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A B S T R A C T

Voxel-based multimaterial jetting additive manufacturing allows fabrication of digital materials (DMs) at the
meso-scale (∼1mm) by controlling the deposition patterns of soft elastomeric and rigid glassy polymers at the
voxel-scale (∼90 μm). The digital materials can then be used to create heterogeneous functionally graded
material (FGM) structures at the macro-scale (∼10mm) programmed to behave in a predefined manner. This
offers huge potential for design and fabrication of novel and complex bespoke mechanical structures.
This paper presents a complete design and manufacturing workflow that simultaneously integrates material

design, structural design, and product fabrication of FGM structures based on digital materials. This is enabled
by a regression analysis of the experimental data on mechanical performance of the DMs i.e., Young’s modulus,
tensile strength and elongation at break. This allows us to express the material behavior simply as a function of
the microstructural descriptors (in this case, just volume fraction) without having to understand the underlying
microstructural mechanics while simultaneously connecting it to the process parameters.
Our proposed design and manufacturing approach is then demonstrated and validated in two series of design

exercises to devise complex FGM structures. First, we design, computationally predict and experimentally va-
lidate the behavior of prescribed designs of FGM tensile structures with different material gradients. Second, we
present a design automation approach for optimal FGM structures. The comparison between the simulations and
the experiments with the FGM structures shows that the presented design and fabrication workflow based on our
modeling approach for DMs at meso-scale can be effectively used to design and predict the performance of FGMs
at macro-scale.

1. Introduction

Additive manufacturing (AM) based on homogeneous metal,
ceramic or polymer materials has made inroads into manufacturing
environments [1] such as aerospace, medical devices, spare-part ap-
plications, and short-run production environments [2,3]. These in-
dustries take advantage of the increased geometrical complexity [4],
and the mass-customization capabilities [5] of AM. However, the true
advantage of AM technologies in product design and manufacturing is
when:

“Product performance is maximized through the synthesis of shapes,
sizes, hierarchical structures and material compositions, subject to the
capabilities of AM technologies” [6].

In this regard, selective deposition of heterogeneous materials offers

unprecedented possibilities by enabling the fabrication of 3-dimen-
sional (3D) objects composed of multiple materials with different
physical and/or chemical properties [7]. Digital fabrication of complex
structures composed of functionally graded materials (FGMs) is now
possible [8]. FGMs display complex spatially varying material proper-
ties [9]. For example, combinations of rigid and soft materials can form
custom-designed anisotropic properties or property gradients that
cannot be generated otherwise within a single build using a single
material system [10]. Controlled deposition of multiple materials pro-
vides extensive capabilities in engineering design by enabling the cus-
tomization of material microstructures and therefore, programming of
the part to achieve prescribed functionality [11–17].

Multimaterial AM systems with the ability to vary material com-
positions locally during the build show great potential for FGM appli-
cations. AM technologies are evolving in this direction, examples
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include vat-photopolymerization, material extrusion, binder jetting,
directed energy deposition, powder bed fusion, and material jetting
process categories [18,19]. The design and manufacturability of AM-
derived FGMs is limited to how discretely the AM system can selectively
deposit the base materials [20]. Among the commercially available
multimaterial AM systems, material jetting 3D printers are known for
their high resolution [21,22].

Material jetting incorporates the widest variety of colors and ma-
terials into a single manufacturing system among all AM technologies
[20]. Due to the discrete and digital nature of the deposition system, the
multimaterial system obtained through this process is termed digital
materials (DMs) [23]. DMs, in our context, are effectively homogenous
materials made of discrete elements of two or more isotropic materials.
The basic principle of the material jetting technology is to use a block of
piezoelectric inkjet heads with multiple nozzles that are used to deposit
droplets of multiple photopolymer resins following computer-generated
deposition patterns. The droplets are cured and flattened to a sheet by
an ultraviolet light source and a roller respectively, both adjacent to the
inkjet heads. These cured and flattened droplets form the basic building
blocks i.e. volume elements or voxels which when put together can
realize any solid freeform subject to the usual restrictions of support
material removal. Material jetting 3D printers, such as Stratasys J750
which we used in this study, allow production of multimaterial 3D
structures using user-defined voxel patterns (called voxel printing) in
addition to the standard practice of printing with STL (stereo-
lithography) files.

The mechanical behavior of parts made by material jetting can be
defined by the combined effect of mechanical properties of the base
materials used at the voxel-scale (∼90 μm). This multimaterial system
once realized can then be viewed as a new composite or a so-called
digital material at the meso-scale (∼1mm) with properties different
from the constituent materials at the voxel-scale. Mathematically, there
is no unique arrangement or pattern of voxels to obtain a desired ma-
terial response. Stratasys provides pre-defined proprietary patterns for a
few digital materials through the standard printing mode [21]. How-
ever, one can create a continuous gamut of digital materials with the
help of voxel printing [10,24,25]. This gives extensive design freedom
to create DM-based FGMs as one can now design digital materials with
desired properties and gradations within the physical limits imposed by
the choice of the constituent base materials. The design of FGM struc-
tures requires the simultaneous integration of material design, struc-
tural design and product fabrication [11,22].

We found two common approaches to the design of FGM structures
in the literature: (a) prescribed gradation patterns generated intuitively
(e.g. linear, exponential, sinusoidal) or informed by data obtained ei-
ther from experiments or simulations [10,26–29], and (b) design au-
tomation via optimization [24,25,38,30–37]. Chiu and Yu [26] used
stresses obtained from finite element (FE) simulations to drive the
material gradation patterns while Sengeh and Herr [28] connected
tissue density data obtained from MRI scans to material gradation
within a limb prosthetic. Likewise, Doubrovski et al. [10], connected
local tissue stiffness obtained from experiments to gradation. Design
automation methods, such as topology optimization (TO) [39,40], in-
volve an iterative procedure combining finite element (FE) analysis
with an optimization algorithm to obtain an optimal arrangement of
material within the design domain subject to prescribed constraints and
boundary conditions. TO and related techniques readily accommodate
multiscale, multimaterial design where the material layout at both
micro- and macro-scales can be generated [15,25,41–44], thus making
it attractive for the design of FGMs [25,30–34,36–38].

Among the design automation based FGM design approaches, some
[30,31,34,36] do not connect the FGMs to any specific microstructure
while others [32,33,37,38] connect them to lattice or cellular micro-
structures. Weeger et al. [24], and Zhu et al. [25], are two of the design
automation efforts that utilized DM-based FGMs. In any FGM design
approach, the prediction of the overall mechanical response at macro-

scale requires connecting the meso-scale design variables such as vo-
lume fractions and orientations to the macro-scale properties such as
Young’s modulus and density either through concurrent numerical
modeling of the micro-scale or high-fidelity material models, typically
based on mathematical homogenization.

Mathematically, there is no unique way to connect material gra-
dation to the underlying DMs. Hiller and Lipson [27], in their work
demonstrate different ways of doing so including random, mesh, layer,
dither and longitudinal material distribution strategies. To obtain iso-
tropic material properties, random distribution [24,45] and dithering
[10,29,46,47] approaches were used. Zhu et al. [25] used inverse
homogenization while Weeger et al. [24] used random dithering for
DM-based FGM design.

Most studies on the characterization of DMs use the standard
printing mode of material jetting machines and do not explore the full
capabilities of voxel printing. The standard printing mode refers to
material combinations provided by Stratasys where the volume frac-
tions of soft and rigid polymers and the deposition patterns are hidden
from users. These material combinations are preconfigured in the pre-
processing software [20]. Previous research has used this standard
printing mode to study the mechanical performance of DMs in terms of
anisotropic behavior of the elastic modulus, the ultimate tensile
strength, and the percentage of elongation at break with varying pro-
cess and material ageing conditions, specifically for rigid Vero-
WhitePlus resins in [48,49] and combinations of DM in [50]. Salcedo
et al. [8] fabricated and tested tensile specimens with embedded re-
gions of FGMs comprised of the pre-defined DMs to generate and va-
lidate material models. Similarly, different hyperelastic material
models were used to simulate the tensile behavior of predefined DM
compositions by Ryu et al [51]. It was found that the material char-
acterization of the composite DMs exhibit significant non-linearity
under large strains with a rate-dependent behavior [52], with proper-
ties similar to conventional short-fiber composites [53]. Altogether,
current material models are limited in their ability to describe the
manufacturing process and microstructural dependency to accurately
predict the behavior of DMs and thus affect the design of FGM com-
ponents. A need for a probabilistic approach to material modeling that
accounts for uncertainties was proposed [54]. Such an approach could
aid in effective design of FGM structures by considering the process-
structure-property relationships and the underlying uncertainties.

Designing and simulating FGM parts is challenging, especially when
the properties of the graded material vary rapidly in space. In this case,
grading is reflected at both meso-scale (∼1mm) and macro-scale
(∼10mm) i.e., the overall structural scale [54]. To design FGMs, we
need to effectively describe the microstructural behavior of DMs with a
representative material model, which can be used to effectively simu-
late the material behavior arising from the non-uniform material dis-
tributions. The standard approach based on homogenization procedures
entails identifying various microstructural descriptors (such as volume
fraction, geometry and topology of the arrangement of the constituents
in the DMs) and understanding the underlying mechanisms that tie the
microscale mechanics to the macro-scale structural behavior. Homo-
genization procedures generally preclude process-induced uncertainties
or variations such as anisotropy or defects.

We adapted here an approach based on regression analysis where
we fit the DM characterization results to a cubic regression model to
predict the macro-scale behavior of DM-based FGMs. The use of re-
gression analysis carries an inherent advantage of not only capturing
the microstructural behavior but also the process-structure-property
relationships. In our model, the microstructural descriptor is the volume
fraction of the rigid material within the DM and the process parameter is
printing orientation which accounts for process-induced anisotropy.
Regression models could also lead us towards a probabilistic approach
to material modeling owing to the ability to capture prediction intervals
representing a range of likely values or variation for new observations.

In summary, this paper presents a design and fabrication workflow
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for DM-based FGM structures. To facilitate the material modeling and
thereby the design process, we fabricated and tested DM tensile speci-
mens each with different volume fractions (microstructure descriptor)
and print orientations (process parameter) through random yet con-
trolled deposition patterns of rigid polymer, VeroClear (E˜1 GPa), and
soft elastomer, TangoPlus (E˜1MPa) [15]. Based on the material char-
acterization results, we created a series of regression equations to de-
scribe the deformation and failure properties of the DMs including the
effect of the printing orientation to account for process-induced aniso-
tropy. We used the regression-based material model to then demon-
strate with simple planar structures a workflow that integrates design
and fabrication of DM-based FGM tensile structures with varying ma-
terial gradients. We employed two different design approaches. In each
case, the designed structures were fabricated and tested to validate the
material model and the workflow. In effect, we present here a general
methodology for characterization, modeling, design and fabrication of
DM-based FGM structures making it one of the first few efforts to
connect material characterization and FGM structural design to fabri-
cation and validation.

2. FGM design and manufacturing workflow

In Fig. 1, we present the developed workflow with its four key steps
identified. The workflow begins with the engineering problem specifi-
cation i.e., structural geometry, load, boundary conditions and design
goals along with the relevant material model for DMs. This material
model could be based on theory, simulations or experiments. Here, we
relied on an experiment-driven regression-based model that connects
mechanical properties to microstructural descriptors and potentially,
process parameters. The DM characterization experimental setup and
the results are presented in Section 3.

The second step of the workflow deals with FGM structural design
wherein the design goal is achieved by either: a) prescribed (see Section
4.1) or b) automated design approach (see Section 4.2). In the pre-
scribed design approach, we used intuitive gradation patterns for the
material properties and applied them to structures to tailor their me-
chanical response. For the automated design approach, we employed a
TO method to generate optimal FGM structures. The FGM realization
step helps translate DM-based FGM designs to manufacturable dis-
tributions of rigid and soft polymers, thus connecting the design step to
the final step of product fabrication via voxel-based multimaterial jetting
(see Section 3.1 for details). The workflow enables seamless integration
of design and fabrication while also enabling simultaneous design of
material at meso-scale through DMs and structure via gradation of DMs.

3. Methods

3.1. Digital materials fabrication and process planning

The material jetting AM system used for the experiments is Stratasys
J750. The machine consists of a block of eight inkjet print-heads that
feature full-color printing capabilities and combine up to five materials

in the same printing process. The material jetting process consists of
inkjet-based deposition of low viscosity photopolymer resins onto the
build plate, creating an array of droplets and the object layer by layer.
Each layer is cured by an ultraviolet lamp directly after deposition and
then flattened with a mechanical roller in a continuous process. Each
inkjet head is composed of 96 circular nozzles arranged in a linear
array, each measuring 0.5 mm in diameter [55]. The two photo-
polymers used in this work were the flexible TangoPlus (FLX980) and
the rigid VeroClear (RGD810). For simplicity, VeroClear and TangoPlus
will be referred to as Vero (V) and Tango (T) respectively. We defined
the fraction of Vero by volume in a unit volume of the DM as volume
fraction, f .

To produce DMs with different volume fractions, we used the voxel
printing capability which gives us the ability to program the material
jetting process using a set of pixelated images in PNG (Portable
Network Graphics) format. Each image refers to a horizontal slice of the
3D model to be printed that is parallel to the build platform and has one
layer of voxels in the normal direction. The image’s pixels refer to lo-
cations of voxels within this layer and are each assigned an arbitrary
color. These colors are mapped before 3D printing to the specific ma-
terials to be jetted with one of the colors representing void. The image
resolution and the number of slices are commensurate with the
bounding box of the 3D printed model and the voxel size. Thus, a DM
with a desired volume fraction, f is obtained by randomly assigning the
voxels in each slice to Vero (Tango) with a probability of f (1- f ).

Fig. 2 shows the schematic representation of the key machine ele-
ments as well as the principles of the voxel-based material jetting
process: (a) represents the printing block which moves in the X and Y
directions to deposit the resin, (b) is the build platform which is re-
sponsible for the motion in Z direction, (c) is the ultraviolet lamp re-
sponsible for curing the photopolymer resin, (d) shows the 8 print-
heads of the print-block, (e) shows the representation of the roller that
is used to flatten the deposited layer of photopolymer resin, (f) re-
presents the DM specimen under fabrication, (g) shows a section of the
pixelated image corresponding to a slice of the 3D model and a zoom-in
depicting the voxels and (h) is the layout of samples with different build
orientations.

In Fig. 2(g), the white and gray pixels correspond to Vero and Tango
respectively. In addition, a schematic representation of the voxels is
also shown. The smallest voxel size achievable with Stratasys J750 is
42.33, 84.66, and 13.5 μm in the X, Y and Z directions, respectively
[56]. A custom voxel size could be chosen but the voxel dimensions in
X, Y or Z directions must be an integer multiple of the minimum voxel
sizes. We chose a recommended voxel size of 42.33 (Vx) x 84.66 (Vy) x
27 (Vz) μm for faster print times while retaining the high print re-
solution.

As part of the FGM realization step of the workflow (step 3 in
Fig. 1), an extended cellular automaton-based pseudorandom number
generator as implemented in Mathematica was used to create the image
slices that comprise the DM-based FGM structures. As done with DMs,
each pixel was associated with Vero (Tango) with a probability equal to
the local volume fraction, f ( 1- f ). This method allows us to distribute

Fig. 1. FGM design and manufacturing workflow: 1) Problem specification includes statement of (a) the digital material model and (b) the engineering problem, 2)
FGM structural design, an FGM design obtained via automated design approach is shown in (c), 3) FGM realization connects the gradation patterns to printable
distributions of DMs (example in (d) with black and white pixels representing different materials), 4) Product fabrication via multimaterial AM (a 3D printed mockup
with transparent and magenta colored materials).
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randomly yet in a homogeneous fashion the two photosensitive resins
while guaranteeing a prescribed volume fraction at the meso-scale
(∼1mm). We can thus design FGMs at the macro-scale (∼10mm) with
varying material properties by distributing the DMs according to a
prescribed distribution or gradation of volume fractions, f x y z( , , ).

3.2. Digital materials characterization

We prepared and characterized, via voxel printing, several rectan-
gular DM tensile specimens (see Fig. 2(h)), each with a uniform volume
fraction to obtain their mechanical properties. Specifically, we em-
ployed a design of experiments (DOE) method to measure Young’s
modulus, elongation at break and ultimate tensile strength and de-
termine their dependence on the microstructural descriptor (i.e. the
volume fraction) and the manufacturing process parameter (i.e. the
printing orientation).

We tested six Vero volume fractions ranging from =f 1, which re-
presents 100% Vero to =f 0, which represents 0% Vero or equivalently
100% Tango. In addition, the samples were oriented in three different
build orientations XY, YX and ZY as shown in Fig. 2. Both XY and YX are
parallel to the build plate, whereas ZY is oriented in the perpendicular
direction. The dimensions for the tensile specimen printed horizontally
(i.e. XY and YX) were 25× 5 x 60mm with a cross-sectional area of
125mm2, whereas the specimens oriented vertically (i.e. ZY) were
25×5 x 50mm with the same cross-sectional area of 125mm2. In the
case of the ZY tensile specimens, the gauge length was reduced by
10mm to limit the printing time. The DM characterization was con-
ducted using a uniaxial tensile test on an Instron model 5982 me-
chanical testing machine with a 100 kN load cell. With a pneumatic
gripping force of approximately 10 kN, the specimens were elongated
until failure at a strain rate of 0.4mm/sec. These characterization data
were used to build the regression models for Young’s modulus (E), ul-
timate tensile strength (UTS), and elongation at break (EAB) as a
function of f per each build orientation XY, XZ, and YZ. Table 1 shows
the two independent variables used to create the regression model for
the mechanical properties of the multimaterial Vero-Tango system.

As part of the DOE, an Analysis of Variance (ANOVA) test was
conducted. The ANOVA of the collected data was carried out at a
confidence level of 95% (α=0.05). The ANOVA test included both
independent variables: f and sample orientation (Orient.). During the
analysis, f was treated as a continuous factor subject to 0 f 1;
whereas, sample orientation was treated as a categorical factor,

ultimately creating one equation per sample orientation XY, YX, and
ZY. Eq. (1) defines the scalar form of the implemented third order
polynomial regression model:

= + + + +
= = =

y x x xo
i

k

i i
i

k

ii i
i

k

iii i
1 1

2

1

3

(1)

Here, is the unobserved random error, with appropriate subscript
represents the coefficients of the regression model for each term (i.e.
intercept , first order i, quadratic ii, and cubic iii). These are calcu-
lated by the least squares method. xi represents the independent vari-
able volume fraction f , xj represents sample orientation, which is
treated as a categorical variable, and y corresponds to the dependent
variables (i.e. Young’s modulus, ultimate tensile strength, and elonga-
tion at break).

To construct the regression models, all first, second, and third order
terms were included in the test. The statistical significance of the terms
was assessed by looking at the test’s p-value. If the p-value was below
the specified significance level (i.e. α= 0.05), the term was declared to
be statistically significant and the test’s null hypothesis was rejected
[57]. These best fit models were later used to model the DMs in the
FGM structural design step of the workflow (step 2 in Fig. 1).

3.3. Digital material model

We begin with a brief discussion of the uniaxial tensile test results
before presenting the regression-based material model for DMs. Fig. 3
shows the stress-strain curves obtained during the uniaxial tension tests
of the DM tensile specimens with different volume fractions and or-
iented along XY. The results show that the specimens with higher vo-
lume fractions are highly nonlinear while those with low f behave
linearly with an increased ability to elongate up to 130% of the initial
length.

One may see that the ultimate strain decreases with the increase of
Vero volume fraction. On the contrary, ultimate tensile strength

Fig. 2. Schematic representation of the material jetting process, key machine elements, voxel resolution and print orientations.

Table 1
Design of experiment for the digital material characterization.

Independent variables Nomenclature Levels

Vero volume fraction f 1 0.8 0.6 0.4 0.2 0
Sample orientation Orient. XY YX ZY

Fig. 3. The stress-strain curves of the XY oriented tensile specimens with a
volume fraction: f0 1 subject to a strain rate of 0.4mm/sec. Also shown are
the representative slices of the respective tensile specimens to illustrate the
composition of the tested DMs.
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increased with increased Vero volume fraction. For specimens with f ≥
0.8, the results show higher ultimate tensile strength at the cost of a
brittle fracture and limited capability to elongate. Specimens within the
range of 0.4 f 0.6 show a strain hardening phenomenon, where the
DM material is strengthening by plastic deformation after the elastic
limit is reached. Finally, the specimens with f 0.2 show a linear elastic
deformation until the moment of fracture. This phenomenon is con-
sistently reproduced independently of the build orientation. However,
the measured ultimate tensile strength (UTS), elongation at break (EAB)
as well as Young’s modulus (E) are orientation dependent and con-
sistent with the existing research [50]. We refer to Appendix A for a
detailed discussion regarding our findings on the anisotropic behavior
of the DMs.

As mentioned in Section 3.2, we performed the ANOVA test treating
f as a continuous factor, with a range of values: f0 1 and printing
orientation as a categorical factor for XY, YX and ZY. The results of the
ANOVA (more details in Appendix B) showed that all three first,
second, and third order terms were statistically significant; and there-
fore, they were included as terms in the regression models. Table 2
shows the model summary in terms of standard deviation (S) that ac-
counts for the distance between the data values and the fitted values
and percentage of variation (R2) which is used to determine how well
the model fits the data. The cubic regression models in natural units for
each dependent variable as a function of f for all three orientations XY,
YX, and ZY are also presented in Table 2.

An example fitted curve corresponding to the Young’s modulus (E)
as a function of the Vero volume fraction for specimens oriented along
XY is displayed in Fig. 4. The figure also displays the confidence in-
terval (CI) at 95% that represents a range of likely values for the mean
response as well as the prediction interval (PI) at 95% that is the range
of likely values for new observations.

It should be mentioned that the presented regression model fails to
calculate the real Young’s modulus of the DMs with volume fractions f
≤ 0.2. In this region, the regression model would provide a negative
Young’s modulus. Ideally, it is possible to use a piecewise function with
two regions that define E f orient( , .) for 0 f 0.2 and 0.2 <f 1.0

respectively, thus transforming the data into a regression with reduced
lack of fit, and assuring that the prediction of E f orient( , .) has positive
values. To avoid numerical issues and to keep the regression models
simple, we limited ourselves to f ≥ 0.2 when using the model in the
design of FGM components.

4. Design of FGM structures

Here, we demonstrated and validated our FGM structure design and
manufacture workflow discussed in section 2. For the design problems,
we limited ourselves to linear elastic planar structures and employed
the regression model of Young’s modulus along the XY orientation
presented in Fig. 4. We used two design approaches to engineer FGMs,
step 3 of our workflow. In the first approach termed prescribed design
approach, we designed uniaxially-loaded tensile structures by simply
prescribing various graded DM distributions.

In the second approach that we called automated design approach,
we optimally designed FGM structures via the design automation
method of topology optimization. The regression-based material model
was embedded into a topology optimization problem with the goal of
obtaining an FGM structure that achieves a predefined displacement
map and thereby a desired mechanical response. To demonstrate the
versatility of the approach, two different problems were formulated
with the same objective but with different loading conditions. The FGM
designs from both approaches were realized and printed, thus ex-
ercising the full workflow. The workflow and the material model were
validated by comparing the FE analysis predictions with those from
experiments.

4.1. Prescribed design approach

Fig. 5 shows the four FGM tensile structures with prescribed ma-
terial gradients that we prepared, simulated, manufactured, and tested.
Vero volume fraction, f was varied linearly but in different directions
or at different rates in each case. In the first and second cases, shown in
Fig. 5(a) and (b) respectively, f was varied linearly and longitudinally
according to the functions, termed gradation functions, f

=x x( ) 0.65 0.005 and =f x x( ) 0.8 0.01 respectively. This translates
to variation of Vero volume fraction at 0.5% per mm and 1% per mm
respectively.

Likewise, for the third case in Fig. 5(c), the Vero volume fraction
was varied linearly in the lateral direction at 1% per mm i.e.

= +f y y( ) 0.375 0.01 . For the fourth and final case in Fig. 5(d), the Vero
volume fraction was varied biaxially according to:

= +f x y y x( , ) 2(0.4375 0.005 )(0.65 0.005 ). This results in a gradation
pattern with a maximum value of =f 0.73125 at the top, left corner of
the specimen and a minimum value of =f 0.30625 at the bottom, right
corner.

Fig. 6 shows the representative slices of voxel patterns generated to
realize the material gradations shown in Fig. 5 as part of the FGM

Table 2
Model summary and regression equations of Young’s modulus, UTS and EAB as functions of microstructural descriptor (i.e. the volume fraction), and a manufacturing
process parameter (i.e. the printing orientation).

Orient. Mech. S R2 Regression equations

XY E (MPa) 60.7107 98.90 % = + +f f fE 7.98 3.721 0.2895 0.001134(XY) 2 3

UTS (MPa) 1.76929 99.47 % = +f f fUTS 0.83 0.0393 0.006806 0.000004(XY) 2 3

EAB (mm) 4.54188 97.87 % = + +f f fEAB 93.54 3.297 0.05235 0.000277(XY) 2 3

YX E (MPa) 32.8309 99.61 % = +f f fE 6.31 9.169 0.4392 0.002278(YX) 2 3

UTS (MPa) 0.97086 99.84 % = + +f f fUTS 0.767 0.04723 0.005642 0.000008(YX) 2 3

EAB (mm) 4.45811 98.12 % = +f f fEAB 93.01 3.510 0.05558 0.000291(YX) 2 3

ZY E (MPa) 48.2684 99.02 % = +f f fE 15.92 11.64 0.4834 0.002588(ZY) 2 3

UTS (MPa) 1.76727 98,88 % = +f f fUTS 0.8575 0.28 0.01276 0.000061(ZY) 2 3

EAB (mm) 2.49910 98.75 % = +EAB f f f56.47 1.356 0.009968 0.000018ZY( ) 2 3

1,00,80,60,40,20,0

1200

800

400

0

f

Fitted Curve
95% CI
95% PI

Fig. 4. Fitted cubic regression of Young’s modulus (E) as a function of f for
specimens oriented XY.
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realization step of our workflow. This is achieved by placing Vero at a
voxel location, (x , y) with a probability dictated by the chosen grada-
tion function f x y0 ( , ) 1. This creates locally a digital mixture of
Vero and Tango materials consistent with the given gradation patterns
as shown in Fig. 5. This is done for each slice along the thickness di-
rection of the tensile FGM structure. The effective modulus of each
structure was experimentally measured following the same procedure
detailed in Section 3.2. The effective modulus, here, refers to the force
per unit area required to support the specimen under unit tensile strain.

The FE simulation results were compared with the experiments to
validate our approach. We assumed a constant material Poisson’s ratio
of 0.388 [54] independent of f and print orientation. We used plane
stress 4-noded quadrilateral elements of size 0.5mm to model the
structure and imposed clamped boundary conditions on one of the short
edges while imposing a unit displacement boundary condition on the
other to replicate the experimental conditions. The material properties
in each element were varied in accordance with the gradation function,
f x y( , ). Specifically, the Young’s modulus at a location (x , y) was varied
according to:

=E x y E f x y( , ) ( ( , ))regression (2)

The effective modulus was then calculated by obtaining the total
reaction force at the clamped edge per unit area and dividing it by the
strain induced by the unit displacement (i.e. =x 0.01667). Fig. 7 and
Table 3 show the experimental results and comparison with FE simu-
lations of graded tensile structures respectively. Fig. 7 shows the stress-
strain curves for each case (3 curves for each of the 3 printed speci-
mens). All the structures exhibit a stiffer response at small strains
(< 0.1%) and a softer response thereafter. We fit the response to a
linear function, the slope of which gives us the effective modulus of the
specimen as tabulated in Table 3. The measured values compare well
(within 15.05%) with the FE results in all the four different cases as can
be seen in both Fig. 7 and Table 3, thus validating the regression models
and our workflow with the prescribed design approach. It is to be noted
that in the case (c) and (d) in Fig. 6, the gradation patterns lead to
coupling between tension and bending deformations. In the experi-
ments, we only measured the longitudinal forces and ignored the
bending forces while the coupling is implicitly accounted for in the FE
simulations.

4.2. Automated design approach

To further validate the material modeling approach and demon-
strate our workflow with the ability to automate the design of optimal

FGM structures, we conceived a design automation problem based on
optimization with the goal of obtaining an FGM structure that achieves
a prescribed longitudinal displacement map i.e., =u x y u x y( , ) ( , )x x

p .
Here, ux and ux

p are the actual and prescribed longitudinal displace-
ments of the FGM structure under given loading and boundary condi-
tions. Specifically, we devised a topology optimization problem where
the objective was to obtain an optimal layout of DMs, which were
subsequently constructed as composites of Vero and Tango. The pro-
blem was constrained to a rectangular design domain (100 x 50mm)
such that the response under a tension load gives rise to a linearly in-
creasing strain along the length of the structure. In terms of longitudinal
displacements, this means = ( )u ux

p
o

x
l

2
. We imposed constraints on

overall material usage for Vero and set the lower bound on f to 0.2.
Mathematically speaking:

=

=
=

z u x y s u x y u x y dV

s t V f s f V
E E f s

f s
s

min ( ( , , )) ( ( , ) ( , ))

. . ( ( ))
( ( ))

0.2 ( ) 1
0 1

s
x x x

p

vero

2

Here, s are the optimization variables used to define the local Vero
volume fraction, =f x y f x y( , ) ( , ) (i.e., designs are symmetric about x-
axis). This was done in terms of a standard linear filter with a filter
radius of 2mm to regularize the optimization problem. Vvero and V are
the total volume of Vero within the design domain, , and the total
domain volume respectively while f is the Vero volume fraction in the
design domain. The objective, z , is a function of the x -displacements,
ux , which in turn are functions of the spatial coordinates, x and y, and
the optimization variables, s. This relationship is a result of the un-
derlying physics i.e. elastostatics described by the equation: =u( ) 0,
where is the 4th-order stress tensor defined = C E f s u( ( ( )), ) ( )
with C being the isotropic material stiffness tensor and , linear elastic
strain tensor.

The elastic modulus was defined in terms of f in accordance with
our experimental findings (see Eq. (2)). We solved two sets of optimi-
zation problems with an identical setup except for the loading condi-
tions. In each case, the objective was to minimize the squared error
between the prescribed displacement map in the x-direction,

=u u x l( / )x
p

o
2, and the actual displacement from FE simulations, ux i.e.,

=z u u dV( )x x
p 2 . This guaranteed that as the objective value was

reduced through the course of the optimization procedure, we obtained
a design whose longitudinal deformation behavior got progressively

Fig. 5. Plots showing the gradation of the Vero volume fraction in the tensile test specimen: (a) 0.5% per mm linearly along the length, (b) 1% per mm linearly along
the length, (c) 1% per mm linearly along the width, and (d) 1% per mm biaxially.

Fig. 6. Representative voxel patterns and slices gen-
erated to achieve the desired material gradation for
designs shown in Fig. 5 (a) and (b) are longitudinal
gradations at 0.5 and 1%/mm rates while (c) and (d)
are lateral and biaxial gradations at 1%/mm.
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closer to the given displacement map, u x y( , )x
p , with =z 0 being an

exact match.
In the first set of optimization problems, hereafter referred to as

“problem 1”, the load was a prescribed uniform displacement, =u 10
mm in the x-direction, while the y-displacements were set to zero along
the right edge of the structure, see Fig. 8(a). In the other set of pro-
blems, hereafter referred to as “problem 2”, the prescribed displace-
ments were limited to the highlighted portion of the right edge as
shown in Fig. 8(b). The other end was rigidly clamped i.e. = =u u 0x y
in both problems. With an isotropic material, such a loading condition
results in a nearly uniform longitudinal strain distribution or in other
words a linear variation of longitudinal displacements, ux . Our target,
however, was to obtain a linear variation of the longitudinal strain i.e.,
a quadratically varying displacement in the x-direction as shown in
Fig. 8(c). This can only be realized by a non-uniform distribution of
DMs and thereby Vero and Tango. We solved the problems using to-
pology optimization where the objective is evaluated through FE ana-
lysis, a search direction is arrived at through sensitivity analysis and the
design updated by an optimization algorithm, GCMMA (globally con-
vergent method of moving asymptotes) [58] in our case.

Figs. 9 and 10 show the obtained optimal structures for different
cases of optimization problems 1 and 2 respectively. In these figures,
the colors indicate the local Vero volume fraction f( ). The four cases
shown in these figures refer to optimization problems with different

constraints on overall Vero material usage, =f V V/vero . In cases
shown in (a), (b) and (c) of Figs. 9 and 10, f was constrained to be 0.8,
0.6 and 0.4 respectively while in (d), it was left unconstrained. This
constraint on f effectively lets us dictate the stiffness of the structure as
higher Vero content leads to stiffer structures while also achieving the
principal objective of a linearly varying longitudinal strain.

Table 4 outlines the optimization results where the final optimal
objective values, z and the effective stiffness of the structure (defined as
the ratio of reaction force to displacement, uo) are presented for each
case of problems 1 and 2. We get consistently better results with pro-
blem 1 for each case when compared to the equivalent case of problem
2. This is to be expected because in problem 1, the error on the right
edge is zero by design whereas in problem 2, this is not so for the free
portion of the right edge. This results in significant material gradation
in both x- and y-directions in problem 2 but not observed in problem 1.
For problem 2, we observed the creation of a stiff mechanism that keeps
the x-displacements nearly rigid in order to achieve the target dis-
placements locally. We get the best results in each problem with the
unconstrained case where the final Vero usage is 28% for problem 1
while it is 38% for problem 2. The case with =f 0.8 performs the worst
due to the excessive use of Vero. In general, we get a higher stiffness in
each of the constrained cases at the expense of the principal objective.

We manufactured the designs obtained from the unconstrained
cases using the same method as the one used for prescribed FGM de-
signs where the local volume fraction at a material point was used to
define the deposition patterns. For the mechanical testing of these
FGMs, we used an MTS Criterion Model 43, equipped with mechanical
grippers, 10 kN load cell and a digital image correlation (DIC) system.
The DIC system was used to capture the displacement maps of the tested
specimens. We used an Allied Vision, Manta G-146 vision camera with a
maximum frame rate of 17.8 fps at full resolution and a general-purpose
lens with a focal length of 8mm. The specimens were sprayed to obtain
an optimal speckle pattern and evenly illuminated to avoid overexposed
highlights on the target surface, thus allowing precise measurement of
displacements.

Fig. 11 shows the comparison of results obtained from the FE

Fig. 7. Experimental stress-strain data with the best linear fit and stiffness for: (a) Longitudinal grading (0.5%/mm) (b) Longitudinal grading (1%/mm) (c) Lateral
grading (d) Biaxial grading.

Table 3
Comparison of effective moduli obtained from experiments and simulations for
different FGM tensile structure with different material gradations.

Prescribed gradation patterns Effective Modulus (MPa)

Tensile testing FE Simulations

(a) Longitudinal grading (0.5 %/mm) 333.4 ± 2.2 348.8
(b) Longitudinal grading (1 %/mm) 164.6 ± 2.2 189.4
(c) Lateral grading (1 %/mm) 430.6 ± 1.4 400.7
(d) Biaxial grading 380.0 ± 1.6 350.3
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simulations and experiments with DIC. Fig. 11(a) and (b) show the
representative slices of the realized optimal FGM design (magenta –
Vero, white – Tango) obtained from solving the optimization problems
1 and 2 respectively while Fig. 11(c) and (d) show 3D printed trans-
lucent mockups of the optimal structures, printed with transparent and
magenta colored materials respectively in place of Tango and Vero and
with volume fractions scaled down by 10 times to achieve the trans-
lucency. Fig. 11(e) and (f) show the longitudinal displacement maps
obtained from FE simulations for problems 1 and 2, respectively. For
problem 1, we get good agreement with the prescribed displacement
map (see Fig. 8(c)), whereas for problem 2, the obtained displacement
map deviates considerably near the loaded right edge while agreeing
well elsewhere. Fig. 11(g) and (h) show the experimentally obtained
displacement maps via DIC. We get excellent agreement pointwise be-
tween the DIC experiments and FE simulations thus validating our DM-
based FGM design approach. We also measured the effective stiffness of

the printed structures along with the displacement maps. We obtained
values of 241.22 and 416.39 N/mm for problems 1 and 2 respectively.
These values compare well with the simulations where we get values of
279.28 and 410.12 N/mm for the same and offer further validation of
our approach.

5. Conclusions

We presented a design to fabrication workflow for DM-based FGM
structures that integrates material and structural design while digitally
connecting them to fabrication. We demonstrated and experimentally
validated the workflow with simple planar structures using two dif-
ferent approaches: prescribed and automated. In the prescribed design
approach, designer specified gradation patterns were directly applied to
FGM structures while in the automated approach, optimal gradation
patterns were obtained via a design automation technique. To facilitate

Fig. 8. Schematics showing the setups for the automated design problems: (a) problem 1, (b) problem 2. The prescribed displacement map in the x -direction, ux
p

(mm) is shown in (c).
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efficient design of the FGMs, we made use of regression analysis of the
experimental results obtained from the mechanical characterization of
DMs. The use of regression analysis not only simplified the prediction of
the effective mechanics of the DMs using the microstructural de-
scriptors ( f ) but also allowed us to account for the process related
parameters (orient.) that affect the structural behavior.

In the case of the prescribed FGM designs, the maximum absolute
error between the FE simulations and the experiments was 15.05%
while it was 15.78% in the case of automated FGM designs. The sources
of these discrepancies include uncertainties arising or introduced
during fabrication, material characterization, and experimental vali-
dation steps. Future research employing probabilistic material models
that can propagate the uncertainty to FE simulations can mitigate the
discrepancies observed here. Nevertheless, the comparison between the
displacement maps obtained via FE simulations and DIC experiments of
the automated designs showed an excellent pointwise agreement.

In summary, this research is a first step towards development of
integrated design to fabrication workflows for FGM structures based on
multimaterial AM systems. Future work that accounts for anisotropy,
non-linearity and failure will allow us to describe the elastic behavior of
DMs with better accuracy and enable us to engineer FGMs useful for 3D
structures such as energy absorbers, soft robotic actuators or similar

complex devices that can benefit from locally varying the stiffness be-
havior to achieve the desired performance.

While the focus of this paper was restricted to mechanics and an
objective of matching the displacement field to a target, this approach
can be extended to more diverse and sophisticated objectives as dic-
tated by a particular application e.g. damping and energy absorption
mechanisms, tough fracture resistant structures, thermo-mechanics,
acoustics, shape memory materials, stimuli-responsive materials, and
4D printing.

Given this potential, future research will ideally extend this method

Fig. 9. Optimal distribution of Vero and Tango in the case of optimization problem 1 with overall Vero volume fraction, =f (a) 0.8, (b) 0.6, (c) 0.4 and (d)
unconstrained.

Fig. 10. Optimal distribution of Vero and Tango in the case of optimization problem 2 with overall Vero volume fraction, =f (a) 0.8, (b) 0.6, (c) 0.4 and (d)
unconstrained.

Table 4
Final error values for different cases of the optimization problems 1 and 2.

Constraint case Final Cumulative Error Value,
=z u u dV( )x x

p 2
Effective Stiffness (N/mm)

Problem 1 Problem 2 Problem 1 Problem 2

=V V0.8 30.34 57.26 2545.82 2449.06
=V V0.6 3.18 30.41 1876.39 1531.79
=V V0.4 0.20 25.31 731.0 527.82

Unconstrained 0.039
( =V V0.28opt )

21.28
( =V V0.38opt )

279.28 410.12
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to other multimaterial AM process categories, such as (i) directed en-
ergy deposition with multiple metal alloys, (ii) powder bed fusion for
metals or ceramics through porosity, micro-structure customization and
combination of materials in the build process, (iii) multimaterial nano-
particles material jetting, (iv) material extrusion of FGM through path
planning and dual filament extrusion, as well as (v) binder jetting
through binder concentrations.
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Appendix A

To account for the anisotropic behavior of the DMs, specimens were positioned on the build platform in three different orientations as introduced
in Fig. 2 and Table 1. Fig. A1(a) shows the stress-strain curves for XY, YX and ZY oriented specimens with =f 1 and Fig. A1(b) shows the same stress-
strain curves for the specimens with =f 0. In general, for increased f the material behaves like a rigid polymer with a higher degree of anisotropic
behavior. The results for higher f show that XY and YX oriented specimens have higher UTS and EAB in comparison to specimen oriented along ZY.
At the same time, E varies with the build orientation. Parts oriented vertically in the Z-axis are the weakest. On the opposite end, for decreased f the
material behaves elastically and is isotropic in terms of stiffness E. However, UTS and EAB results are anisotropic and therefore orientation de-
pendent.

Figs. A2–A4 show the effect of increasing f on Young’s modulus (E), ultimate tensile strength (UTS) and elongation at break (EAB), respectively.
The three figures also display the results for XY, YX and ZY orientations, and each data point represents the mean value of three repetitions per

Fig. 11. Optimization, Fabrication, FE simulation and DIC
experimental results. Representative slices of the realized op-
timal FGM design (magenta – Vero, white – Tango) obtained
from solving the optimization problems 1 and 2 are respec-
tively shown in (a) and (b) while in (c) and (d), 3D printed
translucent mockups with clear and magenta colored mate-
rials are shown for visualization. Maps of x -displacements
obtained from FE simulations for problems 1 and 2 are shown
in (e) and (f) respectively whereas (g) and (h) show the results
obtained from the DIC experiments respectively.
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experimental combination and the standard error. Evidently, the standard error for the measurements is found to be negligible. Fig. A2 shows that
increasing Vero volume fraction, f results in increasing Young’s Modulus (E). Likewise, the anisotropic effect induced by the printing orientation
increases with f . For specimens oriented along XY, YX and ZY, the range of E (MPa) is between 0.53 EXY (Orient.) 1401.67, 0.56 EYX (Orient.)

1206, and 0.46 EZY (Orient.) 1083.33 respectively. The relative difference between the weakest and strongest printing orientations is 13.2% and
22.7% for the soft Tango ( =f 0) and rigid Vero ( =f 1) respectively.

The results in Fig. A3 show that orientation has significant impact on UTS. With increasing Vero volume fraction, UTS as well as its anisotropy
increase. For specimens oriented along XY, YX and ZY, UTS (MPa) ranges between 0.51 UTSXY 60.33, 0.53 UTSYX 59.72, and 0.40 UTSZY
38.66 respectively. The relative difference between the weakest and strongest orientations is 21.6% and 35.9% for the soft elastomer ( =f 0) and the
rigid polymer ( =f 1) respectively.

The effect of orientation is more significant for EAB, Fig. A4 show how specimens oriented in the weakest direction ZY have a decreased ability to
elongate in comparison to XY and YX orientations. In average terms, the relative difference for EAB between the weakest and strongest build
orientations is 57.6%. In general, the anisotropic behavior is equally significant for specimens with low or high f and the EAB decreases as f
increases. In summary, the results show that all the measured mechanical properties are found to be weak with specimens manufactured vertically in
the ZY orientation due to the layered nature of the AM process. The strongest mechanical properties are found to be in the XY orientation, which is
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Fig. A1. The stress-strain curves of the tensile specimens with a strain rate of 0.4mm/sec. Comparison of XY, YX and ZY oriented tensile specimens with (a) =f 1 and
(b) =f 0.
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Fig. A2. Young’s Modulus (E) as a function of f for orientations XY, YX and ZY.

0

20

40

60

0.0 0.2 0.4 0.6 0.8 1.0

XY
YX
ZY
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perpendicular to the print-heads of the print-block as shown in Fig. 2. Each DOE combination presented in Table 1 was repeated 3 times with a total
of 54 tensile test runs. Table A1 shows the averaged measurements for Young’s modulus (E), ultimate tensile strength (UTS) and elongation at break
(EAB) with different Vero volume fractions and print orientations.

Appendix B

Table B1 shows the full ANOVA table for first order, second order, and third order. Additionally, bilinear and quadratic interaction terms are also
included in the test. To understand interaction and significance of the terms, we can compare the variance of the effects to the variance of the
residuals. We applied a backwards elimination algorithm of non-significant terms that removes the least significant terms at each step. The algorithm
stops when all the terms in the model have p-values that are lower or equal to 0.05. This provides the best fit model to represent mechanical
properties of DMs in terms of the microstructural descriptor, volume fraction and the manufacturing process parameter, the printing orientation.

The ANOVA table provides this information in the form degrees of freedom (DF) which accounts for the amount of information of the data set in
terms of replicates for each observation. The results show a much higher DF for the pure error term of the ANOVA table, and therefore, a good fit of
the regression model to predict the response of the dependent variables. Additionally, the F-value is sufficiently large indicating that the first, second,
and third order terms of the model are significant, and need be included in the regression model.

In relation to the statistical significance of the orientation and volume fraction f( ), the p-value is used to show the probability that measures the
evidence against the null hypothesis. The lower the p-value, the stronger the evidence against the null hypothesis. In this case, the null hypothesis is
explained as the lack of significant difference between specified populations; any observed difference is due to sampling or experimental error. As a
result, first, second, and third order terms related to f show great statistical significance in the variation of the dependent variables E, UTS, and EAB
with p-value ≤ 0.1; thereby, rejecting the null hypothesis. Furthermore, the ANOVA test shows that the effect of orientation is statistically significant
for the variation of all three dependent variables. Consequently, showing p-values of 0.766, 0.433, and 0 for E, UTS and EAB, respectively.

The effect of orientation is especially significant for EAB when compared to UTS and E. The ANOVA table shows that bilinear and quadratic
interaction terms are significant for EAB and UTS. On the contrary, only the bilinear interaction term between f and orientation is significant for E.
Ultimately, the regression equations presented in Table 2 do not integrate interaction terms as the orientation was defined as a categorical variable
with three values XY, YX, and ZY. This is a first step towards characterization of DMs to 3D design problems that can benefit from FGM use. Future
characterization is necessary to study the anisotropic elasticity of shear modulus and Poisson’s ratio as a function of Vero volume fraction f and
orientation. This work will allow description of the stiffness matrix of DMs using an orthotropic linear elastic material model.

Table A1
Measured mean values and standard error of means for young’s modulus (E), Ultimate tensile strength (UTS) and elongation at break (EAB) as function of the volume
fraction f( ) and sample orientation.

E (MPa) UTS (MPa) EAB (mm)

f XY YX ZY XY YX ZY XY YX ZY

0 0.53
± 0.04

0.56
± 0.01

0.46
± 0.02

0.51
± 0.01

0.53
± 0.02

0.40
±0.02

94.94
±3.68

94.77
±0.79

57.03
± 0.49

0.2 11.50
± 0.76

5.90
± 0.26

3.60
± 0.06

3.50
± 0.05

2.72
± 0.18

1.14
±0.02

41.99
±2.03

37.27
±1.36

30.87
± 0.19

0.4 200
±1.15

152.00
± 1.00

121.00
± 2.08

10.00
± 0.16

8.42
± 0.29

5.69
±0.09

31.05
±0.05

27.18
±1.04

20.71
± 0.65

0.6 659
±2.08

583.33
± 16.67

476.67
± 18.57

20.32
± 1.26

18.68
± 0.18

15.15
±1.46

26.35
±0.75

22.10
±0.69

4.38
± 0.27

0.8 890
±20.82

901.67
± 2.03

893.33
± 6.67

40.84
± 0.76

38.19
± 0.33

30.62
±0.53

19.51
±1.47

14.54
±1.56

3.33
± 0.17

1 1401.67
± 2.03

1206.00
± 7.02

1083.33
± 44.10

60.33
± 1.28

59.72
± 0.48

38.66
±0.83

11.91
±1.58

8.65
±0.37

2.26
± 0.36

Table B1
Full ANOVA table of the mechanical properties for quadratic, cubic and interaction terms.

Young’s Modulus (E) Ultimate tensile strength (UTS) Elongation at break (EAB)

Source DF Adj.
SS

Adj.
MS

F P DF Adj. SS Adj. MS F P DF Adj. SS Adj. MS F P

Regression 7 11825492 1689356 645,99 0 9 20800.2 2311.14 756.37 0 9 37270.9 4141.21 146.95 0
f 1 46292 46292 17.7 0 1 10.6 10.57 3.46 0.07 1 5764.5 5764.51 204.56 0
Orient. 2 1403 701 0.27 0.766 2 5.2 2.61 0.85 0.433 2 2257.1 1128.57 40.05 0
f 2 1 262703 262703 100.46 0 1 125 124.97 40.9 0 1 2445.6 2445.6 86.78 0
f Orient* . 2 59556 29778 11.39 0 2 17.2 8.58 2.81 0.071 2 403.2 201.58 7.15 0.002
f 3 1 149340 149340 57.11 0 1 13.8 13.8 4.52 0039 1 1422.1 1422.15 50.47 0

f Orient* .2 – – – – – 2 104.1 52.06 17.04 0 2 220.3 110.14 3.91 0.027
Error 46 120296 2615 – – 44 134.4 3.06 – – 44 1239.9 28.18 – –
Lack-of-Fit 10 101614 10161 19.58 0 8 90 11.25 9.11 0 8 1057.5 132.19 26.08 0
Pure Error 36 18682 519 – – 36 44.5 1.24 36 182.5 5.07
Total 53 11945788 – – – 53 20934.7 – – – 53 38510.9 – – –
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