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Abstract 

 
Electrode designs based on sheet racks and blocks with multi-diffuse groove spaces and 

enriched active sites and scales would promote the commercial applications of electroactive 

materials. We report a facile one-pot hydrothermal approach to synthesize mesoscopic porous 

Co3O4 or hybrid graphene (GO)/Co3O4 sheet-on-sheet racks and blocks. Three basic types of 

sheet scalability racks can be built in vertical and non-stacked edge orientations, such as neat 

micro/nano-groove rooms, butterfly wing scales, and wall groves, leading to highly exposed 

surface converges and sites. In particular, the stacked S-GO/Co3O4 sheet-on-sheet blocks can 

be oriented in vertical tower buildings. The atomic structures of the developed Co3O4 catalysts 

were dominant along the highly dense {112/111} interfaces and single crystal {111} and 

{112} facets. The electrochemical performance of the mesoscopic porous Co3O4 catalyst 

toward alcohol electrooxidation was evaluated in alkaline conditions. The mesoscopic hybrid 

GO/Co3O4 racks revealed superior catalytic activity in terms of oxidation currents and onset 

potentials, indicating the effect of the synergetic role of active Co
3+

 sites along the densely 

exposed {112} facets, graphene counterparts , and hierarchically non-stacked sheet racks on 

the electroactive functionality. Results indicate that the mesoscopic GO/Co3O4 sheet catalyst 

is suitable for highly efficient electrochemical reactions.   

 

1. Introduction 

 
The increasing demands for environmentally-friendly energy resources have triggered ideas 

for developing high-performance energy resources with low cost and zero emission. 
[1–4]

 Fuel 

cells have received considerable attention as promising candidate to satisfy the increasing 

global energy demand. 
[5]

 Recently, intensive investigations have focused on alcohol fuel cells 

(i.e., direct methanol and ethanol fuel cells) as alternative energy-generating devices owing to 

their high power density, low maintenance cost, simplicity, and low operating temperature . 

[6,7]
 However, the applicability of direct alcohol fuel cells (DAFCs) is hindered by electrode 

materials. Advanced low-cost materials with high catalytic activity have been explored to 

improve the overall performance of alcohol fuel cells. 
[8]

 In particular, the development of 

highly efficient and low-cost electrode materials with morphologically- and anisotropically-

controlled growth, as well as multi-diffusion-controlled voids, remains a great challenge for 

the practical applications of the alcohol fuel cells. 
[9,10]

 The features of catalytic surfaces are 

significant in the electrooxidation of organic molecules. 
[11]

 Catalysts with tailored building, 

controlled surface morphologies, and uniform mesopores provide abundant electroactive 
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surfaces for preferential adsorption of reactants, fast electron transport at electrode/electrolyte 

interfaces, and enhanced kinetics of molecule electrooxidation reaction. 
[12,13]

 

Transition metal oxides and their composites are attractive electrocatalysts for the direct 

oxidation of alcohols because of their high electrocatalytic activity and low cost. 
[14]

 The 

electroactivity of the transition metal oxides is mainly dependent on the surface functionality 

of the catalytic materials. 
[15,16]

 Furthermore, the smartly integrated and multi-component 

nanoarchitectures might offer synergetic properties and outstanding advantages than those of 

individual components, such as the largely enhanced electronic configuration, superior 

structural stability and flexibility, ultra-fast electron transfer efficiency, and more 

electroactive sites. 
[17–20]

 Among them, Co3O4 has received considerable attention because of 

its intriguing advantages, such as excellent capacitive, tunable textural features, improved 

thermodynamic stability, and easy preparation at low cost.
[17–19] 

In addition, Co3O4 

mesocrystals have shown high catalytic activity associated with good electrical conductivity 

and easy charge transport. 
[20]

 However, their poor recyclability and long term stability still 

hinder their practical application. 
[21]

 Interestingly, the electrochemical activity of Co3O4 can 

be efficiently improved by enhancing the surface architecture with highly active sites and 

exposed facets. 
[20]

  

Nanohybrid-based catalysts integrate the unique features and characteristics of the 

components, and usually they show synergistic enhancement in electroactivity as a result of 

the cooperative contribution of constituents.
[21]

 Modification of Co3O4 with highly conductive 

carbonaceous materials such as carbon nanotubes, carbon black, and graphene is a potential 

way to improve the electrochemical performance of Co3O4. 
[17,21]

 Specifically, graphene was 

validated as a good catalyst support because of its unique characteristics of high electrical 

conductivity, high specific surface area, good chemical stability, and good corrosion 

resistance. 
[22–24]

 

A straightforward, one-step synthesis of GO/Co3O4 sheet racks and S-GO/Co3O4 sheet-on-

sheet blocks was developed in this study. Control over the anisotropic morphological and 

sheet scalability in different orientational racks of (i) neat micro/nano-groove rooms, (ii) 

butterfly wing scales, and (iii) wall groves leads to efficient ly exposed surface catalysts for 

DAFCs. The fabrication route provides stacked S-GO/Co3O4 sheet-on-sheet blocks that can be 

oriented in a vertical tower building. The vertically developed sheets with multi-functional 

mesoscopic voids and hocks, active surface components, and high index crystal planes boost 

the electrocatalytic activity (Scheme 1). Significantly, the sheet racks with mesospace-

window hooks, dense and active {112}/{111} Co
3+

 and O
2−

 sites, long-range sheet ordering, 
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vertical sheet racks, mimicked sharp-pointed outgrowth prickles covering sheath surfaces, and 

non-stacked layers enable electron diffusion and movements with little resistance and ensure 

contact between every mesocrystal surfaces and electrolyte with a multi-directional 

accessibility. Our findings showed that the GO/Co3O4 electrode revealed outstanding catalytic 

activity for ethanol and methanol electrooxidation compared with S-GO/Co3O4 blocks and 

pristine Co3O4 catalyst. More specifically, the low onset potentials and high oxidation current 

of the GO/Co3O4 indicate the significant role of the integrated GO, high-index crystal facets, 

and hierarchal sheets oriented in grooves, groves, and butterfly wing scales. The GO/Co3O4 

sheet racks exhibit enhanced long-term workability of up to 10000 s, demonstrating better 

structural stability and may serve as efficient and cost-effective electrocatalysts for alcohol 

oxidation.   

(Scheme 1) 

2. Results and discussion 

2.1. Vertical growth mechanism of mesoscopic sheet-on-sheet racks and blocks                                                                                                                               

Structural directing agent (SDA) templates, such as hexamethylenetetramine (HMTA) or urea, 

were used to control the vertical growth alignment of Co-based nanostructures in rack- or 

block-shaped buildings under hydrothermal conditions. Considering the simplicity of our 

synthesis strategy (Table S1, Figures S1–S3) and the initial reaction precursors (CoCl2, 

HMTA, and urea) of the as-obtained products, the chemical structure composition of the 

corresponding rack- or block-shaped nanostructures could have obviously formed through a 

number of consecutive reactions. Briefly, the hydrolysis of urea/HMT generated OH
-
, which 

subsequently reacted with Co
2+

 species to form hierarchical cobalt carbonate hydroxide 

[Co(OH)x(CO3)0.5∙0.11H2O] (Figure S3). The addition of SDA to the reaction solution led to 

the formation of a soluble complex and facilitated the recrystallization of  

Co(OH)x(CO3)0.5∙0.11H2O nanocrystals. Furthermore, the negatively charged oxygen 

functional groups of the GO sheet offered reliable mediators for the growth of nanocrystals 

through the electrostatic interaction between the positively charged Co
2+

 species and the 

functional surface groups. More importantly, the hierarchically morphological control of 

GO/Co3O4 was dependent on the addition of urea or HMTA agents to used cobalt salt. This 

finding suggested that HMTA and urea play a key role in the formation of non-stacked or 

stacked sheet-on-sheet architectures with rack- and block-like structures. The orientational 

building architecture mechanism possibly controlled the vertical growth alignment of stacked 

S-GO/Co3O4 sheet-on-sheet blocks and non-stacked sheet racks with different shapes, such as 

neat micro- or nano-groove rooms, butterfly wing scales, and wall groves.   
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Particularly important is that the addition of urea allowed for the fast anisotropic growth of 

crystals, leading to the formation of thermodynamically stable nuclei sites. Soon after the 

sheet-like structure was formed, the urea adsorbed on the surface of these sheets facilitated 

their attachment to the neighboring molecules. To this end, the subsequent sheet-by-sheet 

stacking of the block structures gave rise to a much larger tower-like building with exposed 

smooth and flat surfaces (Figures S1G and S1H). In turn, the introduction of HMTA into the 

solution system was crucial for the formation of rack-like structures. Specifically, urea species 

allowed for the slow crystal growth of the precursor in vertical direction and formed 

complexes with Co
2+

 in the solution, thereby leading to the retarded movement of cations. 

Consequently, the formation of Co(OH)x(CO3)0.5∙0.11H2O was delayed. As a result, this 

interaction favored the intergrowth that led to the hierarchical 3D-like racks with a wide range 

of morphologies, such as neat micro- or nano-groove rooms, butterfly wing scales, and wall 

groves (Figures S1A–S1F). 

Under further thermal treatment at ~400 °C, the coordinated H-bonding of cobalt carbonate 

was preferably rearranged to generate Co3O4 or GO/Co3O4 sheet racks in three different basic 

shapes, namely, (i) neat micro/nano-groove rooms, (ii) butterfly wing scales, and (iii) wall 

groves; however, the stacked S-GO/Co3O4 sheet-on-sheet blocks can be oriented in vertical 

tower buildings (Figure 1). Significantly, the hierarchal orientations in sheet racks or sheet-

on-sheet blocks play key roles in the crystal growth, dominating facets along highly dense 

{111/112} interfaces and single crystal {112} or {111} facets, respectively (Figures 1 and 2). 

 

(Figure 1 and Figure 2) 

 

2.2. Hierarchy levels of GO/Co3O4 racks and S-GO/Co3O4 blocks 

The field-emission scanning electron microscopy (FE-SEM) micrographs (Figures 1(A–D) 

and S1) and 3D molecular structure simulation (Figure 1E–1H) of GO/Co3O4 racks and S-

GO/Co3O4 blocks were utilized. For the first time, FE-SEM micrographs provided a clear 

evidence of well-controlled morphology and molecular orientations of sheet racks, neat 

micro/nano-groove rooms (A), butterfly wing scales (B), and wall groves (C). Figure 1A 

shows massive sheets connecting and overlapping in neat micro/nano-groove rooms like the 

tiles on an electrode surface archery. In addition, a group of sheet branches and scales 

growing in densely tangled thickets form butterfly wing scales (Figure 1B). The flat and broad 

sheets are tacked with a pale tip at the end of each flat branch. The tip is connected in a center 

point, creating angle with open degree space. In another top-view, the micrograph shows the 
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formation of vertically aligned, non-stacked surface-structured wall groves and non-stacked 

and fabric ordering layer-on-layer sheet design patterns (Figure 1C). All orientational shapes 

showed key features of dense particle-unit-blocks and smart non-stacked layer architecture 

with uniform micro-, meso-, and globule pores. In turn, FE-SEM image (Figure 1D) shows 

the stacked sheet blocks oriented in a vertical tower building. Note that the addition of GO has 

no effect on the structural stability and integration of sheet racks and blocks with uniformly 

spaced layers, which are probably responsible for the efficient electro-activity with high 

diffusivity of electrons during the reaction.  

The absence of extended GO network sheets in the SEM investigation was possibly due to the 

small amount of GO embedded in the GO/Co3O4 hybrid sheets. Moreover, during the in situ 

Co3O4 crystal growth, the electrostatic GO-to-Co
2+ 

binding interactions occurred. Thus, part 

of the GO loaded was possibly consumed during the vertical directional growth of Co3O4 

nanocrystals. After a prolonged period of crystal growth, the GO sheets were fully wrapped 

by Co3O4 nanocrystals because of the integrative stacking of the generated sheet-on-sheet 

layers or sandwich-like architectures. Furthermore, the high angular annular dark-field 

scanning transmission electron microscopy (HAADF-STEM) images (Figure S2) showed 

further evidence of the formation of sandwich-like layer structures (Figure S2A). In addition, 

the micrographs showed that the GO sheets were embedded in the hierarchical sandwich 

building at the edges (Figure S2A) and in the inner cores of both the hierarchically stacked S-

GO/Co3O4 sheet-on-sheet blocks and GO/Co3O4 non-stacked sheet rack-like wall groves 

(Figure S2B). 
[25]

 

The nanoscale molecular arrangement of structures shows clear evidence of the mimicked 

formation of these three orientational sheet racks (E–G) and rigid blocks in a vertical tower 

(H). For example, Figure 1E shows that the groove room scales vary considerably in shape, 

some being rectangular, whereas others are triangular tiles or plumes. The HAADF-STEM 

pattern (I, center) shows that the triangular tile formed between sheet boulders over the 

domains created markedly dense branches growing in clumps, which is a characteristic of the 

multi-diffused rooms for alcohol molecules. This prismatic edge scale of the sheet racks 

(Figure 1I) might typically measure about 90–100 nm thickness, although the sheet platelet is 

1.5–2.0 µm in width, leading to highly exposed surface converges.  

A closer look into the HAADF-STEM image (Figure 1J) of the top surface of sheet racks 

reveals the surface construction with encrusted branches of sharp and pointed outgrowth of 

prickle-like prismatic ridges. As a result of passing through marginally prismatic ridges on the 

surface of the sheet scale, almost all alcohols that hit active site surfaces can be absorbed and 
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captured to generate more energy. The outer surface of the “blade edge” covered with 

protruding nanoscale ridge-like arms is hooked to the ethanol/methanol molecules. The flat-

plate is fully covered with bumps or drop-like Co3O4 MC scales. The density of bumps or 

drop-like Co3O4 MCs is considerably organized and homogenous, giving the sheets a wide-

range domain of exposed, dense, and active Co
3+

 and O
2−

 sites along the {111} and {112} 

surfaces (Figure 2A–2F). The high-magnification HAADF-STEM image of nanosized 

particle indicates that the Co3O4 mesocrystals (MCs) are grown along {111} and {112} 

dominant facets (Figure 1H). The electron diffraction (ED)-STEM image (Figure 1K) shows 

the abundant resolutions of low- and high-index lattice planes of (−1−11) or (−4−44), (33−3), 

(−26−2), and (−531) fringes around the {112}-principle zone-dominant plane. The 

preferential orientation of Co3O4 crystals with high-index {112} facet and {111/112} 

interfaces (Figure 1J and 1K), as well as highly active Co
3+

 exposure (Figure 2E and 2F) with 

sophisticated morphology, are expected to play a crucial role in the catalytic performance of 

Co3O4 MCs. The HAADF-STEM image of S-GO/Co3O4 rigid sheet-on-sheet blocks shows 

atomic plane distances of 1.65 and 2.859 Å of the high- and low-index facets of (4−2−2) and 

(−220) or (02−2) lattice planes around the {111}-principle zone dominant plane (Figure 2C 

and 2D).  

The crystal structure and composition of mesoporous Co3O4 and hybrid sheet GO/Co3O4 racks 

or S-GO/Co3O4 blocks was identified by wide angle X-ray diffraction (Figure S4) and Raman 

spectra (Figure 3A). All the observed diffraction peaks of mesoporous Co3O4 can be perfectly 

assigned to standard face-centered-cubic (fcc) (space group: Fd3m, JCPDS 42-1467) Co3O4.  

[26,27]
 No impurity peaks were detected, indicating the formation of pure Co3O4 phase. 

Furthermore, the weak diffraction peak at 25° is due to the (200) diffraction of GO. 
[28]

 Our 

findings proved that GO has been successfully reduced through the hydrothermal treatment. 

Moreover, the reduction of GO facilitated the formation of Co3O4 as a result of the strong 

electrostatic interactions between the oxygen surface groups of GO and Co3O4 MCs. As seen 

in Figure 3A, the Raman shift spectra of the samples clearly exhibit well-defined peaks 

centered at 478.9, 521.7, 621.4, and 685.6 cm
−1

 corresponding to the vibrational modes of Eg, 

F2g
1
, F2g

2
, and A1g of Co3O4. 

[29]
 The highly intense peaks located at 1350 and 1605 cm

−1
 are 

caused by the E2g vibrational mode of the second-order band (sp
2
) of the graphitic carbon, 

[30]
 

as evidenced by the X-ray photoelectron spectroscopy analysis (Figure S5). 
[31–33]

   

The N2 isotherms (Figure 3B) showed hysteresis loops (IV-type) of mesoporous Co3O4 and 

hybrid sheets of GO/Co3O4 racks or S-GO/Co3O4 blocks. The specific surface areas of the 

GO/Co3O4, S-GO/Co3O4, and Co3O4 were measured to be 79, 58, and 42.5 m
2
/g, respectively. 
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The enhanced surface area of GO/Co3O4 can be attributed to the (i) anisotropic sheet-on-sheet 

building with a high degree of surface uniformity demonstrating low defects; (ii) the 

homogeneous dispersion of metallic sheets on the surfaces of GO, which avoids the 

agglomeration of GO sheets and keeps their high surface area; and (iii) the creation of 

mesoscale voids and spaces in the interior structures. The controlled uniformity of mesopore 

across the hierarchical sheet racks and blocks (Figure 3B, insert) might create a potential 

accessibility of alcohol molecules into the catalyst matrices. Significantly, the hybrid sheet 

GO/Co3O4 racks or S-GO/Co3O4 blocks with multi-functional cavity pores enables the multi-

accessible windows of reactant molecules to bind with interior active Co
3+

 sites during the 

electrochemical reaction.   

(Figure 3) 

 

3. Electrocatalytic activity of sheet racks towards alcohol oxidation reaction (AOR)  

Several key factors significantly influence the electrochemical performances of the catalytic 

sheet Co3O4 racks and block-modified glassy carbon (GC, see supporting information) 

electrodes for AOR, including scan rate (Figures 4A and S6) and alcohol concentration 

(Figure S7). The effect of scan rate on the performance of the GO/Co3O4/GC electrode  

catalyst for direct oxidation of methanol was investigated over the range of 10–600 mV s
−1

 in 

1 M methanol, as shown in Figure 4A. Results show that the anodic current was enhanced 

with increasing scan rate, demonstrating a diffusion-controlled process. A weak peak was 

observed in the reverse scan with increasing scan rate of above 100 mVs
–1

 which indicating 

an abundance of high valence cobalt species to be consumed in the cathodic scan to generate 

the related cathodic peak. 
[34–36]

 Figure S7 shows that an increase in the anodic current was 

observed with increasing concentration of methanol, indicating that the oxidation of methanol 

at the GO/Co3O4/GC electrode is a rate-determining process. The relationship between the 

square root of the scan rate and the current density was studied to examine the methanol 

oxidation reaction (MOR) kinetics of GO/Co3O4 rack catalysts, as illustrated in Figure S8. 

The plot shows that the current density of MOR increased linearly with increasing applied 

scan rate, thereby confirming a controlled diffusion reaction.   

(Figure 4) 

The electrocatalytic performances of Co3O4/GC, GO/Co3O4/GC, and S-GO/Co3O4/GC  

electrode catalysts were initially investigated by cyclic voltammetry (CV) technique in 0.5 M 

NaOH N2-saturated solution at a scan rate of 50 mV s
−1 

at
 
room temperature (Figure 4B–4D). 

Basically, the catalytic activities of GC and GO-modified-GC electrodes for AOR are very 
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poor, as evidenced by CV profiles (Figure S9). Interestingly, the Co3O4/GC, GO/Co3O4/GC, 

and S-GO/Co3O4/GC electrode catalysts display prominent pairs of redox peaks through the 

anodic and cathodic sweeps as a result of the reversible reactions of Co3O4/CoOOH (I/IV) and 

CoOOH/CoO2 (III/II) (Figure 4B), in agreement with the reported results elsewhere.
[37]

 The  

CoOOH active components may act as mediator electroactive species on outer-surface layers 

to bind the adsorbed alcohol molecules, to offer more active sites, and to facilitate electron 

transfer during AOR (Schemes 1). 

Clearly, the hybrid GO/Co3O4 or S-GO/Co3O4 shows broader redox peaks with a larger 

enclosed area than that of bare Co3O4, indicating higher electrochemical performances of the 

hybrid GO/Co3O4 or S-GO/Co3O4 catalysts. As shown in Figure 4B  the increase in the 

current density follows the order GO/Co3O4/GC > S-GO/Co3O4/GC > Co3O4/GC, indicating 

the effect of the synergetic coupling between Co3O4 and GO with retention of the 

morphological sheet-on-sheet racks or blocks. Furthermore, Figure S6 shows a remarkable 

electrocatalytic activity of Co3O4-modified GC electrodes compared with Co3O4-free 

electrodes. This significant finding resulted from the morphological structure of Co3O4 sheet-

on-sheet racks, which enhanced the electron and molecular diffusivity along the nano-scale 

architectures. Moreover, the actively exposed surface {112} facets and {112}/{111} interface 

planes with Co
3+

 and O
2−

 sites led to low surface energy and high electron density on the 

exposed sites (Figure 5A).  

Figure 5 shows evidence of the actively top-surface sites of sheet racks and blocks along 

highly dense {112}/{111} interfaces and single crystal {112} and {111} facets that affected 

the AOR performances. The Co3O4 sheet racks with {112}/{111} interface planes showed a 

high degree of exposure to the top Co
3+

-surface sites, electron density, and binding energy 

along the interior atomic-scale surface crystal oriented within the single {112} or {111}  

planes (Figure 5B–5D). In addition, the surface electron density map and the distribution of 

electrostatic potential along the {112} and {111} facets show evidence of dense electron 

distribution, accessible surface binding, and continuous electron movement onto the {112} 

top-surface compared with that of the {111} facet (Figure 5E and 5F). Figure 5D–5F shows 

the confined plane-to-plane stacking of alcohol-to-Co
3+

 {111}- or {112}-top-surface site 

binding in the axial scales, as well as the stable molecular orientation and spatial distributions 

of alcohol molecules onto surfaces that efficiently affected electrocatalytic AOR performance. 

This vertically geometric alcohol-to-surface orientation is generated around the dense electron 

surfaces of accessible Co
3+

 and O
2−

 sites, leading to high adsorption energy (E ads) and 

thermodynamically stable binding energy (ETSB) (Figure 5D–5F, inserts). The increase of 
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enriched Co
3+

 site surface onto the main topographic facets follow the order {111} < {112} < 

{112}/{111} planes, which agrees with the Eads and ETSB values. This finding indicates that 

the GO/Co3O4 sheet racks with {112}/{111} surface plane have highly catalytic Co
3+

 sites, 

which leads to efficient AOR activities.  

Significantly, the DFT calculations of hybrid GO/Co3O4 sheet racks show the retention of the 

densely electrostatic potential map and surface electron distribution along the active 

{112}/{111}-Co
3+

 and -O
2−

 vacancy sites within 1000 cycles (data not shown). This indicates 

the stability of charge or electron transfer process during alcohol-to-surface interaction. The 

sheet rack designs with (i) neat micro/nano-groove rooms, (ii) butterfly wing scales, and (iii) 

wall groves may maintain the alcohol molecular dimensionality or directionality, as well as 

ETSB with the formation of alcohol-to-surface binding into the surface of sheet racks. This 

enables an extensive range of AOR cycling. 

Figure 5  

 

Furthermore, the optimized theoretical studies (Scheme 1 and Figure S10) on crystal structure 

and electronic configurations of GO layers indicated the formation of dense electron clouds  

on both the top- or side-view orientations of GO (Figure S13). The electronic configuration 

along the GO crystal structure possibly acted as actively centered electron triggers because of 

the highly exposed Co3O4 nanocrystal facets (Scheme 1). The creation of strong electro-static 

potential onto and along the GO layer surfaces possibly generated a dense electronic 

configuration around the active positively (Co
3+

) and negatively (O
2-

) charged atoms on the 

top-exposed surfaces of crystal {112}/{111} interfaces. These hierarchical GO/Co3O4 sheet 

networks can significantly enhance the electrochemical reaction activity and kinetic electron 

diffusion  (Scheme 1) along the surface layers or crystal centers of the active facets.  

In case of alcoholic assay, the adsorption and dissociation of ethanol/methanol molecules take 

place mainly on the top-Co
3+

 active site surfaces. Figure 4C–D shows that the GO/Co3O4/GC, 

S-GO/Co3O4/GC, and Co3O4/GC electrodes revealed no anodic peaks during AOR, which 

might be attributed to the overlapping of oxygen evolution and alcohol oxidation currents. 

Interestingly, the absence of any peak in the reverse scan indicates that all alcohol molecules 

were successfully oxidized during the forward scan. This demonstrates the efficient removal 

of carbonaceous species and intermediates in the forward scan. Moreover, the formation of 

OHad species at relatively lower potentials can effectively transform the chemisorbed species 

and carbonaceous intermediates absorbed at the GO/Co3O4 surfaces into CO2 species that 

evolved, leading to the release of catalytically active sites available for further 
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electrochemical reactions.
 [38]

 Specifically, in the DAFC assays, the electrooxidation of 

alcohols in the alkaline solutions led to the generation of reactive intermediates, which 

subsequently formed anions (Figures S11–S13). For ethanol electrooxidation, complex 

species were formed during the reactions. The acetaldehyde (CH3CHO) and acetic acid 

(CH3COOH) were the principal products formed at the beginning of the ethanol oxidation. In 

addition to these products, methane (CH4) and ethane (C2H6), as well as CO adsorbate, were 

generated as secondary products. The intermediate (CO species) was the main poisoning 

product that blocked the active sites of the GO/Co3O4 catalyst and subsequently passivated its 

surface. In turn, formaldehyde (HCHO) and formic acid (HCOOH) were the main 

intermediates in methanol oxidation, as evidenced from the mass spectrometric (MS) analyses 

(Figures S10 and S12a). The HCHO solutions were possibly oxidized at the heterogeneous 

catalyst surfaces of GO/Co3O4, thereby leading to the formation of CO2 and other 

intermediates, such as formate (HCO2
-
) anions. Our findings indicated the complete oxidation 

of HCHO to CO2 (i.e., as a secondary product) through the decomposition of carbonate 

species, which is consistent with the non-active mechanism reported by Motheo et al.
 [39]

  

 

Figure 4C–D shows that the GO/Co3O4/GC electrode patterns have higher oxidation current 

and lower onset potential than the Co3O4/GC electrode in pure alkaline conditions. For 

example, the onset potentials of the porous GO/Co3O4-based electrodes are about 0.385 and 

0.36 V (vs. Hg/HgO) for methanol and ethanol oxidation, respectively. However, the bare 

Co3O4 modified electrode displays onset potentials of 0.45 and 0.42 V (vs. Hg/HgO) for 

methanol and ethanol oxidation, respectively (Figure 4C and 4D). Interestingly, the observed 

onset potential for the proposed GO/Co3O4/GC catalyst is much lower than those of electrodes 

fabricated using Co3O4, 
[15,40]

 NiO 
[41]

, and Co3O4/NiO nano-crystal arrays. 
[40]

 The superior 

electroactivity for alcohols electrooxidation in terms of lower onset potential and remarkable  

current density of porous GO/Co3O4 racks compared with stacked S-GO/Co3O4 blocks 

indicates the effective role of dense Co
3+

 sites along densely exposed {112} or {112}/{111} 

facets and hierarchically non-stacked sheet racks in AOR performance.   

Our findings (Figures 4C and 4D) provided evidence that the catalytic activity of the 

GO/Co3O4 rack and block catalysts toward MOR was higher than that of EOR. The AOR 

trend and rate are significantly correlated with the structures of alcohol (CH3OH or 

CH3CH2OH) functional groups. The high current density with MOR (Figure 4C) indicated 

that the MOR kinetic pathway was more facile than that with EOR.
 [42]

 Thus, the slow rate of 

EOR kinetics can increase the amount of incompletely oxidized carbonaceous residues on the 
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GO/Co3O4 catalyst surfaces, which subsequently block the catalyst active sites and then 

inhibit the anodic reaction rate.
 [43]

 Furthermore, the increased number of carbon atoms of 

ethanol (CH3CH2OH) can gradually diminish the catalytic activity because of the C–C bond 

cleavage and the reaction intermediates, leading to the restriction of EOR kinetics.   

To further assess the reproducibility of the mesoscopic porous hybrid GO/Co3O4 for AOR, the 

retention of long-term electrode efficiency was investigated through continuous cycling in 1 

M methanol at a 50 mVs
−1 

scan rate (Figure 6A). The current oxidation density at 0.6 V 

performs 75.43% retention of its original value after 1000 cycles. This reduction of the 

electro-oxidation capacity (24%) with successive potential scans might result from the 

consumption of ethanol and adsorption of oxidative intermediates , such as CO, CO2, HCOOH, 

HCOH, and HCOOCH3 at the electrode surfaces; this subsequently poisoned the electrode. 

[44–47]
 However, in the fresh electrolyte-based methanol oxidation assay, the current density at 

0.6 V retained 85.2% of its original value after 1000 cycles. The retention of electrocatalytic 

activity might have resulted from the unique structural stability of GO/Co3O4/GC sheet racks. 

(Figure 6) 
Durability of the electrode catalyst is an evoked factor to evaluate the performance of DAFCs. 

Current-time relationships were measured using chronoamperometry technique in the 

presence of 1.0 M ethanol and methanol at an applied voltage of 0.55 V (vs. Hg/HgO) for 

10,000 s (Figures 6B–C and S11). At the beginning of AOR, the oxidation currents of the 

GO/Co3O4/GC rack-, S-GO/Co3O4/GC block-, and Co3O4/GC rack-based electrodes were 

relatively high, indicating improved reaction kinetics at the applied potential. The Co3O4/GC 

racks-based electrode shows a sharp L-curve decay in the oxidation current at the initial time 

of AOR. In turn, the GO/Co3O4/GC rack- and S-GO/Co3O4/GC block-based electrodes show 

a pseudo-steady state of a gradual decay up to 10000 s (Figure 5B–C). Furthermore, the 

current density increased in the order GO/Co3O4/GC > S-GO/Co3O4/GC > Co3O4/GC during 

the whole elapsed time, indicating the superior electroactivity and fast reaction kinetics of the 

GO/Co3O4/GC rack-based electrode. The drop in the current density was attributed to the 

accumulation of alcohol molecules and intermediates on the electrode surfaces, leading to 

poisoned electrodes. Significantly, the current density at the end of the test duration (10000 s) 

of the GO/Co3O4/GC racks was higher than that of the S-GO/Co3O4/GC blocks, indicating the 

effect of hierarchal sheet racks in the enhancement of the poisoning resistance. The slight 

decay curve in the GO/Co3O4/GC-based electrode indicates the stability of vertical and non-

stacked edge scale of the sheet racks with a running time of 10000 s.  
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To evaluate the charge transfer resistance and AOR kinetics of GO/Co3O4/GC rack-, S-

GO/Co3O4/GC block-, and Co3O4/GC rack-based electrode catalysts, electrochemical 

impedance spectroscopy profile was employed on an open circuit potential with a 5 mV 

amplitude in the range of 100 kHz to 0.01 Hz in 0.5 M NaOH. The Nyquist plots (Figure 6D) 

of the catalysts show similar behavior, with a semicircle at high frequency and a straight line 

at low frequency corresponding to the related charge transfer res istance and capacitive 

behavior of Co3O4. 
[42]

 The equivalent circuit components of solution resistance (Rs), redox 

capacitance (C), and charge-transfer resistance (Rct) are due to electrolyte resistance, charge-

transfer resistance, and redox capacitance, respectively. The semicircle diameters (Figure 6D, 

insert) decrease in the order GO/Co3O4/GC < S-GO/Co3O4/GC < Co3O4/GC, indicating that 

the GO/Co3O4/GC racks have the highest charge transfer and electronic configuration.  

 

The electrochemical findings (Figures 4 and 6) clearly show the benefits obtained through our 

proposed catalyst and confirm its excellent activity for alcohol electrooxidation under alkaline 

conditions compared with that of commercially used Pt/C electrode. For example, the 

chronoamperometric response (Figure 6B–6C) indicated that the GO/Co3O4 catalyst was less poisoned 

by the adsorbed species and intermediates. Along with this  result, the present catalyst showed 

excellent durability compared with the commercially available Pt/C (20 wt% Pt), as illustrated in 

Figure S14. Our findings, in general, showed evidence that the increased current density and lower 

onset potential are indicative of the excellent activity of GO/Co3O4 rack catalyst compared with the 

previous reports on noble metal catalysts in real DEFC.  [48] Moreover, the durability test (Figure 6) 

under potential cycling conditions revealed that the GO/Co3O4 rack catalyst had superior stability than 

other noble-metal free electrocatalysts (Table S2 and related references), thereby indicating its 

potential feasibility in DAFC systems.       

 

The superior electroactivity of the GO/Co3O4/GC electrode catalyst in terms of current 

oxidation density, low onset potential and charge transfer capacitance, long-term stability and 

reproducibility, surface electron movement, and molecular alcoholic diffusivity (Scheme 1)  

indicates that the proposed hybrid GO/Co3O4 racks might benefit from the integrative 

contribution of both the Co
3+

 component and the carbon support. Moreover, the vertically 

fattened GO/Co3O4 sheet racks with mesoscopic window-room entrances, marginal 

protruding ridge-like arms, and double-diffusive mesopores (i.e., 5.4 and 14.4 nm, Figure 3B) 

enable (i) fast electrical charge movements by maximizing the diffusion and density of trigger 

pulse electrons during AOR; (ii) offers more accessible sponge-like interfaces that may form 

between the electrolyte and GC-modified electrode; and (iii) hooks the ethanol/methanol 
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molecules. The mesospace-window hooks, dense and active {112}/{111} Co
3+

 and O
2−

 sites, 

long-range sheet ordering, vertical sheet racks, mimicked sharp-pointed outgrowth prickles 

covered with sheath surfaces, and non-stacked layers enable electron diffusion and 

movements with little resistance and ensure contact between every mesocrystal surfaces and 

the electrolyte in a multi-directional accessibility. Furthermore, the structural stability of 

GO/Co3O4/GC sheet with neat micro/nano-groove room, butterfly wing scale, and wall grove  

hierarchy greatly improves the electrical c onductivity and electron transport. The GO/Co3O4 

sheet racks with {112} plane and interface-generated surface {112}/{111} provide more 

catalytically active and chemically active sites , as well as facile electron movement along the 

surfaces of vertically oriented sheets and through the open pores that lead to fast reaction 

kinetics.  

 

4. Conclusion 

 
In summary, we developed a scalable and cost-effective one-pot route to synthesize 

mesoscopic porous S-GO/Co3O4 sheet-on-sheet blocks and GO/Co3O4 racks that are markedly 

oriented in (i) neat micro/nano-groove rooms, (ii) butterfly wing scales, and (iii) wall groves 

as efficient exposed surface anodic catalysts for DAFCs. Results showed that electron 

diffusion and movements with little resistance were attributed to the controlled mesospace-

window hooks, dense and active {112}/{111} Co
3+

 and O
2−

 sites, long-range morphological 

sheet ordering, vertical sheet racks with mimicked sharp-pointed outgrowth prickles covered 

with sheath surfaces, and vertically non-stacked edge scales. These factors also ensure contact 

between the electrolyte and every active site located in a multi-directional accessibility, such 

as (i) surface domains, (ii) 3D central crystal, (iii) 1D dense plate sheet, and (iv) active-top-

surface atom arrangement of Co3O4 MCs. Significantly, the GO/Co3O4 racks exhibit superior 

electroactivity for alcohol electrooxidation in terms of current oxidation density, low onset 

potential and charge transfer capacitance, long-term stability and reproducibility, surface 

electron movement, and molecular alcoholic diffusivity compared with those of S-GO/Co3O4 

blocks and naked Co3O4. Importantly, the hybrid GO/Co3O4 catalyst shows improved long-

term durability of up to 10000 s, which may have resulted from its excellent structural 

stability. This finding opens a new avenue for massive-scale fabrication of efficient 

electroactive catalysts and for the practical use of DAFCs. 

 

5. Experimental section  

5.1 Synthesis of mesoscopic hybrid sheet GO/Co3O4 racks and S-GO/Co3O4 blocks 
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The mesoscopic hybrid sheet-on-sheet GO/Co3O4 racks and S-GO/Co3O4 blocks were 

synthesized through one-pot and simple hydrothermal protocol. For the typical synthesis of S-

GO/Co3O4 blocks, 0.1 M of CoCl2·6H2O (1.428 g) and 1.0 M of urea (3.6 g) was first 

dissolved in 60 mL Milli-Q water through stirring until a clear pink solution was obtained. 

Second, 80 mg of GO was fabricated from natural graphite powder (see Supporting 

Information), dispersed into the reaction solution, and subsequently stirred for 3 h to evenly 

disperse the GO. Third, the resulting slurry was sealed in a Teflon-lined stainless and 

thermally treated at 160 °C for 12 h before cooling naturally to room temperature. The 

obtained GO/Co(CO3)0.5(OH)x·0.11H2O precipitate was filtered, rinsed with double distilled 

water followed by absolute ethanol several times, and then dried in air for 12 h at 80 °C. 

Fourth, the GO/Co(CO3)0.5(OH)x·0.11H2O powder was heated to 400 °C with a ramp of 5 °C 

min
−1 

under argon flow and annealed at the peak temperature for 4 h to obtain S-GO/Co3O4 

nanocomposite sheets. Following the typical procedure, the addition of 0.5 M HMTA (4.205  

g) instead of urea in the first step led to the fabrication of sheet-on-sheet GO/Co3O4 racks. 

Furthermore, the Co3O4 sheet racks were fabricated without the addition of GO powder.   
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Figure 1 

 

Figure 1. Top-view FE–SEM images of the hierarchical GO/Co3O4 sheet racks (A–C) and 
stacked sheet blocks (D) fabricated via a facile one-pot hydrothermal approach. The DFT 

molecular structure simulations of hierarchically GO/Co3O4 non-stacked sheet racks (E-G) 
showed three basic types of scalability in different orientational shapes such as a neat of 
micro/nano-groove rooms (E), butterfly wing scales (F), and wall groves (G), and stacked S-
GO/Co3O4 sheet-on-sheet blocks oriented in vertical tower shapes (H). (I, J) low-and high 

magnification of HAADF-STEM micrographs of mesoscopic porous hybrid GO/Co3O4 at 
different locations illustrating the porous nature of the sheet racks shaped in a neat of groove 
rooms. (J) High magnification HAADF-STEM micrographs showing the atomic structure of 
the developed nanostructures along the dominant {111/112} plane of interfaces. (K) The 

corresponding electron diffraction (ED-STEM) pattern down the projection {112} plane. (L) 
High magnification HAADF-STEM micrographs showing the atomic structure of the 
developed stacked sheet blocks along the top dominant {111} plane. 
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Figure 2 

 

 

Figure 2. (A–F) Schematic representation of the surface domain modeling by DFT of 
hierarchically stacked S-GO/Co3O4 sheet-on-sheet blocks (A, C, and D) and GO/Co3O4 non-

stacked sheet racks-like wall groves that vertically aligned (B, E and F). (C, E) Theoretical 

modeling by DFT of three-dimensional (3D) simulation models of the central S-GO/Co3O4 

and GO/Co3O4 crystal projections along the {111} (C), and {112} (E) planes, respectively. (D, 
F) The central, dense arrangement of active Co

3+
 (green), and O

2-
 (red) sites along the 1D 

crystal center of  S-GO/Co3O4 (D) and GO/Co3O4 (F) crystal projections along the {111} (D), 

and {112} (F) planes.  
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Figure 3 

 

 

Figure 3 Raman spectroscopy investigations of the mesoscopic porous GO/Co3O4 (a) and 
Co3O4 (b) sheet racks. The Raman shift spectra of GO/Co3O4 (a) and Co3O4 (b) measured at a 

laser beam intensity of 633 nm. (B) N2-adsorption/desorption patterns measured at 77K and 
the corresponding pore size distributions of the calcined GO/Co3O4 (a) and Co3O4 (b) sheet 
racks, and S- GO/Co3O4 sheet-on-sheet blocks (c). The insert displays the related pore sizes 
analyzed by NLDFT theory. The y-axis of N2 isotherms of S- GO/Co3O4 shifted vertically by 

10 time in magnitude.   
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Figure 4 

 

 

Figure 4 (A) CVs of mesoscopic porous hybrid GO/Co3O4/GC electrode racks recorded in 

0.5 M NaOH N2-saturated electrolyte in presence of 1 M methanol at room temperature and at 
various scan rates. (B–D) Electrochemical properties of Co3O4/GC, GO/Co3O4/GC, and S-
GO/Co3O4/GC electrodes recorded in 0.5 M NaOH N2-saturated electrolyte in the absence or 
presence of 1 M ethanol or methanol at a scan rate of 50 mV s

−1
 at room temperature. (B) CV 

profiles of the modified electrodes in 0.5 M NaOH, (C) CVs of the modified electrodes 
recoded in 1 M methanol, and (D) CVs of the modified electrodes recoded in 1 M ethanol.   
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Scheme 1 

 

 

Scheme 1. Schematic mechanism of electrooxidation of ethanol or methanol in multiple steps, 
resulting in 12 or 6 electrons transferred from the electrolyte phase, respectively, to the 
binding active plane {112} sites measured by density functional theory (DFT). (A &B) the 
diffusion pathways of alcohol molecules (ethanol) along the interior-double layered 

GO/Co3O4 sheet surfaces (A) and along the crystal center (B) oriented into the mesospace 
voids of the hierarchical GO/Co3O4 sheet structures. (A-top) An orientational view of the GO 
dense electronic surface layers along the hierarchical GO/Co3O4 sheet racks. We strongly 
believe that the alcohols molecules react with CoOOH layer and produce CO2. While the Co 

species and unoxidized intermediates accumulate at the catalyst surface and over active sites 
and subsequently poisoning the catalyst, leading to block the exposed active sites, reduce the 
oxidation current, and further weak the reaction kinetics. 
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Figure 5 

 

 

Figure 5 (A–D) DFT theoretical models of Co3O4 crystal structures of both sheet racks and 
blocks (A), top-surface crystal unit (B-D), and (E,F) the distribution of electrostatic potential 
(EP) and vertically geometric ethanol-to-surface orientation (E-F) at the catalytically active 
surfaces of GO/Co3O4 sheet racks along the single crystal {112} (B) and interface crystal 

{112}/{111} (D) planes, and the active surfaces of S-GO/Co3O4 sheet blocks along the single 
crystal {111} plane (D) that dominated in the hierarchal Co3O4 structures (A). (E-F) 
Optimized molecule-to-surface binding structure along the single crystal {112} (E), and 
{111} (F) planes of GO/Co3O4 sheet racks and S-GO/Co3O4 sheet blocks, respectively.  The 

molecular orientation of ethanol molecule in vertical alignment around the potential electron 
distribution surfaces indicates the dense configuration around the active positively (Co

3+
) and 

negatively (O
2-

) charged atoms on the top-exposed surfaces of crystal {112}/{111} interface 
(D), and {112} (E) plane of GO/Co3O4 sheet racks, and {111} (F) plane of S-GO/Co3O4 sheet 

blocks, respectively. Insert (D-F) are the adsorption energy (Eads) and thermodynamically 
stable binding energy (ETSB) of ethanol onto {111}/{112} (D) and{112} (E) of GO/Co3O4 
sheet racks, and {111} (F) planes of S-GO/Co3O4 sheet blacks that calculated by DFT.  
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Figure 6 

 

 

Figure 6 (A) CVs of mesoscopic porous hybrid GO/Co3O4/GC electrode recorded in 0.5 M 
NaOH N2-saturated electrolyte in presence of 1 M methanol at room temperature after 
continuous cycling. (B, C) Long term stability recorded by CA test of Co3O4/GC and 

GO/Co3O4/GC electrode sheet racks, and S-GO/Co3O4/GC electrode sheet blocks  recorded in 
0.5 M NaOH N2-saturated electrolyte and 1 M alcohols for 10,000 s at a fixed potential of 
0.55 V (vs. Hg/HgO). (B) Current–time relationships in 1 M methanol, and (C) Current–time 
relationships in 1 M ethanol. (D) EIS profiles of Co3O4/GC and GO/Co3O4/GC electrode 

sheet racks, and S-GO/Co3O4/GC electrode sheet blocks recorded in 0.5 M NaOH solution 
and 1 M methanol at 5 mV amplitude. The equivalent circuit components described in the 
Nyquist plots are the redox capacitance (C), and solution resistance (Rs) of Co3O4/GC and 
GO/Co3O4/GC racks-, and S-GO/Co3O4/GC blocks-based electrodes and charge-transfer 

resistance (Rct) at the electrode–electrolyte interface, respectively.  
 

 

 


