

duration (> 24 h), swelling ability, sustained drug release rate and physical stability 

(Chapter 3). As in vitro studies remain largely inadequate to evaluate the 

complexities of human gastrointestinal tract (GIT) physiology, in vivo evaluation is 

required. But, it is not easy to run in vivo in human for this research as ethical 

approval will not be approved, so animal model was used. Small rodents such as 

mouse, rat, guinea pig, and rabbit; and larger mammals like dog, pig, and monkey 

are commonly used in clinical studies. Primarily, it was required to test the in vivo 

ability of the designed F4 tablets to sustain the drug release. Rats were chosen for 

the preliminary in vivo evaluation as rodents are more popular choice in 

biomedical research (Hatton et al., 2015). Nevertheless, using small rodents is not 

suitable to evaluate the gastric retention capability of the promising F4 tablets. 

Therefore, in vivo studies in appropriate larger mammals are essential in the 

future. Rats‘ duodenum diameter is 2.5 - 3 mm (Kararli, 1995), their stomach fluid 

volume is 2.29 ± 1.59 g (Hatton et al., 2015), and their gastric pH (3.9 and 3.2 in 

fasted and fed state respectively (McConnell et al., 2008)). It is obvious that rats‘ 

gastric anatomy and physiology is not similar to that of human (Chapter 1, 

section 1.2), yet, the taken F4 tablet (4 mm) will be retained in the rats‘ stomach 

not because of the floating process which may be exist but because of the 

duodenum diameter. Additionally, rats‘ gastric pH is enough to initiate the acid 

base reaction with the loaded calcium carbonate (gassing agent) in F4 tablets. 

This can further challenge the drug release rate of the tested tablets, thus, it was 

worth to evaluate the in vivo behaviour of the selected formulation (F4) preliminary 

in rats. 

It was a challenge to use pentoxifylline, highly soluble model drug (191 

mg/ml at 37°C), to investigating the ability of the formulation for improvements to 

pentoxifylline pharmacokinetic parameters as a controlled release dosage form. 

Pentoxifylline is completely absorbed from the gastrointestinal tract (GIT) when 

given either in the form of sustained release tablets or immediate release 

capsules; however, its bioavailability averages only 20% to 30% due to extensive 

first pass metabolism (Beermann et al., 1985).  
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No advantage was expected from a comparative in vivo evaluation between 

non-floating sustained release tablets (F7) and the selected floating tablets (F4), 

therefore pentoxifylline solution, as a reference, was selected for the study.        

In this study F4 floating tablets and a reference solution of pentoxifylline were 

investigated following oral administration of 5.75 ± 0.15 mg in rats. Drug plasma 

levels were determined by HPLC-MS/MS, and the regression equation was y = 

0.0251x - 0.000893 (r=0.9993) for pentoxifylline with a linear concentration of 4 - 

400 ng/ml. The retention time was 0.45 and 0.29 min for pentoxifylline and the 

internal standard (Emitrecitabine), respectively.  

The individual pentoxifylline plasma concentration-time curves following oral 

administration of F4 floating tablets (G1) and reference solution (G2) in rats are 

shown in Figure 5-1 to Figure 5-12. Unusual (outlier) data points were shown 

following oral administration of F4 floating tablets in rat 1, G1, thus it was excluded 

from the statistical evaluation.The average plasma concentration-time profiles for 

the two formulations are shown in Figure 5-13, and the pharmacokinetic 

parameters are shown in Table 5-1. The maximum plasma concentrations (Cmax) 

of F4 tablets and the reference solution were 982.24 ± 484.71 and 2552.30 ± 

110.85 ng/ml, respectively, and these were achieved at 1.80 ± 0.45 and 0.50 ± 

0.00 h (Tmax), respectively. Compared to the reference solution, the Cmax of the 

tablets decreased significantly (P<0.05), and the Tmax was prolonged significantly 

(P<0.05). The half-life (t1/2) value significantly increased (P<0.05) from 0.29 ± 0.03 

to 0.65 ± 0.24 h in F4 tablets in comparison with the reference solution; thus 

indicating relatively sustained-release behaviour of F4 tablets.   

The relative bioavailability (Frel) of the tablets compared to the reference 

solution was 80.86%. This can be explained by the significant (P<0.05) reduction 

in the AUC0-∞ value of F4 tablets in comparison with the reference solution which 

were 2371.25 ± 797.54 and 2932.53 ± 351.23 ng h/ml respectively. Although 

pentoxifylline is completely absorbed from the gastrointestinal tract, drug 

absorption is highly variable in the individuals (Davis, 2005) and it depends on the 

administered dosage form. Beermann et al. (1985) evaluated the kinetics of 

intravenous and oral pentoxifylline capsules and tablets in healthy subjects.  
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Results revealed a significant difference between Cmax levels of pentoxifylline 

after 400 mg oral dosing of capsules and tablets where mean values of 1218 and 

248 ng/ml was noted respectively. Moreover, absolute bioavailability of the 

capsules was 30.7 ± 19.1% and of the tablets was 19.4% ± 12.7% due to higher 

AUC value of the capsules in comparison to that of the tablets. 

It is difficult to evaluate the gastric retention along with bioavailability for a 

regular size tablet dosage form by using small animals like mice, rats, guinea pigs 

or rabbits (Turner et al., 2011). Still, a well-designed in vivo studies in appropriate 

animal model such as dogs or healthy human volunteers are essential in the future 

to verify the in vivo efficacy of the promising floating tablets.  
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Figure 5-1: Pentoxifylline plasma concentration-time curve following oral 
administration of F4 floating tablets in rat 1, G1. 
Note: HPLC chromatograms are shown in Figure A 1 and Figure A 2.  

 

 

 

 

 

 
Figure 5-2: Pentoxifylline plasma concentration-time curve following oral 
administration of F4 floating tablets in rat 2, G1. 
Note: HPLC chromatograms are shown in Figure A 3 and Figure A 4.  
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Figure 5-3: Pentoxifylline plasma concentration-time curve following oral 
administration of F4 floating tablets in rat 3, G1. 
Note: HPLC chromatograms are shown in Figure A 5 and Figure A 6.  

 
 

 

 

 
Figure 5-4: Pentoxifylline plasma concentration-time curve following oral 
administration of F4 floating tablets in rat 4, G1. 
Note: HPLC chromatograms are shown in Figure A 7and Figure A 8.  
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Figure 5-5: Pentoxifylline plasma concentration-time curve following oral 
administration of F4 floating tablets in rat 5, G1. 
Note: HPLC chromatograms are shown in Figure A 9 and Figure A 10.  

 

 

 

 

 

 
Figure 5-6: Pentoxifylline plasma concentration-time curve following oral 
administration of F4 floating tablets in rat 6, G1. 
Note: HPLC chromatograms are shown in Figure A 11 and Figure A 12.  
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Figure 5-7: Pentoxifylline plasma concentration-time curve following oral 
administration of reference solution in rat 1, G2. 
Note: HPLC chromatograms are shown in Figure A 13 and Figure A 14.  

 

 

 

 

 

 
Figure 5-8: Pentoxifylline plasma concentration-time curve following oral 
administration of reference solution in rat 2, G2. 
Note: HPLC chromatograms are shown in Figure A 15 and Figure A 16.  
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Figure 5-9: Pentoxifylline plasma concentration-time curve following oral 
administration of reference solution in rat 3, G2. 
Note: HPLC chromatograms are shown in Figure A 17 and Figure A 18. 

 

 

 

 

 

 
Figure 5-10: Pentoxifylline plasma concentration-time curve following oral 
administration of reference solution in rat 4, G2. 
Note: HPLC chromatograms are shown in Figure A 19 and Figure A 20.  
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Figure 5-11: Pentoxifylline plasma concentration-time curve following oral 
administration of reference solution in rat 5, G2. 
Note: HPLC chromatograms are shown in Figure A 21 and Figure A 22.  

 

 

 

 

 

 
Figure 5-12: Pentoxifylline plasma concentration-time curve following oral 
administration of reference solution in rat 6, G2. 
Note: HPLC chromatograms are shown in Figure A 23 and Figure A 24.  
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Figure 5-13: Average pentoxifylline plasma concentration-time curves following 
oral administration of F4 floating tablets and reference solution in rats.  
The data represents the mean ± SD of six determinations. 
Note: The plasma drug profile of rat 1, G1 was excluded due to the outlier data 
points. 
 

 

 

 

Table 5-1: Pharmacokinetic parameters of pentoxifylline F4 tablets and a 
reference solution.  

Formulation 
Ke 

(h-1) 
t1/2 
(h) 

Cmax 
(ng/ml) 

Tmax 
(h) 

AUC0-∞ 

(ng h/ml) 

F4 floating tablets 
1.21 

± 0.52 
0.65 

± 0.24 
982.24 

± 484.71 
1.80 

± 0.45 
2371.25 
± 797.54 

Reference solution  
2.42 

± 0.21 
0.29 

± 0.03 
2552.30 
± 110.85 

0.50 
± 0.00 

2932.53 
± 351.23 

The data represents the mean ± SD of six determinations.  
Note: The plasma drug profile of rat 1, G1 was excluded due to the outlier data 
points.F4 floating tablets composed of pentoxifylline, hydroxyethyl cellulose, 
sodium alginate, Prosolv® 90, calcium carbonate, and magnesium stearate. 
Reference solution composed of pentoxifylline and water. 
For formulation composition, refer to Table 3-1or Table 2-7 
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5.2 Conclusions 

 

F4 tablets prepared with 20% (w/w) calcium carbonate were promising with 

respect to their quality control tests, floating lag time, floating duration, swelling 

ability, sustained drug release rate, and physical stability results. A preliminary in 

vivo study of tablets of F4 formulation and a reference solution of pentoxifylline 

were tested following oral administration of 5.75 ± 0.15 mg in rats. The Cmax of F4 

tablets and the reference solution were 982.24 ± 484.71 and 2552.30 ± 110.85 

ng/ml, respectively, and these were achieved at Tmax 1.80 ± 0.45 and 0.50 ± 0.00 

h, respectively. The t1/2 value significantly increased (P<0.05) from 0.29 ± 0.03 to 

0.65 ± 0.24 h in F4 tablets in comparison with the reference solution; thus 

indicating relatively sustained-release behaviour of the tablets. Although 

pentoxifylline is completely absorbed from the gastrointestinal tract, the relative 

bioavailability (Frel) of the tablets compared to the reference solution was 80.86% 

because drug absorption is highly variable in the individuals.  

The preliminary data presented are valuable as they provide insight to the 

sustained effect of the novel formulations prepared. Although there are sustained 

formulations in the market but the prepared may offer less side effects to patients 

and save money to industry. Research is not stopping if the drug is available as 

sustained release medicine in the market hence many drugs are available in more 

than one sustained release brand in the market so that is why this research. 
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6 Chapter Six: Conclusions and future work 
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6.1 Conclusions 

 

In this study, floating tablets of pentoxifylline or cefalexin monohydrate were 

prepared using a (1:1) ratio of hydroxyethyl cellulose and sodium alginate 

polymeric mixture based on sodium bicarbonate, calcium carbonate or sodium 

carbonate gas forming agent. The variables affecting the drug release and the 

floating properties, such as tablet crushing strength, wet granulation, type and ratio 

of the gas forming agent, were examined.  

Tablets prepared through the wet granulation process showed acceptable 

physical properties via complying with the BP requirements of friability, weight and 

drug content uniformity. Some of the formulations exceeded the BP limit of friability 

(< 1%), nonetheless, as the tablet crushing strength level increased as the mass 

loss percentage decreased in all the formulations. Increasing the compression 

force showed minor influence on the drug release rate of the tablets prepared after 

the granulation. This gives an advantage to control the other formulation 

parameters, such as high friability percentages, by raising the compression force 

without disturbing the drug release rate. 

Effect of the granulation process on the drug release rate from all the 

formulations at different crushing strength levels revealed that the granulation 

process reduced the drug release rate. The decrease in the porosity levels due to 

the wet massing stage of the granulation process delayed the dissolution medium 

entrapment through the matrix at an early stage of the dissolution test and 

decreased the drug release process. However, the better gel hydration ability of 

cefalexin monohydrate tablets because of their higher sodium bicarbonate content 

probably inversed the increase in their porosity percentages after the granulation 

and decreased their drug release rate. Also, calcium carbonate formulations 

became more resistant to rupture due to strengthening of the tablets internal 

structure following the granulation which gave sufficient time for swelling and gel 

layer formation to control the drug release process. 
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Regarding the tablets prepared from the granules, increasing the gassing 

agent concentration from 10% to 20% (w/w) influenced the drug release rate. 

Raising sodium bicarbonate level decreased the drug release rate depending on 

the microstructure of the swollen gel layer formed around the tablets. In contrast, 

increasing calcium carbonate concentration increased the drug release rate 

because of pore formation in the swollen gel layer resulted from the entrapped gas 

bubbles. A slight increase in the drug release rate was noted because of 

increasing sodium carbonate concentration. The ability of sodium carbonate, 

regardless the concentration, to generate an alkaline microenvironment enhanced 

the tablets to swell and to release the drug in almost similar rate. Noticeably, the 

higher gassing agent concentration was more effective than the lower one to 

maintain the tablets, from the granules origin, on the surface of the dissolution 

medium for a longer duration of time. Most tablets floated on the surface of the 

dissolution medium and showed an adequate floating lag time (< 30 min) and 

floated for more than 8 h. Cefalexin monohydrate control tablets (0% (w/w) 

gassing agent) prepared following the granulation showed acceptable floating 

capacity behaviour because of their rapid swelling rate which reduced their 

apparent densities to initiate and to maintain the floating process. 

The granulation process increased the floating lag time results of all the 

floating tablets compared to that of the tablets prepared from the powder mixture 

before the granulation. Similarly, increasing the tablet crushing strength increased 

the lag time of all the tablets designed to float. However, increasing the 

concentration of the gassing agent decreased the floating lag time results of the 

tablets based on sodium bicarbonate or calcium carbonate due to the higher 

effervescent efficiency. In contrast, the lag time results increased in the tablets 

based on sodium carbonate due to increasing their apparent densities. 

The drug release rate of all the prepared tablets fitted into non-Fickian 

release mechanism. An exception was seen in the tablets containing 20% (w/w) 

calcium carbonate gassing agent. They fitted into Fickian release mechanism due 

to the in situ ability of the anionic alginate molecules to be cross-linked in the 

presence of enough concentration of calcium ions. Generally, addition of the 

gassing agents enhanced movement of the generated carbon dioxide bubbles 

from the internal to the peripheral sides of the floating tablets which influenced 

more of the polymer erosional behaviour.  
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Tablets loaded with pentoxifylline showed better stability results in 

comparison to those of cefalexin monohydrate in either closed or open containers. 

DSC and FTIR indicated instability of the formulation based on sodium 

bicarbonate or sodium carbonate after storage for 3 months at 40°C ± 2°C and 

80% ± 5% RH in the open containers. Still, the closed containers showed better 

physical stability of cefalexin monohydrate formulations.  

Pentoxifylline tablets manufactured with 20% w/w calcium carbonate were 

promising with respect to their floating lag time, floating duration, swelling ability, 

sustained drug release rate, and stability results. A preliminary in vivo investigation 

of these promising tablets against a reference solution of pentoxifylline was 

performed by oral administration of 5.75 ± 0.15 mg to rats. Compared with the 

reference solution, the maximum plasma concentration (Cmax) of the tablets 

decreased, while the time to reach this concentration (Tmax) and the t1/2 were 

prolonged.  

This study shows that a binary mixture of hydroxyethyl cellulose and sodium 

alginate, together with different gassing agents at variable levels, offers a 

promising opportunity to develop sustained release preparations.  
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6.2 Suggestions for future work 

 

Formulations based on calcium carbonate as a gas generating agent, are 

suggested to be promising through this study. However, further formulation 

development studies are worth to be accomplished in the future to achieve a 

suitable floating tablet dosage form to benefit the pharmaceutical industry. For 

example, friability results of these formulations exceeded the accepted BP limit (< 

1%), and tablets showed relaxation through the stability studies. Yet, increasing 

the compression force presented negligible influence on the drug release rate after 

the granulation. This gives an advantage to reduce the high friability percentages 

and tablet relaxation during storage without affecting the drug release rate.  

Furthermore, it would be useful to increase pentoxifylline content of the 

designed floating tablets from 60 mg up to the therapeutic dose (400 mg). 

Primarily, increasing the tablet weight will increase its drug content, but almost 2 g 

tablet weight will be required to contain 400 mg pentoxifylline. This may be not 

convenient for patients‘ oral administration, thus, reducing the polymeric mixture 

level of hydroxyethyl cellulose and sodium alginate to increase the drug content 

may be helpful. Moreover, the in vitro drug release rate of cefalexin monohydrate 

floating tablets based on calcium carbonate was successfully controlled over 12 h, 

however, due to the tablet relaxation through the stability studies, the in vitro drug 

release was sharply increased. It would be useful to increase the polymeric 

mixture content of such formulations to control the drug release rates of fresh and 

stability samples. Generally, applying factorial design would be valuable to extend 

the study to cover more suitable model drugs for gastroretentive dosage forms; 

more ratios of hydroxyethyl cellulose: sodium alginate mixture such as (0:1), 

(0.25:0.75), (0.75:0.25), and (1:0); and more concentrations of gassing agents 

such as 5, 15, and 25% to achieve the best possible combination. This also could 

benefit exploring different mechanisms governing the release kinetics. 
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It has been reported that carbonates could generate an alkaline 

microenvironment for pH sensitive polymers to initiate gel formation, but, no 

significant change in the dissolution medium (macroenvironment) pH was 

recorded through the experiment time. Therefore, it is worth doing further 

investigations regarding the effect of the gassing agents (sodium bicarbonate, 

calcium carbonate, and sodium carbonate) on the swollen gel microenvironment 

pH and morphology. The microenvironment pH can be tested by adding a pH 

indicator, such as methyl red, to the matrix and visually monitor the pH within the 

tablets during drug release process as the indicator is red at acidic pH and 

converts into yellow at pH values > 5.8 (Streubel et al., 2000). Morphology of the 

gel structure can be evaluated using the scanning electron microscopy (SEM) 

technique.  

Regarding the stability results, a specific stability-indicating assay method 

such as HPLC is critically required to do more evaluation. The study suggested 

that sodium bicarbonate and sodium carbonate, the gas forming agents loaded in 

the floating tablets, under stressful humidity conditions may affect the formulation 

stability. Consequently, it is important to apply such stability-indicating methods to 

determine the drug content and any possible degradation products in the 

formulations.  

According to literature, a critical challenge for floating gastroretentive 

systems is their requirement for an adequate level of fluids in the stomach to float 

effectively. Combinations of different gastroretentive concepts, such as low-density 

floating and mucoadhesion can be expected to be particularly promising to have a 

significant influence on improving the therapeutic effect of drugs involved. Ability of 

sodium alginate to adhere to epithelial surface of the stomach could benefit the 

designed floating tablets. Tablet adhesion retention period could be investigated 

by using suitable methods such as modified balance tensiometer to quantify the 

mucoadhesive properties of the prepared tablets (Kast and Bernkop-Schnürch, 

2011). 
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Furthermore, in vitro drug release tests in simulated gastric fluids with 

enzymes would be more representative to the gastric medium conditions at fed 

and fasted state in order to simulate the influence of meal digestion on the 

solubility of drugs (Freire and Basit, 2013). In this study, the prepared tablets were 

able to float on the surface of the dissolution medium due to the ability of the 

swelled matrices to retain the liberated gas bubbles. The tablets might become 

weaker due to swelling and floating processes. Hence, it is worth linking this to the 

mechanical destructive force in the human stomach by evaluating the tablets‘ 

mechanical strength.  

A computer-controlled dynamic gastric model, which simulate the 

mechanical grinding forces (by gentle contractions) and gastric secretions (acid 

and enzymes) occurring in the fundus, body and antrum parts of the stomach and 

lead to food digestion, could be used for this purpose (Vardakou et al, 2011). But, 

this system is unlikely to give a widespread estimation of the tablet performance in 

the gastrointestinal tract. Thus, using the most complete simulator of the 

gastrointestinal tract (TIM-1) could benefit the development of the best selected 

formulations before the in vivo studies. This system is composed of interconnected 

segments representing the stomach, duodenum, jejunum and ileum with 

simulation to most physiological gastrointestinal tract parameters (Blanquet et al, 

2004). Although it simulates passive absorption of water and small molecules via 

dialysis membranes, which can be considered a unique advantage for oral 

pharmaceutical dosage forms development, active transport, efflux and intestinal 

wall metabolism are also existing (Freire and Basit, 2013). Therefore, a well-

designed in vivo study in healthy human volunteers is essential in the future to 

verify the in vivo efficacy of the most promising floating tablets.  

  

 
 
 



 

277 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7 Chapter Seven: References 

 



 

278 

 

Abduljabbar, H. (2016). Gastroretentive ranitidine hydrochloride tablets with 
combined floating and bioadhesive properties: factorial design analysis, in vitro 
evaluation and In vivo abdominal X-ray imaging. Curr. Drug Deliv. 12(5): 578-590. 
 
Abou Youssef, N.A., Kassem, A.A., El-Massik, M.A., and Boraie, N.A. (2015). 
Development of gastroretentive metronidazole floating raft system for targeting 
Helicobacter pylori. Int. J. Pharm. 486, 297–305. 
 
Abrahamsson, B., Albery, T., Eriksson, A., Gustafsson, I. and Sjöberg, M. 
(2004). Food effects on tablet disintegration. Eur. J. Pharm. Sci. 22(2-3): 165-172. 
 
Acharya, S., Patra, S., and Pani, N.R. (2014). Optimization of HPMC and 
carbopol concentrations in non-effervescent floating tablet through factorial design. 
Carbohydr. Polym. 102:360– 368.  
 
Adkin, D.A., Davis, S.S., Sparrow, R.A., Huckle, P.D., and Wilding, I.R. (1995). 

The effect of mannitol on the oral bioavailability of cimetidine. J Pharm Sci. 

84(12):1405-1409. 

 

Agnihotri, S.A., Jawalkar, S.S., and Aminabhavi, T.M. (2006). Controlled 
release of cephalexin through gellan gum beads: Effect of formulation parameters 
on entrapment efficiency, size, and drug release. Eur. J. Pharm. Biopharm. 63(3): 
249–261. 
 
Akiyama, Y., and Nagahara, N. (1999). Novel formulation approaches to oral 
mucoadhesive drug delivery systems. In: Bioadhesive Drug Delivery Systems –
Fundamentals, Novel Approaches and Development. (Mathiowitz, E., Chickering 
III, D.E., Lehr, C.M. Eds). 1st Edition. Marcel Dekker, NY, pp. 477-505. 
 
Alderman, D.A. (1984). A review of cellulose ethers in hydrophilic matrices for 
oral controlled-release dosage forms. Int. J. Pharm., Technol. Prod. Manuf. 5(3): 
1–9. 
 
Ali, J., Arora, S., Ahuja, A., Babbar, A.K., Sharma, R.K., Khar, R.K., and 
Baboota, S. (2007). Formulation and development of hydrodynamically balanced 
system for metformin: In vitro and in vivo evaluation. Eur. J. Pharm. Biopharm. 
67(1): 196–201.  
 
Aljaberi, A., Ardakani, A., Khdair, A., Abdel-Rahim, S.A, Meqdadi, E., Ayyash, 
M., Alobaidi, G.M., and Al-Zoubi, N. (2013). Tableting functionality evaluation of 
Prosolv Easytab in comparison to physical mixture of its individual components. J. 
Drug Del. Sci. Tech. 23(5):499-504.  
 
Alzaher, W., Shaw, J., and Al-Kassas, R. (2016). Gastroretentive formulations 

for improving oral bioavailability of drugs-focus on microspheres and their 

production. Curr. Drug Deliv. 13(5):646-661. 

 
Amrutkar, P.P., Chaudhari, P.D., and Patil, S.B. (2012). Design and in vitro 
evaluation of multiparticulate floating drug delivery system of zolpidem tartarate. 
Colloids Surf. 89(1): 182–187. 



 

279 

 

Angadi, S.C., Manjeshwar, L.S., and Aminabhavi, T.M. (2010). Interpenetrating 
polymer network blend microspheres of chitosan and hydroxyethyl cellulose for 
controlled release of isoniazid. Int. J. Biol. Macromol. 47(2): 171–179. 
 
Armstrong, N.A. (2009). Sodium carbonate. In: Handbook of Pharmaceutical 
Excipients (Rowe, R.C., Sheskey, P.J., and Quinn, M.E., Eds). 6th Edition. The 
Pharmaceutical Press, London, pp. 86-89. 
 
Aso, Y., Yoshioka, S., Nakai, Y., and Kojima, S. (1999). Thermally controlled 
protein release from gelatin-dextran hydrogels. Radiat. Phys. Chem., 55(2): 179-
183. 
 
Asrani, K. (1994). Evaluation of bioadhesive properties of poly (acrylic acid) 
polymers and design of a novel floating bioadhesive drug delivery system, 
Doctoral thesis, St. John‘s University, Jamaica, NY. 
 
Atyabi, F., Sharma, H.L., Mohammed, H.A.H., and Fell, J.T. (1996). In vivo 
evaluation of a novel gastro retentive formulation based on ion exchange resins. J. 
Control. Release. 42(2): 105-113. 
 
Aviado, D.M. and Dettelbach, H.R. (1984). Pharmacology of pentoxifylline: a 
hemorrheologic agent for the treatment of intermittent claudication. Angiology. 
35(7):407-17. 
 
Babu, R.J. and Pandit, J.K. (1999). Effect of aging on the dissolution stability of 
glibenclamide/beta-cyclodextrin complex. Drug Dev. Ind. Pharm. 25(11):1215–
1219. 
 
Badhan, A., Mashru, R., Shah, P., Thakkar, A., and Dobaria, N. (2009). 
Development and evaluation of sustained release gastroretentive minimatrices for 
effective treatment of H. pylori infection. AAPS Pharm. Sci. Tech. 10(2): 459–467. 
 
Bajwa, G.S., Hoebler, K., Sammon, C., Timmins, P., and Melia, C.D. (2006). 
Microstructural imaging of early gel layer formation in HPMC matrices. J. Pharm. 
Sci. 95(10):2145–2157. 
 
Baki, G., Bajdik, J., and Pintye-Hodi, K. (2011). Evaluation of powder mixtures 
and hydrophilic gastroretentive drug delivery systems containing zinc acetate and 
sodium bicarbonate. J. Pharm. Biomed. Anal. 54(4): 711–716. 
 
Bani-Jaber, A.K., Alkawareek, M.Y., Al-Gousous, J.J., and Abu Helwa, A.Y. 
(2011). Floating and sustained-release characteristics of effervescent tablets 
prepared with a mixed matrix of Eudragit L-100-55 and Eudragit E PO. Chem. 
Pharm. Bull. 59(2):155-160. 
 
Barbhaiya, R.H. (1996). A pharmacokinetic comparison of cefadroxil and 
cephalexin after administration of 250, 500 and 1000 mg solution doses. 
Biopharm. Drug Dispos. 17(4):319-330. 
 



 

280 

 

Bardonnet, P.L., Faivre, V., Pugh, W.J., Piffaretti, J.C., and Falson, F. (2006). 
Gastroretentive dosage forms: Overview and special case of Helicobacter pylori. J. 
Control. Release 111(1-2): 1–18. 
 
Barley, N.F., Howard, A., O’Callaghan, D., Legon, S., and Walters, J.R.F. 
(2001). Epithelial calcium transporter expression in human duodenum. Am. J. 
Physiol. Gastrointest. Liver Physiol. 280(2): G285–G290. 
 
Baumgartner, S., Kristl, J., and Peppas, N.A. (2002). Network structure of 
cellulose ethers used in pharmaceutical applications during swelling and at 
equilibrium. Pharm. Res. 19(8): 1084-1090. 
 
Baumgartner, S., Kristl, J., Vrecer, F., Vodopivec, P., and Zorko, B. (2000). 
Optimisation of floating matrix tablets and evaluation of their gastric residence 
time. Int. J. Pharm. 195(1-2):125–135. 
 
Baumgartner, S., Planinsek, O., Srcic, S., and Kristl, J.  (2006). Analysis of 
surface properties of cellulose ethers and drug release from their matrix tablets. 
Eur. J. Pharm. Sci., 27(1): 380–383.  
 
Bechgaard H, and Ladefoged K. (1978). Distribution of pellets in the 
gastrointestinal tract. The influence on transit time exerted by the density or 
diameter of pellets. J. Pharm. Pharmacol. 30(11): 690-692. 
 
Beermann, B., Ings, R., Månsby, J., Chamberlain, J., and McDonald, A. 
(1985). Kinetics of intravenous and oral pentoxifylline in healthy subjects. Clin. 
Pharmacol. Ther. 37(3):25-28  
 
Benet, L.Z. and Cummins, C.L. (2001). The drug efflux-metabolism alliance: 
biochemical aspects. Adv. Drug. Del. Rev. 50(Supplement 1): S3–S11. 
 
Benn, A. and Cooke, W.T. (1971). Intraluminal pH of duodenum and jejunum in 
fasting subjects with normal and abnormal gastric or pancreatic function. Scand. J. 
Gastroenterol. 6(4): 313-317. 
 
Berman, B., and Duncan, M.R. (1989). Pentoxifylline inhibits normal human 
dermal fibroblast in vitro proliferation, collagen, glycosaminoglycan, and fibronectin 
production, and increases collagenase activity. J. Invest. Dermatol. 92(4): 605–
610. 
 
Berman, B., Wietzerbin, J., Sanceau, J., Merlin, G., and Duncan, M.R. (1992). 
Pentoxifylline inhibits certain constitutive and tumor necrosis factor-a induced 
activities of human normal dermal fibroblasts. J. Invest. Dermatol. 98(5): 706–712. 
 
Bessler, H., Gilgal, R., Djaldetti, M., and Zahavi, I. (1986). Effect of pentoxifylline 
on the phagocytic activity, cAMP levels, and superoxide anion production by 
monocytes and polymorphonuclear cells. J. Leukoc. Biol. 40(6): 747–754. 
 
 
 



 

281 

 

Bhosale, U.V., Devi, K., and Choudhary, S. (2012). Multiunit floating drug 
delivery system of acyclovir: development, characterization and in vitro-in vivo 
evaluation of spray-dried hollow microspheres. J.Drug Deliv.Sci. Tech. 22(6): 548-
554. 
 
Biswas, N., and Sahoo, R.K. (2016) Tapioca starch blended alginate 
mucoadhesive-floating beads for intragastric delivery of Metoprolol Tartrate. Int. J. 
Biol. Macromol. 83 (1) 61–70. 
 
Blanquet, S., Zeijdner, E., Beyssac, E., Meunier, J.P., Denis, S., Havenaar, R., 
and Alric, M. (2004). A dynamic artificial gastrointestinal system for studying the 
behavior of orally administered drug dosage forms under various physiological 
conditions. Pharm. Res. 21(4): 585-591. 
 
Bomma, R., Swamy Naidu, R.A., Yamsani, M.R., and Veerabrahma, K. (2009). 
Development and evaluation of gastroretentive norfloxacin floating tablets. Acta. 
Pharm. 59(2):211-221. 
 
British Pharmacopoeia. (2015). London, UK: British Pharmacopoeia commission 
office. 
 
Bryce, T.A., Chamberlain, J., Hilbeck, D., and Macdonald, C.M. (1989). 
Metabolism and pharmacokinetics of ―‗C-pentoxifylline in healthy vohmteers, 
Arzneim.-Forsch, Drug Res. 39(4): 512-517. 
 
Bussemer, T. and Bodmeier, R. (2003). Formulation parameters affecting the 
performance of coated gelatin capsules with pulsatile release profiles. Int. J. 
Pharm. 267(1-2): 59-68. 
 
Cable, C.G. (2009). Sodium bicarbonate. In: Handbook of Pharmaceutical 
Excipients (Rowe, R.C., Sheskey, P.J., and Quinn, M.E., Eds). 6th Edition. The 
Pharmaceutical Press, London, pp. 629–633. 
 
Caldwell, L.J. Gardner, C. Cargill, R.C. and Higuchi, T. (1988a). Drug delivery 
device which can be retained in the stomach for a controlled period of time. US 
patent 4758436. 
 
Caldwell, L.J., Gardner, C.R., and Cargill, R.C. (1988b). Drug delivery device 
which can be retained in the stomach for a controlled period of time. US patent 
4735804. 
 
Cardinal, J.R. (1985). Controlled drug delivery: veterinary applications, J. Control. 
Release. 2(1): 393–403. 
 
Carr, R.L. (1965). Classifying flow properties of solids. Chem. Eng. 72:69–72. 
 
Chan, L.W., and Heng, P.W.S. (2005). Drug substance and excipient 
characterisation. In: Handbook of Pharmaceutical Granulation Technology. 
(Parikh, D.M., Ed). 2nd Edition. Taylor and Francis Group, FL, pp. 79–108. 
 



 

282 

 

Chatlapalli, R. and Rohera, B.D. (1998). Physical characterization of HPMC and 
HEC and investigation of their use as pelletization aids. Int. J. Pharm. 161(2): 179-
193. 
 
Chavanpatil, M.D., Jain, P., Chaudhari, S., Shear, R., and Vavia, R.R. (2006). 
Novel sustained release, swellable and bioadhesive gastroretentive drug delivery 
system for ofloxacin. Int. J. Pharm. 316: (1–2) 86–92. 
 
Chavda, H.V., Patel, R.D., Modhia, I.P., and Patel, C.N. (2012). Preparation and 
characterization of superporous hydrogel based on different polymers. Int. J. 
Pharm. Invest. 2(3): 134–139. 
 
Chen, C., Cowles, V.E., and Hou, E. (2011). Pharmacokinetics of gabapentin in a 
novel gastric-retentive extended-release formulation: comparison with an 
immediate-release formulation and effect of dose escalation and food. J. Clin. 
Pharmacol. 51(3): 346–358. 
 
Chen, J., and Park, K. (2000a). Synthesis of fast swelling, superporous sucrose 
hydrogels. Carbohydrate Polymers  41(3): 259-268. 
 
Chen, J., and Park, K. (2000b). Synthesis and characterization of superporous 
hydrogel composites. J. Control. Release.  65(1-2): 73-82. 
 
Chen, J., Blevins, W.E., Park, H., and Park, K. (2000). Gastric retention 
properties of superporous hydrogel composites. J. Control. Release 64(1-3): 39-
51. 
 
Chen, J., Park, H., and Park, K. (1999). Synthesis of superporous hydrogels: 
hydrogels with fast swelling and superabsorbent properties. J. Biomed. Mater. 
Res. 44(1): 53-62.  
 
Chen, X., Wen, H. and Park, K. (2010a). Challenges and new technologies of oral 
controlled release. In: Oral controlled release formulation design and drug delivery: 
Theory to Practice (Wen, H. and Park, K., Eds.), John Wiley & Sons, Inc., NJ, pp. 
257-277. 
 
Chen, R.N., Hob, H.O., Yu, C.Y., and Sheu, M.T.  (2010b). Development of 
swelling/floating gastroretentive drug delivery system based on a combination of 
hydroxyethyl cellulose and sodium carboxymethyl cellulose for Losartan and its 
clinical relevance in healthy volunteers with CYP2C9 polymorphism. Eur. J. 
Pharm. Sci. 39(1-3): 82–89. 
 
Chen, Y.C., Ho, H.O., Lee, T. Y., and Sheu, M.T.  (2013). Physical 
characterizations and sustained release profiling of gastroretentive drug delivery 
systems with improved floating and swelling capabilities. Int. J. Pharm., 441(1-2): 
162–169. 
 
Choi, B.Y., Park, H.J., Hwang, S.J., and Park, J.B. (2002). Preparation of 
alginate beads for floating drug delivery: effects of CO2 gas forming agents. Int. J. 
Pharm. 239(1-2): 81-91. 
 



 

283 

 

Chuong, M.C., Varanasi, R., Seniuk, D., Aggarwal, N., Bongiorno, C., Fdal, S., 
Geangu, J., MacDonald, B., Sharma, A., and Yudani, L. (2016). Investigation on 
the endothermic event of cephalexin monohydrate in differential scanning 
calorimetric curve. J. Therm. Anal. Calorim. 123(1): 2165–2172. 
 
Christensen, F.N., Davis, S.S., Hardy, J.G., Taylor, M.J., Whalley, D.R., and 
Wilson, C.G. (1985). The use of gamma scintigraphy to follow the gastrointestinal 
transit of pharmaceutical formulations. J. Pharm. Pharmacol. 37(2): 91-95. 
 
Chungi, V.S., Dittert, L.W., and Smith, R.B. (1979). Gastrointestinal Sites for 
Furosemide Absorption in Rats. Int. J. Pharm. 4: 27–38. 
 
Clarke, G.M., Newton, J.M., and Short, M.B. (1993). Gastrointestinal transit of 
pellets of differing size and density. Int. J. Pharm. 100(1-3): 81–92. 
 
Clarke, G.M., Newton, J.M., and Short, M.B. (1995). Comparative 
gastrointestinal transit of pellet systems of varying density. Int. J. Pharm. 114(1): 
1–11. 
 
Colombo, P., Bettini, R., Castellani, P.L., Santi, P., and Peppas, N.A. (1999). 
Drug volume fraction profile in the gel phase and drug release kinetics in 
hydroxypropylmethyl cellulose matrices containing a soluble drug. Eur. J. Pharma. 
Sci. 9(1): 33-40. 
 
Conte, U., Colombo, P., Gazzaniga, A., Sangalli, M.E., and La Manna, A. 
(1988). Swelling-activated drug delivery systems. Biomaterials 9(6): 489-493. 
 
Corrigan, O.I. (1997). The biopharmaceutic drug classification and drugs 
administered in extended release (ER) formulations. Adv. Exp. Med. Biol. 423:111-
28. 
 
Costa, P., and Sousa Lobo, J.M. (2001). Modeling and comparison of dissolution 
profiles. Eur. J. Pharm. Sci. 13(2): 123-133 
 
Costa, P., Ferreira, D.C., and Sousa Lobo, J.M. (1996). Nitroglicerina em 
sistemas de libertaçáo transdérmica - Determinaçáo da velocidade de libertaçáo. 
Rev. Port. Farm. 46, 4-8. 
 
Costantini, T.W., Deree, J., Loomis, W., Putnam, J.G., Choi, S., Baird, A., 
Eliceiri, B.P., Bansal, V., and Coimbra, R. (2009). Phosphodiesterase inhibition 
attenuates alterations to the tight junction proteins occludin and ZO-1 in 
immunostimulated Caco-2 intestinal monolayers. Life Sci. 84(1-2): 18–22. 
 
Cousins, R.J. and McMahon, R.J. (2000). Integrative aspects of zinc 
transporters. J. Nutr. 130(5s): 1384s–1387s. 
 
Curatolo, W.J., and Lo, J. (1995). Gastric retention drug system for controlled 
drug release. US patent 5443843. 
 
Davies, J.A. and Holt, J.M. (1972). Clinical pharmacology of cephalexin 
administered by intravenous injection. J. Clin. Pathol. 25(6):518–520. 



 

284 

 

Davis D.W. (1968). Method of swallowing a pill. US Patent 3418999 A 
 
Davis, S.S. (2005). Formulation strategies for absorption window. Drug Discov. 
Today. 10(4):249–57. 
 
Davis, S.S., Hardy, G.J., Taylor, M.J., Whalley, D.R., and  Wilson, C.G. (1984). 
The effect of food on the gastrointestinal transit of pellets and an osmotic device 
(Osmet). Int. J. Pharm. 21(3): 331–340. 
 
Davis, S.S., Stockwell, A.F., Taylor, M.J., Hardy, J.G., Whalley, D.R., Wilson, 
C.G., Bechgaard, H., and Christensen, F.N. (1986). The effect of density on the 
gastric emptying of single-and multiple-unit dosage forms. Pharm. Res. 3(4): 208-
213. 
 
De Brabander, C., Vervaet, C., Fiermans, L., and Remon, J.P. (2000). Matrix 
mini-tablets based on starch/microcrystalline wax mixtures. Int. J. Pharm. 199(2): 
195–203. 
 
Derjaguin, B.V., Toporov, Y.P., Mueler, V.M., and Aleinikova, I.N. (1977). On 
the relationship between the electrostatic and the molecular component of the 
adhesion of elastic particles to a solid surface. J. Colloid Interface Sci. 58(3): 528–
533.  
 
Deshpande A.A., Shah N.H., Rhodes C.T., and Malick W. (1997). Development 
of a novel controlled release system for gastric retention. Pharm. Res. 14(6): 815-
819. 
 
Desai, S.J., Singh, P., Simonelli, A.P., and Higuchi,W.I. (1966a). Investigation 
of factors influencing release of solid drug dispersed in inert matrices. III. 
Quantitative studies involving the polyethylene plastic matrix. J. Pharm. Sci. 
55(11):1230-1234. 
 
Desai, S.J., Singh, P., Simonelli, A.P., and Higuchi,W.I. (1966b). Investigation 
of factors influencing release of solid drug dispersed in inert matrices. IV. Some 
studies involving the polyvinyl chloride matrix. J. Pharm. Sci. 55(11): 1235-1239. 
 
Devereux, J.E., Newton, J.M., and Short, M.B. (1990). The influence of density 
on the gastrointestinal transit of pellets. J. Pharm. Pharmacol. 42(7): 500–501. 
 
Dey, N.S., Majumdar, S., and Rao, M.E.B. (2008). Multiparticulate drug delivery 
systems for controlled release. Trop. J. Pharm. Res. 7(3): 1067–1075. 
 
Dhopeshwarkar, V., O'Keeffe, J.C., Zatz, J.L., Deeter, R. and Horton. M. 
(1994). Development of an oral sustained-release antibiotic matrix tablet using in-
Vitro/in-Vivo correlations. Drug Dev. Ind. Pharm. 20(11): 1851-1867. 
 
Disney, F.A. (1983). Cephalexin in the treatment of upper respiratory tract 
infections. Postgrad. Med. J. 59(Suppl 5):28-31. 
 
Doadrio, J.C., Arcos, D., Cabañas, M.V., and Vallet-Reg, M. (2004). Calcium 
sulfate-based cements containing cephalexin. Biomaterials 25(13): 2629–2635. 



 

285 

 

Dressman, J.B., Berardi, R.R., Dermentzoglou, L.C., Russell, T.L., Schmaltz, 
S.P., Barnett, J.L., and Jarvenpaa, K.M. (1990). Upper gastrointestinal (GI) pH in 
young, healthy men and women. Pharm. Res. 7(7): 756-761. 
 
Drewe, J., Beglinger, C., and Kissel, T. (1992). The absorption site of 
cyclosporin in human GIT. Br. J. Clin. Pharmacol. 33(1): 39-43. 
 
Dube, T.S., Ranpise, N.S., and Ranade, A.N. (2014). Formulation and evaluation 
of gastroretentive microballoons containing baclofen for a floating oral controlled 
drug delivery system. Curr. Drug Deliv. 11(6): 805–816. 
 
Dürig, T. and Fassihi, R. (2000).Evaluation of floating and sticking extended 
release delivery systems: an unconventional dissolution test. J. Control. Release 
67(1): 37-44. 
 
Ebube, N.K., and Jones, A.B. (2004). Sustained release of acetaminophen from 
a heterogeneous mixture of two hydrophilic non-ionic cellulose ether polymers. Int. 
J. Pharm. 272 (1-2) 19–27. 
 
Ehrlein, H.J. (1980). A new technique for simultaneous radiography and recording 
of gastrointestinal motility in unanesthetized dogs. Lab. Anim. Sci. 30(5): 879–884. 
 
Ehrlein, H.J. (1988). Motility of the pyloric sphincter studied by the inductograph 
method in conscious dogs. Am. J. Physiol. 254(5 pt.1): G650–G657. 
 
El-Arini, S.K., and Leuenberger, H. (1995). Modeling of drug release from 
polymer matrices: effect of drug loading. Int. J. Pharm. 121(2): 141-148. 
 
El-Said, I.A., Aboelwafa, A.A., Khalil, R.M., and Elgazayerly, O.N. (2016). 
Baclofen novel gastroretentive extended release gellan gum superporous hydrogel 
hybrid system: in vitro and in vivo evaluation. Drug Deliv. 23(1):101-12. 
 
El-Shattawy, H.H., Kildsig, D.O. and Peck, G.E. (1982). Cephalexin-direct 
compression excipients: preformulation stability screening using differential 
scanning calorimetry. Drug Dev. Ind. Pharm. 8(6): 897-909. 
 
El-Zahaby, S.A., Kassem, A.A., and El-Kamel, A.H. (2014). Formulation and in 
vitro evaluation of size expanding gastro-retentive systems of levofloxacin 
hemihydrate. Int. J. Pharm. 464(1-2): 10–18. 
 
Erni, W. and Held, K. (1987). The hydrodynamically balanced system: a novel 
principle of controlled drug release. Eur. Neurol. 27(S1): 21– 27. 
 
Fabregas, J.L., Claramunt, J., Cucala, J., Pous, R., and Siles, A. (1994). In 
vitro testing of an antiacid formulation with prolonged gastric residence time 
(Almagate Flot-Coat®). Drug Dev. Ind. Pharm. 20(7): 1199– 1212. 
 
Feldman, M., Smith, H.J., and Simon, T.R. (1984). Gastric emptying of solid 
radiopaque markers: studies in healthy subjects and diabetic patients. 
Gastroenterology. 87(4): 895-902. 
 



 

286 

 

Foldager, J., Toftkjor, H., and Kjornos, K. (1991). Antacid composition, US 
patent 5068109. 
 
Foster, K.A., Sun, H., Fancher, R.M., Proszynski, M., Dixon, G., Ford, K., 
Cornelius, G., Gudmundsson, O.S., and Hageman, M.J. (2013). Utility of 
gastricretained alginate gels to modulate pharmacokinetic profiles in rats. J. 
Pharm. Sci. 102(8):2440–2449. 
 
Frampton, J.E. and Brogden, R.N. (1995). Pentoxifylline (oxpentifylline). A 
review of its therapeutic efficacy in the management of peripheral vascular and 
cerebrovascular disorders. Drugs Aging. 7(6):480-503. 
 
Freire, A.C. and Basit, A.W. (2013). Dissolution testing of solid dosage forms. In: 
Aulton‘s Pharmaceutics: The Design and Manufacture of Medicines (Aulton, M.E. 
and Taylor, K.M.G Eds). 4th Edition. Churchill Livingstone, Edinburgh, pp. 611-622. 
 
Fujimori, J. Machida, Y. and Nagai, T. (1994). Preparation of a 
magneticallyresponsive tablet and confirmation of its gastric residence in beagle 
dogs, STP Pharma Sci. 4(6): 425– 430. 
 
Fujimori, J., Machida, Y., Tanaka, S., and Nagai, T. (1995). Effect of 
magnetically controlled gastric residence of sustained release tablets on 
bioavailability of acetaminophen. Int. J. Pharm. 119(1): 47-55. 
 
Gacesa, P. (1988). Alginate, Carbohydr. Polym. 8(3):161–182. 
 
Gaisford, S. (2013). Pharmaceutical preformulation. In: Aulton‘s Pharmaceutics: 
The Design and Manufacture of Medicines (Aulton, M.E. and Taylor, K.M.G Eds). 
4th Edition. Churchill Livingstone, Edinburgh, pp. 367-394. 
 
Gardner, C.R., Caldwell, L.J., Cargill, R.C., and Higuchi, T. (1986). Drug 
delivery device which can be retained in the stomach for a controlled period of 
time. EP patent 0202159 A2. 
 
Gerogiannis, V.S., Rekkas, D.M., Dallas, P.P., and Choulis, N.H. (1993). 
Floating and swelling characteristics of various excipients used in controlled 
release technology. Drug Dev. Ind. Pharm. 19(9): 1061–1081. 
 
Gokhale, R., Sun, Y., and Shukla, A.J. (2005). High-Shear Granulation. In: 
Handbook of Pharmaceutical Granulation Technology (Parikh D.M., Ed). 2nd 
Edition. Taylor and Francis Group, FL, pp. 191-228. 
 
Goole, J., Deleuze, P., Vanderbist, F., and Amighi, K. (2008). New levodopa 
sustained-release floating minitablets coated with insoluble acrylic polymer. Eur. J. 
Pharm. Biopharm. 68(2):310-318. 
 
Goole, J., Vanderbist, F., and Amighi, K. (2007). Development and evaluation of 
new multiple-unit levodopa sustained-release floating dosage forms. Int. J. Pharm. 
334(1-2):35-41. 
 



 

287 

 

Grant, G.T., Morris, E.R., Rees, D.A., Smith, P.J.C., and Thom, D., (1973). 
Biological interactions between polysaccharides and divalent cations: the eggbox 
model, FEBS Lett. 32(1):195–198. 
 
Grassi, M. and Grassi, G. (2005). Mathematical Modelling and Controlled Drug 
Delivery: Matrix Systems. Curr. Drug Deliv. 2(1): 97-116. 
 
Gren, T., and Nyström, C. (1996). Compaction properties of melt coated coarse 
drug particles. STP Pharma Sci. 6(5):341–348. 
 
Griffith, R.S. (1983). The pharmacology of cephalexin. Postgrad. Med. J. 59 
(Suppl 5):16-27. 
 
Gröning, R. and Berntgen, M. (1996). Estimation of the gastric residence time of 
magnetic dosage forms using the Heidelberg capsule. Pharmazie 51(5): 328– 331. 
 
Gröning, R., Berntgen, M., and Georgarakis, M. (1998). Acyclovir serum 
concentration following peroral administration of magnetic depot tablets and the 
influence of extracorporal magnet to control gastroretentive transit. Eur. J. Pharm. 
Biopharm. 46(3): 285–91. 
 
Gröning, R., Cloer, C., Georgarakis, M., and Müller, R.S. (2007). Compressed 
collagen sponges as gastroretentive dosage forms: in vitro and in vivo studies. 
Eur. J. Pharm. Sci. 30(1): 1–6. 
 
Gupta, N. and Aggarwal, N. (2007). A gastro-retentive floating delivery system for 
5-fluorouracil. Asian J. Pharm. Sci. 2(4): 143–149. 
 
Gupta P.K. and Robinson J.R. (1992). Oral controlled- release delivery. In: 
Treatise on controlled drug delivery (Kydonieus A. Ed.). Marcel Dekker, New 
Jersey, pp 255-310  
 
Gupta, P.K. and Robinson, J.R. (1995). Effect of volume and viscosity of 
coadministered fluid on gastrointestinal distribution of small particles. Int. J. 
Pharm. 125(2): 185-193. 
 
Haber, P., Warner, R., Seth, D., Gorrell, M.D., and McCaughan, G.W. (2003). 
Pathogenesis and management of alcoholic hepatitis. J. Gastroentero.l Hepatol. 
18(12):1332–1334. 
 
Hamdani, J.,  oole, J., M es, A.J. and A ighi, K. (2006). In vitro and in vivo 
evaluation of floating riboflavin pellets developed using the melt pelletization 
process. Int. J. Pharm. 323 (1-2) 86–92 
 
Hamed, E., Moe, D., and Khankari, R. (2005). Binders and solvents. In: 
Handbook of Pharmaceutical Granulation Technology (Parikh D.M., Ed). 2nd 
Edition. Taylor and Francis Group, FL, pp. 385–406. 
 
Hampson, F.C., Jolliffe, I.G., Bakhtyari, A., Taylor, G., Sykes, J., Johnstone, 
L.M., and Dettmar, P.W. (2010). Alginate-antacid combinations: raft formation and 
gastric retention studies. Drug Dev. Ind. Pharm. 36(5): 614–623. 



 

288 

 

Hapgood, K.P. (2009). Sodium carbonate. In: Handbook of Pharmaceutical 
Excipients (Rowe, R.C., Sheskey, P.J., and Quinn, M.E., Eds). 6th Edition. The 
Pharmaceutical Press, London, pp. 635-635. 
 
Harder, S., Furh, U. and Bergmann, D. (1990). Ciprofloxacin absorption in 
different regions of the human GIT, Investigation with the Hf Capsule. Br. J. Clin. 
Pharmacol. 30(1): 35–39. 
 
Hascicek, C., Rossi, A., Colombo, P., Massimo, G., Strusi, O.L., and 
Colombo, G. (2011). Assemblage of drug release modules: effect of module 
shape and position in the assembled systems on floating behavior and release 
rate. Eur. J. Pharm. Biopharm. 77(1): 116–121. 
 
Hashim, H., and  Li Wan Po, A. (1987). Improving the release charac-teristics of 
water-soluble drugs from hydrophilic sustained release matrices by in situ gas-
generation. Int. J. Pharm. 35 (3): 201–209. 
 
Hasler, W.L. (1995). in: T.Yamada (Ed.), Textbook of Gastroenterol- ogy II, Vol. 1, 
J.B. Lippincott, Philadelphia, pp. 181–206 
 
Hatton, G.B., Yadav, V., Basit, A.W., and Merchant, H.A. (2015). Animal farm: 
considerations in animal gastrointestinal physiology and relevance to drug delivery 
in humans. J. Pharm. Sci. 104(9): 2747-2776. 
 
Hauptstein, S., Muller, C., Dunnhaupt, S., Laffleur, F., and Bernkop-
Schnurch, A. (2013). Preactivated thiomers: evaluation of gastroretentive 
minitablets. Int. J. Pharm. 456(2): 473–479. 
 
Havelund, T., Aalykke, C., and Rasmussen, L. (1997). Efficacy of a pectin-
based antireflux agent on acid reflux and recurrence of symptoms and 
oesophagitis in gastro-oesophageal reflux disease. Eur. J. Gastroenterol. Hepatol. 
9(5): 509–514. 
 
Heading, RC., Nimmo, J., Prescott, L.F., and Tothill, P. (1973). The 
dependence of paracetamol absorption on the gastric emptying. Br. J. Pharmacol. 
47(2): 415-421. 
 
Hejazi, R., and Amiji, M. (2002). Stomach-specific anti-H. pylori therapy. I. 
Preparation and characterization of tetracycline-loaded chitosan microspheres. Int. 
J. Pharm. 235(1-2): 87-94. 
 
Hejazi, R., and Amiji, M. (2003). Stomach-specific anti-H. pylori therapy. II. 
Gastric residence studies of tetracycline-loaded chitosan microspheres in gerbils. 
Pharm. Dev. Technol. 8(3): 253-262. 
 
Hejazi, R., and Amiji, M. (2004). Stomach-specific anti-H. pylori therapy part III: 
effect of chitosan microspheres crosslinking on the gastric residence and local 
tetracycline concentrations in fasted gerbils. Int. J. Pharm. 272(1-2): 99-108. 
 
 



 

289 

 

Higo, S., Ori, K., Takeuchi, H., Yamamoto, H., Hino, T., and Kawashima, Y. 
(2004). A novel evaluation method of gastric muco-adhesive property in vitro and 
the muco-adhesive mechanism of tetracycline-sucralfate acidic complex for 
eradication of Helicobacter pylori. Pharm. Res. 21(3): 413-419. 
 
Higuchi, T. (1963). Mechanism of sustained-action medication. Theoretical 
analysis of rate of release of solid drugs dispersed in solid matrices. J. Pharm. Sci. 
52(12): 1145-1149. 
 
Hilton, K. A. and Deasy, P. B. (1992). In vitro and in vivo evaluation of an oral 
sustained-release floating dosage form of amoxicillin trihydrate. Int. J. Pharm. 
86(1):79-88. 
 
Hinze, H.J., Bedessem, G., and Söder, A. (1972). Structure of excretion products 
of 3,7-dimethyl-1-(5-oxo-hemyl)-xanthine (BL 191) in man. Arzneimittelforschung. 
22(7):1144-1151. 
 
Hixson, A.W., and Crowell, J.H. (1931). Dependence of reaction velocity upon 
surface and agitation. Ind. Eng. Chem. 23(8): 923-931. 
 
Hodsdon, A.C., Mitchell, J.R., Davies M.C., and Melia C.D. (1995). Structure 
and behaviour in hydrophilic matrix sustained release dosage forms: 3. The 
influence of pH on the sustained-release performance and internal gel structure of 
sodium alginate matrices. J Control Release. 33(1):143-152. 
 
Holt, P.R., Rosenberg, H., and Russell, R.M. (1989). Causes and consequences 
of hypochlorhydria in elderly. Dig. Dis. Sci., 34(6): 933-937. 
 
Horii, M., Morinaga, T., Shimada, S., Takeuchi, T., Yamanaka, H., Nishimura, 
T., Noshi, Y., Okada, T., Sasaki, T., Ikeda, S., Takada, S., Iizuka, O., Kimura, 
J., Sagara, S., Inada, Y., Nishioka, Y., and Kimata, M. (1980). Double-blind 
comparison of L-keflex and cephalexin (Keflex) in dental infections. Jpn. J. 
Antibiot. 33(11): 1194–1214. 
 
Hunt, J.N and Knox, M.T. (1972). The slowing of gastric emptying by four strong 
acids and three weak acids. J. Physiol. 222(1): 187-208. 
 
Hunt, J.N. and Stubbs, D.F. (1975). The volume and energy content of meals as 
determinants of gastric emptying. J. Physiol. 245(1): 209-225. 
 
Hunter, E., Fell, J.T., and Sharma, H. (1982). The gastric emptying of pellets 
contained in hard gelatin capsules. Drug Devel. Ind. Pharm. 8(5): 751-757. 
 
Hwang, R.C., Peck, G.R., Besserman, D.M., Friedrich, C.E., and Gemoules, 
M.K. (2001). Tablet relaxation and physicomechanical stability of lactose, 
microcrystalline cellulose, and dibasic calcium phosphate. Pharm. Technol. 
November:54-81. 
 
Hwang, S.J., Park, H., and Park, K. (1998). Gastric retentive drug-delivery 
systems, Crit. Rev. Ther. Drug Carr. Syst. 15(3): 243– 284. 
 



 

290 

 

Iannuccelli, V., Coppi, G., Sansone, R., and Ferolla, G. (1998a). Air 
compartment multiple-unit system for prolonged gastric residence. Part II. In vivo 
evaluation. Int. J. Pharm. 174(1-2): 55–62. 
 
Iannuccelli, V., Coppi, G., Bernabei, M.T., and Cameroni, R. (1998b). Air 
compartment multiple-unit system for prolonged gastric residence Part I. 
Formulation study. Int. J. Pharm. 174(1-2): 47–54.  
 
ICH. (1999). International Conference on Harmonization of Technical 
Requirements for Registration of Pharmaceuticals for Human Use, Topic Q6A: 
Specifications: Test procedures and acceptance criteria for new drug substances 
and new drug products: Chemical substances. 
 
ICH. (2003). International Conference on Harmonization of Technical 
Requirements for Registration of Pharmaceuticals for Human Use, Topic Q1A 
(R2): Stability Testing of New Drug Substances and Products. 
 
Ichikawa, M., Watanabe, S., and Miyake, Y. (1991). A new multiple-unit oral 
floating dosage systems. I: Preparation and in vitro evaluation of floating and 
sustained-release characteristics. J. Pharm. Sci. 80 (11): 1062–1066. 
 
Ige, P., and Gattani, S. (2012). Design and in vitro and in vivo characterization of 
mucoadhesive matrix pellets of metformin hydrochloride for oral controlled release: 
a technical note. Arch. Pharmacal Res. 35(3): 487–498. 
 
Ilić, I.,  ovedarica, B., Šibanc, R., Dreu, R., and Srčič, S. (2013). Deformation 
properties of pharmaceutical excipients determined using an in-die and out-die 
method. Int. J. Pharm. 446(1-2): 6–15. 
 
Indrayanto, G., Syahrani, A., Moegihardjo, S., Lianawati, T., Wahyuningsih, I., 
Aditama, L., and Brittain, H.G. (1998). Cephalexin monohydrate. In: Analytical 
Profiles of Drug Substances and Excipients (Britain H.G., Ed). Vol. 25. Academic 
press, NJ, pp. 295-340. 
 
Ingani, H. M., Timmermans, J., and Möes, A. J. (1987). Conception and in vivo 
investigation of peroral sustained release floating dos-age forms with enhanced 
gastrointestinal transit. Int. J. Pharm. 35 (1-2): 157–164.    
 
Ings, R.M.J., Niidemberg, F., Burrows, J.L., and Bryce, T.A. (1982). The 
pharmacokinetics of oxpentifylline in man when administered by constant 
intravenous infusion. Eur. J. Clin. Pharmacol. 23(6):539-543. 
 
Ishak, R.A.H. (2015). Buoyancy-generating agents for stomach-specific drug 
delivery: an overview with special emphasis on floating behavior. J. Pharm. 
Pharm. Sci. 18(1): 77-100. 
 
Ishak, R.A.H., Awad, G.A.S., Mortada, N.D., and Nour, S.A.K. (2007). 
Preparation, in vitro and in vivo evaluation of stomach-specific metronidazole-
loaded alginate beads as local anti-Helicobacter pylori therapy. J. Control. Release 
119(2): 207–214. 
 



 

291 

 

Ito, R., Machida, Y., Sannan, T., and Nagai, T. (1990). Magnetic granules: a 
novel system for specific drug delivery to esophageal mucosa in oral 
administration. Int. J. Pharm. 61(1– 2): 109– 117. 
 
Iveson, S.M., Litster, J.D., Hapgood, K., and Ennis, B.J. (2001). Nucleation, 
growth and breakage phenomena in agitated wet granulation processes: a review. 
Powder Technol. 117(1-2):3–39. 
 
Jackson, S.J., Bush, D., Washington, N., and Perkins, A.C. (2000). Effect of 
resin surface charge on gastric mucoadhesion and residence of cholestyramine. 
Int. J. Pharm. 205(1-2): 173-181. 
 
Jaimini, M., Rana A. C., and Tanwar, Y. S. (2007).Formulation and evaluation of 
famotidine floating tablets. Curr. Drug Deliv. 4(1):51-55. 
 
Jambhekar, S.S. and Breen, P.J. (2009). In: Basic Pharmacokinetics. The 
Pharmaceutical Press, London. pp. 125-158. 
 
Jansen, E.N. and Meerwaldtt, J.D. (1990). Madopar HBS in nocturnal symptoms 
of Parkinson‘s disease. Adv. Neurol. 53: 527– 531. 
 
Jelvehgari, M., Zakeri-Milani, P., and Khonsari, F. (2014). Comparative study of 
in vitro release and mucoadhesivity of gastric compacts composed of multiple unit 
system/bilayered discs using direct compression of metformin hydrochloride. 
Bioimpacts 4(1): 29–38. 
 
Jenkins, J.R.F., Hardy, J.G., and Wilson, C.G. (1983). Monitoring antiacid 
preparations in the stomach using gamma scintigraphy. In. J. Pharm. 14(1):143-
148. 
 
Jha, R., Tiwari, S., and Mishra, B. (2011). Bioadhesive microspheres for 
bioavailability enhancement of raloxifene hydrochloride: formulation and 
pharmacokinetic evaluation. AAPS Pharm.Sci.Tech. 12(1): 650–657. 
 
Jiménez-Martinez, I., Quirino-Barreda, T., and Villafuerte-Robles, L. (2008). 
Sustained delivery of captopril from floating matrix tablets. Int. J. Pharm. 362(1-
2):37–43. 
 
Ju, R.T.C., Nixon, P.R., Patel, M.V., and Tong, D.M. (1995). Drug release from 
hydrophilic matrices. 2. A mathematical model based on the polymer 
disentanglement concentration and the diffusion layer. J.Pharm. Sci. 84(12): 1464-
1477. 
 
Kaelbe, D.H. (1977). A surface energy analysis of bioadhesion, Polymer 18(5): 
475–481. 
 
Kagan, L., Lapidot, N., Afargan, M., Kirmayer, D., Moor, E., Mardor, Y., 
Friedman, M., and Hoffman, A. (2006). Gastroretentive Accordion Pill: 
enhancement of riboflavin bioavailability in humans. J. Control. Release. 113(3): 
208–215. 
 



 

292 

 

Kaneniwa, N., Imagwa, K., and Otsuka, M. (1984). Compression properties of 
cephalexin powder and physical properties of the tablet. Chem. Pharm. Bull. 
32(1):4986-4993.   
 
Kanwar, N., Kumar, R., Sarwal, A., and Sinha, V.R. (2016). Preparation and 
evaluation of floating tablets of pregabalin. Drug Dev. Ind. Pharm. 42(4):654-660. 
 
Kararli, T.T. (1995). Comparison of the gastrointestinal anatomy, physiology, and 
biochemistry of humans and commonly used laboratory animals. Biopharm. Drug 
Dispos. 16(5): 351–380. 
 
Kararli, T.T., Hurlbut, J.B., and Needham, T.E. (1990). Glass-rubber transitions 
of cellulosic polymers by dynamic mechanical analysis. J.Pharm. Sci. 79(9): 845-
851. 
 
Karehill, P.G. and Nystrom, C. (1990). Studies on Direct Compression of 
Tablets, Part 2: Investigation of Strength Increase upon Aging and Bonding 
Mechanisms for Some Plastically Deforming Materials. Int. J. Pharm. 64(1):27–34. 
 
Kast, C.E., and Bernkop-Schnürch, A. (2001). Thiolated polymers — thiomers: 
development and in vitro evaluation of chitosan–thioglycolic acid conjugates. 
Biomaterials 22(14): 2345-2352. 
 
Kaus, L.C. and Fell, J.T. (1984). Effect of stress on the gastric emptying of 
capsules. J. Clin. Hosp. Pharm. 9(3): 249–251. 
 
Kaus, L.C., Fell, J.T, Sharma, H., and Taylor, D.C. (1984). Gastric emptying and 
intestinal transit of non-disintegrating capsules – the influence of metoclopramide. 
Int. J. Pharm. (1984) 22(1): 99-103. 
 
Kawashima, Y., Niwa, T., Takeuchi, H., Hino, T., and Itoh, Y. (1992). Hollow 
microspheres for use as a floating controlled drug delivery system in the stomach. 
J. Pharm. Sci. 81(2): 135–140. 
 
Kelly, K.A., Morley, K.D., and Wilbur, B.G. (1973). Effect of corporal and antral 
gastrojejunostomy on canine gastric emptying of solid spheres and liquids. Br. J. 
Surg. 60(11): 880–884. 
 
Khosla, R. and Davis, S.S. (1987). Effect of polycarbophil on the gastric emptying 
of pellets. J. Pharm. Pharmacol. 39(1): 47-49. 
 
Kinloch, A.J. (1980). The science of adhesion: I. Surface and interfacial aspects. 
J. Mater. Sci. 15(1): 2141–2166. 
 
Kinget, R., Kalala, W., Vervoort, L., and Mooter, G.V. (1998). Colonic drug 
targeting. J. Drug Target. 6(2): 129–149. 
 
Klausner, E.A., Lavy, E., Stepensky, D., Cserepes, E., Barta, M., Friedman, M., 
and Hoffman, A. (2003a). Furosemide pharmacokinetics and pharmacodynamics 
following gastroretentive dosage form administration to healthy volunteers. J. Clin. 
Pharmacol. 43(7): 711–720. 



 

293 

 

Klausner, E.A., Eyal, S., Lavy, E., Friedman, M., and Hoffman, A. (2003b). 
Novel levodopa gastroretentive dosage form: in-vivo evaluation in dogs. J. Control. 
Release 88(1): 117–126. 
 
Klausner, E.A., Lavy, E., Friedman, M., and Hoffman, A. (2003c). Expandable 
gastroretentive dosage forms. J. Control. Release 90(2): 143–162. 
 
Klausner, E.A., Lavy, E., Barta, M., Cserepes, E., Friedman, M. and Hoffman, 
A. (2003d). Novel gastroretentive dosage forms: evaluation of gastroretentivity and 
its effect on levodopa absorption in humans, Pharm. Res. 20(9): 1466– 1473. 
 
Kockisch, S., Rees, G.D., Young, S.A., Tsibouklis, J., and Smart, J.D. (2003). 
Polymeric microspheres for drug delivery to the oral cavity: an in vitro evaluation of 
mucoadhesive potential. J. Pharm. Sci. 92(8): 1614– 1623. 
 
Korsmeyer, R.W., Gurny, R., Doelker, E., Buri, P., and Peppas, N.A. (1983). 
Mechanisms of solute release from porous hydrophilic polymers. Int. J. Pharm. 
15:25–35. 
 
Kramer, W., Girbig, F., Gutjahr, U., Kowalewski, S., Jouvenal, K., Müller, G., 
Tripier, D., and Wess, G. (1993). Intestinal bile acid absorption. Na(+)-dependent 
bile acid transport activity in rabbit small intestine correlates with the coexpression 
of an integral 93-kDa and a peripheral 14-kDa bile acid-binding membrane protein 
along the duodenum-ileum axis. J. Biol. Chem. 268(24):18035-18046. 
 
Krogel, I. and Bodmeier, R. (1999). Development of a multifunctional matrix drug 
delivery system surrounded by an impermeable cylinder. J. Control. Release 
61(1–2): 43– 50. 
 
Krygowska-Wajs, A., Cheshire Jr., W.P., Wszolek, Z.K., Hubalewska-
Dydejczyk, A., Jasinska-Myga, B., Farrer, M.J., Moskala, M., and Sowa-
Staszczak, A. (2009). Evaluation of gastric emptying in familial and sporadic 
Parkinson disease. Parkinsonism Relat. Disord. 15 (9): 692–696. 
 
Kühbeck, D., Mayr, J., Häring,  M., Hofmann,  M., Quignard F., and Díaz Díaz, 
D. (2015). Evaluation of the nitroaldol reaction in the presence of metal ion-
crosslinked alginates. New J. Chem. 39(3): 2306-2315 
 
Kydonieus, A. (1992). In Treatise on controlled drug delivery, (Kydonieus, A. ed.), 
Marcel Dekker, NY. 
 
Laine, L., Shah, A., and Bemanian, S. (2008). Intragastric pH with oral vs 
intravenous bolus plus infusion proton-pump inhibitor therapy in patients with 
bleeding ulcers. Gastroenterology. 134(7):1836–1841. 
 
Lal, S.  and Datta, M. (2015). In vitro prolonged gastric residence and sustained 
release of atenolol using novel clay polymer nanocomposite. Appl. Clay Sci. 
114(1): 412–421 
 

http://www.sciencedirect.com/science/journal/01691317
http://www.sciencedirect.com/science/journal/01691317/114/supp/C


 

294 

 

Langer, R.S., and Wise, D.L. (1984). In Medical Applications of Controlled 
Release: Applications and Evaluation, Volume I and II, (Langer, R.S., and Wise, 
D.L. Eds.), CRC Press, FL. 
 
Larsson, A., Vogt Morten, H., Herder, J., and Luukkonen, P. (2008). Novel 
mechanistic description of the water granulation process for hydrophilic polymers. 
Powder Technol. 188(2):139–146. 
 
Lee, I.P., and Kim, C.J. (1991). Probing the mechanism of drug release from 
hydrogels. J.Control. Release. 16(1-2): 229-236. 
 

Leuenberger, H. (1982). The compressibility and compactibility of powder 
systems. Int. J. Pharm. 12(1):41–55. 
 
Li, S., Lin, S., Daggy, B.P., Mirchandani H.L., and Chien, Y.W. (2002). Effect of 
formulation variables on the floating properties of gastric floating drug delivery 
system. Drug Dev. Ind. Pharm. 28(7): 783-793. 
 
Li, S., Lin, S., Daggy, B.P., Mirchandani, H.L., and Chien, Y.W. (2003). Effect of 
HPMC and carbopol on the release and floating properties of Gastric Floating 
Drug Delivery System using factorial design. Int. J. Pharm., 253(1-2): 13–22.  
 
Li, X., and Jasti, B.R. (2006), In Design of controlled release drug delivery 
systems, (Li, X. Ed) 1st Edition, The McGraw-Hill companies, NY.  
 
Li, Z., Xu, H., Li, S., Li, Q., Zhang, W., Ye, T., Yang, X., and Pan, W. (2014). A 
novel gastro- floating multiparticulate system for dipyridamole (DIP) based on a 
porous and low-density matrix core: in vitro and in vivo evaluation. Int. J. Pharm. 
461(1-2): 540– 548. 
 
Liew, C.V., Chan, L.W., Ching, A.L., and Sia Heng, P.W. (2006). Evaluation of 
sodium alginate as drug release modifier in matrix tablets. Int. J. Phar. 309 (1-2): 
25–37. 
 
Linder, W.D., Mockel, J.E., and Lippold, B.C. (1996). Controlled release of 
drugs from hydrocolloid embeddings. Pharmazie  51(5): 263-272. 
 
Liu, Z., Lu, W., Qian, L., Zhang, X., Zeng, P., and Pan, J. (2005). In vitro and in 
vivo studies on mucoadhesive microspheres of amoxicillin. J. Control Release 
102(1): 135–144. 
 
Lode, H., Stahlmann, R. and Koeppe, P. (1979). Comparative Pharmacokinetics 
of Cephalexin, Cefaclor, Cefadroxil, and CGP 9000. Antimicrob. Agents 
Chemother. 16(1): 1–6. 
 
Loh, Z.C. and Elkordy, A.A. (2015). Formulation and Evaluation of Different 
Floating Tablets Containing Metronidazole to Target Stomach. Curr. Drug Deliv. 
12(4):425-443. 
 



 

295 

 

Lopes, C.M., Bettencourt, C., Rossi, A., Buttini, F., and Barata, P. (2016). 
Overview on gastroretentive drug delivery systems for improving drug 
bioavailability. Int. J. Pharm. 510(1): 144–158. 
 
Lopes, C.M., Lobo, J.M.S., and Costa, P. (2005). Modified release of drug 
delivery systems: hydrophilic polymers. Braz. J. Pharm. Sci. 41(2):143-154. 
 
Losi, E., Bettini, R., Santi, P., Sonvico, F., Colombo, G., Lofthus, K., Colombo, 
P., and Peppas, N.A. (2006). Assemblage of novel release modules for the 
development of adaptable drug delivery systems. J. Control. Release 111(1-2): 
212–218. 
 
Lowenthal, W. (1972). Disintegration of Tablets. J. Pharm. Sci. 61(11):1695–
1711.  
 
Malcolm, S.L., Allen, J.G., Bird, H., Quinn, N.P., Marion, M.H., Marsden, C.D., 
and O'Leary, C.G. (1987). Single-dose pharmacokinetics of Madopar HBS in 
patients and effect of food and antacid on the absorption of Madopar HBS in 
volunteers. Eur. Neurol. 27 (Suppl 1):28-35. 
 
Malode, V.N., Paradkar, A., and Devarajan P.V. (2015).Controlled release 
floating multiparticulates of metoprolol succinate by hot melt extrusion. Int. J. 
Pharm.491 (1-2):345-351.  
 
Mamajek, R.C., and Moyer, E.S. (1980). Drug-dispensing device and method. US 
patent 4207890. 
 
Mandal, S., Basu, S.K., and Sa, B. (2009). Sustained release of a water-soluble 
drug from alginate matrix tablets prepared by wet granulation method. AAPS 
Pharm. Sci. Tech. 10(4):1348-1356. 
 
Marrelli, L.P.  (1975). Cephalexin. In: Analytical Profiles of Drug Substances and 
Excipients (Florey K., Ed). Vol. 4. Academic press, NY, pp. 21-46. 
 
Martinez-Pacheco, R., Vila-Jato, J. L., Souto, C., and Ramos, T. (1986). 
Controlled release of cephalexin from double-layer tablets containing small 
proportions of acrylic resins. Int. J. Pharm. 32(2-3): 99-102. 
 
Mattsson, S., and Nyström, C. (2000). Evaluation of strength-enhancing factors 
of a ductile binder in direct compression of sodium bicarbonate and calcium 
carbonate powders. Eur. J. Pharm. Sci. 10(1):53–66. 
 
May, H.A. Wilson, C.G., and Hardy, J.G. (1984). Monitoring radiolabelled antacid 
preparations in the stomach. Int. J. Pharm. 19(2): 169-176. 
 
McConnell E.L., Basit A.W., and Murdan S. (2008). Measurements of rat and 
mouse gastrointestinal pH, fluid and lymphoid tissue, and implications for in-vivo 
experiments. J. Pharm. Pharmacol. 60(1):63–70. 
 



 

296 

 

Meyer, J.H., Dressman, J., Fink, A., and Amidon, G. (1985). Effect of size and 
density on canine gastric emptying of nondigestible solids. Gastroenterology. 
89(4): 805-813. 
 
Meka, L., Kesavan, B., Kalamata, V.N., Eaga, C.M., Bandari, S., Vobalaboina, 
V., and Yamsani, M.R. (2009). Design and evaluation of polymeric coated 
minitablets as multiple unit gastroretentive floating drug delivery systems for 
furosemide. J. Pharm. Sci. 98(6): 2122–2132. 
 
Mikac, U., Sepe, A., Kristl, J., and Baumgartner, S. (2010). A new approach 
combining different MRI methods to provide detailed view on swelling dynamics of 
xanthan tablets influencing drug release at different pH and ionic strength. J. 
Control. Release. 145(3):247–256. 
 
Miyazaki S, Kubo W, and Attwwod D. (2000). Oral sustained delivery of 
theophylline using in-situ gelation of sodium alginate. J. Control. Release. 67: (2–
3), 280–280. 
 
Mojaverian, P., Ferguson, R.K., Vlasses, P.H., Rocci, M.J., Oren, A., Fix, J.A., 
Caldwell, L.J., and Gardner, C. (1985). Estimation of gastric residence time of 
the Heidelberg capsules in humans: effect of varying food composition. 
Gastroenterology. 89(2): 392-397. 
 
Mojaverian, P.; Vlasses, P.H.; Kellner, P.E.; and Rocci, M.L. (1988). Effects of 
gender, posture, and age on gastric residence time of an indigestible solid: 
Pharmaceutical considerations. Pharm. Res. 5(10): 639–643. 
 
Moursy, N.M., Afifi, N.N., Ghorab, D.M., and El-Saharty, Y. (2003). Formulation 
and evaluation of sustained release floating capsules of Nicardipine hydrochloride. 
Pharmazie. 58(1): 38-43. 
 
Mukhopadhyay, D., Saville, D., and Tucker, I.G. (2008). Crosslinking of drug – 
alginate granules part 2. Effect of granule preparation and composition on granule 
properties. Int. J. Pharm. 356(1-2):193–199. 
 
Mura, P., Manderioli, A., Bramati, G., Furlanetto, S., and Pinzauti, S. (1995). 
Utilization of differential scanning calorimetry as a screening technique to 
determine the compatibility of ketoprofen with excipients. Int. J. Pharm. 119(1):71–
79. 
 
Murphy, C.S., Pillay, V., Choonara, Y.E., and Du Toit, L.C. (2009). 
Gastroretentive drug delivery systems: current developments in novel system 
design and evaluation. Curr. Drug Deliv. 6(5): 451–460. 
 
Nakagawa, T., Kondo, S.I., Sasai, Y., and Kuzuya, M. (2006). Preparation of 
floating drug delivery system by plasma technique. Chem. Pharm. Bull. 54(4): 
514–518. 
 
 
 



 

297 

 

Nakashima, E., Tsuji, A. Kagatami, S. and Yamana, T. (1984). Intestinal 
absorption mechanisms of amino-beta-lactam antibiotics. III. Kinetics of carrier- 
ediated transport across the rat small intestine in situ. J. Pharmacobio. Dyn. 7(7): 
452-464. 
 
Nama, M., Gonugunta, C., and Veerareddy, P.R. (2008). Formulation and 
evaluation of gastroretentive dosage forms of Clarithromycin. AAPS 
Pharm.Sci.Tech. 9(1):231-237. 
 
Ngwuluka, N., Choonara, Y., Modi, G., Toit, L., Kumar, P., Ndesendo, V.K., 
and Pillay, V. (2013). Design of an interpolyelectrolyte gastroretentive matrix for 
the site-specific zero-order delivery of levodopa in Parkinson‘s disease. AAPS 
Pharm.Sci.Tech. 14(2): 605–619. 
 
Nokhodchi, A., and Tailor, A. (2004). In situ cross-linking of sodium alginate with 
calcium and aluminum ions to sustain the release of theophylline from polymeric 
matrices, IL Farmaco 59(12): 999-1004. 
 
Nokhodchi, A., Raja, S., Patel, P., and Asare-Addo, K. (2012). The Role of Oral 
Controlled Release Matrix Tablets in Drug Delivery Systems. Bioimpacts. 2(4): 
180–187. 
Notari, R.E. (1986). In Biopharmaceutics and clinical pharmacokinetics an 
introduction. (Notari, R.E. Ed) 4th Edition. CRC press. FL. pp 107-108.  
 
Ogihara, H., Suzuki, T., Nagamachi, Y., Inui, K., and Takata, K. (1999). Peptide 
transporter in the rat small intestine: ultrastructural localization and the effect of 
starvation and administration of amino acids. Histochem. J. 31(3): 169–174. 
 
Oh, T.O., Kim, J.Y., Ha, J.M., Chi, S.C., Rhee, Y.S., Park, C.W., and Park, E.S. 
(2013). Preparation of highly porous gastroretentive metformin tablets using a 
sublimation method. Eur. J. Pharm. Biopharm. 83(3): 460–467. 
 
Ollerenshaw, K.J., Norman, S., Wilson, C.G., and Hardy, J.G. (1987). Exercise 
and small intestinal transit. Nucl. Med. Commun. 8(2): 105–110. 
 
Olsson, H., Mattsson, S., and Nyström, C. (1998). Evaluation of the effect of 
addition of polyethylene glycols of differing molecular weights on the mechanical 
strength of sodium chloride and sodium bicarbonate tablets. Int. J. Pharm. 
171(1):31–44. 
 
Omidian, H., Rocca, J.G., and Park, K. (2005). Advances in superporous 
hydrogels. J. Control. Release. 103(1): 3–12. 
 
Omidian, H., Rocca, J.G., and Park, K. (2006). Elastic. superporous hydrogel 
hybrids of polyacrylamide and sodium alginate. Macromol. Biosci. 6(9): 703–710. 
 
Oth, M., Franz, M., Timmermans, J., and Moes, A. (1992). The bilayer floating 
capsule: a stomach-directed drug delivery system for misoprostol. Pharm. Res. 
9(3): 298– 302. 
 

http://www.ncbi.nlm.nih.gov/pubmed/15598436


 

298 

 

Otsuka, M. and Matsuda, Y. (1994). Programmable drug release of highly water-
soluble pentoxifylline from dry-coated wax matrix tablets. J. Pharm. Sci. 84(4):443-
447. 
 
Ozdemir, N., Ordu, S., and Ozkan, Y. (2000). Studies of floating dosage forms of 
furosemide: in vitro and in vivo evaluations of bilayer tablet formulations. Drug 
Dev. Ind. Pharm. 26(8): 857–866. 
 
Pandey, S., Jirwankar, P., Mehta, S., Pandit, S., Tripathi, P., and Patil, A. 
(2013). Formulation and evaluation of bilayered gastroretentable mucoadhesive 
patch for stomach- specific drug delivery. Curr. Drug Deliv. 10(4): 374–383. 
 
Penners, G., Lustig, K., and Jorg, P.V.G. (1997). Expandable pharmaceutical 
forms. US patent 5 651 985. 
 
Park, H.M., Chernish, J.M., Rosenbeck, B.D., Brunelle, R.L., Hargrove, B., and 
Wellman, H.N. (1984). Gastric emptying of enteric coated tablets. Dig. Dis. Sci. 
29(3): 207–212. 
 
Parnetti, L., Ciuffetti, G., Mercuri, M., Lupattelli, G., and Senin, U. (1986). The 
role of haemorheological factors in the ageing brain: long term therapy with 
pentoxifylline (‗Trental‘ 400) in elderly patients with initial mental deterioration. 
Pharmatherapeutica. 4(10):617–627. 
 
Patel, D.M., Patel, N.M., Pandya N.N., and Jogani, P.D. (2007). Gastroretentive 
drug delivery system of carbamazepine: formulation optimization using simplex 
lattice design: a technical note. AAPS PharmSciTech. 8(1): E82–E86. 
 
Patil, S. and Talele, G.S. (2015). Gastroretentive mucoadhesive tablet of 
lafutidine for controlled release and enhanced bioavailability. Drug Deliv. 22(3): 
312–319. 
 
Pawar, V.K., Kansal, S., Garg, G., Awasthi, R., Singodia, D., and Kulkarni, 
G.T. (2011a). Gastroretentive dosage forms: A review with special emphasis on 
floating drug delivery systems. Drug Deliv. 18(2): 97-110. 
 
Pawar, V.K., Kansal, S., Asthana, S., and Chourasia, M.K. (2011b). Industrial 
perspective of gastroretentive drug delivery systems: physicochemical, 
biopharmaceutical, technological and regulatory consideration. Expert Opin. Drug 
Deliv. 9(5):551–565. 
 
Peppas, N.A. (1985). Analysis of Fickian and non-Fickian drug release from 
polymers. Pharm. Acta Helv. 60(4): 110-111. 
 
Peppas, N.A., Hilt, J.Z., Ali, K., and Robert, L. (2006). Hydrogels in biology and 
medicine: From molecular principles to bionanotechnology. Advanced Materials, 
18(11): 1345–1360. 
 
Prajapati, V.D., Jani, G.K., Khutliwala, T.A., and Zala, B.S. (2013). Raft forming 
system-an upcoming approach of gastroretentive drug delivery system. J. Control. 
Release 168(2): 151–165. 



 

299 

 

Preda, M. and Leucuta, S.E. (2003). Oxprenolol-loaded bioadhesive 
microspheres: preparation and in vitro/in vivo characterization. J. Microencapsul.  
20(6): 777–789. 
 
Prinderre, P., Sauzet, C., and Fuxen, C. (2011). Advances in gastro retentive 
drug-delivery systems. Expert Opin. Drug Deliv. 8(9):1189-1203. 
 
Pund, S., Joshi, A., Vasu, K., Nivsarkar, M., and Shishoo, C. (2011). 
Gastroretentive delivery of rifampicin: in vitro mucoadhesion and in vivo gamma 
scintigraphy. Int. J. Pharm. 411(1-2): 106–112. 
 
Qi, X., Chen, H., Rui, Y., Yang, F., Ma, N., and Wu, Z. (2015). Floating tablets for 
controlled release of ofloxacin via compression coating of hydroxypropyl cellulose 
combined with effervescent agent. Int. J. Pharm. 489(1-2):210-217.  
 
Raff, M.J. (1983). Cephalexin in lower respiratory tract infections. Postgrad. Med. 
J. 59(Suppl 5):32-39. 
 
Rajinikanth, P.S., Balasubramaniam, J., and Mishra, B. (2007). Development 
and evaluation of a novel floating in situ gelling system of amoxicillin for 
eradication of Helicobacter pylori. Int. J. Pharm. 335(1-2): 114–122. 
 
Reddy, L.H. and Murthy, R.S. (2002). Floating dosage systems in drug delivery. 
Crit. Rev. Ther. Drug Carr. Syst. 19(6): 553–585.  
 
Reddy, S.M., Sinha, V.R., and Reddy, D.S. (1999). Novel oral colon-specific drug 
delivery systems for pharmacotherapy of peptide and nonpeptide drugs. Drugs 
Today.  35 (7), 537–580. 
 
Riner, J.L., Byford, R.L., Stratton, L.G., and Hair, J.A. (1982). Influence of 
density and location on degradation of sustained-release boluses given to cattle, 
Am. J. Vet. Res. 43(11): 2028– 2030. 
 
Ritschel, W.A. and Kearns, G.L. (1999). Absorption/Transport Mechanisms. In: 
Handbook of Basic Pharmacokinetics....including Clinical Applications. (Ritschel, 
W.A. and Kearns, G.L. Eds.), American Pharmaceutical Association, WA. pp. 63-
64. 
 
Roberts, R.J., and Rowe, R.C. (1985). The effect of punch velocity on the 
compaction of a variety of materials. J. Pharm. Pharmacol. 37(6):377–384. 
 
Robinson, J.R., and Lee, V.H.L. (1987). In Controlled drug delivery, (Robinson, 
J.R., and Lee, V.H.L. Eds.), Marcel Dekker, NY. 
 
Rouge, N.,  Allémann, E., Gex-Fabry, M., Balant, L., Cole, E.T., Buri, P., and  
Doelker, E. (1998). Comparative pharmacokinetic study of a floating multiple-unit 
capsule, a high-density multiple-unit capsule and an immediate-release tablet 
containing 25 mg atenolol. Pharm. Acta. Helv. 73(2):81–87. 
 



 

300 

 

Rouge, N., Buri, P., and Doelker, E. (1996). Drug absorption site in the 
gastrointestinal tract and dosage forms for site-specific delivery. Int. J. Pharm. 
136(1): 117–139. 
 
Roy, D.S., and Rohera, B.D. (2002). Comparative evaluation of rate of hydration 
and matrix erosion of HEC and HPC and study of drug release from their matrices. 
Eur. J. Pharm. Sci. 16(3): 193–199. 
 
Rubinstein, A., Li, V.H.K., Gruber, P., and Robinson, J.R. (1988). In: Oral 
Sustained Release Formulations: Design and Evaluation. (Yacobi, A. and 
Halperin-Walega, E. Eds) 1st Edition. Pergamon Press, NY. pp. 125–156. 
 
Rubinstein, M.H., and Jackson, I.M. (1987). Stress relaxation behaviour of 
compacts of sodium chloride and polyethylene. Int. J. Pharm. 36(2-3):99–104. 
 
Ruiz-Caro, R., Gago-Guillan, M., Otero-Espinar, F.J., Veiga, M., and Iacute, 
A.D. (2012). Mucoadhesive tablets for controlled release of acyclovir. Chem. 
Pharm. Bull. 60(10): 1249–1257. 
 
Sakkinen, M., Linna, A., Ojala, S., Jurjenson, H., Veski, P., and Marvola, M. 
(2003). In vivo evaluation of matrix granules containing microcrystalline chitosan 
as a gel forming excipient. Int. J. Pharm. 250(1):  227–237. 
 
Salessiotis, N. (1972). Measurement of the diameter of the pylorus in man I. 
Experimental project for clinical application. Am. J. Surg. 124(3): 331–333. 
 
Salomon, J.L., and Doelker, E. (1980). Formulation des comprimés á libération 
prolongeé. Pharm. Acta Helv. 55, 174-182. 
 
Sato, Y., Kawashima, Y., Takeuchi, H., and Yamamoto, H. (2003). In vivo 
evaluation of riboflavin-containing microballoons for floating controlled drug 
delivery system in healthy human volunteers. J. Control. Release. 93(1): 39–47. 
 
Sauzet, C., Claeys-Bruno, M., Nicolas, M., Kister, J., Piccerelle, P., and 
Prinderre, P. (2009). An innovative floating gastroretentive dosage system: 
formulation and in vitro evaluation. Int. J. Pharm. 378(1-2): 23–29. 
 
Sawicki, W. (2002). Pharmacokinetics of verapamil and norverapamil from 
controlled release floating pellets in humans. Eur. J. Pharm. Biopharm. 53 (1): 29– 
35. 
 
Schmid, W., and Picker-Freyer, K.M. (2009). Tableting and tablet properties of 
alginates: characterisation and potential for soft tableting. Eur. J. Pharm. 
Biopharm. 72(1):165–172. 
 
Schmitz, T., Leitner, V.M., and Bernkop-schnürch, A. (2005). Oral heparin 
delivery: design and in vivo evaluation of a stomach-targeted muco-adhesive 
delivery system. J. Pharm. Sci. (2005) 94(5):966-973. 
 



 

301 

 

Sebahatu, T., and Alderborn, G. (1999). Relationship between the effective 
interparticulate contact area and the tensile strength of tablets of amorphous and 
crystalline lactose of varying particle size. Eur. J. Pharm. Sci. 8(4):235–242. 
 
Shalaby, W.S.W., Blevins, W.E., and Park, K. (1992a). Use of ultrasound 
imaging and fluoroscopic imaging to study gastric retention of enzyme-digestible 
hydrogels. Biomaterials 13(5): 289–296. 
 
Shalaby, W.S., Blevins, W.E., and Park, K. (1992b). In vitro and in vivo studies 
of enzymedigestible hydrogels for oral drug delivery. J. Control. Release 19(1-3): 
131-144. 
 
Sheikh-Salem, M., Alkaysi, H., and Fell, J.T. (1988). The tensile strength of 
tablets of binary mixture lubricated with magnesium stearate. Drug Dev. Ind. 
Pharm. 14(7):895–903. 
 
Sheth, P.R. and Tossounian, J. (1984). The hydrodynamically balanced system 
(Hbs™), a novel drug delivery system for oral use. Drug Dev. Ind. Pharm. 10(2): 
313–339. 
 
Schwartz, B.J., Simonelli, A.P., and Higuchi, W.I. (1968a). Drug release from 
wax matrices. I. Analysis of data with first-order kinetics and with the diffusion-
controlled model. J. Pharm. Sci. 57(2): 274-277. 
 
Schwartz, B.J., Simonelli, A.P., and Higuchi, W.I. (1968b). Drug release from 
wax matrices. II. Application of a mixture theory to the sulfanilamide– wax system. 
J. Pharm. Sci. 57(2): 278-282. 
 
Siegmund, W., Ludwig, K., Engel, G., Zschiesche, M., Franke, G., Hoffmann, 
A., Terhaag, B., and Weitschies, W. (2003). Variability of intestinal expression of 
P-glycoprotein in healthy volunteers as described by absorption of talinolol from 
four bioequivalent tablets. J. Pharm. Sci. 92(3):604-610. 
 
Simoni, P., Cerrb, C., Cipolla, A., Polimeni, C., Pistillo, A., Ceschel, G., Roda, 
E., and Roda, A. (1995). Bioavailability study of a new, sinking, enteric-coated 
ursodeoxycholic acid formulation. Pharmacol. Res. 31(2):115–119. 
 
Singh, B., Sharma, V., and Chauhan, D. (2010). Gastroretentive floating 
sterculia–alginate beads for use in antiulcer drug delivery. Chem. Eng. Res. Des. 
88(8): 997-1012. 
 
Singh, P., Desai, J.S., Simonelli, P.A. and Higuchi, L.W. (1968). Role of wetting 
on the rate of drug release from inert matrices. J. Pharm. Sci. 57(2): 217-226. 
 
Smart, J.D. and Kellaway, I.W. (1989). Pharmaceutical factors influencing the 
rate of gastrointestinal transit in an animal model. Intl. J. Pharm. 53(1): 79–83. 
 
Sonnergaard, J.M. (2006). Quantification of the compactibility of pharmaceutical 
powders. Eur. J. Pharm. Biopharm. 63(3):270–277. 
 



 

302 

 

Sonobe, T., Watanabe, S., Katsuma, M., Takamatsu, N., Konno, Y., and 
Takagi, H.  (1991). Gastric retention device. Eur. patent 0415671. 
 
Sriamornsak, P., Sungthongjeen, S., and Puttipipatkhachorn, S. (2007a). Use 
of pectin as a carrier for intragastric floating drug delivery: Carbonate salt 
contained beads. Carbohydr. Polym. 67(3):436-445. 
 
Sriamornsak, P., Thirawong, N., and Korkerd, K. (2007b). Swelling, erosion and 
release behavior of alginate-based matrix tablets. Eur. J. Pharm. Biopharm. 66(3): 
435–450. 
 
Steele, J.A.M., Hallé, J.P., Poncelet, D., and Neufeld, R.J. (2014). Therapeutic 
cell encapsulation techniques and applications in diabetes. Adv. Drug Deliv. Rev. 
67–68: 74–83. 
 
Steinleitner, A., Lambert, H., Kazensky, C., Danks, P., and Roy, S. (1990). 
Pentoxifylline, a methylxanthine derivative, prevents postsurgical adhesion 
reformation in rabbits. Obstet. Gynecol. 75(6):926-928. 
 
Stithit, S., Chen, W., and Price, J.C. (1998). Development and characterization 
of buoyant theophylline microspheres with near zero order release kinetics. J. 
Microencapsul 15(6): 725– 737. 
 
Stockwell, A.F.  Davis, S. S., and  Walker, S.E. (1986). In vitro evaluation of 
alginate gel systems as sustained release drug delivery systems, J. Control. 
Release. 3 (1-4): 167–180. 
 
Stops, F., Fell, J.T., Collett, J.H., and Martini, L.G. (2008). Floating dosage 
forms to prolong gastro-retention—the characterisation of calcium alginate beads. 
Int. J. Pharm. 350(1-2): 301–311. 
 
Streubel, A., Siepmann, J. Dashevsky, A. and Bodmeie, R. (2000). pH-
independent release of a weakly basic drug from water-insoluble and -soluble 
matrix tablets. J. Control. Release 67(1): 101–110. 
 
Streubel, A., Siepmann, J., and Bodmeier, R. (2002). Floating microparticles 
based on low density foam powder. Int. J. Pharm. 241(2): 279– 292. 
 
Streubel, A., Siepmann, J., and Bodmeier, R. (2003). Floating matrix tablets 
based on low density foam powder: effects of formulation and processing 
parameters on drug release. Eur. J. Pharm. Sci. 18(1): 37– 45. 
 
Streubel, A., Siepmann, J., and Bodmeier, R. (2006). Gastroretentive drug 
delivery systems. Expert Opin. Drug Deliv. 3(2):217-233. 
 
Strübing, S., Metz, H., and Mäder, K. (2008). Characterization of poly(vinyl 
acetate) based floating matrix tablets. J. Control. Release. 126(2): 149–155. 
 
 
 



 

303 

 

Strusi, O.L., Sonvico, F., Bettini, R., Santi, P., Colombo, G., Barata, P., 
Oliveira, A., Santos, D., and Colombo, P. (2008). Module assemblage 
technology for floating systems: in vitro flotation and in vivo gastro-retention. J. 
Control. Release 129(2): 88–92. 
 
Stuart B.H. (2004). Infrared Spectroscopy: Fundamentals and Applications. 1st 
Edition. Wiley, NJ, pp. 71–93. 
 
Suliman, A.S, Anderson, R.J., and Elkordy, A.A. (2014). Norfloxacin as a model 
hydrophobic drug with unique release from liquisolid formulations prepared with 
PEG200 and Synperonic PE/L-61 non-volatile liquid vehicles. Powder Technol. 
257:156–167 
 
Summers, M.P., and Aulton, M.E. (2007). Granulation. In: Aulton‘s 
Pharmaceutics: The Design and Manufacture of Medicines (Aulton M.E., Ed). 3rd 
Edition. Churchill Livingstone, Edinburgh, pp. 410–424. 
 
Sun C.C. (2006). A material-sparing method for simultaneous determination of 
true density and powder compaction properties – aspartame as an example. Int. J. 
Pharm. 326(1-2):94–99. 
 
Sungthongjeen, S., Sriamornsak, P., and Puttipipatkhachorn, S. (2008). 
Design and evaluation of floating multi-layer coated tablets based on gas 
formation. Eur. J. Pharm. Biopharm. 69 (1): 255–263. 
 
Tadros M.I. (2010). Controlled-release effervescent floating matrix tablets of 
ciprofloxacin hydrochloride: Development, optimization and in vitro–in vivo 
evaluation in healthy human volunteers. Eur. J. Pharm. Biopharm. 74(2): 332–339. 
 
Talukder, R. and Fassihi, R. (2001). Gastroretentive delivery systems: hollow 
beads. Drug Dev. Ind. Pharm. 30(4): 405– 412. 
 
Talukder, R. and Fassihi, R. (2004). Gastroretentive delivery systems: a mini 
review. Drug Dev. Ind. Pharm. 30(10): 1019–1028. 
 
Talwar, N., Sen, H., and Staniforth, J.N. (2001). Orally administered controlled 
drug delivery system providing temporal and spatial control. US patent 6 261 601. 
 
Tao, Y., Lu, Y., Sun, Y., Gu, B., Lu, W., and Pan, J. (2009). Development of 
mucoadhesive microspheres of acyclovir with enhanced bioavailability. Int. J. 
Pharm. 378(1-2): 30– 36. 
 
Tardos G.I., Khan M.I., and Mort P.R. (1997). Critical parameter and limiting 
conditions in binder granulation of fine powders. Powder Technol. 94(3)245–258. 
 
Thanoo, B.C., Sunny, M.C., and Jayakrishnan, A. (1993). Oral sustained-
release drug delivery systems using polycarbonate microspheres capable of 
floating on the gastric fluid. J. Pharm. Pharmacol. 45(1): 21–24. 
 



 

304 

 

Timmermans, J. and Möes, A.J. (1994). Factors controlling the buoyancy and 
gastric retention capabilities of floating matrix capsules: new data for reconsidering 
the controversy. J Pharm Sci. 83(1): 18-24. 
 
Tokumura, T.,  and Machida, Y. (2006). Preparation of amoxicillin intragastric 
buoyant sustained-release tablets and the dissolution characteristics. J. control. 
Release. 110(3):581-586.  
 
Tomita, Y., Takano, M., Ydauhara, M., Hori, R. and Inui, K. (1995) Transport of 
oral cephalosporins by the H+/ dipeptide cotransporter and distribution of the 
transport activity in isolated rabbit intestinal epithelial cells. J. Pharm. Exp. Ther. 
272(1): 63-69. 
 
Triantafyllou, K., Kalantzis, C., Papadopoulos, A.A., Apostolopoulos, P., 
Rokkas, T., Kalantzis, N., and Ladas, S.D. (2007). Video-capsule endoscopy 
gastric and small bowel transit time and completeness of the examination in 
patients with diabetes mellitus. Dig. Liver Dis. 39(6): 580–580. 
 
Tsuji, A. Hirooka, H. Terasaki, T. Tamani, I.  and Nakashima, E. (1979). 
Saturable absorption of amino-cephalosporins by the rat intestine. J. Pharm.  
Pharmacol. 31(10): 718-720.  
 
Tsuji, A., Nakashima, E., Kagami, I. and Yamana, T. (1981). Intestinal 
absorption of amphoteric betalactam antibiotics. I. Comparative absorption and 
evidence for saturable transport of aminobeta-lactam antibiotics by in situ rat small 
intestine. J. Pharm. Sci. 70(7): 768-772. 
 
Turner, P.V., Brabb, T., Pekow, C., and Vasbinder, M.A. (2011). Administration 
of substances to laboratory animals: routes of administration and factors to 
consider. J. Am. Assoc. Lab. Anim. Sci. 50(5): 600–613. 
 
United States Pharmacopoeia. (2012). USP36/NF31, MD, USA: United States 
Pharmacopoeial Convention. 
 
Urquhart, J., and Theeuwes, F. (1984). Drug delivery system comprising a 
reservoir containing a plurality of tiny pills. US patent 4434153. 
 
Ushimaru, K., Nakamichi, K. and Saito, H. (1987). Pharmaceutical preparations 
and a method of manufacturing them. U.S. Patent 4, 702, 918.  
 
Vantrappen, G.R., Peeters, T.L., and Janssens, J. (1979). The secretory 
component of interdigestive migratory motor complex in man. Scand J 
Gastroenterol. 14(6): 663-667. 
 
Vardakou, M., Mercuri, A., Naylor, T.A., Rizzo, D., Butler, J.M., Connolly, P.C., 
Wickham, M.S.J., and Faulk, R.M. (2011) Predicting the human in vivo 
performance of different oral capsule shell types using a novel in vitro dynamic 
gastric model. Int. J. Pharm. 419(1-2): 192–199. 
 
Varelas, C.G., Dixon, D.G., and Steiner, C. (1995). Zero-order release from  
biphasic polymer hydrogels. J. Control. Release. 34(3): 185–192. 



 

305 

 

Varis, K., IHamaki, T., Harkonen, M., Samlof, I.M., and Siruala, M. (1979). 
Gastric morphology, function, and immunology in first-degree relatives of probands 
with pernicious anemia and controls. Scand. J. Gastroenterol. 14(2): 129-139. 
 
Varshosaz, J., Tavakoli, N., and Roozbahani, F. (2006). Formulation and in vitro 
characterization of ciprofloxacin floating and bioadhesive extended-release tablets. 
Drug Deliv. 13(4):277-285. 
 
Varum, F.J.O., Merchant, H.A., and Basit, A.W. (2010). Modifed-release 
formulations in motion: the relationship between gastrointestinal transit and drug 
absorption. Int J. Pharm. 395(1-2): 26–36. 
 
Verma, S., Nagpal, K., Singh, S.K., and Mishra, D.N. (2014). Unfolding type 
gastroretentive film of cinnarizine based on ethyl cellulose and 
hydroxypropylmethyl cellulose. Int. J. Biol. Macromol. 64, 347–352. 
 
Viridén, A., Wittgren, B., and Larsson, A. (2009). Investigation of critical polymer 
properties for polymer release and swelling of HPMC matrix tablets. Eur. J. Pharm. 
Sci. 36(2-3):297–309. 
 
Voyutskii, S.S. (1963). Autohesion and Adhesion of High Polymers, Interscience, 
New York, 1963. 
 
Vueba, M.L., Batista de Carvalho, L.A., Veiga, F., Sousa, J.J., and Pina, M.E. 
(2004). Influence of cellulose ether polymers on ketoprofen release from 
hydrophilic matrix tablets. Eur. J. Pharm. Biopharm. 58(1):51–59. 
 
Vueba, M.L, Veiga, F., Sousa, J.J. and Pina, M.E. (2005). Compatibility studies 
between ibuprofen or ketoprofen with cellulose ether polymer mixtures using 
thermal analysis. Drug Dev. Ind. Pharm. 31(10): 943–949. 
 
Wang, J., Tauchi, Y., Deguchi, Y., and Morimoto, K. (2000). Positively charged 
gelatin microspheres as gastric mucoadhesive drug delivery system for eradication 
of H. pylori. Drug Deliv. 7(4):237–243. 
 
Ward, A., and Clissold, S.P. (1987). Pentoxifylline. A review of its 
pharmacodynamics and pharmacokinetic properties, and its therapeutic efficacy. 
Drugs 34(1):50–97. 
 
Washington, N. (1990). Investigation into the barrier action of an alginate gastric 
reflux suppressant, Liquid Gaviscon®. Drug Investig. 2(1): 23– 30. 
 
Washington, N., Washington, C., Wilson, C.G., and Davis, S.S. (1986). What is 
liquid Graviscon? A comparison of four international formulations. Int. J. Pharm. 
34(1-2):105-109. 
 
Watanabe, T. Kayano, M. Ishino, Y. and Miyao, K. (1976). Solid therapeutic 
preparation remaining in stomach, US patent 3976764. 
 
Waugh, A., and Grant, A. (2001). Anatomy and physiology in health and illness. 
9th Edition. Elsevier Churchill Livingstone, Edinburgh. 



 

306 

 

Wei, Z., Yu, Z., and Bi, D. (2001). Design and evaluation of a two-layer floating 
tablet for gastric retention using cisapride as a model drug. Drug Dev. Ind. Pharm. 
27(5):469-474. 
 
Whitehead, L., Fell, J.T., Collett, J.H., Sharma, H.L., and Smith, A. (1998). 
Floating dosage forms: an in vivo study demonstrating prolonged gastric retention. 
J. Control. Release 55(1): 3–12. 
 
Wilson, C.G. and Washington N. (1989). Physiological pharmaceutics: biological 

barriers to drug absorption. 1st Edition. Ellis Horwood, Chichester, pp. 47-70.  

 
Wilson, C.G., Washington, N., Greaves, J.L., Kamali, F., Rees, J.A., Sempik, 
A.K., and Lampard, J.F. (1989). Bimodal release of ibuprofen in a sustained-
release formulation: a scintigraphic and pharmacokinetic open study in healthy 
volunteers under different conditions of food intake. Int. J. Pharm. 50(2): 155-161. 
 
Wise, L.D. (2000). In Handbook of pharmaceutical controlled release technology, 
(Wise, L.D. ed.), Marcel Dekker, NY. 
 
Wong, T.W., Cheong, W.S., and Heng, P.W.S. (2005). Melt granulation and 
pelletization. In: Handbook of Pharmaceutical Granulation Technology (Parikh 
D.M., Ed). 2nd Edition. Taylor and Francis Group, FL, pp. 385–406. 
 
Wray, P.E. (1992). The physics of tablet compaction revisited. Drug Dev. Ind. 
Pharm. 18(6-7):627–658. 
 
Xuequan, L., Maolin, Z., Jiuqiang, L., and Hongfei, H. (2000). Radiation 
preparation and thermo-response swelling of interpenetrating polymernetwork 
hydrogel composed of PNIPAAm and PMMA. Radiat.Phys. Chem. 57(3-6): 
477-480. 
 
Yamashiro, M., Yuasa, Y., and Kawakita, K. (1983). An experimental study on 
the relationships between compressibility, fluidity and cohesion of powder solids at 
small tapping numbers. Powder Technol. 34(2):225-231. 
 
Yang, L.,  Eshraghi, J., and Fassihi, R. (1999). A new intragastric delivery 
system for the treatment of Helicobacter pylori associated gastric ulcer: in vitro 
evaluation. J. Control. Release. 57 (3): 215–222. 
 
Yin, L., Qin, C., Chen, K., Zhu, C., Cao, H., Zhou, J., He, W., and Zhang, Q. 
(2013). Gastro-floating tablets of cephalexin: Preparation and in vitro/in vivo 
evaluation. Int. J. Pharm. 452(1-2): 241–248.  
 
Yusif, R.M., Abu Hashim, I.I., Mohamed, E.A., and Badria, F.A.E. (2016). 
Gastroretentive matrix tablets of Boswellia oleogum resin: preparation, 
optimization, in vitro evaluation, and cytoprotective effect on indomethacin-induced 
gastric ulcer in rabbits. AAPS PharmSciTech 17(2): 328–338. 
 
 
 



 

307 

 

Zate, S.U., Kothawade, P.I., Rathi, M.N., Shitole, M.H., Yewale, C.P., and 
Gawande, V.S. (2010). Development and characterization of gastroretentive 
mucoadhesive tablets of venlafaxine hydrochloride. Int. J. Drug Deliv. 2(4): 299–
303. 
 
Zhang, J., Wang, C., Liu, Q., Meng, Q., Cang, J., Sun, H., Gao, Y., Kaku, T., 
and Liu, K. (2010). Pharmacokinetic interaction between JBP485 and cephalexin 
in rats. Drug Metab. Dispos. 38 (6): 930-938 
 
Zulkifli, F.H., Hussain, F.S.J., Abdull Rasad, M.S.B., and Yusoff, M.M. (2014). 
Nanostructured materials from hydroxyethyl cellulose for skin tissue engineering. 
Carbohydr. Polym. 114: 238–245. 
 
http://healthcare.evonik.com/product/health-care/en/custom-solutions/oral-drug-
delivery/eudratec-grs/pages/default.aspx.   Accessed on 10/07/2017 
 
http://www.vectura.com/oral/oral-drug-delivery-technologies/. Accessed on 
10/07/2017 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://healthcare.evonik.com/product/health-care/en/custom-solutions/oral-drug-delivery/eudratec-grs/pages/default.aspx
http://healthcare.evonik.com/product/health-care/en/custom-solutions/oral-drug-delivery/eudratec-grs/pages/default.aspx
http://www.vectura.com/oral/oral-drug-delivery-technologies/


 

308 
 

 

 

 

 

 

 

 

 

 

 

 

 

8 Appendices 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

309 
 

3
0

9 

  

  

Figure A 1: HPLC chromatograms of rat 1, G1 plasma sample at 0.5, 1, 2, and 4 h.  
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Figure A 2: HPLC chromatograms of rat 1, G1 plasma sample at 6, 8, 12, and 24 h. 
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Figure A 3: HPLC chromatograms of rat 2, G1 plasma sample at 0.5, 1, 2, and 4 h. 
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Figure A 4: HPLC chromatograms of rat 2, G1 plasma sample at 6, 8, 12, and 24 h. 
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Figure A 5: HPLC chromatograms of rat 3, G1 plasma sample at 0.5, 1, 2, and 4 h. 
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Figure A 6: HPLC chromatograms of rat 3, G1 plasma sample at 6, 8, 12, and 24 h. 
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Figure A 7: HPLC chromatograms of rat 4, G1 plasma sample at 0.5, 1, 2, and 4 h. 
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Figure A 8: HPLC chromatograms of rat 4, G1 plasma sample at 6, 8, 12, and 24 h. 
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Figure A 9: HPLC chromatograms of rat 5, G1 plasma sample at 0.5, 1, 2, and 4 h. 
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Figure A 10: HPLC chromatograms of rat 5, G1 plasma sample at 6, 8, 12, and 24 h. 
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Figure A 11: HPLC chromatograms of rat 6, G1 plasma sample at 0.5, 1, 2, and 4 h. 
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Figure A 12: HPLC chromatograms of rat 6, G1 plasma sample at 6, 8, 12, and 24 h. 
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Figure A 13: HPLC chromatograms of rat 1, G2 plasma sample at 0.5, 1, 2, and 4 h. 
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Figure A 14: HPLC chromatograms of rat 1, G2 plasma sample at 6, 8, 12, and 24 h. 
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Figure A 15: HPLC chromatograms of rat 2, G2 plasma sample at 0.5, 1, 2, and 4 h. 
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Figure A 16: HPLC chromatograms of rat 2, G2 plasma sample at 6, 8, 12, and 24 h. 
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Figure A 17: HPLC chromatograms of rat 3, G2 plasma sample at 0.5, 1, 2, and 4 h. 
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Figure A 18: HPLC chromatograms of rat 3, G2 plasma sample at 6, 8, 12, and 24 h. 
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Figure A 19: HPLC chromatograms of rat 4, G2 plasma sample at 0.5, 1, 2, and 4 h. 
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Figure A 20: HPLC chromatograms of rat 4, G2 plasma sample at 6, 8, 12, and 24 h. 
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Figure A 21: HPLC chromatograms of rat 5, G2 plasma sample at 0.5, 1, 2, and 4 h. 
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Figure A 22: HPLC chromatograms of rat 5, G2 plasma sample at 6, 8, 12, and 24 h. 
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Figure A 23: HPLC chromatograms of rat 6, G2 plasma sample at 0.5, 1, 2, and 4 h. 
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Figure A 24: HPLC chromatograms of rat 6, G2 plasma sample at 6, 8, 12, and 24 h. 
 


