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Correlational studies have demonstrated detrimental effects of exposure to a mismatch be-
tween a nonstandard dialect at home and a mainstream variety at school on children’s literacy
skills. However, dialect exposure often is confounded with reduced home literacy, negative
teacher expectation, and more limited educational opportunities. To provide proof of con-
cept for a possible causal relationship between variety mismatch and literacy skills, we taught
adult learners to read and spell an artificial language with or without dialect variants using an
artificial orthography. In 3 experiments, we confirmed earlier findings that reading is more
error-prone for contrastive words; that is, words for which different variants exist in the input,
especially when learners also acquire the joint meanings of these competing variants. Despite
this contrastive deficit, no detriment from variety mismatch emerged for reading and spelling
of untrained words, a task equivalent to nonword reading tests routinely administered to young
schoolchildren. With longer training, we even found a benefit from variety mismatch on read-
ing and spelling of untrained words. We suggest that such a dialect benefit in literacy learning
can arise when competition between different variants leads learners to favor phonologically
mediated decoding. Our findings should help to assuage educators’ concerns about detrimental
effects of linguistic diversity.
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In 2013, the BBC reported that a Head Teacher in England
had banned use of the local dialect in his Primary School
(BBC News, 2013). This decision appears to have been mo-
tivated by the notion that dialect exposure creates confusion
when beginning readers encounter different variants associ-
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ated with the same meaning and have to resolve the competi-
tion between them. However, direct empirical support for the
notion that such competition slows the acquisition of literacy
skills is lacking. The aim of the present study is to put this
notion to a rigorously controlled test.

Although linguistic diversity is a ubiquitous feature of many
languages, most research on how exposure to different va-
rieties affects literacy acquisition has been conducted on mi-
nority dialects of English spoken in the United States. A con-
siderable body of evidence has implicated exposure to these
minority dialects, and especially the degree of “dialect den-
sity,” that is, the frequency of oral dialect use, as risk factors
for reading difficulties (e.g., Charity, Scarborough, & Grif-
fin, 2004; Terry, Connor, Johnson, Stuckey, & Tani, 2016;
Washington, Branum-Martin, Sun, & Lee-James, 2018). Al-
though such a link has not been observed consistently, due
to methodological flaws in the measurement of children’s di-
alect exposure and literacy outcomes in earlier studies (Har-
ber, 1977; Steffensen, Reynolds, McClure, & Guthrie, 1982),
the persistent literacy achievement gap in U.S. minority chil-
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dren sustained interest in studying exposure to nonstandard
varieties. A recent meta-analysis by Gatlin and Wanzek
(2015) concluded that there was a moderate negative rela-
tionship between exposure to, and use of, nonmainstream
American English and literacy outcomes in the absence of
significant effects of socioeconomic status (SES). While SES
has implications for a host of variables such as quality of
input, home literacy, attitudes toward literacy, educational
provision, and teacher expectation, the independent effect
of these variables is difficult to control in correlational stud-
ies (Artiles, Kozleski, Osher, & Ortiz, 2010). For example,
one prominent U.S. minority dialect, African American En-
glish (AAE), has diverged from Mainstream American En-
glish (MAE) as a function of, among other things, social and
cultural segregation leading to divergent attitudes toward lit-
eracy (Labov, 1995). It is therefore important to understand
whether dialect exposure exerts a detrimental effect via those
sociocultural and environmental variables or whether it plays
a direct causal role in the impairment of emerging literacy.

According to the linguistic mismatch hypothesis (Labov,
1995), dialect exposure increases the mismatch between
orthographic and phonological forms thus rendering the
discovery of phonologically mediated decoding principles
more challenging. Specifically, dialect variants that devi-
ate strongly from standard words so as to essentially con-
stitute competing lexemes (e.g., Scots “bairn” vs. Standard
English “child”) have to be acquired in addition to learning
to read and spell. When learners attempt to establish links be-
tween orthographic and phonological representations as pos-
tulated in computational models of reading such as the Dual
Route Cascaded model (Coltheart, Rastle, Perry, Langdon, &
Ziegler, 2001), the Connectionist Dual Process model (Perry,
Ziegler, & Zorzi, 2007, 2010) or the Triangle model (Harm
& Seidenberg, 2004; Plaut, McClelland, Seidenberg, & Pat-
terson, 1996), the activation of competing phonological rep-
resentations of words with dialect variants (henceforth: con-
trastive words) might lead to interference, which should incur
additional processing cost. On the other hand, dialect vari-
ants characterized by mainly phonological changes that de-
viate only slightly from words in the standard language (e.g.,
Scots “hoose” vs. Standard English “house” or AAE “aks”
vs. MAE “ask”) add inconsistency to the mapping from print
to sound. The resulting increased orthographic inconsistency
is likely to make the acquisition of decoding skills via appli-
cation of phoneme-grapheme conversion rules more difficult,
particularly for phonologically less consistent orthographies,
such as English, which are difficult to decode even without
additional dialect variation (but see J. S. Bowers & Bowers,
2017, 2018; Rastle, 2019 for arguments in favour of benefits
from morphological transparency of English spelling).

Alternatively, the linguistic awareness/flexibility hypothesis
suggests that high dialect density is a manifestation of limited

metalinguistic awareness of the social and contextual fea-
tures that cue the appropriate use of one or the other variety
(Terry & Scarborough, 2011). Limited metalinguistic aware-
ness, especially in the phonological domain, has been linked
to poorer decoding and comprehension skills (Ehri, Nunes,
Stahl, & Willows, 2001). Under this account it is not dialect
exposure per se that impairs literacy acquisition. Rather, the
effect is an indirect one: Children who persist with dialect
use in settings which presuppose use of the mainstream vari-
ety betray a lack of metalinguistic awareness the manifesta-
tions of which in other domains like phonology hinder acqui-
sition of decoding skills. As under the mismatch hypothesis,
this deficit should be especially problematic for the decod-
ing of contrastive words where metalinguistic awareness of
contextual information can indicate which variant should be
favored to resolve the competition. The mismatch and the
awareness accounts need not be mutually exclusive as the
direct effect of dialect exposure might be partially mediated
by linguistic awareness (Terry & Scarborough, 2011).

The hypothesis that contrastive words elicit reading diffi-
culties was tested by Brown and colleagues (Brown et al.,
2015) with 8 to 13-year-old children exposed to AAE who
were asked to read contrastive and noncontrastive words
matched for frequency, length, and initial phonemes. The
contrastive words typically had dialect variants with reduced
consonant clusters. The results showed that the higher these
children’s usage of AAE, assessed through number of AAE
features in a sentence repetition task, the longer their read-
ing latencies for contrastive words. This contrastive deficit
was computationally simulated in a neural network which
instantiated statistical learning of spelling-sound correspon-
dences. The model was first exposed to repeated mappings
of phonological to phonological representations within an
attractor network (i.e., a task mimicking learning to speak)
before being trained to map orthographic onto phonologi-
cal representations via a layer of hidden units (i.e., a task
mimicking learning to read) while still receiving interleaved
blocks of phonological exposure to prevent “catastrophic in-
terference” when switching from one type of input to an-
other. Crucially, when the network was initially exposed to
AAE variants for half of the words (i.e., variants compris-
ing dialect-appropriate consonant cluster reductions, con-
sonant drops, substitutions, exchanges, and devoicing) and
then subsequently was trained to read MAE words (the mis-
match condition), the cross-entropy error remained higher
for contrastive compared to noncontrastive words. Brown
et al. (2015) interpreted this finding in analogy to the read-
ing of heterophonic homographs–identical spellings of se-
mantically unrelated words that are pronounced differently
like “lead” or “wind,” which in the absence of contextual
information are more difficult to read compared with nonho-
mographic control words (Gottlob, Goldinger, Stone, & Van
Orden, 1999; Jared, Cormier, Levy, & Wade-Woolley, 2012).
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As predicted by the linguistic awareness/flexibility hypothe-
sis (Terry & Scarborough, 2011), the contrastive deficit was
greatly diminished in a second simulation that instantiated
nodes coding explicitly for whether a word belonged to AAE
versus MAE, a feature designed to simulate social cues for
use of one or the other variety.

While the Brown et al. (2015) simulation undoubtedly
provided important insights into potential mechanisms that
might be responsible for the difficulty with reading con-
trastive words, some crucial components of word represen-
tation and literacy learning were absent from the model. As
a result, it is not entirely clear whether the contrastive deficit
in the neural network arises for the same reasons as it did
in beginning readers, even if extralinguistic factors are con-
trolled. First, the network lacked a semantic layer preclud-
ing instantiation of semantic representations for individual
words. Yet beginning readers tend to know the meanings
for most, if not all, of the words presented in early literacy
training, and start out by employing phonologically medi-
ated decoding to gradually establish direct associations be-
tween the new orthographic code and the existing semantic
representations (Castles, Rastle, & Nation, 2018). There was
no mechanism in the Brown et al. (2015) model by which
different variants could be associated with the same mean-
ing. Instead, in the mismatch condition, the network simply
learned more words overall as literacy training added an ad-
ditional set of MAE words which were phonologically simi-
lar to some of the already acquired AAE words. As a result,
contrastive words shared many phonemes with other variants
in the lexicon while noncontrastive words did not, rendering
the contrastive deficit–as mentioned above–akin to inhibition
from high-frequency heterophonic homographs. Extrapolat-
ing from existing models of interactive activation and com-
petition that try to explain neighborhood effects we hypoth-
esize that adding a semantic layer should retain or even ex-
acerbate the contrastive deficit as bidirectional links between
semantic and lexical representations may reinforce nonlinear
inhibitory connections on the lexical layer (Chen & Mirman,
2012).

Second, neither human participants nor the connection-
ist model exhibited difficulties with reading noncontrastive
words nor an overall reading deficit in the variety mismatch
(AAE) condition. If potential detriments due to variety mis-
match are mainly driven by processing difficulties with con-
trastive words then the overall amount of literacy problems
associated with dialect exposure would mainly depend on the
proportion of contrastive words in the input. Yet the linguis-
tic mismatch hypothesis as formulated by Labov (1995) went
beyond confining detrimental effects to contrastive words by
suggesting that dialect exposure impairs orthographic decod-
ing skills more generally. Similarly, the Linguistic Aware-
ness/Flexibility Hypothesis (Terry & Scarborough, 2011)

also asserts that limited dialect awareness should impair be-
ginning readers’ general phonological decoding skills. How-
ever, to directly confirm detrimental effects of dialect expo-
sure beyond contrastive words one would have to test be-
ginning bidialectal readers’ decoding skills independently of
their word knowledge (Castles et al., 2018) and show that
their nonword reading skills are impaired compared with
learners without dialect exposure. Such a test, which was
absent from both the behavioral study and the computational
simulation in Brown et al. (2015), will be included in the
present study.

Third, beginning readers never learn only to read but also to
spell, as primary schools tend to incorporate writing instruc-
tion into their curricula from early on (Cutler & Graham,
2008). Spelling training strengthens the connections between
individual phonemes and graphemes thereby promoting use
of decoding skills. In children, phonological spelling ability
has been shown to predict subsequent development not just
of spelling but, crucially, reading skills (Caravolas, Hulme,
& Snowling, 2001), confirming earlier proposals that in the
early stages of literacy learning, phonological spelling abil-
ity drives the development of reading (Frith, n.d.). For adults
learning an artificial script, Taylor, Davis, and Rastle (2017)
showed that including a spelling task in addition to other
tasks emphasizing spelling-sound as opposed to spelling-
meaning mappings into the training regimen encouraged a
phonologically mediated reading acquisition strategy. While
the child participants in Brown et al. (2015) would certainly
have engaged in spelling practice during their schooling,
the neural network did not include bidirectional links that
could have instantiated a “spelling path,” that is, a path from
phonological to orthographic representations (see Houghton
& Zorzi, 2003), and we are not aware of any attempts to
computationally model the contribution of spelling practice
to emergent reading skills. Yet by promoting explicit reliance
on links between graphemes and phonemes as the primary
reading strategy (Ellis & Cataldo, 1990) which minimizes
reliance on direct word retrieval, and, hence, the possibility
for lexical competition, spelling training might alleviate po-
tentially detrimental effects of dialect exposure.

The evidence discussed so far was obtained in studies investi-
gating the process of learning to read English, a deep orthog-
raphy with a fair amount of inconsistent phoneme-grapheme
mappings that still is often taught without placing sufficient
emphasis on phonological mediation (Castles et al., 2018).
For such inconsistent spelling systems, dialect exposure may
be particularly detrimental as it can further hinder acquisi-
tion of already difficult-to-discover decoding rules. By con-
trast, learning to decode mappings from sound to spelling is
easier in more consistent orthographies, and, consequently,
dialect exposure may have less of a detrimental effect. It is
even possible that more rapidly acquired decoding skills in
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consistent orthographies can render the decoding of words
of the standard variety unperturbed by the existence of com-
peting dialect variants. To our knowledge, the only more
consistent orthography for which the role of dialect exposure
in literacy learning has been investigated is German. Büh-
ler, Oertzen, McBride, Stoll, and Maurer (2018) examined
early literacy skills in children exposed to Swiss German di-
alect and compared them with children exposed only to Stan-
dard German either in Switzerland or in Germany. The re-
sults showed that dialect exposure was associated with higher
preschool literacy-related skills measured by the ability to
identify, categorize, and synthesize onsets, rimes and individ-
ual phonemes, in the absence of differences in SES between
the groups. Structural equation modeling revealed that only
when preschool literacy-related skills were controlled was
there a negative effect of dialect exposure on Grade 1 literacy
skills, which was more pronounced in spelling due to the fact
that German’s phoneme-grapheme mappings are less consis-
tent than the grapheme-phoneme mappings. This finding ex-
poses the multiple loci of effects that early dialect exposure
might have: On the one hand, benefits from early dialect ex-
posure on literacy-related skills might arise from enhanced
sensitivity to phonological variation thereby increasing met-
alinguistic skills that benefit phonological awareness. On the
other hand, residual negative effects of dialect exposure on
subsequent literacy acquisition may reflect the consequences
of decreased consistency in spelling-sound mappings as well
as the difficulty associated with first having to learn a num-
ber of new lexemes in order to master literacy in the standard
language. This suggests that in orthographies with greater
feed-forward (reading) consistency, potentially detrimental
effects of dialect exposure may be offset by its contribution
to enhanced phonological awareness which, in turn, can aid
phonological mediation of literacy learning.

To gain further clarity, our study asked whether there is a
causal relationship between variety mismatch and difficulties
with acquiring decoding skills when confounding extralin-
guistic variables that may impact the acquisition of these
skills are controlled. By variety mismatch we mean a situ-
ation where another variety (e.g., a regional dialect) is used
outside of the context of literacy acquisition. To achieve
this control, we employed an artificial language learning
paradigm combined with an invented script, a methodology
that has successfully been used to explore various factors
that affect the early stages of learning to read (e.g., Taylor
et al., 2017; Taylor, Plunkett, & Nation, 2011; for a review
see Vidal, Content, & Chetail, 2017). We attempted a con-
ceptual replication of the contrastive deficit demonstrated in
Brown et al. (2015) to confirm whether variety mismatch is
indeed the cause of deficits associated with dialect exposure.
Crucially, we also asked whether variety mismatch affects
general decoding skills as assessed via reading of untrained
words. Here, we perform these tests with adult learners to

provide a baseline for future comparison with children. We
seek to provide proof of concept for how dialect exposure per
se can affect literacy learning under optimal learning condi-
tions associated with a mature cognitive system: Detrimental
effects in adults would suggest that dialect exposure is bound
to hinder literacy learning by virtue of increasing the amount
of interference in the input, and detrimental effects in chil-
dren may be inevitable. However, if no detrimental effects
are observed in adults then detrimental effects in children
may arise from how dialect exposure interacts with a less
mature cognitive system or due to confounding factors that
affect children who are exposed to dialects.

The Present Study

We report three experiments designed to investigate effects
of dialect exposure on the acquisition of decoding skills in
inconsistent and consistent orthographies. For the present
study, we defined dialect exposure following Brown et al.
(2015) as exposure to variants that entail phonological, but
not lexical, changes (e.g., English “house” vs. Scots “hoose”
or MAE “ask” vs. AAE “aks”). The focus on phonologi-
cal variants was motivated by ecological validity based on
a corpus analysis (the Gruffalo-corpus described below) of
a range of Scots dialects (Johnston, 2007). Effects of ex-
posure to lexical variants (e.g., English “children” vs. Scots
“bairns”) are beyond the scope of the current study. Be-
low we briefly preview the rationale behind the three experi-
ments.

We start by reporting a conceptual replication of Simulation
1 in Brown et al. (2015) that examines effects of dialect ex-
posure on learning to read an inconsistent artificial orthog-
raphy1. (Experiment 1). To explore the role of semantic
information we compared performance for words presented
with and without accompanying pictures. Availability of se-
mantic information was crossed with dialect exposure: In the
variety match conditions participants encountered the same
words during initial exposure and during reading training. In
the variety mismatch conditions half of the words underwent
phonological changes between exposure and reading training
to loosely resemble a situation in which learners initially are
exposed to a dialect at home before being introduced to the
standard variety at school. However, because Experiment 1
was conceived as a replication of Brown et al. (2015), it did
not include spelling training and did not vary orthographic
consistency, two factors which need to be considered to be
able to generalize cross-linguistically. To address these two
limitations, we compared variety match and mismatch condi-
tions on learning to read and spell a consistent (Experiment

1Experiment 1 was conducted last but is reported first to main-
tain the logic of reporting first the replication attempt of the connec-
tionist simulation reported in Brown et al. (2015).
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2a) and an inconsistent (Experiment 2b) orthography. We
found that learning to read and spell an entirely unfamiliar
inconsistent artificial orthography proved to be a very diffi-
cult task that may require more extensive training. In Exper-
iment 3 we therefore replicated Experiment 2b with a longer
training phase, a larger sample size and semantic informa-
tion throughout. All experiments received ethical approval
from Abertay University’s Ethics Committee and were pro-
grammed to be compatible with all desktops and Android
systems using most web browsers.

Experiment 1: Effect of variety mismatch on learning to
read an opaque orthography

Method

Participants. One hundred and twelve participants (aged
14–67, M = 31.46, SD = 11.09, with 68 self-reported as fe-
male, 43 self-reported as male, and 1 self-reported as other)2

were recruited from the crowdsourcing website Prolific Aca-
demic. All participants reported English as their native lan-
guage, and no known mild cognitive impairments or demen-
tia, and were reimbursed £4.20. Participants’ mean profi-
ciency in English on a 1-5 Likert scale was 4.85 (SD = =
0.59, range 1 [elementary] to 5 [native or native-like]). De-
spite declaring English as native language, 10 participants
rated their English proficiency as below 5. Sixty-two partici-
pants reported knowing only English while Fifty participants
also knew French (listed 29 times), Spanish (listed 22 times),
German (listed 10 times), and 29 other languages (listed a to-
tal of 44 times). Only eight participants were familiar with
logographic scripts. An additional seven participants were
tested but not included either because they gave the same re-
sponse on all trials, their responses on most trials repeated the
previous trial, their responses were in English rather than in
the artificial language or were inaudible, or because a tech-
nical difficulty had occurred (e.g., losing trials due to poor
Internet connection), and when recruitment inadvertently ex-
tended beyond our preregistered cut-offs for a given list.

Materials.

Grapheme and Phoneme Inventory. We generated 13
graphemes (for a list of graphemes and criterio for inclu-
sion see Appendix A) consisting of two to four curved or
straight strokes as common to most alphabetic writing sys-
tems (Changizi & Shimojo, 2005). The phoneme inventory
consisted of eight consonants [m], [n], [s], [k], [b], [d], [f]
and [l] as well as the five cardinal vowels [A], [E], [i], [O], [u].
Additionally, the dialect phonemic inventory included an ad-
ditional phoneme, [x], which replaced [k] in certain contexts,
as described below.

Words. Using this phoneme inventory, we constructed 42
artificial words distributed across six syllabic templates (3
monosyllabic, 3 bisyllabic) adhering to constraints of En-
glish phonotactics (Crystal, 2003; Harley, 2006). To con-
strain phonological complexity and to avoid overly predictive
clusters, words contained no more than one consonant clus-
ter and no cluster with more than two consonants. Apply-
ing these rules to a string generation algorithm (accessible at
https://osf.io/5mtdj/), we produced all possible phoneme per-
mutations per syllable template, and selected seven strings
from each template type, by removing strings with phoneme
repetitions and ensuring a similar distribution of phonemes
across items. To capture a range of English neighborhood
densities, we selected a roughly equal number of words with
high and low phonological neighborhood densities accord-
ing to the Cross-Linguistic Easy-Access Resource for Phono-
logical and Orthographic Neighborhood Densities (Marian,
Bartolotti, Chabal, & Shook, 2012) database using the total
neighbor metric (i.e. including substitutions, additions, and
deletions) resulting in a mean neighborhood density of 2.88.
To minimise confusability of words, our final list was fil-
tered such that each word differed from each other word by
a length-normalised Levenshtein Edit Distance (nLED)3 of
at least 0.5, resulting in an average nLED of 0.86, ensur-
ing sufficient variability across items. This restriction was
applied as variability has been shown to support learning
of grapheme-phoneme-correspondences (Apfelbaum, Hazel-
tine, & McMurray, 2013). Thirty words were used during ex-
posure and literacy training, while 12 words (two from each
syllable template) were retained for testing only (henceforth:
untrained words). All words are listed in Appendix C).

Words and isolated phonemes were recorded by a male and
a female speaker in a soundproof booth with a Zoom H4n
audio recorder, using normal prosody with stress on the first
syllable in the bisyllabic items. Speaker voice was counter-
balanced across participants. Sound files were normalized,
with noise filtered using the Audacity audio suite (Mazzoni
& Dannenberg, 2016) and extraneous silences trimmed us-
ing Praat (Boersma & Weenik, 2017). In the Picture con-
dition, words were randomly combined with images taken
from the revised Snodgrass and Vanderwart image set of
colourised images provided by Rossion and Pourtois (2004).
Images were centred and resized to 280 by 280 pixels using
GIMP version 2.10.6 (Kimball, Mattis, & The GIMP Devel-
opment Team, 1995). For specifics of picture selection see
Appendix D).

2One participant self-reported an age of 14 which we assume is
a typo as Prolific Academic enforces a minimum age of 18.

3A widely used normalized measure computed by dividing the
number of insertions, deletions, and substitutions required to trans-
form one string into another by the larger of the two string lengths
(Levenshtein, 1966).

https://osf.io/5mtdj/
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Orthography. To create orthographic inconsistencies, we
introduced two conditional rules to supplement one-to-one
mappings of graphemes to phonemes. First, the phoneme /l/
was rendered by its corresponding grapheme in all contexts
except in five instances when it was preceded by /b/ or /s/,
in which case it was spelled using the grapheme otherwise
assigned to /n/ so that, for example, /blAf/ was spelled as the
artificial equivalent of BNAF. Second, the phoneme /s/ was
rendered by its corresponding grapheme in all contexts ex-
cept in five instances when it was preceded by /n/ in which
case it was rendered by the grapheme otherwise assigned to
/f/ so that, for example, /snid/ was spelled FNID. It is im-
portant to emphasize that these conditional rules introduced
a roughly similar amount of inconsistency in both directions:
In terms of feed-forward consistency (spelling-sound corre-
spondences required for reading), the artificial grapheme sig-
nifying F was pronounced as /s/ 27% of times and as /f/ 73%
of times. Similarly, the artificial grapheme signifying N was
pronounced as /n/ 67% of times and as /l/ 33% of times. In
terms of feed-back consistency (sound-spelling correspon-
dences required for writing), the phoneme /s/ was spelled as
(the artificial equivalent of) the letter S 74% of times and as
F 26% of times. Similarly, the phoneme /l/ was spelled as
L 75% of times and as N 25% of times. These conditional
spelling rules were matched across word type resulting in
five contrastive and five noncontrastive words with irregular
spelling. For one contrastive and one noncontrastive word,
both conditional spelling rules applied simultaneously so that
/slOku/ and /slinAb/ were spelled as FNOKU and FNINAB,
respectively.

Simulating dialect exposure based on the Gruffalo-corpus.
Because processing of phonological versus lexical variation
might rely on different mechanisms as discussed above, we
restricted this study to just one type of variation, namely
that which is most frequent in prominent naturally occur-
ring dialect varieties of English like Scots. This determina-
tion requires frequency estimates from transcribed corpora
of dialect use which, to our knowledge, do not exist. We
therefore consulted translations of the two popular children’s
books “The Gruffalo” and “The Gruffalo’s Child” (Donald-
son, 1999, 2005), written in Standard British English (SBE),
into a number of varieties of Scots, including Dundonian,
Glaswegian, and Doric, to obtain such a dialect corpus. The
seven books comprising this corpus are listed in Appendix B.
This approach, in essence, amounts to treating the translators
of the original version of “The Gruffalo” as native dialect
informants. Using a corpus derived from children’s verses
gives us estimates for how dialects differ from standard va-
rieties for linguistic content that is appropriate for the age
group at which literacy is acquired.

The Gruffalo corpus comprised 310 translated word types.
Each of the Scots words in each Gruffalo translation was
aligned with its SBE equivalent and coded for whether it dif-

fered lexically resulting in a Scots word not existent in SBE
(e.g. big – muckle4) or phonologically (e.g. mouse – moose).
To validate this categorization we computed nLEDs between
the SBE and Scots variants for each category (lexcial vari-
ants: M = 0.80, phonological variants: M = 0.40). Phono-
logical differences were further subcategorized as phoneme
drops (e.g. and – an), substitutions (e.g. bright – bricht),
or insertions (e.g. it’s – hit’s), and whether diphthongization
(e.g. ahead – ahaid) or monophthongization (e.g. mouse –
moose) occurred5. A total of twenty-six words involved a
difference which could not be reliably categorised as lexi-
cal or phonological. Words that arose from paraphrasing the
SBE phrases (e.g. “. . . that no Gruffalo should ever set foot”
– “it wid come tae nae guid if. . . ”) were excluded from our
analysis.

Analyzing the distribution of variants revealed that 93.23%
of word types and 53.01% of word tokens were contrastive,
that is, had a dialect variant. Of these contrastive words,
49.48% of types and 63.94% of tokens had variants with
phonological differences, confirming that phonological vari-
ation was indeed the most common variation. Of the phono-
logical variants, the most frequent ones were phoneme subti-
tutions (79.91% of all phonological variant tokens) and con-
sonant drops (24.87% of all phonological variant tokens)6.
These estimates suggest that inclusion of 50% of words with
dialect variants as in Brown et al. (2015) provides an ecolog-
ically valid amount of dialect variation. We therefore imple-
mented a range of variations that mimicked those found in
the Gruffalo-corpus as listed below:

(a) consonant substitution: [k] was changed to [x] in all
positions (e.g. /skub/ changed to /sxub/).

(b) consonant drop: [d] was dropped in final position (e.g.
/snid/ changed to /sni/).

(c) vowel change: [E] and [A] were replaced with [i] and
[O], respectively (e.g. /nEf/ changed to /nif/ and /nAl/
changed to /nOl/) in all positions. In instances where
multiple changes could apply all were implemented in

4Described by the Dictionary of the Scots Language (n.d.) as an
adjective meaning “Of size or bulk: large, big, great”.

5In some cases, such as the Scots ken (know), this change is
recorded as a lexical change as the phonology of the word changes
dramatically, i.e. /kEn/ from /n@U/ despite maintaining the root
of the word. Moreover, due to lack of standardization of Scots
spelling, we only could include phonological changes that were
orthographically rendered. For example, while the voiceless velar
fricative was orthographically rendered in some cases, /x/ (e.g. right
– richt), in others it was not (e.g. loch – loch), and these changes
could not be counted in the corpus analysis.

6Note that these values sum to more than 100% as words could
include both phoneme substitutions and consonant drops, amongst
other changes.
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the “dialect” so that, for example, /skEfi/ becomes /sx-
ifi/ and /flEsOd/ becomes /flisO/.

Procedure. Participants were instructed that they would
learn to read a “made-up” language and that it was important
to perform the task in a quiet environment and to not take
any notes during participation. To ensure compliance the in-
structions misled participants into believing that detection of
cheating on our part could jeopardize reward. After receiv-
ing instructions describing the experimental procedure and
providing consent compatible with the General Data Protec-
tion Regulation, participants were asked to check the work-
ing order of their microphone and headphones/speakers. The
experiment consisted of three components: exposure, train-
ing, and testing (see Table 1). In the first exposure block,
participants heard all 30 training words one by one in ran-
domized order. They then viewed each grapheme one by one
(cycling twice during the set), accompanied by the sound of
the isolated phoneme. Crucially, phonemes were randomly
assigned to graphemes for each participant to reduce the po-
tential impact of any systematic differences in accessibility
of grapheme-phoneme pairs. Following recommendations to
include time limits preventing participants from taking notes
in learning experiments (Rodd, 2019), ach grapheme disap-
peared after 1,000 ms. This process was repeated once, ex-
posing participants to each grapheme-phoneme combination
for a total of four times.

Next, participants proceeded to the reading training, which
was interleaved with more exposure. To this end, the set of 30
words was randomly split into three reading training blocks
of 10 words each. For each item, participants saw a string of
graphemes and had to read the target word out loud. To avoid
recording long silences we timed participants’ responses by
presenting a moving hand in a clock indicating the onset, du-
ration, and offset of the 2,500 ms recording window. In the
picture condition, orthographic representations were always
accompanied by pictures to simulate availability of seman-
tic context. Although script is typically not accompanied by
pictures, we deemed such a procedure justified given that
reading rarely is context-free and confined to single words
and children’s early reading materials frequently contain il-
lustrations. Upon completion of each recording, participants
received auditory feedback by listening to the target sound
form. Each 10-item training block was presented twice in
a row to equate number of exposures per word with Exper-
iment 2 to maintain comparability (for an overview of the
task sequences in all three experiments see Table 1). The
first such block was followed by another exposure to all 30
words before proceeding to the second block of training, fol-
lowed by another exposure. In total, participants were ex-
posed to the set of 30 words three times–once at the begin-
ning, once after the first, and once after the second reading
training block. After completing the third reading training

block, participants were tested on reading of the 30 trained
and the 12 untrained words, all presented in random order
without auditory feedback.

Crucially, in the variety mismatch condition, participants
heard the dialect variants of contrastive words during all ex-
posure blocks, but were presented with the standard variants
during reading feedback. The source code for the experiment
can be found at https://osf.io/5mtdj/. The mean completion
time was 52.43 min (SD = 25.27). To ensure an equal number
of participants per condition a randomized sequence of eight
conditions comprising a crossing of variety condition, pic-
ture condition and speaker voice (female vs. male) was cre-
ated and administered consecutively over the course of about
two weeks thereby ensuring pseudorandom assignment to all
conditions. Repeated sign-up of participants was blocked by
the crowdsourcing website.

Data analysis. We used R (Version 3.6.3; R Core Team,
2018) and the R-packages brms (Version 2.12.0; Bürkner,
2017, 2018), broom.mixed (Version 0.2.4; Bolker & Robin-
son, n.d.), emmeans (Version 1.4.5; Lenth, 2019), english
(Version 1.2.5; Fox, Venables, Damico, & Salverda, 2019),
here (Version 0.1; Müller, 2017), irr (Version 0.84.1; Gamer,
Lemon, Fellows, & Singh, 2019), kableExtra (Version 1.1.0;
Zhu, 2019), knitr (Version 1.28; Xie, 2015), lme4 (Ver-
sion 1.1.21; Bates, Mächler, Bolker, & Walker, 2015),
lmerTest (Version 3.1.2; Kuznetsova, Brockhoff, & Chris-
tensen, 2017), papaja (Version 0.1.0.9942; Aust & Barth,
2018), and tidyverse (Version 1.3.0; Wickham, 2017) for
data preparation, analysis, and presentation. All data pro-
cessing and analyses were preregistered and are hosted on
the Open Science Framework https://osf.io/5mtdj/. Any de-
viations from our preregistered analysis plan are outlined and
justified in the preregistration deviations documents.

Results

Coding. Two coders (GPW and VK) transcribed all read-
ing responses while blind to each participant’s condition. A
coding convention was adopted for the 13 target phonemes
in the artificial language using the CPSAMPA (Marian et al.,
2012) simplified notation of IPA characters such that [AEiOU]
became a, E, i, O, u while the consonants were coded us-
ing the letters m, n, s, k, b, d, f, l and x. All extraneous,
that is, non-target phonemes were rendered by single Latin
characters that provided the closest match so as to be able to
compute nLEDs, which constitute a more gradual and fine-
grained performance measure than error rates, allowing us
to distinguish near-matches from entirely erroneous produc-
tions akin to cross-entropy errors in the neural network sim-
ulation by Brown et al. (2015). We computed intercoder
reliability by obtaining intraclass correlations between the
two coders’ nLEDs, using the irr R-package (Gamer et al.,

https://osf.io/5mtdj/
https://osf.io/5mtdj/
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Table 1
Task Sequence in All Experiments

Experiment 1 Experiment 2 Experiment 3

Sequence Inconsistent 2a - Consistent 2b - Inconsistent Inconsistent

exposure (1-30) exposure (1-30) exposure (1-30) exposure (1-30)
grapheme learning grapheme learning grapheme learning grapheme learning

Training reading (1-10) readinga,b (1-10) readinga,b (1-10) readinga,b (1-10)
Block 1 reading (1-10) spellingb,a (1-10) spelling2,1 (1-10) spelling2,1 (1-10)

exposure (1-30) exposure (1-30) exposure (1-30) exposure (1-30)
Training reading (11-20) readinga,b (11-20) readinga,b (11-20) readinga,b (11-20)
Block 2 reading (11-20) spellingb,a (11-20) spelling2,1 (11-20) spelling2,1 (11-20)

exposure (1-30) exposure (1-30) exposure (1-30) exposure (1-30)
Training reading (21-30) readinga,b (21-30) readinga,b (21-30) readinga,b (21-30)
Block 3 reading (21-30) spellingb,a (21-30) spelling2,1 (21-30) spelling2,1 (21-30)

exposure3 (1-30)
Training n/a n/a n/a readinga,b (1-10)
Block 4 spelling2,1 (1-10)

exposure (1-30)
Training n/a n/a n/a readinga,b (11-20)
Block 5 spelling2,1 (11-20)

exposure (1-30)
Training n/a n/a n/a readinga,b (21-30)
Block 6 spelling2,1 (21-30)

Testing reading (1-42) readinga,b (1-42) readinga,b (1-42) readinga,b (1-42)
spellingb,a (1-42) spelling2,1 (1-42) spelling2,1 (1-42)

Note. Randomly presented word numbers are given in parentheses to indicate number of words per task.
a , b Counterbalanced order of reading and spelling training. c Prior to Block 4, words were rerandomized and repartitioned.

2019). We used a single-score, absolute agreement, two-way
random effects model based on the summed nLEDs for each
participant. Intercoder reliability was F(111.000, 111.863)
= 27.705, p < .001, ICC = 0.931, 95% CI = [0.901; 0.952].
The 95% confidence interval around the parameter estimate
indicates that the ICC falls above the bound of .90, which
suggests excellent reliability across coders (Koo & Li, 2016).
However, in instances of discrepancy between the coders
we based further analyses on the smaller of the two nLEDs
thereby adopting a lenient coding criterion based on the as-
sumption that a participant’s response counts as acceptable if
at least one of the coders can match it to the target as closely
as possible.

Model Fitting. We performed separate analyses for the
training and testing phases. Our dependent variable, the le-
niently coded nLED, was arcsine square root transformed to
adjust for the bounded nature of values between 0 and 1. We
performed frequentist and Bayesian analyses. Bayesian anal-
yses, although not fully adopted as standard in studies of this
kind, provide a range of additional advantages (Nicenboim &
Vasishth, 2016; Vasishth, Mertzen, Jäger, & Gelman, 2018):

Maximal random effect structures (Barr, Levy, Scheepers, &
Tily, 2013) can be fitted without convergence problems and
data can be interrogated directly for null-effects. In our de-
scription and interpretation of the results we will focus on
those effects that reached significance in the frequentist anal-
ysis and had credible intervals that did not include 0 in the
Bayesian analysis (marked in boldface in all tables).

For the frequentist analyses, we modelled the data with linear
mixed effects models fitted using the lme4 R-package (Bates
et al., 2015). Statistical significance of each term was eval-
uated with p-values approximated using the Satterthwaite
method implemented in the lmerTest R-package (Kuznetsova
et al., 2017). We used the maximal random effects structure
that allowed for model convergence throughout (Barr et al.,
2013).

For the Bayesian analyses, we fitted linear mixed-effects
models using the brms R-package (Bürkner, 2017, 2018)
with the same fixed effects as in the frequentist models and a
maximal random effects structure. To simplify the definition
of priors for the estimated parameters, we scaled and cen-
tred the dependent variable on a mean of 0 with a standard
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deviation of 1. We used a regularizing, weakly informative
prior, Normal(0,1), for the intercept term. Additionally, we
used an informative prior for all fixed effects terms, defined
as Normal(0,0.2), except for fixed effects involving time-
terms. This prior places a larger probability on small effects
for the parameter estimates. For any fixed effects including
time terms (i.e., each time term and any interactions of other
effects with time terms in the training phase only), we used
very weakly informative priors, defined as Normal(0,10),
which allows these effects to be dominated by the likelihood.
We also used regularizing priors for the correlation param-
eters, LKJ(2), which downweights perfect correlations (Va-
sishth et al., 2018). Additionally, the standard deviations of
random effects and the residual error used the default priors
in brms for these terms at the time of writing. Specifically,
these priors are defined as half Student’s-t priors (i.e. con-
strained to be non-negative) with 3 degrees of freedom and,
minimally, a scale parameter of 10. Without a predefined re-
gion of practical equivalence (Kruschke & Liddell, 2018), we
use the 95% credible interval around the posterior mean to
summarize these models. As Nicenboim and Vasishth (2016)
note, the 95% credible interval provides the range of values
within which the true value of the parameter lies with 95%
probability given the model and data. Thus, when a 95%
credible interval includes zero, we conclude that we do not
have sufficient evidence against a null result. However, when
a 95% credible interval does not include zero, we conclude
that we have evidence for a non-zero directional effect (see
Bürkner & Vuorre, 2019 for use of similar criteria)7.

Training. Training data were modelled using growth-curve
analyses (e.g., Mirman, 2014) to establish change in per-
formance over time, i.e. from block to block, across con-
ditions. Time was modeled using fixed effects of orthogo-
nal linear and quadratic polynomials to capture the poten-
tial nonlinear change in performance over the six half-blocks
of 10 words as learning progressed. Because interactions of
quadratic terms with other fixed effects do not lend them-
selves to meaningful interpretation, they will not be con-
sidered further. The model also included sum-coded fixed
effects of picture condition (picture vs. no picture), variety
(match vs. mismatch), and word type (contrastive vs. non-
contrastive). We used nested fixed effects for these terms
(see Schad, Hohenstein, Vasishth, & Kliegl, 2018 for a dis-
cussion of this approach), with word type nested within the
interaction between all other fixed effects. As a result of this
parameterization, the intercept represents the average of con-
dition means throughout the entire time window (and not at
the first block), individual terms (except word type) represent
main effects for the given term, and word type effects repre-
sent simple effects within each combination of the other fac-
tors (e.g., word type within each level of picture and variety
conditions over the entire time). All other interactions aside
from those involving word type are interpreted as usual. In

the frequentist model, the random effect structure included
zero-correlation random intercepts and slopes of picture con-
dition, variety condition, and their interaction by items, and
random intercepts, slopes (including correlations) for the lin-
ear and quadratic time terms, word type, and their interaction
by participants. The results of the models including parame-
ter estimates, confidence intervals (for the frequentist analy-
sis), and credible intervals T2 (for the Bayesian analysis) are
presented in Table 2.

Our results show reduction of nLEDs across six half-blocks
of training indicating that participants’ reading of the artifi-
cial script improved over time. The significant quadratic term
suggests that in many instances more progress was made be-
tween Blocks 1 and 2 than between Blocks 2 and 3. Cru-
cially, the contrastive deficit was significant in the variety
mismatch condition without pictures and marginally signifi-
cant in the variety mismatch condition with pictures, broadly
confirming greater difficulties with F1 reading contrastive
words (see Figure 1). In addition, there was a significant
three-way interaction between block, picture condition, and
variety condition, which, however, is not of interest to the
main questions of this study.

Testing. For the analysis of the testing phase, we used the
same fixed effect structure as for the analysis of the train-
ing phase with the exclusion of the linear and quadratic ef-
fects of block. The only difference was that here word type
was modeled using Helmert contrasts, such that contrastive
words were compared with noncontrastive words and un-
trained words were compared with the average of contrastive
and noncontrastive words (i.e., the trained words). For the
testing phase, the random effects structure included random
intercepts and slopes of picture condition, variety condition,
and their interaction by items, and random intercepts and
slopes of word type by participants. Parameter estimates,
confidence intervals (for the frequentist analysis), and credi-
ble intervals (for the Bayesian analysis) are presented in Ta-
ble 3.

7We initially attempted to evaluate evidence for and against the
null hypothesis for each term in our model using Bayes factors cal-
culated using the generalTestBF function from the BayesFactor R-
package (Morey & Rouder, 2018). However, this resulted in Bayes
factors with a large proportional error. Following this, we calcu-
lated Bayes factors using the hypothesis function from the brms
R-package (using the Savage-Dickey density ratio). However, as
Nicenboim and Vasishth (2016) discuss, with wide, weakly infor-
mative priors, the Bayes factor will always favour the null hypothe-
sis as the alternative hypothesis is penalized for including large (and
unlikely) values in the prior. We therefore rely on the 95% credi-
ble interval, rather than Bayes factors, to interpret non-significant
results.
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Table 2
Parameter Estimates for the Models Fitted to nLEDs From the Training Phase in Experiment 1

Frequentist Estimates Bayesian Estimates

Term Est. SE 95% Conf. I t p Est. SE 95% Cred. I

Intercept 0.72 0.03 [0.65, 0.78] 21.52 < .001 0.01 0.07 [-0.13, 0.15]
Block -7.81 0.63 [-9.05, -6.57] -12.38 < .001 -0.48 0.04 [-0.56, -0.40]
Block2 1.67 0.49 [0.71, 2.64] 3.40 .001 0.10 0.03 [0.04, 0.16]
Picture Condition 0.02 0.03 [-0.04, 0.08] 0.74 .463 0.04 0.06 [-0.08, 0.17]
Variety Condition -0.02 0.03 [-0.08, 0.04] -0.69 .494 -0.04 0.06 [-0.16, 0.08]
B × PC 0.29 0.63 [-0.95, 1.52] 0.46 .650 0.01 0.04 [-0.07, 0.09]
B2 × PC -0.46 0.49 [-1.42, 0.50] -0.94 .351 -0.03 0.03 [-0.09, 0.03]
B × VC -1.19 0.63 [-2.43, 0.05] -1.89 .062 -0.07 0.04 [-0.15, 0.01]
B2 × VC -0.32 0.49 [-1.29, 0.64] -0.66 .512 -0.02 0.03 [-0.08, 0.04]
PC × VC 0.00 0.03 [-0.06, 0.06] 0.13 .899 0.00 0.06 [-0.13, 0.12]
B × PC × VC 1.29 0.63 [0.05, 2.52] 2.04 .044 0.08 0.04 [0.00, 0.16]
B2 × PC × VC -0.40 0.49 [-1.36, 0.56] -0.81 .418 -0.02 0.03 [-0.08, 0.03]
NP, VMis: WT -0.04 0.02 [-0.07, -0.00] -2.21 .031 -0.07 0.04 [-0.14, -0.00]
P, VMis: WT -0.03 0.02 [-0.06, 0.00] -1.80 .077 -0.06 0.04 [-0.13, 0.01]
NP, VMa: WT -0.01 0.02 [-0.04, 0.03] -0.45 .655 -0.01 0.03 [-0.08, 0.05]
P, VMa: WT -0.01 0.02 [-0.05, 0.02] -0.80 .429 -0.03 0.04 [-0.09, 0.05]
B, NP, VMis: WT -0.23 0.77 [-1.74, 1.29] -0.29 .769 -0.01 0.05 [-0.11, 0.08]
B2, NP, VMis: WT 0.12 0.76 [-1.36, 1.61] 0.16 .871 -0.11 0.05 [-0.20, -0.02]
B, P, VMis: WT -1.72 0.77 [-3.23, -0.21] -2.24 .027 -0.03 0.05 [-0.12, 0.07]
B2, P, VMis: WT 0.89 0.76 [-0.59, 2.37] 1.17 .242 -0.01 0.05 [-0.10, 0.09]
B, NP, VMa: WT -0.44 0.77 [-1.95, 1.08] -0.56 .573 0.00 0.05 [-0.08, 0.10]
B2, NP, VMa: WT 0.73 0.76 [-0.75, 2.21] 0.96 .337 0.06 0.05 [-0.04, 0.15]
B, P, VMa: WT -0.10 0.78 [-1.62, 1.43] -0.12 .902 0.05 0.04 [-0.04, 0.13]
B2 , P, VMa: WT 1.62 0.76 [0.12, 3.11] 2.12 .035 0.10 0.05 [0.01, 0.19]

Note. Bayesian analyses report standardized parameter estimates (i.e. the intercept [grand mean] is centered at 0). Values of 0
with a sign indicate the direction of the estimate before rounding. nLED = length-normalized Levenshtein Edit Distance; Block (B)
= 1 - 6; variety condition (VC) = variety match versus variety mismatch (VMa vs. VMi); picture condition (PC) = picture versus no
picture (P vs. NP); word type (WT) = contrastive versusnoncontrastive. Lines in boldface indicate significant effects in frequentist
analyses and credible intervals not straddling 0 in Bayesian analyses.

We found that the contrastive deficit failed to reach sig-
nificance in the variety mismatch condition. The effect of
word familiarity was significant in the variety match condi-
tion with pictures and fell short of significance in the vari-
ety mismatch condition with pictures suggesting that partici-
pants were able to capitalize on knowledge of the phonolog-
ical form of trained items either by using partial phonologi-
cal decoding or direct access from the depicted meaning (see
Figure 2).

We performed a planned direct comparison of performance
on untrained words only between the variety match and va-
riety mismatch conditions. The model included fixed effects
and interactions between the sum-coded picture conditions
and variety conditions. We used the same criteria as in our
main models for determining the random effects structure
of the model. Here, this took the form of random zero-
correlation intercepts and slopes of picture condition and va-

riety condition and their interaction by items, and random
intercepts by participants. This comparison showed no effect
of variety mismatch (frequentist estimate: β̂ = -0.05, 95%CI
= [-0.13, 0.03], t = -1.21, p = .228; Bayesian Estimate: β̂ =
-0.09, 95% CI = [-0.26, 0.07]), thus failing to obtain conclu-
sive evidence for a detrimental effect of dialect exposure on
phonological decoding skills.

Discussion

In this experiment, participants learned to read 30 words of
an artificial language using an artificial script. In the vari-
ety match condition, words presented during reading train-
ing were identical to words presented during exposure while
in the variety mismatch condition half of the words varied
between exposure and literacy acquisition mimicking dialect
exposure. Half of the participants in each variety condition
saw pictures when hearing and reading the words enabling
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Figure 1. Length-normalized Levenshtein Edit Distance (nLEDs) for reading training of contrastive and noncontrastive words
over three training blocks (coded as six half-blocks in the analyses but presented as three blocks for comparability with
Experiment 2) in the variety match and mismatch conditions in Experiment 1. Error bars indicate ± 1 SE of the mean.

Table 3
Parameter Estimates for the Models Fitted to nLEDs From the Testing Phase in Experiment 1

Frequentist Estimates Bayesian Estimates

Term Est. SE 95% Conf. I t p Est. SE 95% Cred. I

Intercept 0.61 0.04 [0.54, 0.68] 16.15 < .001 0.01 0.08 [-0.14, 0.19]
Picture Condition 0.04 0.04 [-0.03, 0.11] 1.06 .292 0.06 0.07 [-0.08, 0.20]
Variety Condition -0.05 0.04 [-0.12, 0.02] -1.33 .186 -0.08 0.07 [-0.21, 0.07]
PC × VC 0.02 0.04 [-0.05, 0.09] 0.64 .524 0.04 0.07 [-0.09, 0.18]
NP, VMis: WT -0.02 0.02 [-0.05, 0.01] -1.13 .262 -0.03 0.03 [-0.10, 0.03]
P, VMis: WT -0.03 0.02 [-0.07, -0.00] -2.00 .052 -0.07 0.03 [-0.13, -0.00]
NP, VMa: WT 0.00 0.02 [-0.04, 0.04] 0.02 .985 0.00 0.03 [-0.07, 0.07]
P, VMa: WT 0.00 0.02 [-0.03, 0.03] -0.23 .817 -0.01 0.03 [-0.07, 0.06]
NP, VMis, WF 0.01 0.01 [-0.02, 0.04] 0.74 .458 0.02 0.03 [-0.04, 0.08]
P, VMis, WF 0.03 0.01 [-0.00, 0.06] 1.94 .055 0.06 0.03 [0.00, 0.12]
NP, VMa, WF 0.01 0.02 [-0.03, 0.04] 0.32 .749 0.01 0.03 [-0.05, 0.07]
P, VMa, WF 0.04 0.01 [0.01, 0.07] 2.85 .005 0.08 0.03 [0.02, 0.14]

Note. Bayesian analyses report standardized parameter estimates (i.e. the intercept [grand mean] is centered at 0). Values of
0 with a sign indicate the direction of the estimate before rounding. nLED = length-normalized Levenshtein Edit Distance; Block
(B) = 1 - 6; variety condition (VC) = variety match versus variety mismatch (VMa vs. VMi); picture condition (PC) = picture
versus no picture (P vs. NP); word type (WT) = contrastive versusnoncontrastive. Lines in boldface indicate significant effects in
frequentist analyses and credible intervals not straddling 0 in Bayesian analyses.

them to develop semantic representations while the other half
did not. Reading performance improved significantly over
the course of training in both variety conditions although the
gains were steeper in the variety mismatch condition with
pictures. We had predicted that performance would be worse
for contrastive compared to noncontrastive words in the va-
riety mismatch condition. While the results confirmed this
trend, the contrastive deficit only reached significance during

training in the no picture condition, thus replicating findings
from the reading experiment and the connectionist simula-
tion of AAE exposure by Brown et al. (2015). Recall that in
that simulation the contrastive deficit arose solely from sim-
ilarity between the phonological representations of the AAE
and MAE variants and not from competition between word
forms associated with the same meaning. Our experiment
was not able to unequivocally establish whether a contrastive
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Figure 2. Length-normalized Levenshtein Edit Distance (nLEDs) for reading testing of trained noncontrastive, trained con-
trastive and untrained words in the variety match and variety mismatch conditions in Experiment 1. Large dots and whiskers
indicate means and ± 1 SE of the mean.

deficit persists when meanings were provided by pictures as
we only observed it in the no picture condition during train-
ing but not reliably during testing.

We only observed a word familiarity benefit in the variety
match condition with pictures. In natural languages, faster
reading of high-frequency, familiar words compared with
low-frequency words or nonwords indicates the strength of
the direct lexical route (Adelman, Sabatos-DeVito, Marquis,
& Estes, 2014; Caravolas, 2018). This lexicality effect is ei-
ther due to more efficient, larger-grained processing of more
familiar orthographic forms or the result of tighter links to
word meanings in familiar words. In contrast, unfamiliar
words require serial decoding of graphemes. In this exper-
iment, links to word meanings could only be established
in picture conditions. In no picture conditions, benefits for
trained words could arise either through greater acquired de-
coding efficiency or through partial decoding, for example,
when seeing the artificial equivalent of BLEKUS, participants
may first decode B as /b/ and then L as /l/, at which point the
phonological form /blEkus/ (or the contrastive variant /blixus/
in the variety mismatch condition) may be recognized. The
fact that the word familiarity benefit occurred only in pic-
ture conditions (reliably in the variety match and marginally
in the variety mismatch condition) indicates that lexicality
benefits arose only when access to phonological forms could
be mediated by meanings. The absence of word familiarity
effects in the no picture conditions suggest that neither more
efficient decoding strategies nor word recognition after par-
tial decoding had a chance to emerge.

Our main question was whether exposure to competing di-

alect variants would affect learners’ emerging phonological
decoding skills. To answer this question, we compared read-
ing performance for untrained words between the variety
match and mismatch conditions. If dialect exposure hinders
reading skills in general, as suspected by the Head Teacher
mentioned in our introductory paragraph, we would expect
poorer performance with untrained words in the variety mis-
match condition. Instead, we observed no difference to the
variety match condition, although Bayesian estimates of the
strength of evidence for the null hypothesis indicated that
there was insufficient evidence for a null effect. We therefore
can neither confirm nor exclude the possibility that dialect
exposure impairs decoding skills.

As this experiment was a conceptual replication of the sim-
ulation of learning to read in Brown et al. (2015), it is not
clear how well the findings of no difference between the vari-
ety match and mismatch conditions generalize in the absence
of spelling training. Moreover, in this experiment, learn-
ing grapheme-phoneme mappings was made difficult by the
inconsistent orthography designed to mimic an orthography
like English. Recall that we implemented two conditional
rules according to which grapheme-phoneme and phoneme-
grapheme mappings changed depending on context. These
complex conditional rules likely further discouraged discov-
ery and use of grapheme-phoneme conversion. To promote
learning of such rules and to encourage phonologically medi-
ated reading, we included spelling into Experiment 2. Partic-
ipants were trained with an entirely consistent orthography
in Experiment 2a and with the same inconsistent orthogra-
phy in Experiment 2b, to examine whether effects of dialect
exposure are similar for different levels of orthographic con-
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sistency.

Experiment 2: Effect of variety mismatch on learning to
read and spell

The aim of Experiment 2 was to provide more ecologically
valid literacy training conditions by examining how exposure
to variety mismatch affects learning to read and to spell a
consistent (Experiment 2a) and an inconsistent (Experiment
2b) orthography.

Experiment 2a: Consistent Orthography

Method

Participants. One hundred and twelve participants (aged
20–65, M = 36.73, SD = 10.67, with 40 self-reported as fe-
male, 71 self-reported as male, and 1 self-reported as other)
were recruited from Amazon’s Mechanical Turk crowdsourc-
ing platform and took part in the study for $7.50. Partici-
pants’ mean English proficiency on a 1-5 Likert scale was
4.90 (SD = 0.40, range 2–5). Only eight participants rated
their English proficiency as below 5. Eighty-seven partici-
pants reported knowing only English while 25 participants
also knew Spanish (listed 12 times), French (listed 6 times),
Hindi (listed 4 times), and eight other languages (listed a total
of 11 times). Only three participants were familiar with lo-
gographic scripts. Another two participants were tested and
excluded based on the criteria described for Experiment 1.

Procedure. The procedure was identical to Experiment 1
aside from the following deviation: During training, each
10-word block was presented once for reading and once for
spelling (see Table 1). During spelling training participants
heard a word and had to type it by clicking graphemes using
an on-screen keyboard. Participants in the picture condition
always saw the picture of the associated referent when hear-
ing the word. Once participants had pressed the on-screen
“enter” key the correct spelling appeared below their own
spelling for purposes of feedback. The feedback screen was
cleared after 1.5 to 3.0 s to prevent participants from taking
notes or obtaining screenshots (the exact presentation time of
the feedback was determined dynamically based on the word
length, with a duration of 500 ms per letter so that, e.g., the
correct spelling of a four-letter-word would be presented for
2 s). The overall amount of exposure to each item, combining
presentations for reading and spelling, was identical to Ex-
periment 1. In the testing phase, participants were presented
with all 30 training words and an additional 12 untrained
words in randomized order for reading and for spelling. Or-
der of reading and spelling tasks was counterbalanced across
participants but was kept constant across all phases within

participants resulting in pseudorandom assignment of partic-
ipants to 16 conditions comprising a crossing of variety con-
dition, picture condition, speaker voice, and task order. The
mean completion time was 63.88 min (SD = 23.00).

Results

Coding. We used the same coding scheme for reading re-
sponses as in Experiment 1. The ICC between coders was
F(111.000, 21.599) = 2754.729, p < .001, ICC = 0.999, 95%
CI = [0.998; 1.000]. The 95% confidence interval around
the parameter estimate indicates that the ICC falls above
the bound of .90, which suggests excellent reliability across
coders (Koo & Li, 2016). Spelling responses were analyzed
by computing length-normalized Levenshtein Edit Distances
between response and target sequences of graphemes.

Model Fitting. Model fitting was similar to Experiment 1,
with the exception of the inclusion of a sum-coded fixed
effect of task (reading vs. spelling) and of random slopes
of task. Additionally, because the training phase con-
tained three training blocks per task, the training models
were changed to include only an orthogonal linear (and not
quadratic) time term as a fixed and random effect, to avoid
overfitting change over time based on only three time points.
Word type was nested within the combination of variety,
picture, and task conditions. We used maximal random ef-
fect structure comprising random intercepts and slopes of all
fixed effects by participants and items, with zero-correlation
between intercepts and slopes where appropriate to avoid
nonconvergence. The Bayesian mixed effects models used
the same priors as in Experiment 1, with the addition of in-
formative, Normal(0,0.2) priors on the fixed effect of task
and any interactions of other terms with this factor.

Training. Parameter estimates, confidence intervals (for
the frequentist analysis), and credible intervals (for the
Bayesian analysis) are presented in Table 4. The results
showed a main effect of T4 block, indicating an overall im-
provement of performance as training progressed, as well as
a main effect of task demonstrating better performance for
reading than for spelling. Crucially, as indicated by the ef-
fect of word type, we found that reading, but not spelling,
of contrastive words was significantly impaired in the variety
mismatch conditions with and without pictures. In the pic-
ture condition, the effect of word type in reading in the va-
riety mismatch condition interacted with block reflecting the
fact that impaired performance for contrastive words started
to manifest itself gradually over the course of training (see
Figures 3 and 4).

Testing. Parameter estimates, confidence intervals (for the
frequentist analysis), and credible intervals (for the Bayesian
analysis) are presented in Table 5. The results confirmed
the main T5 effect of task observed during training which
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Table 4
Parameter Estimates for the Models Fitted to nLEDs From the Training Phase in Experiment 2a

Frequentist Estimates Bayesian Estimates

Term Est. SE 95% Conf. I t p Est. SE 95% Cred. I

Intercept 0.66 0.04 [0.59, 0.73] 18.67 < .001 0.00 0.07 [-0.15, 0.14]
Block -8.92 0.77 [-10.44, -7.40] -11.51 < .001 -0.37 0.03 [-0.44, -0.31]
Task -0.04 0.01 [-0.06, -0.03] -5.16 < .001 -0.09 0.02 [-0.12, -0.05]
Picture Condition 0.05 0.03 [-0.02, 0.11] 1.33 .187 0.08 0.07 [-0.05, 0.21]
Variety Condition -0.05 0.03 [-0.12, 0.02] -1.43 .154 -0.09 0.07 [-0.21, 0.04]
B × TC -0.39 0.39 [-1.15, 0.38] -0.99 .323 -0.02 0.02 [-0.05, 0.02]
B × PC -0.27 0.77 [-1.79, 1.25] -0.35 .725 -0.01 0.03 [-0.08, 0.05]
TC × PC 0.00 0.01 [-0.02, 0.01] -0.48 .635 -0.01 0.02 [-0.04, 0.02]
B × VC 0.90 0.77 [-0.62, 2.42] 1.16 .249 0.04 0.03 [-0.03, 0.10]
TC × VC -0.01 0.01 [-0.02, 0.01] -1.19 .235 -0.02 0.02 [-0.05, 0.01]
PC × VC -0.02 0.03 [-0.09, 0.05] -0.55 .585 -0.03 0.07 [-0.16, 0.10]
B × TC × PC -0.18 0.39 [-0.94, 0.58] -0.46 .645 -0.01 0.02 [-0.04, 0.02]
B × TC × VC 0.01 0.39 [-0.75, 0.77] 0.02 .982 0.00 0.02 [-0.03, 0.03]
B × PC × VC -1.43 0.77 [-2.95, 0.09] -1.85 .067 -0.06 0.03 [-0.12, 0.01]
TC × PC × VC 0.00 0.01 [-0.01, 0.02] 0.63 .533 0.01 0.02 [-0.02, 0.04]
B × TC × PC × VC -0.58 0.39 [-1.34, 0.18] -1.49 .140 -0.02 0.02 [-0.06, 0.01]
R, NP, VMis: WT -0.04 0.01 [-0.07, -0.01] -2.47 .015 -0.07 0.03 [-0.13, -0.01]
S, NP, VMis: WT 0.00 0.01 [-0.03, 0.03] 0.27 .787 0.01 0.03 [-0.05, 0.07]
R, P, VMis: WT -0.05 0.01 [-0.08, -0.02] -3.60 < .001 -0.10 0.03 [-0.16, -0.04]
S, P, VMis: WT -0.01 0.01 [-0.04, 0.02] -0.67 .503 -0.02 0.03 [-0.07, 0.04]
R, NP, VMa: WT -0.01 0.01 [-0.04, 0.01] -0.99 .325 -0.02 0.03 [-0.08, 0.04]
S, NP, VMa: WT -0.01 0.01 [-0.04, 0.02] -0.55 .583 -0.01 0.03 [-0.07, 0.04]
R, P, VMa: WT 0.00 0.01 [-0.03, 0.03] -0.02 .987 0.00 0.03 [-0.06, 0.06]
S, P, VMa: WT -0.01 0.01 [-0.04, 0.02] -0.49 .622 -0.01 0.03 [-0.07, 0.05]
B, R, NP, VMis: WT -0.18 0.90 [-1.95, 1.59] -0.20 .844 -0.01 0.04 [-0.09, 0.07]
B, S, NP, VMis: WT -0.43 0.90 [-2.21, 1.34] -0.48 .632 -0.02 0.04 [-0.09, 0.05]
B, R, P, VMis: WT -2.21 0.90 [-3.97, -0.45] -2.46 .014 -0.09 0.04 [-0.16, -0.02]
B, S, P, VMis: WT -0.96 0.90 [-2.72, 0.80] -1.07 .287 -0.04 0.04 [-0.11, 0.04]
B, R, NP, VMa: WT -0.25 0.90 [-2.02, 1.51] -0.28 .778 -0.01 0.04 [-0.08, 0.06]
B, S, NP, VMa: WT 0.55 0.90 [-1.22, 2.32] 0.61 .542 0.02 0.04 [-0.05, 0.10]
B, R, P, VMa: WT -0.14 0.90 [-1.91, 1.63] -0.15 .879 -0.01 0.04 [-0.08, 0.06]
B, S, P, VMa: WT 1.03 0.90 [-0.75, 2.80] 1.13 .257 0.04 0.04 [-0.03, 0.12]

Note. Bayesian analyses report standardized parameter estimates (i.e. the intercept [grand mean] is centered at 0). Values of 0 with
a sign indicate the direction of the estimate before rounding. nLED = length-normalized Levenshtein Edit Distance; Block (B) = 1 - 6;
variety condition (VC) = variety match versus variety mismatch (VMa vs. VMi); picture condition (PC) = picture versus no picture (P
vs. NP); word type (WT) = contrastive versusnoncontrastive. Lines in boldface indicate significant effects in frequentist analyses and
credible intervals not straddling 0 in Bayesian analyses.

showed that performance was superior for reading compared
to spelling. As during training, we found an effect of word
type in the variety mismatch condition in reading but not in
spelling, but only when pictures were present. The effect of
word familiarity was significant in all conditions except for
spelling in the variety mismatch condition with pictures, al-
though Bayesian analyses failed to corroborate it for spelling
in the variety match condition without pictures (see Figures 5
and 6).

As in Experiment 1, we performed a planned direct compar-
ison of performance on untrained words between all variety
match and variety mismatch conditions. The model included
fixed effects and interactions between the sum-coded levels

of task condition, picture condition, and variety condition.
We used the same criteria as in our main models for deter-
mining the random effects structure. Here, this took the form
of zero-correlation random intercepts and slopes of task con-
dition, picture condition, variety condition, and their interac-
tion by items, as well as random intercepts by participants.
As in Experiment 1, the effect of variety condition provided
no evidence for a detrimental effect of a variety mismatch
on reading and spelling of untrained words (frequentist esti-
mate: β̂ = -0.04, 95% CI = [-0.12, 0.04], t = -0.93, p = .353;
Bayesian Estimate: β̂ = -0.06, 95% CI = [-0.21, 0.07]).
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Figure 3. Length-normalized Levenshtein Edit Distance (nLEDs) for reading of contrastive and noncontrastive words during
three training blocks in the variety match and variety mismatch conditions in Experiment 2a. Error bars indicate ± 1 SE of
the mean.

Figure 4. Length-normalized Levenshtein Edit Distance (nLEDs) for spelling of contrastive and noncontrastive words during
three training blocks in the variety match and variety mismatch conditions in Experiment 2a. Error bars indicate ± 1 SE of
the mean.

Discussion

When spelling was introduced to literacy training in a consis-
tent artificial orthography, the contrastive deficit emerged in
reading when participants encountered a variety mismatch,
which persisted into the testing session. However, unlike
the contrastive reading deficit found by Brown et al. (2015)
for children and neural networks exposed to both AAE and
MAE here it was more persistent when meanings were pro-
vided by pictures. Notably, no contrastive deficit emerged

for spelling. This is because no competing orthographic rep-
resentations for words in the exposure variety (i.e., the “di-
alect”) existed and learners likely engaged in serial conver-
sion of phonemes into graphemes. We had expected that
introducing spelling would facilitate reliance on grapheme-
phoneme decoding during reading, which should have atten-
uated the word familiarity effect. Yet the effect of word fa-
miliarity was significant in all reading conditions and even
some of the spelling conditions. This is at odds with cross-



16 GLENN P. WILLIAMS1, 2, NIKOLAY PANAYOTOV1, & VERA KEMPE1

Table 5
Parameter Estimates for the Models Fitted to nLEDs From the Testing Phase in Experiment 2a

Frequentist Estimates Bayesian Estimates

Term Est. SE 95% Conf. I t p Est. SE 95% Cred. I

Intercept 0.52 0.04 [0.44, 0.60] 12.75 < .001 0.01 0.08 [-0.15, 0.16]
Task -0.04 0.01 [-0.06, -0.03] -6.72 < .001 -0.08 0.01 [-0.11, -0.06]
Picture Condition 0.05 0.04 [-0.03, 0.13] 1.14 .258 0.07 0.08 [-0.09, 0.21]
Variety Condition -0.05 0.04 [-0.13, 0.03] -1.15 .254 -0.09 0.07 [-0.24, 0.05]
TC × PC 0.00 0.01 [-0.01, 0.01] 0.13 .894 0.00 0.01 [-0.02, 0.02]
TC × VC 0.00 0.01 [-0.02, 0.01] -0.72 .472 -0.01 0.01 [-0.03, 0.01]
PC × VC -0.04 0.04 [-0.12, 0.04] -1.03 .305 -0.07 0.07 [-0.21, 0.07]
TC × PC × VC 0.00 0.01 [-0.01, 0.02] 0.76 .450 0.01 0.01 [-0.01, 0.03]
R, NP, VMis: WT -0.02 0.02 [-0.06, 0.01] -1.25 .216 -0.04 0.03 [-0.11, 0.02]
S, NP, VMis: WT -0.01 0.02 [-0.04, 0.02] -0.41 .685 -0.01 0.03 [-0.06, 0.05]
R, P, VMis: WT -0.05 0.02 [-0.09, -0.02] -3.19 .002 -0.10 0.03 [-0.16, -0.04]
S, P, VMis: WT -0.01 0.02 [-0.04, 0.02] -0.89 .377 -0.02 0.03 [-0.08, 0.03]
R, NP, VMa: WT -0.02 0.02 [-0.05, 0.01] -1.10 .274 -0.03 0.03 [-0.09, 0.03]
S, NP, VMa: WT 0.00 0.01 [-0.03, 0.02] -0.15 .881 0.00 0.03 [-0.05, 0.05]
R, P, VMa: WT 0.00 0.02 [-0.04, 0.03] -0.17 .869 0.00 0.03 [-0.06, 0.06]
S, P, VMa: WT 0.00 0.01 [-0.03, 0.02] -0.10 .924 0.00 0.03 [-0.05, 0.05]
R, NP, VMis, WF 0.03 0.01 [0.01, 0.06] 2.53 .013 0.06 0.02 [0.02, 0.11]
S, NP, VMis, WF 0.02 0.01 [0.00, 0.04] 2.21 .032 0.04 0.02 [0.01, 0.08]
R, P, VMis, WF 0.05 0.01 [0.03, 0.07] 4.07 < .001 0.09 0.02 [0.05, 0.14]
S, P, VMis, WF 0.01 0.01 [-0.00, 0.03] 1.47 .149 0.03 0.02 [-0.01, 0.06]
R, NP, VMa, WF 0.03 0.01 [0.01, 0.05] 2.58 .011 0.05 0.02 [0.01, 0.10]
S, NP, VMa, WF 0.02 0.01 [0.00, 0.03] 2.03 .046 0.03 0.02 [-0.00, 0.07]
R, P, VMa, WF 0.03 0.01 [0.00, 0.05] 2.35 .020 0.05 0.02 [0.01, 0.10]
S, P, VMa, WF 0.02 0.01 [0.00, 0.03] 2.48 .016 0.04 0.02 [0.00, 0.07]

Note. Bayesian analyses report standardized parameter estimates (i.e. the intercept [grand mean] is centered at 0). Values of 0
with a sign indicate the direction of the estimate before rounding. nLED = length-normalized Levenshtein Edit Distance; Block (B)
= 1 - 6; variety condition (VC) = variety match versus variety mismatch (VMa vs. VMi); picture condition (PC) = picture versus no
picture (P vs. NP); word type (WT) = contrastive versusnoncontrastive. Lines in boldface indicate significant effects in frequentist
analyses and credible intervals not straddling 0 in Bayesian analyses.

linguistic findings of children learning to read (Caravolas,
2018) where lexicality effects were greater in the inconsis-
tent orthography (English) compared to the consistent ones
(Czech and Slovak). We suspect that the more consistent
orthography may have encouraged more frequent partial de-
coding, that is, decoding of just enough graphemes to access
the memorized word form, which benefitted trained but not
untrained items. In spelling, the word familiarity effect is
somewhat puzzling but may reflect emerging representations
of the overall graphemic Gestalt or even the motor routines
required to type a word. Most relevant to the main question
of the study, as in Experiment 1, similar reading and spelling
performance with untrained words in the variety match and
mismatch conditions suggests that concurrent exposure to
another variety did not seem to have any further detrimental
effect on whatever decoding skills participants had acquired.

Experiment 2b: Opaque Orthography

Method

Participants. One hundred and twelve participants (aged
20–68, M = 33.29, SD = 9.75, with 38 self-reported as fe-
male, 74 and self-reported as male) were recruited from
Amazon’s Mechanical Turk crowdsourcing platform and
took part in the study for $7.50. Participants’ mean En-
glish proficiency on a 1-5 Likert scale was 4.77 (SD = 0.57,
range 3–5). Only eighteen participants rated their English
proficiency as below 5. Seventy-one participants reported
knowing only English while 41 participants also knew Span-
ish (listed 15 times), Hindi (listed 12 times), Tamil (listed
10 times), and eighteen other languages (listed a total of 31
times). Only six participants were familiar with logographic
scripts. Another three participants were tested and excluded
based on the criteria described for Experiment 1.
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Figure 5. Length-normalized Levenshtein Edit Distance (nLEDs) for testing reading performance for trained noncontrastive,
trained contrastive, and untrained words in the variety match and variety mismatch conditions in Experiment 2a. Large dots
and whiskers indicate means and ± 1 SE of the mean.

Figure 6. Length-normalized Levenshtein Edit Distance (nLEDs) for testing spelling performance for trained noncontrastive,
trained contrastive and untrained words in the variety match and variety mismatch conditions in Experiment 2a. Large dots
and whiskers indicate means and ± 1 SE of the mean.

Materials. Graphemes, words, and pictures were identical
to the previous two experiments. We used the same inconsis-
tent orthography as in Experiment 1.

Procedure. The procedure was identical to Experiment 2a.
The mean completion time was 81.38 min (SD = 42.82).

Results

Coding. We used the same coding scheme for reading re-
sponses as in the previous experiments. The ICC between
coders was F(111.000, 84.857) = 2212.270, p < .001, ICC
= 0.999, 95% CI = [0.999; 0.999]. The 95% confidence in-
terval around the parameter estimate indicates that the ICC
falls above the bound of .90, which suggests excellent reli-
ability across coders (Koo & Li, 2016). Spelling responses
were analyzed by computing length-normalized Levenshtein
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Figure 7. Length-normalized Levenshtein Edit Distance (nLEDs) for reading of contrastive and noncontrastive words during
three training blocks in the variety match and variety mismatch conditions in Experiment 2b. Error bars indicate ± 1 SE of
the mean.

Figure 8. Length-normalized Levenshtein Edit Distance (nLEDs) for spelling of contrastive and noncontrastive words during
three training blocks in the variety match and variety mismatch conditions in Experiment 2b. Error bars indicate ± 1 SE of
the mean.

Edit Distances between response and target sequences of
graphemes.

Model Fitting. Frequentist and Bayesian analyses were
conducted in the same way as for Experiment 2b. In the
frequentist analyses, there were minor differences in the ran-
dom effects structure compared to Experiment 2a due to dif-
ferences in convergence: For the training phase, the max-
imal converging random effects structure included correla-
tions between all by-participant terms. For the testing phase,

correlations between all random effect terms had to be sup-
pressed to avoid nonconvergence.

Training. Parameter estimates, confidence intervals (for
the frequentist analysis) and credible intervals (for the
Bayesian analysis) are presented in Table 6.

As in Experiment 2a, the main effect of block indicated im-
provement in performance over the course of training and the
main effect of task confirmed that learning to spell was more
difficult than learning to read. The only other significant ef-
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Table 6
Parameter Estimates for the Models Fitted to nLEDs From the Training Phase in Experiment 2b

Frequentist Estimates Bayesian Estimates

Term Est. SE 95% Conf. I t p Est. SE 95% Cred. I

Intercept 0.80 0.03 [0.74, 0.87] 24.01 < .001 0.03 0.07 [-0.11, 0.17]
Block -6.44 0.68 [-7.78, -5.10] -9.42 < .001 -0.28 0.03 [-0.34, -0.22]
Task -0.03 0.01 [-0.05, -0.02] -4.19 < .001 -0.07 0.02 [-0.11, -0.04]
Picture Condition -0.01 0.03 [-0.07, 0.05] -0.18 .858 -0.01 0.06 [-0.13, 0.09]
Variety Condition -0.04 0.03 [-0.10, 0.02] -1.27 .207 -0.07 0.06 [-0.20, 0.06]
B × TC -0.28 0.39 [-1.05, 0.50] -0.70 .487 -0.01 0.02 [-0.04, 0.02]
B × PC -0.03 0.68 [-1.37, 1.31] -0.04 .968 0.00 0.03 [-0.06, 0.06]
TC × PC 0.02 0.01 [0.01, 0.04] 2.87 .005 0.05 0.02 [0.01, 0.08]
B × VC -0.92 0.68 [-2.26, 0.42] -1.35 .179 -0.04 0.03 [-0.10, 0.02]
TC × VC 0.00 0.01 [-0.01, 0.02] 0.22 .824 0.00 0.02 [-0.03, 0.04]
PC × VC 0.01 0.03 [-0.05, 0.07] 0.45 .654 0.02 0.06 [-0.10, 0.14]
B × TC × PC 0.66 0.39 [-0.11, 1.43] 1.67 .097 0.03 0.02 [-0.00, 0.06]
B × TC × VC -0.58 0.39 [-1.35, 0.20] -1.46 .147 -0.03 0.02 [-0.06, 0.01]
B × PC × VC 0.40 0.68 [-0.94, 1.73] 0.58 .564 0.02 0.03 [-0.04, 0.07]
TC × PC × VC 0.01 0.01 [-0.01, 0.02] 1.06 .293 0.02 0.02 [-0.02, 0.05]
B × TC × PC × VC -0.16 0.39 [-0.93, 0.61] -0.40 .688 -0.01 0.02 [-0.04, 0.03]
R, NP, VMis: WT -0.01 0.02 [-0.05, 0.03] -0.51 .608 -0.02 0.04 [-0.09, 0.06]
S, NP, VMis: WT -0.01 0.02 [-0.05, 0.02] -0.71 .481 -0.02 0.04 [-0.10, 0.05]
R, P, VMis: WT -0.01 0.02 [-0.05, 0.03] -0.45 .655 -0.02 0.04 [-0.09, 0.06]
S, P, VMis: WT 0.01 0.02 [-0.02, 0.05] 0.80 .428 0.03 0.04 [-0.04, 0.10]
R, NP, VMa: WT 0.00 0.02 [-0.03, 0.04] 0.18 .861 0.01 0.04 [-0.07, 0.08]
S, NP, VMa: WT -0.02 0.02 [-0.05, 0.02] -0.87 .385 -0.03 0.04 [-0.10, 0.04]
R, P, VMa: WT -0.02 0.02 [-0.06, 0.02] -1.07 .288 -0.04 0.04 [-0.11, 0.03]
S, P, VMa: WT -0.01 0.02 [-0.05, 0.02] -0.81 .419 -0.03 0.04 [-0.10, 0.05]
B, R, NP, VMis: WT -0.14 1.01 [-2.11, 1.84] -0.14 .891 -0.01 0.04 [-0.09, 0.08]
B, S, NP, VMis: WT 0.48 1.02 [-1.52, 2.48] 0.47 .637 0.02 0.04 [-0.06, 0.11]
B, R, P, VMis: WT 0.29 1.00 [-1.68, 2.25] 0.29 .774 0.01 0.04 [-0.07, 0.10]
B, S, P, VMis: WT -0.05 1.02 [-2.04, 1.94] -0.05 .961 0.00 0.04 [-0.08, 0.08]
B, R, NP, VMa: WT 1.44 1.00 [-0.52, 3.40] 1.44 .150 0.06 0.04 [-0.02, 0.15]
B, S, NP, VMa: WT 0.64 1.01 [-1.34, 2.63] 0.63 .527 0.03 0.04 [-0.06, 0.11]
B, R, P, VMa: WT 0.90 1.01 [-1.08, 2.89] 0.89 .372 0.04 0.04 [-0.05, 0.12]
B, S, P, VMa: WT 0.50 1.02 [-1.50, 2.51] 0.49 .624 0.02 0.04 [-0.06, 0.10]

Note. Bayesian analyses report standardized parameter estimates (i.e. the intercept [grand mean] is centered at 0). Values of 0
with a sign indicate the direction of the estimate before rounding. nLED = length-normalized Levenshtein Edit Distance; Block (B)
= 1 - 6; variety condition (VC) = variety match versus variety mismatch (VMa vs. VMi); picture condition (PC) = picture versus no
picture (P vs. NP); word type (WT) = contrastive versusnoncontrastive. Lines in boldface indicate significant effects in frequentist
analyses and credible intervals not straddling 0 in Bayesian analyses.

fect was an interaction between task and picture condition.
Pairwise contrasts based on the estimated marginal means
of the training model were calculated using the emmeans
R-package (Lenth, 2019), using Holm’s sequential Bonfer-
roni correction. These contrasts indicate that reading perfor-
mance was better than spelling performance in the picture
condition only (picture, reading-spelling: ∆M = -0.12, 95%
CI =[-0.18, -0.05], t = -5.02, p < .001). All other contrasts
were non-significant (p > .05). Unlike Experiment 1, we did
not find any evidence for a contrastive deficit (see Figures 7
and 8).

Testing. Parameter estimates, confidence intervals (for the
frequentist analysis) and credible intervals (for the Bayesian
analysis) are presented in Table 7. The results confirmed the
interaction between task and picture condition found already
in the training data which suggests that reading performance
was better than writing performance in the picture condition
only (picture, reading-spelling: ∆M = -0.11[-0.16, -0.05], t
= -5.40, p = < .001). However, unlike Experiment 2a, there
was no contrastive deficit and the effect of word familiarity
appeared only in one condition, i.e. during reading in the va-
riety match condition with pictures (see Figures 9 and 10).

The planned comparison of performance on untrained words
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Table 7
Parameter Estimates for the Models Fitted to nLEDs From the Testing Phase in Experiment 2b

Frequentist Estimates Bayesian Estimates

Term Est. SE 95% Conf. I t p Est. SE 95% Cred. I

Intercept 0.69 0.04 [0.61, 0.77] 17.63 < .001 0.03 0.07 [-0.11, 0.18]
Task -0.03 0.01 [-0.04, -0.02] -4.10 < .001 -0.06 0.01 [-0.09, -0.03]
Picture Condition 0.00 0.04 [-0.07, 0.07] 0.06 .956 0.01 0.07 [-0.12, 0.14]
Variety Condition -0.05 0.04 [-0.12, 0.02] -1.31 .191 -0.08 0.07 [-0.23, 0.06]
TC × PC 0.02 0.01 [0.01, 0.04] 3.53 .001 0.05 0.01 [0.02, 0.07]
TC × VC -0.01 0.01 [-0.02, 0.01] -1.06 .292 -0.01 0.01 [-0.04, 0.01]
PC × VC 0.02 0.04 [-0.06, 0.09] 0.46 .647 0.03 0.07 [-0.10, 0.16]
TC × PC × VC 0.00 0.01 [-0.02, 0.01] -0.47 .641 -0.01 0.01 [-0.03, 0.02]
R, NP, VMis: WT -0.01 0.02 [-0.05, 0.03] -0.34 .731 -0.01 0.04 [-0.08, 0.07]
S, NP, VMis: WT -0.02 0.02 [-0.06, 0.02] -0.98 .327 -0.03 0.04 [-0.10, 0.04]
R, P, VMis: WT -0.04 0.02 [-0.08, -0.00] -2.06 .041 -0.07 0.04 [-0.15, 0.01]
S, P, VMis: WT -0.01 0.02 [-0.05, 0.03] -0.39 .695 -0.01 0.04 [-0.08, 0.06]
R, NP, VMa: WT -0.02 0.02 [-0.06, 0.02] -0.99 .322 -0.03 0.04 [-0.10, 0.04]
S, NP, VMa: WT 0.00 0.02 [-0.04, 0.04] 0.02 .986 0.01 0.04 [-0.06, 0.07]
R, P, VMa: WT -0.03 0.02 [-0.07, 0.01] -1.63 .105 -0.05 0.04 [-0.13, 0.02]
S, P, VMa: WT 0.00 0.02 [-0.04, 0.04] -0.08 .935 0.00 0.03 [-0.06, 0.07]
R, NP, VMis, WF 0.01 0.02 [-0.03, 0.04] 0.44 .663 0.01 0.04 [-0.06, 0.08]
S, NP, VMis, WF 0.01 0.02 [-0.02, 0.04] 0.61 .541 0.02 0.03 [-0.04, 0.08]
R, P, VMis, WF 0.02 0.02 [-0.01, 0.05] 1.20 .231 0.04 0.04 [-0.03, 0.11]
S, P, VMis, WF 0.01 0.02 [-0.03, 0.04] 0.32 .747 0.01 0.03 [-0.05, 0.07]
R, NP, VMa, WF 0.02 0.02 [-0.01, 0.05] 1.08 .280 0.03 0.03 [-0.04, 0.10]
S, NP, VMa, WF 0.01 0.02 [-0.02, 0.04] 0.53 .598 0.01 0.03 [-0.04, 0.07]
R, P, VMa, WF 0.04 0.02 [0.01, 0.08] 2.54 .012 0.08 0.03 [0.01, 0.15]
S, P, VMa, WF 0.01 0.02 [-0.02, 0.04] 0.49 .624 0.01 0.03 [-0.04, 0.07]

Note. Bayesian analyses report standardized parameter estimates (i.e. the intercept [grand mean] is centered at 0). Values of
0 with a sign indicate the direction of the estimate before rounding. nLED = length-normalized Levenshtein Edit Distance; Block
(B) = 1 - 6; variety condition (VC) = variety match versus variety mismatch (VMa vs. VMi); picture condition (PC) = picture
versus no picture (P vs. NP); word type (WT) = contrastive versusnoncontrastive. Lines in boldface indicate significant effects in
frequentist analyses and credible intervals not straddling 0 in Bayesian analyses.

only between all variety match and variety mismatch condi-
tions used the same model structure as for Experiment 2a.
There was no effect of variety condition (frequentist esti-
mate: β̂ = -0.06, 95% CI = [-0.14, 0.02], t = -1.38, p = .171;
Bayesian Estimate: β̂ = -0.09, 95% CI = [-0.25, 0.07]), again
suggesting that there was no evidence for a detrimental effect
of exposure to a variety mismatch on reading and spelling of
untrained words.

Discussion

When attempting to learn to read and to spell an inconsistent
artificial orthography, participants showed improvement over
the course of training. However, unlike under reading-only
conditions in Experiment 1, where the contrastive deficit was
found in some of the variety mismatch conditions, we found
no contrastive deficit in this experiment. It is possible that
learning conditional rules in reading and spelling rendered

literacy acquisition too difficult to allow for the establish-
ment of phonological representations that could have been
placed into competition with each other, even when pictures
provided meanings. Such an explanation is certainly in line
with cross-linguistic studies of literacy acquisition in chil-
dren, which show that at the early stages learning is more
difficult for inconsistent compared with more consistent or-
thographies (Seymour, Aro, & Erskine, 2003). In our exper-
iment, where the artificial words were also novel, this may
have hindered word learning; without more or less stable rep-
resentations competition cannot occur. Again, as in Experi-
ment 2a, there was no effect of variety mismatch on read-
ing and spelling of untrained words suggesting that whatever
weak decoding skills had been acquired remained unaffected
by the presence of dialect variant words in the input.

Although this was not the main aim of this study, combin-
ing the first three experiments gives us the opportunity to ex-
plore whether orthographic consistency or spelling training



DIALECT LITERACY 21

Figure 9. Length-normalized Levenshtein Edit Distance (nLEDs) for testing reading performance for trained noncontrastive,
trained contrastive, and untrained words in the variety match and variety mismatch conditions in Experiment 2b. Large dots
and whiskers indicate means and ± 1 SE of the mean.

Figure 10. Length-normalized Levenshtein Edit Distance (nLEDs) for testing spelling performance for trained noncontrastive,
trained contrastive, and untrained words in the variety match and variety mismatch conditions in Experiment 2b. Large dots
and whiskers indicate means and ± 1 SE of the mean.

are more conducive to literacy acquisition. Figure 11 shows
a direct comparison of reading performance for all trained
and untrained items during testing in the three experiments.
To obtain statistical evidence for the comparison, we first fit-
ted a linear mixed effect model with sum-coded fixed effects
of word familiarity and treatment-coded fixed effects experi-
ment (1, 2a, 2b), and with a maximal random effects structure
of random intercepts and slopes of experiment by item and
random intercepts and slopes of word familiarity by partic-

ipants. Pairwise contrasts were then calculated for each ex-
periment separately for trained versus untrained words based
on the estimated marginal means from the model using the
emmeans R-package (Lenth, 2019). The results of these con-
trasts are provided in Table 8, where p-values are adjusted
using Holm’s sequential Bonferroni correction.
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These contrasts show that for trained words, performance
was better in Experiment 2a compared with Experiment 1
and to Experiment 2b. All other differences were nonsignif-
icant, suggesting that while introduction of spelling had no
effect on overall reading outcomes, learning a consistent or-
thography led to measurable benefits, albeit only for trained
words, regardless of whether spelling training was provided
or not. Recall that the contrastive deficit also emerged most
reliably with the consistent orthography suggesting that in
this paradigm, phonological skill contributed to word learn-
ing, and competition between variants emerges only once
learning has progressed to a stage at which access to phono-
logical representations, either via (partial) decoding of the or-
thographic form or via semantic representations, is possible.
However, the considerable variability in performance, evi-
dent in all figures, compellingly shows that participants dif-
fer tremendously in terms of their success at the early stages
of this process. To create conditions that would allow for
more reliable establishment of phonological representations,
Experiment 3 repeated Experiment 2b with a longer training
phase and a larger sample of learners, expecting to see a more
reliable emergence of the contrastive deficit.

Experiment 3

Method

Participants. One hundred and sixty participants (aged
18–61, M = 32.48, SD = 9.67, with 89 self-reported as
female, 70 self-reported as male, and 1 self-reported as
other) were recruited from the crowdsourcing platform Pro-
lific Academic and took part in the study for £9.00. All par-
ticipants reported English as their native language, and had a
self-rated mean English proficiency on a 1-5 Likert scale of
4.86 (SD = 0.58, range 1–5). Participants reported no known
mild cognitive impairments or dementia. Despite declaring
English as their native language, 13 participants rated their
English proficiency as below 5. Ninety-five participants re-
ported knowing only English while 65 participants also knew
Spanish (listed 34 times), Spanish (listed 20 times), German
(listed 12 times), and twenty-six other languages (listed a to-
tal of 50 times). Only ten participants were familiar with lo-
gographic scripts. An additional six participants were tested
and excluded based on the criteria described for Experiment
1.

Materials. We used the same materials as in Experiments
1, 2a, and 2b, and the same inconsistent orthography as in
Experiments 1 and 2b.

Procedure. The procedure deviated from Experiment 2a
and 2b in that the training phase was doubled in length by
adding another three 10-word reading and spelling blocks

(with order of tasks counterbalanced across participants) re-
sulting in a total of six training blocks for reading and
spelling. All words were first partitioned into sets of 10
for presentation in the first three reading and spelling blocks
and then repartitioned for presentation in the final three read-
ing and spelling blocks, ensuring that each block contained
five contrastive and five noncontrastive words. To provide
ecologically valid conditions, semantic information was pre-
sented by depicting a concrete object with all words during
exposure and reading training. The mean completion time
was 98.14 min (SD = 91.20).

Results

Coding. We used the same coding scheme for reading re-
sponses as in the previous experiments. The ICC between
coders was F(159.000, 159.859) = 635.896, p < .001, ICC
= 0.997, 95% CI = [0.996; 0.998]. The 95% confidence in-
terval around the parameter estimate indicates that the ICC
falls above the bound of .90, which suggests excellent reli-
ability across coders (Koo & Li, 2016). Spelling responses
were analyzed by computing length-normalized Levenshtein
Edit Distances between response and target sequences of
graphemes.

Model Fitting. We used a similar model structure to Ex-
periments 2a and b, with the exclusion of the picture condi-
tion factor. As in Experiments 1, 2a, and 2b, the fixed ef-
fects for training and testing were modeled by obtaining all
main effects and interactions between all factors excluding
word type, and nesting word type within each combination
of factor levels of the task and variety conditions. Because
this experiment, like Experiment 1, contained six blocks per
task, we included the quadratic term for block in the analy-
ses of the training data to improve model fit. For the training
data, the maximal converging random effects structure com-
prised zero-correlation random intercepts and slopes of task,
variety condition, and their interaction by items, and ran-
dom intercepts and slopes for the linear and quadratic time
terms, task, word type, and their interaction by participants,
including all correlations between these terms. For the test-
ing data, the random effects structure comprised random in-
tercepts and slopes of task, variety condition, and their inter-
action by items, and random intercepts and slopes for task,
word type, and their interaction by participants, including all
correlations between these terms for both by-participants and
by-items random effects.

As with Experiments 1, 2a, and 2b, we also modeled the
data using Bayesian mixed effects models with a full max-
imal random effects structure (i.e., without suppressing cor-
relations between the by-items random effects in the train-
ing phase). These models used the same priors as in Exper-
iments 2a and 2b, with the inclusion of a regularizing, very



DIALECT LITERACY 23

Table 8
Parameter Estimates for Pairwise Contrasts Between Experiments 1, 2a, and 2b as a Function of Word Familiarity in the
Testing Phase

Contrast ∆M SE 95% Conf. I t p

Trained Words
Experiment 1 - Experiment 2a 0.09 0.02 [0.05, 0.13] 5.82 < .001
Experiment 1 - Experiment 2b -0.06 0.05 [-0.18, 0.05] -1.34 .181
Experiment 2a - Experiment 2b -0.16 0.05 [-0.27, -0.04] -3.22 .003

Untrained Words
Experiment 1 - Experiment 2a 0.06 0.03 [-0.00, 0.12] 2.42 .061
Experiment 1 - Experiment 2b -0.07 0.05 [-0.20, 0.06] -1.30 .193
Experiment 2a - Experiment 2b -0.13 0.06 [-0.27, 0.00] -2.32 .061

Note. Lines in boldface indicate significant effects in frequentist analyses

Figure 11. Length-normalized Levenshtein Edit Distance (nLEDs) for reading testing performance in trained and untrained
words in Experiments 1, 2a, and 2b. Large dots and whiskers indicate means and ± 1 SE of the mean.

weakly informative prior, Normal(0,10), on the orthogonal
quadratic time term, and excluding priors for picture condi-
tion which was no longer in the model. We used these mod-
els to evaluate evidence in support of the null hypothesis for
each parameter in the same way as in Experiments 1, 2a, and
2b.

Training. Parameter estimates, confidence intervals (for
the frequentist analysis), and credible intervals (for the
Bayesian analysis) are presented in Table 9. As in all previ-
ous experiments, we T9 found a main effect of block attesting
performance improvement over the course of training. Simi-
lar to Experiment 1, the quadratic term also reached signifi-
cance confirming nonlinearity of the learning trajectory. We
also confirmed the main effect of task which indicates that
reading performance exceeded spelling performance. The

interaction between block and task suggests that while per-
formance was similar across tasks at the outset, learning pro-
gressed more rapidly for reading than for spelling.

With respect to the main questions of interest–the contrastive
deficit and the effect of variety mismatch–we found evidence
for a contrastive deficit for reading evidenced by the effect of
word type in the variety mismatch condition. In addition, we
observed an interaction between the quadratic term of block
and variety condition and a three-way interaction between
block, task, and variety condition, which suggest that perfor-
mance levelled off somewhat faster in the variety match con-
dition, especially for spelling, while further learning gains
were made in the variety condition (see Figures 12 and 13).

Testing. Parameter estimates, confidence intervals (for the
frequentist analysis), and credible intervals (for the Bayesian
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Table 9
Parameter Estimates for the Models Fitted to nLEDs From the Training Phase in Experiment 3

Frequentist Estimates Bayesian Estimates

Term Est. SE 95% Conf. I t p Est. SE 95% Cred. I

Intercept 0.73 0.03 [0.67, 0.78] 25.01 < .001 0.05 0.06 [-0.06, 0.15]
Block -17.99 0.86 [-19.68, -16.30] -20.84 < .001 -0.63 0.03 [-0.68, -0.56]
Block2 5.23 0.59 [4.07, 6.39] 8.84 < .001 0.18 0.02 [0.14, 0.22]
Task -0.05 0.01 [-0.07, -0.03] -5.50 < .001 -0.10 0.02 [-0.13, -0.06]
Variety Condition -0.03 0.03 [-0.08, 0.02] -1.05 .296 -0.05 0.05 [-0.15, 0.04]
B × TC -1.96 0.49 [-2.91, -1.00] -4.01 < .001 -0.07 0.02 [-0.10, -0.03]
B2 × TC 0.43 0.42 [-0.38, 1.25] 1.04 .298 0.01 0.01 [-0.01, 0.04]
B × VC -1.70 0.86 [-3.39, -0.01] -1.97 .051 -0.06 0.03 [-0.12, 0.00]
B2 × VC 1.71 0.59 [0.55, 2.87] 2.88 .004 0.06 0.02 [0.02, 0.10]
TC × VC 0.01 0.01 [-0.00, 0.03] 1.37 .171 0.02 0.01 [-0.01, 0.05]
B × TC × VC 1.00 0.49 [0.04, 1.95] 2.04 .043 0.03 0.02 [0.00, 0.07]
B2 × TC × VC -0.45 0.42 [-1.26, 0.37] -1.08 .282 -0.02 0.01 [-0.04, 0.01]
R, VMis: WT -0.04 0.02 [-0.07, -0.01] -2.61 .011 -0.07 0.03 [-0.13, -0.01]
S, VMis: WT 0.00 0.02 [-0.03, 0.03] -0.06 .952 0.00 0.03 [-0.06, 0.07]
R, VMa: WT -0.02 0.02 [-0.05, 0.01] -1.23 .222 -0.03 0.03 [-0.09, 0.03]
S, VMa: WT 0.00 0.02 [-0.03, 0.03] -0.15 .882 0.00 0.03 [-0.06, 0.06]
B, R, VMis: WT 0.18 0.72 [-1.24, 1.60] 0.25 .802 0.01 0.02 [-0.04, 0.05]
B2, R, VMis: WT 0.05 0.72 [-1.36, 1.46] 0.07 .945 0.01 0.02 [-0.03, 0.06]
B, S, VMis: WT 0.41 0.66 [-0.88, 1.71] 0.62 .534 0.00 0.02 [-0.04, 0.05]
B2, S, VMis: WT 0.02 0.68 [-1.31, 1.36] 0.03 .973 -0.02 0.02 [-0.06, 0.03]
B, R, VMa: WT 0.01 0.72 [-1.41, 1.42] 0.01 .993 0.00 0.02 [-0.05, 0.05]
B2, R, VMa: WT -0.01 0.72 [-1.42, 1.39] -0.02 .984 0.00 0.02 [-0.04, 0.05]
B, S, VMa: WT -0.43 0.66 [-1.73, 0.86] -0.66 .512 0.00 0.02 [-0.05, 0.04]
B2, S, VMa: WT -0.34 0.68 [-1.67, 1.00] -0.49 .624 -0.01 0.02 [-0.06, 0.03]

Note. Bayesian analyses report standardized parameter estimates (i.e. the intercept [grand mean] is centered at 0). Values of 0 with
a sign indicate the direction of the estimate before rounding. nLED = length-normalized Levenshtein Edit Distance; Block (B) = 1 - 6;
variety condition (VC) = variety match versus variety mismatch (VMa vs. VMi); picture condition (PC) = picture versus no picture (P
vs. NP); word type (WT) = contrastive versusnoncontrastive. Lines in boldface indicate significant effects in frequentist analyses and
credible intervals not straddling 0 in Bayesian analyses.

analysis) are presented in Table 10. As in the training data,
there was a main effect of task confirming superior perfor-
mance for reading compared with spelling and an effect of
word type, indicative of the contrastive deficit for reading in
the variety mismatch condition. We also found that the effect
of word familiarity was significant for reading in the variety
match condition due to impaired performance for untrained
compared to trained words in this condition. Crucially, the
analysis yielded a main effect of variety which showed that
overall performance at test was superior in the variety mis-
match condition (see Figures 14 and 15).

As in the previous experiments, we performed a planned
comparison of performance between the variety match and
variety mismatch conditions on untrained words only using
the same model structure as in Experiments 2a and 2b. The
frequentist model yielded a significant effect of variety con-
dition (β̂ = -0.08, 95% CI = [-0.15, -0.01], t = -2.20, p = .029)
with the Bayesian estimate suggesting sufficient evidence in

favour of this effect (β̂ = -0.14, 95% CI = [-0.26, -0.02]).
This effect indicates that reading and spelling performance
were superior in the variety mismatch condition.

Discussion

When a larger sample of participants was trained for longer
in reading and spelling of an inconsistent artificial orthogra-
phy with semantic information there was clear evidence for
a contrastive deficit in reading, both in training as well as in
testing. This indicates that when training is long enough for
phonological representations to be established, exposure of
competing variants that are associated with the same mean-
ing impairs reading. A contrastive deficit could not have
arisen had participants exclusively relied on a phonologically
mediated reading strategy that involved serial conversion of
all graphemes into the associated phonemes. In contrast, no
contrastive deficit emerged for spelling because no dialect
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Figure 12. Length-normalized Levenshtein Edit Distance (nLEDs) for reading of contrastive and noncontrastive words during
three training blocks in the variety match and variety mismatch conditions in Experiment 3. Error bars indicate ± 1 SE of the
mean.

Figure 13. Length-normalized Levenshtein Edit Distance (nLEDs) for spelling of contrastive and noncontrastive words during
three training blocks in the variety match and variety mismatch conditions in Experiment 3. Error bars indicate ± 1 SE of the
mean.

orthographic form had ever been presented, and because
spelling could only be achieved through sequential conver-
sion of individual phonemes into the associated graphemes.

At the same time, the word familiarity effect observed for
reading in the variety match condition suggests that when no
competing variants were encountered during literacy train-
ing participants seemed to rely more on direct access to the
phonological forms of words, likely mediated by a word’s
meaning. In contrast, no phonological representations were

available for untrained words, making serial conversion of
graphemes into phonemes necessary–a process that is pre-
sumably more error-prone than direct lexical access. The
lack of an effect of word familiarity for reading in the variety
mismatch condition suggests that having encountered many
competing variants in the input discouraged a lexical strategy
but rather encouraged grapheme-phoneme conversion, which
was equally successful for trained and untrained words. As
a result of more systematic use of phonological decoding,
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Table 10
Parameter Estimates for the Models Fitted to nLEDs From the Testing Phase in Experiment 3

Frequentist Estimates Bayesian Estimates

Term Est. SE 95% Conf. I t p Est. SE 95% Cred. I

Intercept 0.58 0.03 [0.51, 0.64] 17.55 < .001 0.04 0.06 [-0.08, 0.17]
Task -0.05 0.01 [-0.06, -0.03] -5.75 < .001 -0.09 0.02 [-0.12, -0.06]
Variety Condition -0.07 0.03 [-0.12, -0.01] -2.15 .033 -0.11 0.05 [-0.22, -0.01]
TC × VC 0.01 0.01 [-0.00, 0.03] 1.72 .088 0.02 0.01 [-0.00, 0.05]
R, VMis: WT -0.05 0.02 [-0.08, -0.02] -2.86 .006 -0.09 0.03 [-0.16, -0.03]
S, VMis: WT 0.00 0.02 [-0.04, 0.03] -0.17 .865 0.00 0.03 [-0.06, 0.06]
R, VMa: WT -0.03 0.02 [-0.06, 0.01] -1.58 .121 -0.05 0.03 [-0.11, 0.02]
S, VMa: WT -0.01 0.02 [-0.04, 0.03] -0.31 .756 -0.01 0.03 [-0.07, 0.06]
R, VMis, WF 0.02 0.01 [-0.01, 0.04] 1.11 .270 0.03 0.03 [-0.02, 0.09]
S, VMis, WF -0.01 0.01 [-0.03, 0.01] -0.81 .423 -0.02 0.02 [-0.07, 0.03]
R, VMa, WF 0.04 0.01 [0.01, 0.07] 2.82 .006 0.07 0.03 [0.02, 0.13]
S, VMa, WF 0.00 0.01 [-0.02, 0.02] -0.13 .897 0.00 0.02 [-0.05, 0.04]

Note. Bayesian analyses report standardized parameter estimates (i.e. the intercept [grand mean] is centered at 0). Values of 0
with a sign indicate the direction of the estimate before rounding. nLED = length-normalized Levenshtein Edit Distance; Block (B)
= 1 - 6; variety condition (VC) = variety match versus variety mismatch (VMa vs. VMi); picture condition (PC) = picture versus no
picture (P vs. NP); word type (WT) = contrastive versusnoncontrastive. Lines in boldface indicate significant effects in frequentist
analyses and credible intervals not straddling 0 in Bayesian analyses.

Figure 14. Length-normalized Levenshtein Edit Distance (nLEDs) for testing reading performance for trained noncontrastive,
trained contrastive, and untrained words in the variety match and variety mismatch conditions in Experiment 3. Large dots
and whiskers indicate means and ± 1 SE of the mean.

participants in the variety mismatch condition exhibited an
overall benefit in their literacy skills, especially for untrained
words.
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Figure 15. Length-normalized Levenshtein Edit Distance (nLEDs) for testing spelling performance for trained noncontrastive,
trained contrastive, and untrained words in the variety match and variety mismatch conditions in Experiment 3. Large dots
and whiskers indicate means and ± 1 SE of the mean.
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General Discussion

In three experiments we investigated the effect of exposure
to dialect variants of words on literacy learning. Employ-
ing an artificial language with an invented script allowed us
to control for potential extralinguistic confounds that are of-
ten associated with dialect exposure such as differences in
quality of input, home literacy environment, cultural atti-
tudes to literacy, educational provision, or teacher expecta-
tion. Previous research (Brown et al., 2015) had shown that
encountering a variety mismatch impairs processing of con-
trastive words, that is, words with different variants across
varieties (e.g., Scots “hoose” vs. English “house” or AAE
“aks” vs. MAE “ask”). What remained unclear was whether
impaired performance with these contrastive words is also
associated with a general deficit in decoding skills as mea-
sured by reading and spelling of novel, untrained words.

Our results confirmed and extended the finding of a con-
trastive deficit, which we replicated for reading training with-
out semantic information in the variety mismatch condi-
tions in Experiments 1 and 2a, where participants might not
have noticed that similar, yet distinct variants were associ-
ated with the same lexical item. These conditions corre-
sponded to the Brown et al. (2015) connectionist simulation
where a contrastive deficit is akin to the processing of het-
erophonic homographs—words that are spelled the same but
activate phonological competitors that are pronounced dif-
ferently. However, when a consistent orthography (Experi-
ment 2a) or longer training (Experiment 3) improved condi-
tions for the establishment of phonological representations,
the contrastive deficit appeared also when pictures enabled
participants to access semantic representations, suggesting
that a shared semantic representation further promotes com-
petition between phonological variants, provided these are
sufficiently stable. This finding is in line with interactive ac-
tivation and competition models postulating inhibition from
high-frequency competitors at the lexical layer, which can
be reinforced via bidirectional connections between lexical
and semantic representations (Chen & Mirman, 2012), and
suggests that both phonological and lexical competition con-
tribute to a contrastive deficit in situations of dialect expo-
sure.

One question that has not been addressed so far is whether
the competition associated with the contrastive deficit in
reading manifests itself in confusion between the two vari-
ants of a word or in increased nonspecific errors when pro-
cessing graphemic input. Our dependent variable, the Lev-
enshtein Edit Distance, which provides the best comparison
to the cross-entropy error computed for the neural network
simulations of Brown et al. (2015), is not informative with
respect to specific error types. In order to gain further in-
sight into errors, we used automatic string comparison to
code productions in the testing phase for all experiments

with respect to whether dialect variants were produced in re-
sponse to their standard contrastive counterpart (e.g., target:
kuble–response: xuble), whether dialect variants were pro-
duced in response to another standard contrastive word (e.g.,
target: skefi–response: xuble), whether standard words were
produced in response to another standard word (e.g., target:
skefi–response: kuble), or whether any other nonsubstitu-
tion error was made (for summary graphs see Appendix E).
Inspection of these response patterns shows a clear trend
across experiments: While the mean percentage of correct
responses to contrastive words did not differ between variety
match

(ranging from 27% to 44%) and variety mismatch (rang-
ing from 28% to 28%) conditions, roughly three times more
dialect variants were substituted for a standard contrastive
counterpart (e.g., kuble-xuble) in variety mismatch (rang-
ing from 5.50% to 8.20%) than variety match (ranging from
1.80% to 2.60%) conditions8. This trend suggests that the
contrastive deficit, albeit small, is predominantly due to vari-
ant substitution rather than impaired overall reading skills.

We had hypothesized that introduction of spelling training
should attenuate the contrastive deficit by facilitating phono-
logically mediated decoding (Taylor et al., 2017). Indeed,
the fact that no contrastive deficit was found for spelling
confirms that spelling itself did not rely on direct retrieval
of orthographic forms but required conversion of phonemes
into graphemes. In fact, variant substitution in response to
contrastive words (e.g., kuble–xuble) did not occur at all
for spelling even though spelling training did not prevent
the emergence of such substitutions in reading, as described
above. Moreover, as the joint analyses of Experiments 1 and
2 indicated, introducing spelling training did not lead to a
significant improvement in overall literacy nor in phonolog-
ically mediated decoding, in contrast to studies demonstrat-
ing that invented, that is, non-normative spelling facilitates
reading by boosting phonemic awareness and by promoting a
more analytical stance toward letter–sound correspondences
(Caravolas et al., 2001; Ehri & Wilce, 2006; Ouellette &
Sénéchal, 2008, 2017; Ouellette et al., 2008). It is likely
that adult learners, who already have mastered the alpha-
betic principle, do not experience an additional boost from
spelling training as they prefer direct access to word forms
during reading whenever possible–either after partial decod-
ing of initial graphemes or via the depicted word meaning or
both. If conversion of individual phonemes into graphemes
and vice versa is perceived as effortful and error-prone, adult
participants may follow this route only when there is no al-
ternative, as in spelling, for which performance was indeed

8Dialect errors in the variety match condition, where no di-
alect variants were never encountered, simply reflect the frequency
with which these variants may occur if learners substitute or omit
phonemes.
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consistently inferior to reading.

In the picture conditions, we had included pictures not just
during exposure but also during reading as a means of pro-
viding some semantic information to compensate for lack
of sentential context or of accompanying pictures that of-
ten are found in children’s books. It could be argued that
whenever pictures were present alongside a word’s ortho-
graphic form no decoding needed to take place at all as di-
rect access of the phonological form via rote-memorization
of meaning–sound associations was possible. Under such
conditions, dialect exposure should have no detrimental ef-
fects on the ability to decode novel words simply because
no decoding skills would have been acquired, and reading of
untrained words–the artificial-language analogy to nonword
reading tests–should have presented considerable difficulty.
Indeed, for the inconsistent orthography the familiarity ef-
fect was statistically significant when pictures were present,
suggesting that a combination of a difficult-to-learn orthog-
raphy with the availability of semantic information may have
reduced the pressure to decode individual graphemes. How-
ever, it is unlikely that picture presentation during reading
would have precluded the acquisition of decoding skills en-
tirely because the number of times participants encountered
each word and its meaning (five times in Experiments 1 and
2, 10 times in Experiment 3) was probably insufficient to
enable participants to reliably memorize sound–meaning as-
sociations for the entire set of 30 items, leaving them with
having to decode, at least partially, those words they could
not remember based on meaning. Reliance on partial de-
coding may then have been moderated by our experimen-
tal conditions: When pictures were provided, direct access
from meaning to the sound form was possible, attenuating
use of the decoding strategy. On the other hand, whenever a
consistent orthography made decoding easier, as in Experi-
ment 2a, word form access via meaning may have been dis-
couraged, and partial decoding may have been encouraged
so that a familiarity benefit appeared regardless of picture
condition. Emergence of a word familiarity effect in some of
the spelling conditions shows that a consistent orthography
can facilitate access to orthographic representations, perhaps
via implicit statistical learning of grapheme sequences, spa-
tial locations of letters on the on-screen keyboard, or asso-
ciated motor routines that underpinned the keyboard-based
spelling.

The crucial question of the present study was whether expo-
sure to different variants of some of the training words in the
variety mismatch conditions impaired decoding skills. In Ex-
periments 1 and 2, the analyses did not provide sufficient ev-
idence to answer this question. For the inconsistent orthogra-
phy, this may simply have been a consequence of the overall
difficulty of the task. But even for the consistent orthography,
where learning was more successful, there was no evidence

for a detrimental effect of variety mismatch. Moreover, when
we increased our sample size to gain greater statistical power
and extended the training phase (Experiment 3), we found
a clear performance benefit in the variety mismatch condi-
tion. This benefit was significant for overall performance as
well as for the untrained words separately, and provides clear
evidence that under conditions mimicking dialect exposure
participants acquired superior decoding skills compared with
conditions without dialect variation.

What might account for such a dialect benefit in artificial
literacy acquisition? When discussing differential perfor-
mance in reading and spelling we suggested that learners ap-
pear to select strategies based on perceived difficulty: We
argue that greater linguistic variety may limit reliance on
memory-based retrieval of phonological forms during read-
ing and facilitate rule-based, phonologically mediated decod-
ing, which, in turn, can lead to an overall improvement in
decoding skills. This conclusion is also confirmed by the
word familiarity effect in Experiment 3, which reached sig-
nificance only in the variety match condition, suggesting that
in the mismatch condition, dialect exposure may have en-
couraged more reliance on phonological decoding to resolve
the conflict between contrastive variants. Thus, counter to
expectations formulated in the literature so far, our results
suggest that when extralinguistic confounds are controlled
dialect exposure may in some situations even be beneficial
for acquisition of phonological decoding skills.

Our experiments do not allow us to determine whether the
observed dialect benefit requires explicit noticing of the com-
peting variants for contrastive words or whether phonologi-
cal decoding benefits simply from greater variability of word
forms in the input. The idea that explicit noticing of dialect
variants could benefit decoding skills is in agreement with
the linguistic awareness/flexibility hypothesis of Terry and
Scarborough (2011). While awareness of appropriate dialect
usage can be seen as an indicator for general metalinguis-
tic knowledge, which is known to be beneficial for acquisi-
tion of phonological decoding skills, there is also evidence
that directly boosting learners’ dialect awareness can help
literacy learning. For example, Johnson, Terry, Connor, and
Thomas-Tate (2017) demonstrated that an intervention that
involved explicit teaching of dialect awareness to primary
school-children exposed to both NMAE and MAE resulted
not only in more flexible and appropriate use of NMAE but
also in better MAE literacy skills. Future research will have
to investigate to what extent explicit awareness of contrastive
words is required for a dialect benefit to occur during literacy
learning.

Our finding of a dialect benefit in the artificial literacy
paradigm comes with several caveats: First, learners in this
study were adults who already had acquired literacy in one or
more languages and were certainly familiar with the alpha-
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betic principle. Their prior literacy competence may have en-
dowed them with knowledge–implicit or explicit–of a variety
of routes to access phonological and orthographic forms, and
the ability to select strategically between them depending on
input. Such choices may not be available to children who are
just starting on the path to literacy using whatever principles
are emphasized in their specific educational setting. Thus,
caution is indicated when trying to generalize our findings
to children until future research has examined whether di-
alect exposure has similar benefits in learners who are just
beginning to acquire the different pathways to reading and
spelling.

Second, the artificial conditions of our study differ from natu-
ralistic literacy acquisition in several fundamental ways. For
one, the goal of learning in the conditions in which no pic-
tures were present was different from the typical goal of read-
ing and spelling, which is to access and to convey mean-
ing. Here, all that participants were asked to learn was the
connection between print and sound, a limitation that was
motivated by our attempt to replicate the findings from the
Brown et al. (2015) connectionist simulations. Still, it may
have shifted the emphasis on access to phonological and or-
thographic representations more than is appropriate in natu-
ralistic literacy learning thereby affecting the learners’ reper-
toire of mechanisms and strategies. We had tried to remedy
this limitation by comparing these conditions with conditions
in which pictorial information about the meaning was avail-
able at all times. However, unlike children, who typically
know the meanings of the words they try to read and spell,
in these conditions our participants learned the meaning of
novel words at the same time as they learned to read and
spell. This is more akin to acquisition of a second language
in settings where learning is underpinned by print exposure,
for example, when adult speakers of English learn Hebrew
both from a teacher and a textbook–a more complex and po-
tentially more effortful learning task than literacy learning
in the native language. We had tried to mitigate against this
additional burden by providing pictorial information about
the meaning at all times, but it is still possible that this more
difficult task may have proved taxing on attentional resources
and thereby altered learning strategies. To be able to general-
ize from learning of artificial scripts to literacy acquisition in
children future research may seek to study more ecologically
valid conditions, for example the learning of novel scripts
for familiar words or pretraining of word knowledge before
literacy acquisition commences.

Third, our experiments provided no cues, social or other-
wise, for dialect use. All that participants encountered in
the variety mismatch conditions was greater variability in
terms of variants, whether associated with the same mean-
ing or not. Yet dialect use is typically associated with spe-
cific regional, social, and situational constraints. Brown et

al. (2015), in their second simulation, showed that when di-
alect variants were cued by context nodes that coded variety
(AAE vs. MAE) the contrastive deficit was attenuated. This
shows that additional differentiating contextual information,
provided consistently alongside phonologically similar con-
trastive variants, reduces competition. Despite the lack of
social context, the present artificial language learning exper-
iments are still of relevance as some evidence suggests that,
unlike in bilingual language acquisition, the sociolinguistic
competence required to contextualize dialect variation takes
considerable time to build, as indicated by the slow develop-
mental trajectory for dialect recognition (McCullough, Clop-
per, & Wagner, 2019) and emergene of social attitutes toward
dialects (Kinzler & DeJesus, 2013). One could construe the
situation simulated in our experiments as one in which liter-
acy acquisition precedes reliable acquisition of the sociolin-
guistic competence that governs dialect use. In future stud-
ies, we plan to provide contextual information alongside the
different variants, which might reduce the difficulty with pro-
cessing contrastive words. The intriguing question is in what
ways such contextual information will affect the reliance on
rote-memorization versus phonological decoding.

Finally, it should be noted that we observed considerable
variability in performance in all experiments. A visual in-
spection of the figures indicates that the distributions of edit
distances were bimodal in many conditions. Even though the
lack of a normal distribution of this dependent variable does
not preclude fitting the statistical models described above,
as the residuals were normally distributed in all instances,
it still points to the possibility qualitatively different mecha-
nisms were employed by subgroups of our participants. This
variability may in part reflect greater demographic diversity
on crowdsourcing platforms compared with laboratory sam-
ples. We had refrained from selecting participants accord-
ing to prespecified demographic variables like SES because
proxies for such variables (e.g., annual income) may have
different validity in different cultural and economic contexts,
and because of evidence that on crowdsourcing platforms re-
sponses to eligibility questions may not be reliable and con-
sistent (Chandler & Paolacci, 2017). (Note in this context the
curious discrepancy in some participants who were asked to
self-select as native English speakers in Experiments 1 and 3
but rated their English proficiency as below-native or even el-
ementary.) Variability in performance may also reflect differ-
ent solutions to the trade-off between minimizing expended
effort while maximizing monetary gain, which may depend
on whether participants use crowdsourcing platforms repeat-
edly as a source of income (El Maarry, Milland, & Balke,
2018). In particular, the substantial duration of our experi-
ments, in conjunction with the monetary reward, may have
induced effort-minimizing strategies beyond what would be
expected in more naturalistic literacy acquisition contexts
and in potentially better supervised laboratory studies. Al-
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though we tried to mitigate against outright cheating (e.g.,
note taking) by placing time constraints on different tasks,
we still have to accept that some participants may have ex-
pended too little effort for learning to occur. These short-
comings should at least in part be compensated for by our
substantial sample sizes that exceed those typically used in
laboratory experiments.

Conclusions

In naturalistic contexts, it is difficult to disentangle dialect
exposure from other confounding factors that may affect lit-
eracy learning. The results from this artificial literacy learn-
ing study showed that while words with dialect variants are
more difficult to read, their presence in the input can facili-
tate acquisition of phonological decoding skills as a means of
reducing the arising competition. Because a phonologically
mediated route to literacy acquisition has been shown to be
essential in the early stages of learning to read and spell (Cas-
tles et al., 2018; Taylor et al., 2017) our results–if confirmed
in further studies with children–raise the intriguing possibil-
ity that dialect exposure may, in fact, yield tangible benefits
for literacy acquisition.

Context of the Research

This project has brought together two strands of experimental
research that we have pursued in the past: the study of how
cognitive representations of dialects in bidialectal speakers
differ from representations of languages in bilinguals, and
the study of how distributional features of the language input
affect language learning. Inspired by the applied question of
whether dialect bans in schools are justified from the point
of view of the underlying learning mechanisms, we extended
the artificial language learning paradigm to the investigation
of how input variability induced by dialect exposure might
affect literacy acquisition. A major challenge was to scale up
artificial language learning to larger numbers of participants
via the use of crowd-sourcing platforms. To our knowledge,
this is the first study to analyze large scale artificial language
production data obtained from online participants. The strict
controls afforded by artificial language and artificial script
learning enabled us to replicate with human learners what
neural network simulations had demonstrated before for nat-
ural language: that there is a small cost for processing words
for which dialect variants exist. Our finding that this local
cost does not necessarily impair acquisition of general de-
coding skills, at least in adult learners, will hopefully be of
interest to researchers working on artificial language learn-
ing, on models of bidialectal lexical representation, and on
literacy acquisition as well as to educational practitioners. In
the future, we will aim to extend this controlled approach to

the study of how dialect exposure affects literacy acquisition
in children.
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Appendix A

Graphemes used to render phonemes in all experiments

Figure A1. Invented graphemes used to represent each phoneme in all experiments. The final two graphemes were created but
not used in these experiments. To prevent participants from memorizing the novel graphemes based on resemblance to known
graphemes we controlled for similarity to characters of extant writing systems by comparing each invented grapheme against
the database of 11,817 characters (excluding Chinese, Korean, and Japanese) on the Shapecatcher website (Milde, 2011). If
visual inspection indicated a resemblance, we modified the grapheme to minimize that resemblance.
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Appendix B

The Gruffalo books

The Gruffalo.

• The Doric Gruffalo (translated by Sheena Blackhall)
• Thi Dundee Gruffalo (translated by Matthew Fitt)
• The Glasgow Gruffalo (translated by Elaine C. Smith)
• The Gruffalo in Scots (translated by James Robertson)

The Gruffalo’s Child.

• The Doric Gruffalo’s Bairn (translated by Sheena Blackhall)
• Thi Dundee Gruffalo’s Bairn (translated by Matthew Fitt)
• The Gruffalo’s Wean (Scots; translated by James Robertson)

Note: The Gruffalo’s Child was not available in Glaswegian at the time of this corpus analysis.
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Appendix C

Table C1
Word list used in all experiments.

Spelling Pronunciation
Consistent Inconsistent Noncontrastive Contrastive

Training Words
nEsk nEsk nEsk nisx
skEfi skEfi skEfi sxifi
blEkus bnEkus blEkus blixus
flEsOd flEsOd flEsOd flisO
nEf nEf nEf nif
bEsmi bEsmi bEsmi bismi
nal nal nal nOl
daf daf daf dOf
blaf bnaf blaf blOf
balf balf balf bOlf
dasmu dasmu dasmu dOsmu
smadu smadu smadu smOdu
kublE kubnE kublE xublE
slOku fnOku slOku slOxu
snid fnid snid sni
fub fub fub
mif mif mif
lOm lOm lOm
snOf fnOf snOf
blim bnim blim
flOb flOb flOb
mOls mOls mOls
fOns fOns fOns
nifs nifs nifs
nOflE nOflE nOflE
dEsna dEfna dEsna
smiba smiba smiba
flidu flidu flidu
snibOl fnibOl snibOl
slinab fninab slinab

Testing Words
mab mab mab
skub skub skub
klEb klEb klEb
dOlk dOlk dOlk
suld suld suld
dikla dikla dikla
luskO luskO luskO
klufE klufE klufE
klOda klOda klOda
skOnEf skOnEf skOnEf
klusim klusim klusim
flabun flabun flabun

Note.
Experiment 1, 2b, and 3 use the opaque spellings, while Experiment 2a uses the transparent spellings.
Words are presented according to the CPSAMPA coding convention for simplified IPA characters.
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Appendix D

Images used from the Rossion and Pourtois (2004) colourised Vanderwart picture set and their related norming results

Our subset of items are as follows:

• Body part: Finger, foot, eye, hand, nose, arm, ear.

• Furniture and kitchen utensils: Chair, glass, bed, fork, spoon, pot, desk.

• Household objects, tools, and instruments: Television, toothbrush, book, pen, refrigerator, watch, pencil.

• Food and clothing: Pants, socks, shirt, sweater, apple, tomato, potato.

• Buildings, building features, and vehicles: Door, house, window, car, doorknob, truck, bicycle. Animals and plants:
Tree, dog, cat, flower, rabbit, duck, chicken.

The subset of pictures and their associated norms are provided in the supplemental material at https://osf.io/5mtdj/.

https://osf.io/5mtdj/
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Appendix E

Figure E1. Mean proportion of response types for Experiments 1 (panel A), 2a (panel B), 2b (panel C), and 3 (panel D). Re-
sponse types are: correct (e.g. target: kuble–response: kuble); dialect word match: the dialect variant is produced in response
to the corresponding standard contrastive word (e.g. target: kuble–response: xuble); dialect word misatch: a dialect variant
is produced in response to another standard contrastive word (e.g. target: skefi–response: xuble); standard word mismatch:
a standard word is produced in response to another standard word (e.g. target: skefi–response: kuble); other mismatch: any
other error that was not part of the response set.


	The Present Study
	Experiment 1: Effect of variety mismatch on learning to read an opaque orthography
	Method
	Participants
	Materials
	Procedure
	Data analysis

	Results
	Coding
	Model Fitting

	Discussion

	Experiment 2: Effect of variety mismatch on learning to read and spell
	Experiment 2a: Consistent Orthography
	Method
	Participants
	Procedure

	Results
	Coding
	Model Fitting

	Discussion

	Experiment 2b: Opaque Orthography
	Method
	Participants
	Materials
	Procedure

	Results
	Coding
	Model Fitting

	Discussion

	Experiment 3
	Method
	Participants
	Materials
	Procedure

	Results
	Coding
	Model Fitting

	Discussion

	General Discussion
	Conclusions
	Context of the Research
	References
	Graphemes used to render phonemes in all experiments
	The Gruffalo books
	The Gruffalo
	The Gruffalo's Child

	
	Images used from the Rossion and Pourtois (2004) colourised Vanderwart picture set and their related norming results
	


