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As increasingly more research e↵orts are geared towards creating robots that can teach
and interact with children in educational contexts, it has been speculated that endowing
robots with artificial empathy may facilitate learning. In this paper, we provide a back-
ground to the concept of empathy, and how it factors into learning. We then present our
approach to equipping a robotic tutor with several empathic qualities, describing the
technical architecture and its components, a map-reading learning scenario developed
for an interactive multitouch table, as well as the pedagogical and empathic strategies
devised for the robot. We also describe the results of a pilot study comparing the robotic
tutor with these empathic qualities against a version of the tutor without them. The
pilot study was performed with 26 school children aged 10-11 at their school. Results
revealed that children in the test condition indeed rated the robot as more empathic than
children in the control condition. However, as we explored several related measures, such
as relational status and learning e↵ect, no other significant di↵erences were found. We
further discuss these results and provide insights into future directions.

Keywords: robot; tutor; empathy; education; children.

1. Introduction

In recent years, Human-Robot Interaction (HRI) has made advances in the design of
robots that can take on a broad range of social roles in di↵erent domains, including
for education, as socio-emotional support, and in therapy27,19,50,80,48. One of these
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e↵orts focuses on the design of educational robotic assistants. The aim is to provide
such robots with similar perceptive, expressive, and educational capabilities to those
a tutor requires to e↵ectively help learners. One aspect of this aim is to equip robots
with the ability to establish a↵ective loops with children14, so that they are able to
generate the socio-emotional response behavior required to be perceived as empathic
and helpful11.

The emergence of robots as educational assistants is grounded in a substantial
amount of previous work on virtual agents in education41,60. It is argued that virtual
agents can o↵er greater motivation to students for a given task in a technologically-
enhanced environment compared to the same environment without such an agent41.
For example, Yilmaz et al.88 have demonstrated that animated agents can con-
tribute to the learning experience of students and positively impact their grades,
attitudes and retention of learning. Research has also shown that introducing social
behaviors to such virtual tutors may improve their e↵ectiveness42,69. The embodi-
ment and physical presence of artificial entities play an important role in how peo-
ple perceive them57, and a large body of research has suggested that a real-world
physical embodiment has advantages compared to virtual agents64,3,47,55. This has
increased interest in using social robots as tutors, instead of virtual agents or other
types of educational software 65. Mounting evidence on the supportive e↵ects of
robots on students’ learning has led to more systematic testing of such systems in
schools3,72.

Children have a great capacity to engage with robots, and to anthropomorphize
them6. This may render the task of endowing robots with empathic capabilities for
enhanced learning less daunting. If empathy is understood as an interactive process
between two agents, rather than as a capacity residing solely in the robot6, then an
as-if level of empathic competence might indeed be su�cient to improve learning
with social robotic tutors. While the child should perceive the robot as empathic,
the robot need not be able to truly share the child’s emotional experience. This
approach should, of course, be discussed in relation to the ethical implications it
holds. For example, empathic relations with robots could potentially be understood
as deceptive17, and present a number of implications, which in the longer term
may be deemed undesirable by, e.g., teachers73. Notwithstanding, it has also been
questioned whether robots could even reach a stage where they can be considered
empathic76,75.

In this research, which is part of the EU funded project EMOTEa, the focus is to
explore the possibility and e↵ectiveness of equipping robotic tutors with empathy.
Thus, this paper contributes to the HRI field by providing opportunities for design
of artificial empathy for robotic tutors through a detailed description of technical
architecture, as well as lessons learned from a pilot study with children to explore
its impact on perceptions and short-term learning e↵ects.

ahttp://www.emote-project.eu/



October 23, 2018 1:23 WSPC/INSTRUCTION FILE output

Endowing a Robotic Tutor with Empathic Qualities 3

2. Related Work

2.1. Educational Robots and Social Behaviours

Research on how robots can function as tools in education has intensified in recent
years7. Robots are now used in personalized socially-assistive scenarios: as therapeu-
tic tools for children with autism, as educational facilitators and companions28,59,
as teachable agents79, and as tutors in the classroom48. In an overview of research
on educational robots, Mubin et al. 61 highlighted the tutoring role as one of the
main expectations for an educational robot.

Several researchers have worked towards understanding the exact qualities
needed in such a robotic tutor. Saerbeck et. al.72 presented a study on the influence
of supportive behaviors in a robotic tutor on learning e�ciency. They implemented
supportive behaviors in the iCat robot to help students in language learning, and
compared it with a version of iCat that did not have any supportive behaviors. They
concluded that the introduction of social supportive behaviors increased students’
learning e�ciency. Kennedy et al.47 likewise investigated the e↵ects of adopting
social behaviors. Their results suggested that the presence of a robot capable of
tutoring strategies may lead to better learning. However, they also cautioned that
social behaviours in robotic tutors can potentially distract children from the task
at hand.

More recently, researchers started investigating how robots can be used to
support personalized learning16. Examples include studies exploring the e↵ect of
personalized teaching and timing strategies delivered by social robots on learning
gains54,66, and a↵ective personalization of social robotic tutors to facilitate student
learning30. Some work proposed to use personalized robotic tutors to promote the
development of students’ meta-cognitive skills and self-regulated learning43. Previ-
ous work by some of the authors investigated the e↵ect of empathic and supportive
strategies by a robot acting as a game companion in an educational scenario on
children’s perceived quality of the interaction12. However, to our knowledge, no
previous research has explored e↵ects of personalization via empathy in a robotic
tutor on learning gains and students’ perception of the robotic tutor’s empathic
skills.

2.2. Empathy

There is no consensus on the term empathy in the literature4. It is often understood
as an inter-subjective process that involves the capacity to share someone’s a↵ective
experiences while remaining aware of whose feelings belong to whom23,77. Empathy
has been found to be associated with positive outcomes of the interaction, as well as
a positive perception of the interaction partner, e.g., a therapist32,29. It is generally
conceived of as a multidimensional construct21 that is an important prerequisite
of relationship formation between people9,22. Empathy can be measured based on
dispositional and/or situational empathic processes78. Dispositional empathy is con-
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sidered a character trait, whereas situational empathy is connected to responding
with empathy in a a specific situation.

When considering the relevance of empathy in education, both situational and
overall dispositional empathy are likely to play a role. Teacher empathy, in the dis-
positional sense, has been shown to be highly relevant to educational outcomes26,
including the teacher’s capacity to minimize adverse student outcomes84. However,
when the aim is to program empathic behavior for a robot, situationally appropri-
ate empathy becomes much more relevant. Situationally empathic behavior often
involves a matching and expression of another’s perceived emotion, regardless if it
is a positive or a negative emotion37,23. Nevertheless, an automatic synchroniza-
tion of emotional expressions alone35, i.e., motor mimicry, may not be su�cient
for empathy, as evidence suggests that mimicry may require additional contextual
information37.

In our view, the potential role of empathy in HRI exceeds that of mere robot
expressiveness because it highlights the importance of a match between context and
expression. Sometimes, such a match may be implicitly assumed. For example, robot
expressiveness has recently been shown to enhance learning and retention in narra-
tive storytelling85. When instructing an actress to narrate a story in an expressive
way85, what really happens is not an injection of random expressions but a careful
synchronization of tone to context. In more interactive learning tasks, involving
more degrees of freedom for the child to take part, this matching becomes more
di�cult. In particular, the emotional responses may no longer be as predictable,
and thus need to be assessed reliably. Nevertheless, if an empathic bond between
the child and a robotic tutor can be created in such a situation, it may lead to
positive outcomes, acceptance, and better perceived learning44. For a robotic tutor
to display such convincing empathic behavior, it must close the a↵ective loop11,15.

Automatic a↵ect sensing may be based on a variety of a↵ective cues89. Nev-
ertheless, the ability to automatically recognize a↵ect in HRI frameworks is still
limited. Exceptions include work by Liu et al.56, who developed an a↵ect inference
mechanism based on physiological data for real-time detection of a↵ective states in
children, and work by Rich et al.68, involving automatic recognition of engagement
in HRI based on a set of “connection events” such as directed gaze, mutual facial
gaze, conversational adjacency pairs, and backchannels. In educational scenarios,
Castellano et al.13 developed a computational framework for the real-time recogni-
tion of a↵ective states experienced by children playing chess with an iCat robot. In
their work, the robot autonomously sensed a↵ective states related both to the game
and to the social interaction with the robot, such as feelings experienced during the
game, level of interest, and engagement with the robot, using di↵erent combina-
tions of behavioral (e.g., eye gaze, facial expressions, expressive postural features)
and contextual (e.g., task- and robot-related) features13,10.

Castellano et al.12 showed that integrating empathic interventions with the auto-
matic detection of children’s a↵ective states in real-time led participants to perceive
the robot as more helpful, more engaging, and more friendly. When children expe-
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rienced negative feelings throughout the game, the robot adapted to the situation
by employing empathic strategies such as encouraging comments, sca↵olding (e.g.,
providing feedback on the child’s last move, letting the child play again), suggesting
a good move for the child to play in his or her next turn, or intentionally playing
a bad move. The evaluation of this system highlighted that a↵ect sensing and em-
pathic abilities are necessary for the design of robots that are perceived as being as
supportive to children as their human peers51.

There is only a limited body of previous work, however, that has explored the
e↵ects of empathy on learning performance in educational scenarios with a robot
acting as an educational agent. In this paper, we mainly focus on whether situa-
tional empathic qualities exhibited by a robotic tutor have an impact on students’
perceptions of the robot’s empathy. In line with the work by Kennedy et al. 47 we
also explore whether these empathic qualities influence their perceived relationship
with the robot, as well as students’ (perceived) learning with the robotic tutor.

3. Design of the Empathic Robotic Tutor and a Learning Scenario

In this Section the process to design the empathic robotic tutor is presented. This
includes a description of the learning scenario and the tutor’s pedagogical strategy,
as detailed in the sections below.

3.1. Design Process

In order to develop an empathic robotic tutor that drew on principles from educa-
tional science, while demonstrating e↵ective HRI, our design approach was based
on the following maxims, also described in44: (1) Involve both teachers and students
in the design of the robot to understand the social and contextual structures in-
herent in the environment. (2) Identify core empathic and personalized pedagogical
strategies from human interactions. Successful personalized tutoring has to identify
those empathic and pedagogical components and strategies that are most e↵ective
in establishing, strengthening, and sustaining social bonds. HRI studies that are
based on human interactions can be quite successful, e.g., by adopting human gaze
behaviours to increase engagement with the robot. (3) Supplement Human-Human
Interaction (HHI) based behaviours with new capabilities available to the robot.
On top of the core components identified with the help of observation and design
activities, the robot can perform behaviours that teachers might not be able to
produce in this form, but could tap into the same underlying mechanisms. For ex-
ample, the robot could produce robot-appropriate sounds that mimic a teacher’s
back-channelling e↵orts34 46. However, HRI is not routinely based on HHI due to
the di↵erences in how humans perceive robots and other humans. For example,
Serholt et al. showed that children are less likely to ask a robotic tutor than a hu-
man tutor for help, even if both tutors act in a similar way74. (4) Test interactions
using techniques such as Wizard of Oz (WoZ) studies, where a robot is controlled
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by a human wizard to investigate how students interact with a robot before de-
veloping final automated behaviors20. (5) Prototype and test these capabilities in
the robot iteratively and in situ71. (6) Design robot capabilities on the basis of
well-supported psychological and pedagogical theories, and make full use of inter-
disciplinary expertise1. Pedagogical psychology is a discipline with many coexisting
theories, and the development of personalized learning strategies should specifically
target those concepts that have been shown to be empirically well supported. (7)
Enable the robot to adapt to individual di↵erences. Towards this aim, personalized
learning approaches should seek to identify cues that teachers use to adapt their
teaching styles to the individual students.

3.2. Learning Scenario

Based on the design process described in the previous section, a learning scenario
where children learn map reading skills was developed. In this scenario the NAOb

robot acts as a tutor while children perform a map reading exercise on a mul-
titouch table. The use of a multitouch table was motivated by previous research
suggesting that interactive tables facilitate collaboration, equal participation, and
learning38,39, while they have also been used in order to support social interac-
tion between children and robots by providing a context in which the interaction
can take place5. Further, in order to enable the development of empathic qualities,
the robot’s onboard sensing capabilities were augmented through the use of addi-
tional devices, namely, a web camera, a Microsoft Kinect sensor, and a Q sensor,
as detailed in Section 4.

Fig. 1. Scenario (left) and map application (right)

The task is a map reading exercise and consists of following a trail on a local
city map by selecting appropriate map symbols (Fig. 1). Each step of instructions

bhttps://www.softbankrobotics.com/emea/en/robots/nao
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in the trail was delivered verbally by the robot while also being visible on the screen
until the step was completed. An instruction step always included three map com-
petences (map symbol, cardinal direction and distance), e.g., “Go east 500 meters
until you reach a bus stop”. As the task progressed, the di�culty level increased
(e.g., including more complex cardinal directions and distances that needed to be
transformed). Map reading tools were available within the task in the form of a
compass, a map key and a measuring tool, which the robot encouraged the child to
use when needed. The robotic tutor’s role was to help the child in their task while
playing the scenario based on a pedagogical strategy, which is described next.

3.3. Pedagogical Strategy

The pedagogical strategy drew on observations of practicing teachers tutoring and
sca↵olding children on paper-based mock-ups of the map reading task. As noted in
the literature, key functions of sca↵olding include “recruitment of the child’s inter-
est in the task, establishing and maintaining an orientation towards task-relevant
goals, highlighting critical features of the task that the child might overlook, demon-
strating how to achieve goals and helping to control frustration”86 . Against this
background, the robot was equipped with a set of tactics that aimed to facilitate
progress in the task. It should be noted that we di↵erentiate between the overall
strategy and the tutoring tactics, where the tactics were the constitutive elements
within the overall strategy. For example, if the strategy was concerned with encour-
aging children to utilize the available tools in the task, particular tactics pertaining
to those ends were triggered. Whereas the tactics addressed what could be said, the
strategy dictated when they should be said.

First, several tactics were implemented to encourage children to answer them-
selves, such as pumping the child for more information by asking questions, deliv-
ering hints, or providing short elaborations or longer tutorials on hard concepts31.
Second, there were more assertive ways of guiding the child by focusing their at-
tention on the task (e.g., “Try measuring this again”), or breaking down the task
into smaller elements82. Third, short verbal cues, or keywords, were used consist-
ing of just one or two important words that conveyed the critical elements of the
step (e.g., “50 meters”)2,63. The robot could re-question the child by repeating an
instruction in a slightly di↵erent way31. Fourth, if the child had di�culties in pro-
gressing in the task, the robot could splice in the correct answer31. In addition,
the robot also provided feedback to the child. This could be either positive: “Good
job”; very positive: “Wow! Way to go”; neutral: “Yes, ok”; or indicative of the child’s
answer being almost correct: “That was almost correct. You figured out the right
distance and symbol, but you were supposed to go Northwest”36. We refrained from
implementing negative utterances such as “That was incorrect” as the teachers in
our mock-up studies exclusively conveyed the other forms of feedback. Research
furthermore suggests that negative feedback may lower intrinsic motivation24.

In essence, the pedagogical strategy had three types of tactics: tactics to prompt
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reflection/elicit information from the learner; tactics to supply content to the
learner; and tactics to form a social bond with the learner. For each tactic, there
were around ten di↵erent utterances that the robot could randomly choose from.

4. Architecture and System Components

The architecture of the system used to realize the main goals presented was based
on the framework architecture of the EMOTE project. Table 1 describes the archi-
tecture’s modules of the proposed framework and Fig. 2 illustrates the relationship
and flow between the di↵erent module components of the system. To this end, the
overall aim of the EMOTE project and its architecture is to provide a robotic plat-
form with empathic capabilities that supports children’s learning via adaptation to
their learning progress and a↵ective states.
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Fig. 2. EMOTE system architecture
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Table 1. Architecture’s modules

Description

Map Interface Map Reading activity task. The scenario is explained further in Section 5.3.

Perception

Centralizes the input of Kinect, OKAO and Q Sensor and computes hand gestures, head position
and gaze estimation of the child. Additionally, it saves all the available data (videos, voice,
skeleton data, facial expressions etc.) in a synchronized manner for o✏ine analysis.
The perception is explained further in Section 4.2.

Interaction Analysis
Updates the learner model with an estimate of the child’s valence and arousal during the
interaction with the learner. It receives regular sensor updates from the Perception Module and
sends regular a↵ective updates to the Learner Model.

Learner Model
Creates and stores a representation of the child such as a↵ective state, learned competencies,
conducted actions, and history of right or wrong answers. It provides a summary of this
information to the Interaction Manager to enable the system to adapt to the learner.

Interaction Manager

This is the central decision making body of the architecture. It is responsible for updating and
maintaining the context of the interaction and also for deciding how to respond to the input
received. The decision making process and how the system adapts to the learner (and their
a↵ective state) is explained in Section 4.3.

Skene (Behaviour)
Skene67 is a semi-autonomous behaviour planner that translates high-level intentions
originated at the decision-making level into a schedule of atomic behaviour actions (e.g. speech,
gazing, gesture) to be performed by the lower levels.

Control Panel
The Control Panel is the interface of the operator and allows to start or stop the interaction,
input learner’s details, select task scenarios and monitor the interaction.
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The system (1) infers children’s a↵ective states in real-time via sensors embed-
ded in the environment; (2) tracks their learning progress; and (3) adapts to the
perceived state of the child by delivering appropriate pedagogical and empathic
strategies to promote children’s learning and engagement with the robot.

The main system’s components are detailed in Table 1. The system captures
the child’s behaviors in real-time using di↵erent sensors, including electrodermal
activity using a Q-sensorc, facial expressions and eye gaze using a web camera
with the OKAO SDKd, and head direction and body position using a Microsoft
Kinect 2 devicee. Details on the data parameters collected from the sensors are
outlined in Table 2. Overall, the sensors’ input is handled by the Perception module,
which is responsible for synchronization and processing, before passing it over to the
Interaction Analysis module to infer information about the child’s state. The output
from the Interaction Analysis module is then passed to the Learner Model module
to update the estimated a↵ective state of the child. The Interaction Manager is
responsible for the robot’s decision making, and specifically for the selection of the
robot’s pedagogical and empathic strategies via the Skene behaviour planner, based
on information received from the Learner Model.

Sensor Data recorded

Microsoft Kinect v.2
- Head position (x, y, z)
- Head direction (x, y)
- Facial Action Units

Webcam + Omron’s OKAO suite

- Face position (x, y)
- Head direction angles
- Eye gaze angles
- Smile estimation and detection
- Face expression: anger, disgust,
fear, joy, sadness, surprise, neutral

Stereo Microphone
- Direction of the detected noises
(left/right)

Multi-action touch screen
- Screen coordinates relative to the last
touch the user did on screen

Q-sensor
- Electrodermal activity and body
temperature

Table 2. Sensors’ reading parameters

chttp://qsensor-support.a↵ectiva.com
dhttp://www.omron.com/ecb/products/mobile/
ehttps://developer.microsoft.com/en-us/windows/kinect/
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4.1. A↵ect Sensing

The Interaction Analysis module inferred children’s a↵ect, as defined by dimen-
sions of valence and arousal70,87,45. The implementation of the a↵ect recognition
capabilities of the Interaction Analysis module was informed by the annotation and
analysis of a WoZ study as described by Corrigan et al.18.

For valence, the system used as an input the data from OKAO (via the Per-
ception Manager). OKAO provides classifications of six discrete emotional states:
happiness, surprise, fear, anger, disgust and sadness. However, our aim with regards
to the interaction management and use of empathic and pedagogical strategies were
more limited and targeted towards the support of learning. We thus aimed for a clas-
sification of valence into either positive, neutral or negative states. Across response
systems, evidence has supported the idea that measures of emotional responses can
be interpreted as dimensions rather than discrete states (e.g., happiness, fear or
anger)58. Fortunately, data obtained from measures designed on the basis of a dis-
crete view of emotions, can usually be translated into such a dimensional framework
with only limited loss of information45,87,89. Given the challenges of reliable data
recording in schools and the limited duration of the interaction, this choice for a
dimensional a↵ect sensing framework therefore appeared to outweigh the potential
drawbacks of not having a more categorical distinction between these discrete af-
fective states. We thus recorded OKAO data in memory, and then calculated which
pattern, identified as belonging to a basic emotion, occurred most frequently over a
five second period. From there we determined if the valence of the child’s emotions
was either positive, neutral or negative.

The Interaction Analysis module further utilized the standardized skin conduc-
tance data from the Q-Sensor to determine whether the child’s arousal-level was
increasing or decreasing over time. As with valence, we recorded the skin con-
ductance data over a period of five seconds. Skin conductance is a widely used
indicator of physiological arousal8 including HCI/HRI49,52. Therefore, we classified
with a threshold and computed a running average of the skin conductance, using a
rule based architecture, wherein the child’s arousal was considered as either high,
neutral or low. For both valence and arousal outputs, we further computed a confi-
dence value to describe the accuracy of the module’s a↵ect estimation. The valence
confidence value was calculated by averaging the last 5 seconds of OKAO’s internal
confidence value, which specified the accuracy of the recognized face extraction. The
confidence value was then used by other modules to decide whether to use or reject
the generated a↵ect for the child. Because it was essential to provide the most recent
data to the Learner Model as soon as it became available, the multi-threaded design
of the Interaction Analysis module enabled it to respond almost immediately.

4.2. Empathic Strategies

Depending on the robot’s perception of the child’s learning and a↵ective state, the
tutoring strategy varied. The robot’s actions were controlled by the Interaction
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Manager (IM) component seen in Fig. 2. The IM consisted of a generic Engine
that executed an authored script in the form of specific interaction rules. This split
supports re-usability since the IM can be applied to other interactive tasks by simply
changing the script.

The IM Engine implemented the Information State Update approach81 through
a two-step process: update context and select next action. Both were driven by rules
in the script that were executed when their preconditions were satisfied. If multiple
update context rules were matched, then they were all executed, but action-selection
rules were addressed through one of two conflict-resolution approaches. Either the
first rule that was matched could be executed - putting a premium at authoring
time on rule ordering - or one rule of the matched set was picked at random and
executed. The second approach could be used to vary equivalent dialogue actions
across a number of di↵erent utterances. The conflict resolution strategy to be used
was specified in the script file40. Note that the IM engaged in rule-chaining: When
a rule was triggered, it often created the pre-conditions for other rules to fire. Thus
the path from the robot’s assessment of the current situation through to its chosen
response usually involved the firing of many di↵erent rules. The IM included 25
pedagogical tactics (see Section 3.3), but given the richness of the context, there
were 900 di↵erent scenarios in which they could be invoked, producing a very large
rule set.

The essence of the empathic tutor was that the actions it took related to the af-
fective state of the child with which it interacted. The IM script therefore contained
actions whose preconditions depended on a↵ective state. There were two sources for
this information. One was of course data coming from the sensors estimating the
valence and arousal combination as discussed above. The IM contained a substantial
set of rules to do this. However, as with all sensor inputs, and specifically sensors
trying to detect a↵ective state, ambiguity and error were issues. For example, facial
expression recognition could be impacted by the child looking down at the table,
in which case the sensor would return neutral even if in fact the child displayed a
positive or negative facial expression. For this reason, in an initial version of the
system based solely on OKAO data, a confidence factor was attached to this data
as it was dispatched to the IM, and initially the IM would only trigger an a↵ective
rule on it if the confidence was 75% or above.

The need for high confidence and the possibility of missing facial expressions
meant that relatively few a↵ective states were detected in a particular session.
This in turn impacted evaluation of the system since it meant that empathic robot
behaviour was rarely displayed.

For these reasons, we added an IM ability to infer a↵ect from other contextual
factors, notably the state of the Map Interface and the recent actions taken by
the child. This interactional and learning context was already being assessed by
the Learner Module (LM) for pedagogical purposes, so that the information was
already available to the IM. A first implementation used very simple information
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Fig. 3. Examples of possible empathic interactions

Fig. 4. Sample rules for inferred a↵ect

indeed: a large number (>3) of incorrect answers given in successive interactions
was used to infer frustration, and a large number (>4) of timeouts after a user had
been asked to carry out a task was used to infer boredom.

However more sophisticated inferences were then included by adding LM esti-
mates of the user’s skill level along with the type of interactional data just men-
tioned. Sample rules are shown in Fig. 4. Moreover, the addition of the Q sensor
for a↵ect sensing allowed the confidence threshold for using sensed a↵ect in the IM
to be lowered to 25% .
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Empathic abilities do not reside solely in the agent, but may better be regarded
as arising from the interaction between the robotic tutor and the child. In conse-
quence, we expected the child’s impression of socio-emotional support and empathy
coming from the robot to be influenced also by the presence of Empathic Behaviors

- see Fig. 3 for some examples taken from a much larger set that combines a↵ective
input with pedagogical state and interaction history.

The first example represents a rule triggered by perceived (i.e., from the sen-
sors) or inferred boredom where the task was progressing well: the Dialogue Action
triggered was - acknowledgeEmpathy: boredSuccessfulTaskCompletion. The second
example illustrates the comparable dialogue action for frustration - acknowledgeEm-
pathy: frustratedSuccessfulTaskCompletion. The third example covers the situation
where the user was thought to be happy but was unsuccessful in the task - acknowl-
edgeEmpathy: happyUnsuccessfulAttempt. The fourth example covers frustration and
lack of success - splice:frustrated, and the last example the combination of a calm
child and lack of success - splice:calm. Thus when a student was frustrated, the
IM spliced in the correct answer early (i.e., presenting the right answer). However,
when the student was calm or happy, it gave them more time and chances to solve
the task. If the child was bored, the IM used social actions to re-engage them in
the task, ranging from reassurance to the telling of a joke.

These interactions and a large number of others were generated by the relevant
IM rules with a↵ective pre-conditions, and were executed via the Skene behavior
planner (see Fig. 2 and Table 1). They not only included dialogue Actions such as
those shown, but also emotionally expressive sound emblems 46, Nao gestures (added
by Skene), as well as perceived presence and socio-emotional attentiveness expressed
by following the child’s movements and attention via enabled Gaze Tracking and
Head Tracking.

Certain other standard HRI interactive behaviours, such as Idle Behaviors and
personalizing Utterances with Student Names were enabled in both the empathic
and the non-empathic tutor, as these latter behaviors could arguably be assumed to
relate only to the robot’s perceived intelligence rather than contributing significantly
to its perceived empathy.

5. Pilot User Study

In order to explore the consequences of endowing our robotic tutor with empathic
capabilities, we performed a pilot user study to investigate children’s perceived
empathy of the fully autonomous empathic robot compared to a non-empathic
version of the robot. In this study, we mainly wanted to investigate whether the
implemented empathic strategies indeed led to children perceiving the robot as
being more empathetic. However, we also aimed to investigate some other related
aspects, which will be explained in the subsequent section.
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5.1. Hypothesis and Areas of Exploration

In line with the main aim of the project, to develop an empathic robotic tutor, we
formulated our main hypothesis as follows: (H) Perceived empathy: Children
interacting with the robotic tutor endowed with empathic qualities will rate it
as more empathic than children interacting with the robotic tutor without those
qualities. We furthermore explored children’s perceptions of the interaction session
in terms of enjoyment and the robot’s helpfulness, but expected this to be high,
regardless of condition because of a novelty e↵ect. Furthermore, building on the
findings of Kennedy et. al.47 we also aimed to explore the perceived relational
status of the robotic tutor in the empathic and non-empathic conditions, reasoning
that empathic qualities of the robot could influence this status. Finally, although
our study was relatively small and short-term, we wanted to explore whether there
were any di↵erences in perceived or actual learning e↵ects.

5.2. Study Design

We designed a between-subjects experiment with two conditions that manipulated
the behavior of a NAO robot torso as Empathic or Non-Empathic in the context of
a map reading task. For the empathic condition, all system components described
in Section 4 were activated. In addition to a↵ect sensing and robot adaptation
via empathic strategies, in the empathic condition the robot tracked the child’s
head direction and moves on the multitouch table and followed them with its head
accordingly, displayed idle behaviours and utilised utterances with the name of
the child. As NAO lacks the capacity for facial emotional expressions, the empathic
condition further included specifically designed emotional sound emblems consisting
of sequences of ”bleeps and beeps”. These synthetic sounds were selected from a
large toolkit of validated robot sounds 46 that can be used for multimodal back-
channelling 34. In this study, we aimed to use the emotional sounds to help create
a subtle sense of empathic concern expressed by the robot. For the non-empathic
condition only idle behaviors and personalization of the utterances with student
names remained enabled. Table 3 shows the attributes that were activated in each
of the conditions. Details on a↵ect sensing and empathic strategies used are outlined
in Section 4.1 and Section 4.2.

5.3. Participants

We recruited 26 participants (13 girls and 13 boys) aged between 10-11 years old
(M=10.5, SD=0.51) from a school in Birmingham, UK (Table 4 shows the details
of the participants’ age and gender). Informed consent was given by the parents,
and the children were also asked for their assent. The study was approved by the
University of Birmingham’s Ethical Review Committee and followed the Univer-
sity’s Code of Practice for Research. We randomly divided the participants into
two groups for the two between-subjects conditions (empathic and non-empathic).
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Table 3. Attributes of empathic & non-empathic robotic tutor - more details on the properties of
the system attributes are provided in Section 4

Empathic Non-Empathic

Inferred A↵ect X
Empathic Strategies X
Robot Sound Emblems46 X
Following Child’s Head and Moves X
Idle Behaviors X X
Utterances with
Student Names

X X

Table 4. Participants’ age and gender details

Age
Empathic condition

(female, male)
Non-empathic condition

(female, male)

10 7 (2f, 5m) 6 (4f, 2m)

11 6 (4f, 2m) 7 (3f, 4m)

Total 13 (6f, 7m) 13 (7f, 6m)

5.4. Experimental setup

The experimental setup featured a NAO T14 robot (torso version) attached to a
55” touch-sensitive interactive display from MultiTactionf placed within a custom-
made aluminum table frame. A web camera, a Microsoft Kinect sensor, and a Q
sensor were used to capture children’s behaviours and physiological indicators, as
illustrated in the example shown in Figure 3 of Section 4.2. The child sits in front
of the robot, while the multitouch table is positioned between them. We showed in
a previous study an overall user preference and higher engagement rates when the
robot is positioned in front of the user, compared to when it sits on the side 62.
The web camera and Kinect were positioned in front of the child in order to fully
capture the childs face from a frontal perspective.

5.5. Procedure

The study was set up in an o�ce room at the school as in the example illustrated in
Fig. 3. The study session started by asking the participant to fill out the pre-study
questionnaires. Thereafter, the administrator gave a brief description of the setup
with the robot and the Map Reading application (Section 3.2). The participant was
then asked to perform a map reading exercise using the multi-taction table with
help from the robotic tutor. Each scenario session took 10-20 min to complete, and
children were asked to fill out the post-study questionnaires afterwards.

fhttps://www.multitaction.com/hardware/mt-cell
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5.6. Measurements

Perceived Empathy and Interaction Quality: This questionnaire examined to what
extent the children perceived the robot as empathic, and how they experienced the
educational interaction with the robot. It contained seven questions on a Smiley
Face Likert scale 33: (E1) “I enjoyed working with Nao.”, (E2) “Nao knew when I
was struggling.”, (E3) “Nao tried to imagine how I was feeling.”, (E4) “Nao tried
to help me.”, (E5) “Nao was pleased when I did well.”, (E6) “Did you find the
Nao robot empathic?”, and (E7) “Did Nao empathize with you?”. For the final two
questions, we provided the following description of empathy: Empathy is when you

are able to understand and care about how someone else is feeling. For example,

worrying for a friend who is having a bad day or understanding why the football

team is happy when they win a match.

Questions E1, E2, and E4 were intended to measure interaction quality of the ed-
ucational situation with a robot, while E3, E5, E6, and E7 focused on empathy. We
thus aimed to separate more general helpfulness and pleasantness of the interaction
from the items targeting empathy. While overall liking and perceived helpfulness
of the interaction with the robot are important indicators of possible future accep-
tance of robots in this role, these items did not directly concern perceiving a robot
as empathic.

Relational Status: Kennedy et al.47 asked children about the relational status
of a robot they had been interacting with, using the following question: For me, I
think the robot was like a: ‘brother or sister’, ‘classmate’, ‘stranger’, ‘relative (e.g.
cousin or aunt)’, ‘friend’, ‘parent’, ‘teacher’, ‘neighbor’. Grouping the responses
of the children into either ’teacher’ or ’not teacher’ they found that children did
not perceive the robot to be a teacher, despite the robot being introduced to the
children as such. Since it is possible that the empathic qualities of a robot influence
its perceived relational status, we asked the children in our pilot study the same
question after the experiment.

Learning E↵ects: In order to explore whether there were any actual learning
e↵ects, we gauged children’s geography knowledge before and after the experiment,
by designing two tests that were su�ciently challenging for the target group, so that
variations could be observed. To avoid children recalling answers from the pre-test
at the time of the post-test, these two tests were designed di↵erently, whereby the
post-test was much more di�cult to complete without mistakes.

Perceived Learning: In order to gauge whether the children perceived that they
had learned something from the interaction, we asked them three questions about
their self-assessed map-reading skills before and after the interaction with the robot.
Specifically, these questions asked the children to evaluate their current skill at ‘dis-
tance measuring’, ‘compass direction’, and ‘map symbol reading’. These questions
were assessed via a 5-point Smiley Face Likert scale as suggested by 33.
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5.7. Analysis and Results

Perceived empathy (H): Perceived empathy was assessed as a score of the 4 empathy
questions: (E3) “Nao tried to imagine how I was feeling”; (E5) “Nao was pleased
when I did well”; (E6) “Did you find the Nao robot empathic”; and (E7) “Did
Nao empathize with you?” (↵ = .63). An independent samples t-test indicated that
there was a significant di↵erence for the score of these 4 items (p = .028), with the
empathic group (M = 17.69,SD = 1.70) significantly higher than the non-empathic
one (M = 15.77,SD = 2.42). This supports our first hypothesis about Perceived
Empathy as a function of the robot’s enabled empathic behaviors. Concerning the
acceptable yet still lower than expected Cronbach’s ↵ of this scale, we conducted
additional non-parametric tests at the level of the individual items. In this anal-
ysis, all 4 individual sub-items pointed in the same direction, suggesting greater
perceived empathy in the empathic condition. However, individually, only the most
directly phrased item (E7) showed a statistically significant higher level of per-
ceived empathy in the empathic group (Mdn = 5) than in the non-empathic one,
(Mdn = 3),U = 37.5, p = .008, r = .52.

Interaction quality: As expected, the robot was perceived very positively in both
conditions, with E1: I enjoyed working with Nao (ME1 = 4.69), E2: Nao knew when
I was struggling (ME2 = 4.23), and E4: Nao tried to help me (ME4 = 4.65). There
were no significant di↵erences between the two conditions for these measures.

Relational Status: Grouping children’s answers about the relational status of the
robot into ’teacher’ or ’not-teacher’ revealed no di↵erence between the conditions.
In both groups only 2 children reported the robot to be a teacher, while the other
11 children in both groups reported it not to be a teacher.

Learning E↵ects: Since the post-test for content knowledge was harder than the
pre-test, none of the groups showed any positive learning e↵ects. There were also
no significant di↵erences in learning e↵ects between the two conditions.

Self-assessed map reading skills: Taken as a single group, children’s self-assessed
knowledge increased significantly from before the interaction (M = 2.31,SD = 0.75)
to after the interaction (M = 2.92,SD = 1.32) with the robotic tutor (p = 0.01).
However, there was no significant di↵erence (p = 0.87) between the two groups on
the self-assessed knowledge of map reading, either on the pre- or post-test.

5.8. Discussion and Limitations

Our pilot study showed that children indeed perceived the empathy-enabled robotic
tutor as significantly more empathic than the version without empathic capabili-
ties. All other areas of exploration, such as interaction quality, relational status,
or perceived or actual learning e↵ects, did not indicate any significant di↵erences.
There are several reasons for this. First of all, our sample was rather small, which
was due to the complexity and time required for data recording in this autonomous
HRI setup. Unfortunately, while our design and data collection appeared to have
su�cient statistical power to detect large e↵ects that could be expected for the
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presence of an empathy-enabled social robotg, we were unable to recruit the much
more substantial sample size that would have been required to reveal more subtle
e↵ects with an acceptable level of statistical powerh. We were confident to at least
obtain a strong e↵ect of the direct presence of the empathic social robot because
the general e↵ectiveness of physical presence has been well documented55, because
empathy was the primary focus of our interaction design44, and due to the often
surprising sensitivity of children in response to the behavior of social robots that
has been observed in some studies83. Nevertheless, our study is clearly limited with
regards to conclusions beyond perceived empathy and interaction quality. It appears
plausible that any empathy-induced e↵ects on learning should be weaker than the
initial e↵ects of empathy itself, as children are likely to have been su�ciently moti-
vated and engaged in both versions of this short learning task. Based on the present
empirical support for the claim that robotic tutors in child social robotics can be
endowed with (perceived) empathic capabilities, future studies could examine po-
tential empathy-induced learning gains by means of a statistically more powerful
within-subjects design. For this initial study, we preferred a between-subjects de-
sign because it provides more control over alternative accounts, e.g., with respect to
controlling for possible sequence e↵ects, and the possibility of participants guessing
the experimental hypotheses and thus responding in a socially desirable fashion.
However, such future work could build upon, and complement, the present work.

A further limitation of the present study concerns the finding that the robot was
still perceived as very helpful even without the additional empathic functions. It is
possible that already the basic interaction and personalization in this condition may
have exceeded the expectations of the children, resulting in a somewhat generalized
liking of the robot. This finding may be unsurprising, given that children have
previously been shown to respond positively to short interactions with robots53. A
more long-term or repeated exposure to the empathic tutor would likely result in
more pronounced gains in these related domains, as the more empathic tutor should
be better equipped to support long-term motivation after initial novelty e↵ects have
worn o↵. This is supported by our finding that the children, overall, perceived the
robot to be less empathic in the non-empathy condition - even though they appeared
to be willing to be forgiving about it in this study. Finally, despite the fact that
our setup had been tested during the WoZ studies and in a pre-study, both groups
experienced some technical problems with the multitouch table, such as becoming
unresponsive and not sending input to the robot. For example, we found that the
table does not respond very smoothly to presses and is sensitive to presses with
several parts of the hand at the same time. While these problems occurred with

gPost-hoc power-analyses in G-Power25 (V.3.1.9.2) showed a large e↵ect size (d = .92) for the
empathy e↵ect reported above, reflecting an estimated power of 74%.
hAccording to G-Power, even a medium-sized e↵ect (d = .20) would already have required nearly
four times the available sample size (i.e., N = 102 children) to achieve 80% power in a between-
subjects t-test.
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both groups, in future studies it needs to be made sure that this part is infallible,
because it may inhibit the robot from responding to children’s actions on the table.

6. Conclusions

In this paper we have described our approach to develop a robotic tutor with em-
pathic qualities. Our study shows that by using inferred a↵ect, Skene empathic be-
haviors, robot sound emblems, gaze tracking and head tracking, we have been able
to indeed implement a robotic tutor that children perceive as significantly more em-
pathic than a robotic tutor that only displays idle behaviors and addresses children
by their name. However, given the limitations of our pilot study, we are unable to
say that this will eventually lead to significantly better perceived or actual learning
gains or to a di↵erently perceived relationship to the robot. Future work should
include longer-term within-subjects designs to achieve reasonable statistical power
to detect more subtle learning e↵ects. However, developing enough interesting, dif-
ferentiated, and yet closely comparable educational material for a robotic tutor
then becomes one of the challenges. At present, it further remains unclear which
of the components are essential for creating this empathic behavior. Future work
may focus on studying inferred a↵ect in combination with separate components,
such as empathic behaviors, or robot sound emblems, and combinations thereof.
For the sound emblems, we speculate that the presence of an appropriate type of
social robot may be necessary, as simply adding synthetic beeps to speech may re-
sult in reduced perceived naturalness 34. More subtle expressions informed by a↵ect
sensing, such as the robot adapting its tone of voice to the emotional state of the
child, could also be investigated. Finally, in some situations, online a↵ect sensing
might perhaps not be needed to create a sense of the robot having empathy. This
could be the case if the child’s a↵ect in the situation is highly predictable, such as
in the study by Kory Westlund et al.85, where the robot is reading a story to chil-
dren. Future work in educational social robotics will thus not only need to improve
a↵ect sensing as such, but also to anticipate likely a↵ect, as well as how to respond
empathically without simply mimicking expressions.
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Appendix A

Fig. 5. Geography post-test cardinal directions ’fill in the blanks’

Fig. 6. Map reading post-test map symbols ’match symbol to right label’
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