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in gene delivery, non-viral vectors have become the preferred carrier system for DnA delivery. they 
can overcome major viral issues such as immunogenicity and mutagenicity. cationic lipid-mediated 
gene transfer is one of the most commonly used non-viral vectors, which have been shown to be a 
safe and effective carrier. However, their use in gene delivery often exhibits low transfection efficiency 
and stability. The aim of this study was to examine the effectiveness of novel non-viral gene delivery 
systems. This study has investigated the encapsulation and transfection efficiency of cationic liposomes 
prepared from DotAp and carboxymethyl-β-cyclodextrin (CD). The encapsulation efficiency of the 
CD-lipoplex complexes were also studied with and without the addition of Pluronic-F127, using both 
microfluidic and thin film hydration methods. In vitro transfection efficiencies of these complexes 
were determined in COS7 and SH-SY5Y cell lines. Formulation stability was evaluated using liposomes 
size, zeta potential and polydispersity index. in addition, the external morphology was studied using 
transmission electron microcopy (TEM). Results revealed that formulations produced by microfluidic 
method had smaller, more uniform and homogenious size and zeta-potential as well as higher 
encapsulation efficiency when compared with liposomes manufactured by thin film hydration method. 
overall, the results of this study show that carboxymethyl-β-cyclodextrin increased lipoplexes’ 
encapsulation efficiency using both NanoAssemblr and rotary evaporator manufacturing processes. 
However, this increase was reduced slightly following the addition of Pluronic-F127. The addition of 
carboxymethyl-β-cyclodextrin to cationic liposomes resulted in an increase in transfection efficiency 
in mammalian cell lines. However, this increase appeared to be cell line specific, COS7 showed higher 
transfection efficiency compared to SH-SY5Y.

Liposomes are a form of spherical vesicles that consist of either one or many phospholipid bilayers that interacting 
in an energetically favourable way. Generally, liposomes are vesicles of self-assembled phospholipid molecules. 
Those molecules composed of hydrophilic head groups (typically tertiary or quaternary amino group) attached to 
hydrophobic tails (generally long-chain fatty acids) by a linker1–3. The amphiphilic nature of these lipid molecules 
causes them to form bilayers spontaneously in aqueous environments. This results in a small spherical structure 
in which the surface polar heads shield the non-polar interior against water. The positively charged amine groups 
enhance binding with negative groups in DNA for example4. Moreover, liposomes are attractive as a gene vector 
due to their ability to carry DNA to various target cells. In addition, liposome formulations have been established 
to be a safe carrier, with such formulations being used worldwide in different therapeutic and vaccinology prod-
ucts. Liposomes have also been used as a drug carrier to control drug delivery to protect the drug payload from 
rapid degradation, to enhance drug concentration in targeted tissues and to lower doses of the required drug 
and hence lowering toxicity. The versatile structure and low immunogenicity of liposomes have been shown to 
be a promising gene transfer system. Liposomes can entrap different molecules such as nucleic acids and may 
even protect DNA against enzymatic degradation within the cell. Liposomes also can enhance cellular uptake, 
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endosomal escape and gene transfection. However, their application in gene therapy is hampered by the low 
transfection efficiency.

Liposomes can be classified according to their structure, size, the method of preparation and composition, 
these parameters will depend on the liposome application and type of molecule required to be encapsulated. 
Different methods for liposome preparation at the laboratory scale have been developed and optimised. These 
methods include hydration of phospholipid film (e.g. Al-Rubaie et al.5), reverse phase evaporation method, ether 
or ethanol injection (solvent vaporization) and microfluidics (see for example Obeid et al.6). The vesicle size will 
determine the circulation half life of liposomes and both size and number of bilayers affect the amount of encap-
sulated drug in liposomes. The circulation time of cationic liposomes in blood is short due to their surface charge. 
The systemic delivery of cationic lipoplexes to its target target site can also be affected by the interaction between 
serum and lipoplexes, which can dramatically lower the transfection efficiency7. The composition and methods 
of preparation can greatly influence the liposome basic properties. Which may in turn affect the polydispersity 
index, mean size, drug loading efficiency, zeta potential, drug release behavior, and intracellular uptake.

The aim of this research is to improve cationic liposome transfection efficiency and stability by incorporating 
carboxymethyl-β-cyclodextrin and Pluronic F-127 with cationic lipid DOTAP. Additionally, the liposome prepa-
ration methods of thin film hydration and microfluidics will be examined to determine if preparation methodol-
ogy has a direct effect on transfection efficiency.

The rational behind the use of carboxymethyl-β-cyclodextrin and Pluronic F-127 is that β-CD is considered 
to have a wide variety of applications due to their large cavity, low cost and lack of toxicity8. The availability of 
many hydroxyl groups in CM-β-CD can form different types of linkages. Cyclodextrin has been shown to be a 
facile and practical approach in developing gene delivery when used as a core system or alongside cationic lipids9. 
The enhancement of gene transfection when liposomes are incorporated with less polar cyclodextrin could be a 
result of non-specific interactions with cell membrane ingestion by endocytosis rather than an electrostatic inter-
action10–13. Also, cycloextrin was included in this study, as cyclodextrins have prospective endosomal disrupting 
effects. These effects might be through the release of membrane components from endosomal membranes after 
endocytosis Incorporation of CD with an excipient such as folic acid or Pluronic-F127 can positively affect the 
stability and effectiveness of gene formulations.

To the best of our knowledge, there have been no previous studies that investigated the incorporation of 
carboxymethyl-β-cyclodextrin and Pluronic F-127 with the cationic lipid (DOTAP) in gene delivery.

Results and Discussion
DNA condensation is a prerequisite for successful gene delivery. Carboxymethyl-β-cyclodextrin has shown to 
be effective in gene delivery and our previous study14 demonstrated that carboxymethyl-β-cyclodextrin has the 
ability to condense DNA at a molar ratio of 1:3 with 22% encapsulation efficiency. To investigate this further 
carboxymethyl-β-cyclodextrin (CD) was incorporated with cationic lipid (DOTAP), netural lipid (DOPE) and 
cholesterol to form liposomes to study the effect on gene cationic liposomes transfection and to evaluate the 
degree of gene encapsulation efficiency.

Liposomes size, zeta potential, poly dispersity (pdi) and morphology. The disappearance of lipos-
omes from blood circulation is primarily due to uptake of the liposomes by the mononuclear phagocytic sys-
tem. A decrease in liposome size reduces complement recognition when the liposome size is between 70 and 
200 nm15,16. Several articles published recently have also suggested that the particle size of gene delivery system 
should not exceed 150 nm. A recent study reported that 135 nm is the optimal size for gene delivery. This cur-
rent study looked at the effect of liposome preparation methods and liposomes composition on liposome size. 
Microfluidic method using the NanoAssemblrTM and the hydration method using the rotary evaporator were 
used to study these methods. In order to optimise results of this study, the NanoAssemblr was run at 12 ml/min, 
9 ml/min, 5 ml/min and 2 ml/min and ratio at 1:0.5, 1:1,1:3 and 1:5 of organic:aqueous. During optimisation a sig-
nificant advantage was observed with the use of NanoAssemblr over the rotary evaporator, this was due to it’s the 
NanoAssemblr’s ability to control liposomes size using flow rate, TFR, and flow rate ratio(FRR). It was observed 
that liposome size was changed when changing from 12 ml/min to 2 ml/min and when changing flow ratio from 
1:1 to 1:5 (data not included). Statistical analysis of TFR and FRR results show that the reduction in liposomes 
size resulted from the change in TFR was not significantly different (p > 0.05) and the change in FRR was only 
significant between ratio 1:1 and 1:3 or 1:1 and 1:5 and there is no significant difference in between ratio 1:3 and 
1:5. The rationale behind choosing ratio 1:3 over 1:1, at 1:3 liposomes will have less cationic lipid, and since high 
cationic lipid is associated with an increase in cell toxicity 1:3 ratio would be the better choice.This gives a control 
of liposomes size and hence no need for after production size reduction. However, zeta potential was only affected 
by change in flow ratio but not by total flow rate. These results confirmed that the nanoAssemblr at flow rate of 
2 ml/min and at ratio of 1:3 lipid to aqueous, was able to produce size of less than 165 nm, with homogeneous 
size distribution. Therefore, these parameters were used to prepare liposomes for further studies such as gene 
encapsulation efficiency and cell transfection. Also, the NanoAssemblr had the added benefit of a a one-step 
preparation procedure and also had a shorter preparation time.

The sizes of liposomes prepared by the NanoAssemblr and the rotary evaporator can be seen in Table 1. 
Liposomes prepared by NanoAssemblr sizes were between 79.51 nm and 161 nm and between 109 nm and 294 nm 
for the rotary evaporator. These results are consistent with other studies17–20 that outline that the rotary evaporator 
method needs to be followed by ∼20 min sonication, yet size still between 109 and 294 nm. This study has also 
shown that liposomes composition has major effect on liposomes size.

The addition of carboxymethyl-β-cyclodextrin or carboxymethyl-β-cyclodextrin and Pluronic F-127 (Table 1) 
resulted in an increase in liposomes size. This increase in size could be due to cyclodextrin displacing cholesterol 
in the liposome formulation, which decreases liposome rigidity and increase its size21. Results in Table 1 have also 
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shown an increase in size of liposomes (F1, F3, F5, F7) when DNA is incorporated (lipoplexes, F2, F4, F6, F8), 
which is in agreement with other published research22.

The Polydispersity Index (PDI) or particle distribution has a significant impact on liposomes stability and 
bioavailability. For liposomes to be stable, safe, and efficient liposomes preparation must be homogenous. An 
acceptable liposomes formulation for drug delivery should have PDI value below 0.323,24. The liposomes prepared 
by the NanoAssemblr met this criteria, it was observed that many liposomes prepared by the rotary evaporator 
method were above this value (Table 1).

A positive zeta-potential not only has the benefit for enhancing pDNA loading efficiency but also for improv-
ing the effective accumulation in the target cells. A positive value will also impact liposomes stability, many stud-
ies have shown that ζ-potential values that range between +16 and +55 mV are high enough to ensure colloidal 
stability due to the electrostatic repulsion between particles.

Zeta potential(ζ) results (Table 1) revealed that all formulations were positively charged, before and after the 
addition of pDNA. Zeta potential values of lipoplexes were similar to the values obtained from liposomes alone, 
however there was a reduction in the zeta potential following the addition of pDNA. This could be a result of the 
electrostatic interaction between the cationic lipid and the negatively charged backbone of the pDNA21. Different 
zeta potential reading was reported for formulations prepared by each method (NanoAssemblr or rotary evapo-
rator). NanoAssemblr showed lower zeta potential between 24.5 mv and 44.1 mv, whereas the rotary evaporator 
showed higher zeta value between 45 mv and 56 mv (Table 1). This can be explained by formulation homogenous 
suspensions achieved by the NanoAssemblr resulting in majority of the amino group been occupied which induce 
protonation on the surface of liposomes.

Transmission Electron Microscopy (TEM) was used to investigate the external of the liposomes morphology. 
Morphology of fresh liposomes prepared by NanoAssemblr and rotary evaporator are illustrated in Figs 1 and 2. 
TEM images were taken at the same magnification of 40000x for fresh liposomes with and without cyclodextrin. 
All images showed clear spherical shape of liposomes, with unilamellar as well as very small number of multila-
mellar liposomes observed in some samples. No change in liposomes morphology was observed after the addition 
of cyclodextrin.

Encapsulation efficiency. Previous studies have shown that the addition of β-cyclodextrin to liposomes has 
resulted in increase of encapsulation efficiency of different small drug molecules (e.g.25,26). However, the role of 
cyclodextrin-liposome complex in gene therapy has not been characterised.

The encapsulation efficiency of pDNA was investigated in this current study by incorporating 
carboxymethyl-β-cyclodextrin with cationic liposomes. The percentage of encapsulation efficiency was calculated 
using Eq. 1. Results displayed in Table 2 revealed that all liposomes formulations prepared by both NanoAssemblr 
and rotary evaporator methods were able to encapsulate pDNA up to 89.6%.

The addition of carboxymethyl-β-cyclodextrin to cationic lipoplexes, F4, has resulted in increase in 
the encapsulation efficiency by 15% and 9% using the nanoAssemblr and rotary evaporator respectively 
compared to lipoplexes without (F2), (Table 2). This increase can be explained by the attraction of the elec-
trostatic binding between the phosphate group of the DNA backbone and the lipophilic inner cavity of the 

FORMULATION 
NUMBER

NanoAssemblr Rotary Evaporator

Size
nm PDI

Zeta potential(ζ) 
mV

SIZE
Nm PDI

Zeta potential(ζ)
mV

F1 79.51 ± 12 0.108 ± 0.009 44.1 ± 3 247 ± 40 0.324 ± 0.023 56 ± 6

F2 152 ± 32 0.126 ± 0.003 42.1 ± 3 109 ± 28 0.339 ± 0.017 48 ± 4

F3 95.71 ± 25 0.324 ± 0.012 27.6 ± 5 287 ± 31 0.336 ± 0.023 52 ± 6

F4 161 ± 21 0.194 ± 0.003 24.5 ± 4 186 ± 33 0.235 ± 0.002 45 ± 3

F5 105 ± 19 0.249 ± 0.019 35.8 ± 5 294 ± 29 0.303 ± 0.009 55 ± 2

F6 149 ± 20 0. 455 ± 0.03 34.1 ± 3 204 ± 23 0.341 ± 0.012 50.6 ± 4

F7 86.66 ± 32 0.127 ± 20 31.6 ± 6 217 ± 31 0.436 ± 0.013 53.5 ± 4

F8 98.27 ± 14 0.136 ± 0.013 29.4 ± 4 119 ± 28 0.239 ± 0.017 50.2 ± 6

Table 1. Particle size, PDI, Zeta potential(ζ) for formulations prepared by NanoAssemblr and rotary 
evaporator. Refer to Table 3 (in experimental section) for formulations’ composition.

Formulation Samples (1:5 pDNA:liposome)

NanoAssemblr Rotary Evaporator

EE SD EE SD

F2 DOTAP + DOPE + CHO + pDNA 74.10% 0.66 66.95% 0.03

F4 DOTAP + DOPE + CHO + CD + pDNA 89.62% 0.52 75.93% 0.05

F6 DOTAP + DOPE + CHO + CD + PL + pDNA 76.50% 0.50 57.43% 0.08

F8 DOTAP + DOPE + CHO + PL + pDNA 78.30% 0.20 54.40% 0.80

Table 2. Encapsulation efficiency (EE) of pDNA inside liposomes using the microfluidic via nanoassemblr and 
thin film hydration, using rotary evaporator, methods.
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cyclodextrin and the amino group in cationic liposomes. The increase in encapsulation efficiency after the addi-
tion of carboxymethyl-β-cyclodextrin to cationic liposomes in gene delivery has not been reported previously. 
Samples containing cyclodextrin and pluronic F-127 (F6) showed lower encapsulation efficiency than formu-
lation F4, but still slightly better compared with formulation F2. This can be explained by that the addition of 
Pluronic F-127 would compete with pDNA for the cavity of cyclodextrin, resulting in a reduction of plasmid 
DNA entrapment confirmed with Pluronic F-127 in F8 lipoplexes.

The effectiveness of the microfluidic method was recently outlined in the encapsulation of pDNA for the 
transfection of COS 7 cells20. However, there was no direct comparison between the two methods. Thus, the 
results of this study allowed direct comparison and outlines an advantage of liposome preparation using micro-
fluidic method rather than thin film hydration process. The improvement in the encapsulation efficiency using 
microfluidic method could be a result of the production of homogeneous liposomes formulations, and also to the 
presence of ethanol in liposomes formulations that can also enhance the encapsulation efficiency by making the 
lipid membrane susceptible to structural rearrangements27.

Gel electrophoresis. DNA migrates through an agarose gel matrix by the action of an electric field accord-
ing to its charge, size, and morphology. pDNA must survive in either supercoiled or open circular form in order 
to retain optimal gene expression, detection of double strand DNA is not enough to determine if the pDNA still 
in its active form. Liposomes and liposplexes were prepared as outlined in the methods section. All formulations 
were centrifuged for 45 min then re-suspended in distilled water. The use of centrifugation and DNase I will 
be an indication of where pDNA condensed inside the liposomes or on the outside of the liposome vesicles. 
Chloroform/methanol 2:1 was used in order to break the liposomes shell and release any trapped DNA, this can 

Figure 1. shows TEM images for different liposomes formulation using the nanoAssemblr. (A) (F1), (B) (F3). 
For formulation composition refer to Table 3 (in experimental section).
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be used as an indication of the quantity of pDNA inside the liposomes. Agarose gel electrophoresis of cationic 
lipid:DNA complexes was subsequently used to assess the relative amounts of DNA either free or incorporated 
into the lipid:DNA complex.

Figure 2. shows the images of different liposomes formulations using the rotary evaporator. (A) (F1), (B) (F3). 
For formulation composition refer to Table 3 (in experimental section).

Liposomes 
formulations DOPE DOTAP

CHOLESTERL
(CHO)

carboxymethyl-β-
cyclodextrin (CD)

Pluronic-F127 
(PL) pDNA

F1 (plain liposome) 8 μmol (5.952 mg) 8 μmol (5.584 mg) 2 μmol (0.77 mg)

F2 (lipoplex, 1:5 
pDNA:liposome) 8 μmol (5.952 mg) 8 μmol (5.584 mg) 2 μmol (0.77 mg) pDNA

F3 (plain liposome) 8 μmol (5.952 mg) 8 μmol (5.584 mg) 2 μmol (0.77 mg) 3 μmol (3.993 mg)

F4 (lipoplex, 1:5 
pDNA:liposome) 8 μmol (5.952 mg) 8 μmol (5.584 mg) 2 μmol (0.77 mg) 3 μmol (3.993 mg) pDNA

F5 (plain liposome) 8 μmol(5.952 mg) 8 μmol (5.584) 2 μmol (0.77 mg) 3 μmol (3.993 mg) 0.3μmol (3.78 mg)

F6 (lipoplex, 1:5 
pDNA:liposome) 8 μmol(5.952 mg) 8 μmol (5.584) 2 μmol (0.77 mg) 3 μmol (3.993 mg) 0.3 μmol 

(3.78 mg) pDNA

F7 (plain liposome) 8 μmol(5.952 mg) 8 μmol(5.584 mg) 2 μmol (0.77 mg) 0.3 μmol 
(3.78 mg)

F8 (lipoplex, 1:5 
pDNA:liposome) 8 μmol(5.952 mg) 8 μmol(5.584 mg) 2 μmol (0.77 mg) 0.3 μmol 

(3.78 mg) pDNA

Table 3. Different liposome formulations prepared by both Rotary evaporator (thin film hydration method) 
and NanoAssemblr (microfluidic system).
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Figures 3 and 4 show that all formulation managed to condense DNA (lanes 3–6) with no DNA migration, 
as a result of binding and neutralisation of DNA by cationic liposomes. Lanes 9–12 represent lipoplex formula-
tions after liposome shell disruption with chloroform/methanol and subsequent release the pDNA, hence DNA 
migration seen in lanes 9–12 is as a result of DNA being released from the liposomes following liposome shell 
disruption.

In Figs 3 and 4 lane 1 is DNA ladder, lane 2 is (pDNA 40 ng/μl), lane 3 is (F2), lane 4 is (F4), lane 5 is (F6), lane 
6 is (F8), lanes 7&8 are plain liposomes, lanes 9–12 after breaking lipoplexes (F2, F4, F6, F8, respectively) using 
2:1 chloraphorm/methanol. Lanes 3–6 indicated a good encapsulation efficiency of pDNA within liposomes. For 
formulation composition refer to Table 3 (in experimental section).

In order to assess DNA protection and its degradation in the presence of DNase I, using agarose gel electro-
phoresis of plasmid DNA as a qualitative measure of DNA stability. As shown in Figs 5 and 6 control plasmid 
DNA was digested by DNase I (lane 2). However all lipoplex formulations demonstrated protection from DNase 
I, lanes 4–7. After breaking lipoplexes shell and adding DNase I (see lanes 8–11), DNase I was able to digest the 
condensed pDNA.

In Figs 5 and 6 lane 1 is DNA ladder, lane 2 is (pDNA 40 ng/μl), lane 3 is (empty), lane 4 is (F2), lane 5 is (F4), 
lane 6 is (F6), lane 7 is (F8), before breaking the lipoplexes. Lanes 8–11 after breaking lipoplexes (F2, F4, F6, F8, 
respectively) using 2:1 chloraphorm/methanol and adding DNase I. For formulation composition refer to Table 3 
(in experimental section).

cell transfection. Low transfection efficiency of cationic liposomes is still a major barrier if the aim is to 
replace the viral vector. The features of liposomes are strictly related to the chemical properties of the cationic 
and neutral lipids used for their preparations. It is well established that the transfection efficiency can be affected 
by the composition of the transfection reagent, liposomes size and zeta potential15,28 as well as liposomes to DNA 
ratio29. In this study each formulation was tested at four different ratios of DNA: liposomes 1:2, 1:5, 1:10 and 1:20 
formulations, this identified the most suitable ratio (1:5) to be used with the aim to reduce any possible toxic 

Figure 3. Gel electrophoresis images for nanoAssemblr (microfluidic) prepared liposomes.

Figure 4. Gel electrophoresis images for Rotary evaporator (thin film hydration) prepared liposomes.

Figure 5. Gel electrophoresis images for nanoAsemblr prepared lipoplexes after the addition of DNase I for 
30 min before and after breaking the lipoplexes using chloroform/methanol 2:1 after the addition of DNase I.
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effect from liposomal compositions. Multiple, independent (n = 3) experiments for each condition to control for 
biological and methodological variations were used.

The NanoAssemblr method gave the highest encapsulation efficiency, produced homogenised lipoplexes size 
of about 160 nm, and found to be more practical. Hence, nanoAssemblr produced liposomes were used for trans-
fection optimiation of DNA to liposome ratio.

Figure 7 shows, the change in liposomes (empty liposomes) size after the addition of pDNA (lipoplexes) at 
different ratios. Lipoplexes’ size was seen to increase compared to liposomes alone and this is in agreement with 
many studies.

Figure 8 illustrates the zeta potential of liposomes following addition of pDNA to form lipoplexes. In all four 
different ratios (1:2, 1:5, 1:10 and 1:20 DNA:liposome), at low ratio of 1:2 mostly all formulations became nega-
tively altered. This is due to part neutralisation of the positively charged liposomes by pDNA molecules, which 
are carrying negative charges. The ratios of 1:5, 1:10 and 1:20 did not alter the original zeta potential of the plain 
liposomes. Their positively zeta-potential values will not only improve the stablilty of liposomal suspensions by 
the effect of repulsion but also will enhance the cell uptake, as the cell surface is negatively charged.

Results in Fig. 8 show that zeta potential results were consistent with those of transfection activity (Figs 9 and 10).  
At low ratio 1:2 there was very low transfection efficiency, this is potentially as a result of the presence of less 
positively charged lipoplexes. In higher ratios the increased zeta-potential resulted in increased transfection effi-
ciency. Moreover, after ratio of 1:10 (DNA:liposomes) there was increased transfection efficiency with increasing 
the ratio, as zeta potential became stable (Fig. 8). These results suggested that zeta potential of cationic liposomes 
had an imporatnat effect on the gene transfection. These results were consistent iwht the findings of Farrow et al.30 
and Wasungu et al.31 who observed that a positive zeta potential is key in cell transfection.

pDNA must be released into the cytoplasm and transported into the nucleus where transcription takes place.
Liposomes formulations with four ratios of DNA:liposomes were tested on two different cell lines COS 7 

and SH-SY5Y. Figures 9 and 10 revealed that all four formulations with ratio of 1:2 had the lowest transfection 
efficiency. As outlined previously this can be related to the zeta potential, where ratio 1:2 had the lowest zeta 
potential. At ratio of 1:5 transfection efficiency was optimal and increasing the ration did not lead to increased 
transfection efficiency.

Figure 6. shows Gel electrophoresis images for thin film hydration prepared lipoplexes after the addition 
DNase I for 30 min before and after breaking the lipoplexes using chloroform/methanol 2:1 after the addition of 
DNase I.
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Figure 7. lipoplex size at different ratio of DNA:liposome when prepared by the nanoAssemblr. For 
formulation composition refer to Table 3 (in experimental section).
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Figures 9 and 10 showed that the transfection efficiencies of cationic liposomes are cell line specific. COS7 cell 
line showed a higher efficiency than SH-SY5Y cell line for both prepared lipoplexes and commercially available 
transfecting liposomes. SH-SY5Y cell line was hard to transfect and showed reistence to liposome cell toxicity at 
high pDNA:liposome ratios (refer to cell viability section).

Kim et al.32 stated that a specific cell lines can favor certain lipid compositions, using different ratio of 
DOTAP:DOPE can help to achieve optimal conditions in gene delivery. It was shown that differences in uptake 
pathways could affect the intracellular fate of complexes, potentially contributing to the differences in trans-
fection efficiency and this difference is related to the differences in membrane structure. This study has shown 
that all formulations resulted in higher transfection efficiency in COS 7 than in SH-SY5Y cell lines. This may be 
explained by Clathrin-dependent endocytosis that accounts for the majority of internalised complexes that pen-
etrated COS7 cells and its limits to particles under 200 nm and hence all prepared formulations are within size of 
less than 200 nm.

Figure 8. Zeta-potential at different ratio of DNA:liposomes prepared by the nanoAssemblr.

Figure 9. Transfection efficiency of different DNA:liposome ratio and a commercially available liposome 
reagent, LT1, on COS7 cell line. At ratio 1:5, the effect of caboxy methyl beta cyclodextrin used (CD) was 
significant compared to Pluronic-F127 ((PL), P < 0.05.

Figure 10. Transfection efficiency of SH-SY5Y cell line with different ratio of DNA:liposomes and a 
commercially available liposome reagent, LT1. At ratio 1:5, the effect of caboxy methyl beta cyclodextrin used 
(CD) was significant compared to Pluronic-F127 ((PL), P < 0.05.
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The expression of GFP following the transfection of COS7 and SH-SY5Y cell lines using different lipoplex 
formulations was assessed with fluorescence microscopy (Figs 11 and 12), compared with commercially availa-
ble liposomes and quantified by flow cytometry. The highest level of GFP expression was noticed observed after 
the addition of carboxymethyl -β-cyclodextrin to cationic liposomes (DOTAP, DOPE and cholesterol, F4). The 
increase in cell transfection after the addition of cyclodextrin could be as a result of reduction in zeta poten-
tial which resulted in reduction of aggregation of cationic lipid with protein present in media. Zidovetzki and 
Levitan33 explained that the increase in transfection in the presence of cyclodextrin is assigned to the hydropho-
bic cavity of cyslodextrin which has the ability to attract cholesterol from the cell membrane. Carboxymethyl 
-β-cyclodextrin donates cholesterol to cells and by itself causes the efflux of cholesterol from cell membranes, 
resulting in modulation of the fluidity/rigidity and permeability of the cell membrane. Moreover, the addition of 
cyclodextrin to cationic lipid has also resulted in an increase of pDNA encapsulation efficiency which might be 

Figure 11. Fluorescence microscopy images (using objective lens of 20×) of transfected COS7 cell line with 
LT1, commercially available liposome and with different DNA:liposome ratio (1:2, 1:5,1:10 and 1:20) of the four 
different formulations (F2, F4, F6, F8). For formulation composition refer to Table 3 (in experimental section).
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a reason behind the increase in transfection efficiency. The addition of Pluronic F-127 to cationic liposomes (F6, 
F8) also improved transfection efficiency over F2.

Based on the above results ratio 1:5 pDNA:liposome was used to compare the transfection efficiency of 
the lipoplexes prepared by NanoAssemblr and Rotary Evaporator. Accordingly, results in Figs 13 and 14 have 
shown that the use of microfluidic system dramatically improved transfection efficiency over thin film hydration 
method. These results can be explained by that the nanoAssemblr has shown to increase the pDNA encapsula-
tion efficiency and produced smaller and homogenise particle size this was supported by other studies20,34. This 
showed that liposomes with smaller and homogenise size will result in higher transfection efficiency.

cell viability. The use of nanoparticles such as liposomes in drug delivery has resulted in reduction of 
unwanted adverse effect, such as the use of liposomes to deliver doxorubicin has resulted in reduction of cardiac 
toxicity35. In gene delivery, cationic liposomes are the cause of the toxicity. However, in this study DOPA was used 
in the manufacture of liposomes to reduce their toxicity.

Cationic Liposomes toxicity is mainly due to the positive charge36. The head group comprises of primary, 
secondary, tertiary amines or quaternary ammonium, these positively charged head group may interact with 
negatively charged components in the cells.

This interaction results on promoting inflammation, cytotoxicity and genotoxicity.

Figure 12. Florescence microscopy images (using objective lens of 20×) of transfected SH-SY5Y with LT1, 
commercially available liposome and with different DNA:liposomes ratio (1:2, 1:5,1:10 and 1:20) of the four 
different formulations (F2, F4, F6, F8). For formulation composition refer to Table 3 (in experimental section).
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It was reported that the cationic head group within liposomes, and not liposomes themselves, can lead to pro-
duction of reactive oxygen in lung cells of mice and thus initiating inflammation and toxicity37. Due to binding 
to proteins such as apolipoproteins and immunoglobulins, charged cationic liposomes are easily recognised by 
reticuloendothelial cells35. Many studies have demonstrated that shieling the positively charge will result in reduc-
tion of cationic liposomes toxicity. Results shown in Figs 15 and 16. Ratios 1:10 and 1:20 which have the higher 
liposomes ratio have resulted in higher cell toxicity due to higher lipid contents; the cell viability was independent 
on the addition of CD and PL based on this study. These results therefore are consistnet with the theory of cationic 
liposomes in that increasing the lipid concentration will lead to increasing liposomes cytotoxicity38.

Figure 13. Confocal microscopy images and flow cytometry profiles of COS7 transfection efficiency using 
Microfluidic method. For formulation composition refer to Table 3 (in experimental section).

Figure 14. Confocal microscopy images and flow cytometry profiles of COS7 transfection efficiency using Thin 
Film Hydration method. For formulation composition refer to Table 3 (in experimental section).
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Liposome formulations stability in PBS buffer, pH 7.4. Liposomes’ size was monitored weekly dur-
ing storage for 12 weeks at 4 °C and 37 °C. Aqueous liposomal suspensions in PBS, pH 7.4, prepared by thin film 
hydration and microfluidic methods were characterized in tripilicate.

Results in Figs 17 and 18 showed that all formulations prepared by microfluidic and thin film hydration meth-
ods were stable at 4 °C, as there was insignificant change in particle size, (p > 0.05). This was in agreement with a 
study by Zuidam and Crommelin39.

At 37 °C, all formulations have increased in size (Figs 19 and 20). However, liposomes prepared using micro-
fluidic method showed much smaller change in particle size compared with those prepared by the thin film 
hydration method. This can be explained by the fact that NanoAssemblr produced smaller and more homoge-
nised size distribution when compare to the thin film hydration method. These results were in line with that by 
Kastner et al.40 who compared the stability of liposomes (Egg phosphatidylcholine (PC) and cholesterol) prepared 

Figure 15. Cell viability of COS7 cell line with different DNA:Liposome Ratio.

Figure 16. Cell viability of SH-SY5Y cell line with different DNA:Liposome Ratio.
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Figure 17. The change in liposomes’ size over 12 weeks storage at 4 °C. Liposomes were prepared using thin 
film hydration (TFH) method, for formulations’ composition refer to Table 3 (in experimental section).
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using microfluidic and lipid hydration techniques. They reported that liposomes were stable under 4 °C for 60 
days. However at 40 °C liposomes lost their structures and contents; also liposomes prepared by microfluidic 
method were much more stable than liposomes prepared by lipid hydration method. Hence, it is recommended 
that liposomal colloidal suspensions should be stored at low temperatures, 4 °C or less.

conclusion
In conclusion, the incorporation of carboxymethyl -β-cyclodextrin with cationic lipid has shown to improve 
encapsulation efficiency of pDNA, as well as transfection efficiency and cell viability, with and without the addi-
tion of Pluronic F-127. The NanoAssembler method showed to produce homogenies size, low PDI and increased 
the pDNA encapsulation efficiency. It also produced smaller liposomes with uniform profiles which are less suc-
ceptible to aggregation. Moreover, this work has demonstrated the use of microfluidic hydrodynamic flow focus-
ing (HFF) method and its advantage over the rotary evaporator (thin film hydration method), which HFF has the 
ability to control size in one step.

experimental Section
Materials. DOPE (1,2-dioleoyl-sn-glycero-3-phospho ethanol amine and DOTAP (1,2-dioleoyl-3-trimeth-
ylammonium-propane) were purchased from Lipoid (Germany). Carboxymethyl-β-cyclodextrin, Pluronic-F12, 
cholesterol, DMEM, Fetal bovine serum (FCS), L- Glutamine and Opti-MEM I Reduced-Serum Medium were 
purchased from Sigma Aldrich (UK). pc DNA3.1-GFP and maxi prep kit were purchased from thermofisher 
scientific, UK, COS7 and SH-SY5Y cell lines were obtained from ATCC, UK. E coli, ampicillin containing agar 
plated, Luria-Bertaini and agarose were also provided by University of Sunderland. TransIT-LT1 liposomal 
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Figure 18. The change in liposomes’ size over 12 weeks storage at 4 °C. Liposomes were prepared using 
microfluidic method, for formulations’ compostion refer to Table 3 (in experimental section).

Figure 19. The change in liposomes’ size over 12 weeks storage at 37 °C. Liposomes were prepared using thin 
film hydration (TFH) method, for formulations’ compostion refer to Table 3 (in experimental section).
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transfection reagents were purchased from Mirus Bio LLC Madison, (USA), Promega QuantiFluor® ONE dsDNA 
System was purchased from Promega (UK).

plasmid DnA preparation. In this study, pDNA expressing green fluorescent protein (pc DNA3.1-GFP) 
was amplified by transformation of E. coli to produce large quantity of the plasmid. Cells were plated into the 
ampicillin containing agar plates and stored at 37 °C overnight. One colony was picked from the plate and placed 
into 100 mls of LB (Luria-Bertaini) medium and left for 48 hours on the shaker. Following this, the medium was 
purified using a Maxiprep kit. following manufacture protocol (Invitrogen, UK). Purity and quantity of the plas-
mid were checked using NanoDrop lite (themo, UK) purity was 1.9 and quantity was diluted to produce 1 μg/μl 
using TE buffer. This was also confirmed by taking UV measurement at 260 nm and 280 nm wavelengths.

Liposomes preparation by thin film hydration method. DOTAP, DOPE and cholesterol with a molar 
ratio of 8:8:2 (Table 3) were dissolved in round flask glass, with 2 mls of ethanol. The solvents were evaporated 
over two hours at 60 °C using the rotary evaporate pressure set at 465 mbar. Liquid nitrogen applied to dry any 
left-over solvent. Pluronic F127 and Carboxymethyl-β-cyclodextrin were dissolved in distilled water at concen-
tration of 4 mg/ml.

The lipid was then rehydrated using an aqueous medium (distilled water or carboxymethyl-β-cyclodextrin in 
distilled water or Pluronic F127 or carboxymethyl-β-cyclodextrin in distilled water or Pluronic in distilled water) 
to produce final lipid concentration of 10 mg/ml (see Table 3 for more details). The mixture was then vortexed 
for 2 min and ultrasonic bath sonication for 20 minutes to produce plain liposomes. Lipoplexes (liposomes with 
pDNA) were prepared by adding the required amount of pDNA (at a concentration of 1 mg/ml) to 1 ml of each 
liposome formulation (at a lipid concentration of 1 mg/ml). For example to prepare lipoplexes with the used ratio, 
1:5 ratio, of pDNA:Liposome, 200 microlitre of pDNAwas added to 1000 microlitre of the prepared liposome.

Liposomes preparation by microfluidic method. DOTAP, DOPE and cholesterol were dissolved in 
1 ml ethanol with a molar ratio of 8:8:2 (see Table 3), this ration has been chosen, based on preliminary studies, 
as it gave a good transfection efficiency. The ethanol-lipid solution was injected into the first inlet. The aque-
ous phase was injected with 3 ml of distilled water contained carboxymethyl-β-cyclodextrin; Pluronic F-127 and 
carboxymethyl-β-cyclodextrin; or Pluronic F-127 alone (Table 3). Aqueous dispersions of the liposomes were 
collected from the outlet, resulting from the mixing of two adjacent streams and centrifuged at 13000 rpm for 
40 minutes to remove the ethanol resides. Then, re-suspended in distilled water to make up a concentration of 
10 mg/ml.

The formed liposomes were used to prepare the lipoplexes (1:5 ratio of pDNA:Liposome) as above.
In order to optimise liposomes size and zeta-potential, the NanoAssemblr was run at different|: flow rate ratio 

(FRR) between the lipid and water (at 1:0.5, 1:1,1:3 and 1:5) and the total flow rate (TFR), at 12 ml/min, 9 ml/min, 
5 ml/min and 2 ml/min.

particle size, zeta potential, polydispersity and transmission electron microscopy. Liposomes 
size and zeta potential are important characteristics of liposomes formulations especially in gene delivery. 
Negatively charged particles can be rapidly opsonised and massively cleared by fixed macrophages of the reticu-
loendothelial system (RES) in the blood stream. Dynamic light scattering (DLS) technique was used to report the 
intensity mean diameter (z-average) and the polydispersity (PDI) of all liposome formulations (Malvern Zetasizer 
Nano-ZS (Malvern Instruments, Worcs., UK)). DLS measures the size of liposomes suspended in distilled water. 
Transmission electron microscopy was applied to study the morphology of the prepared liposomes.

Figure 20. The change in liposomes’ size over 12 weeks storage at 37 °C. Liposomes were prepared using 
microfluidic method, for formulations’ compostion refer to Table 3 (in experimental section).
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Encapsulation efficiency. Encapsulation efficiency of pDNA was measured using the NanoDrop lite. 30 μl 
of pDNA at concentration of 1 μg/μl was added to 60 μl of liposomes at concentration of 10 mg/ml to give ratio of 
1:20 DNA:Liposomes of each liposome preparation, vortex for 3 second and left at room temperature (20 °C) for 
20 minutes. Samples were then centrifuged for 45 min at 13000 at 4 °C. The supernatant was separated from the 
pellets. The reading for pDNA concentration in the supernatant was taken and subtract from the total quantity 
of pDNA (see Eq. 1). The pellets were then broken by a chloroform/methanol 2:1 to extract the pDNA. 400 μl of 
chloroform/methanol 2:1 was added to the pellet and vortexed until all lipid dissolved. 100 μl of distilled water 
was added to the mixture and centrifuged for 10 minutes. The aqueous layer was used to quantify the encapsu-
lated pDNA by measuring its UV absorption at 260 nm.

In order to confirm the results. Promega QuantiFluor® ONE dsDNA System was used by following the man-
ufacturer protocol. Briefly a serial of DNA concentrations was prepared from 25 ng/μl to 400 ng/μl, this will be 
used as standards. Using 96 plates, 200/μl of the QuantiFluor® ONE dsDNA Dye was added to each well including 
standard and blank. 1 μl of each DNA dilution was added to the dye in triplicate. labelled Standards A–G. For 
the blank, 1 μl of 1X TE buffer were pipetted into row H in triplicate. 1 μl of each formulation (F2, F4, F6 and F8 
samples were added to A,B,C and D rows in triplicate. Fluorescence was measured at (504nmEx/531nmEm), 
using TriStar LB 941 Microplate Reader (Berthold Technology). To calculate pDNA concentration, fluorescence 
of the blank sample (1X TE Buffer) was subtracted from each standard and sample. Using the data from DNA 
standards to generate a standard curve of fluorescence versus DNA concentration, concentration of DNA in each 
formulation was caluclated.

=
− ×

% Encapsulation efficiency
(theoretical DNA concentration pDNA concentration in supernatant) 100

Theoreticalp DNA concentration (1)

Gel-electrophoresis: protection of pDnA against Dnase i. Lipoplexes were assessed against DNase 
I degradation as follows:

1. adding 2 units of DNase I to each intact lipoplex formulation containing 1 μg pDNA and 20 μg lipos-
omes/100 μl buffer, to give ratio of 1:20 DNA:liposomes, at 37 °C for 30 min. 10 μL from each sample was run in 
gel electrophoresis to measure the protection that liposomes provide for pDNA. This can also be used to measure 
if pDNA has been encapsulated inside the liposomes, or is just bound to the liposome membrane.

2. Adding DNase I to the dissociated lipoplexes (20 μl of chloraphorm/methanol 2:1 were used in order to 
dissociate the lipid/DNA complexes before adding the DNase I). After 30 min, 10 μL from each sample was run 
in gel electrophoresis

3. 1 μg of pDNA was incubated with 2 units of DNase I in 100 μl buffer (this was used as a reference to compare 
with intact lipoplex formulations).

All samples run in 1% agarose gel for 60 min at 90 vm. Results were analysed by UV trans-illumiator with 
digital imaging (BioRad Laboratories, Inc).

transfection efficiency. The efficiency of each liposome formulation was measured, by transfecting 
pDNA3.1-GFP to COS7 and SH-SY5Y cell lines. 24 hrs before transfection, 3 × 105 of both cell lines were plated 
in 6 well plates with 2.5 mls of DMEM, 10% fetal bovine serum (FCS) and 1% L- Glutamine, at 37 °C and 5% 
CO2. Cells were ≥70% confluence. Lipoplexes were prepared by diluting 2 μg of pDNA in 250 μl Opti-MEM 
I Reduced-Serum Medium. Although lipoplexes 1:5 pDNA:liposome was used for all characterisation but the 
selection of this ratio was based on testing the effect of different ratios on transfection efficiency. Hence, the 
required ratios of pDNA to liposomes (1:2,1:5, 1:10, 1:20) were prepared and incubated at room temperature 
20 °C for 30 minutes. After incubation lipoplexes were added to each cell well drop-wise to different areas of the 
wells. Transfected cells were placed back in the incubator at 37 °C and 5% CO2, for 48 hours and then processed 
for flow cytometry, FACS and fluorescence microscopic analysis. TransIT-LT1 liposomal reagent was used as a 
positive reference and untreated cell as a negative reference. To quantify transfection efficiency, EGFP positive 
cells were measured using FACS, BD Accuri C6 plus (Becton Dickinson Bioscience, USA). Firstly, cells were 
washed with phosphate buffer saline (PBS) and in order to detach cells from plates 200 μl trypsin was added, and 
cells were incubated for 5 minutes. Cells were suspended in 1 ml of media and centrifuged at 400 G for 5 minutes, 
followed by removing the supernatant. Then celles were re-suspended in 1 ml PBS and taken to FACS for quan-
tification of GFP. Negative Control samples (non-transfected cells) were displayed on a forward scatter (FSC) 
versus side scatter (SSC) dot plot to establish a collection gate and exclude cells debris. Cells transfected with 
TransIT-LT1 reagent, were used as a positive control sample. Transfection efficiency was expressed as the per-
centage of EGFP positive cells at 525 nm (FL1) after excluding dead cells. For each sample 10,000 events were 
collected. Each formulation was analysed in triplicate.

cell viability. Cell viability was evaluated using Propidium iodide (PI) and 3-(4,5-Dimethylthiazol-2-Yl)-
2,5-Diphenyltetrazolium Bromide (MTT) test. Different pDNA:liposomes were tried to see their effect on cell 
viability whether is due to plain liposomes’ toxicity.

Propidium iodide (PI), this dye binds to double stranded DNA by intercalating between base pairs. PI is 
excited at 488 nm, and with a relatively large Stokes shift, emits at a maximum wavelength of 617 nm. 5 μL of PI 
was added to each sample including positive and negative control samples. The fluorescent signal corresponding 
to dead cells was measured at 650 nm (FL2).

Cell Proliferation Kit I (MTT) from Sigma-Aldrich, UK, was used: MTT 3-(4,5-dymethyl thiazol 2-y1)-2,5-diphenyl 
tetrazolium bromide (MTT, mitochondrial respiration analysis) following the manufacture protocol. Briefly, the 
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assay is based on the cleavage of the tetrazolium salt MTT in the presence of an electron-coupling reagent to pro-
duce water-insoluble formazan salt41. The formazan dye is quantitated using a scanning multi-well spectrophotome-
ter (TriStar LB 941 Multimode Microplate Reader, Berthold Technologies GmbH & Co). The measured absorbance 
directly correlates to the number of viable cells. Cells were seeded on 96-well plate (20,000 cells/well). 24 hrs after 
seeding, cells were treated with 1.25 μg of each plain liposome and lipoplex formulation and incubated again for a 48 hrs 
period. Then, 0.01 ml (from a final concentration of 0.5 mg/ml) MTT was added to each well. Then, after 4 hours of 
incubation at 37 °C, isopropanol with 0.04 N HCl was added. The isopropanol dissolves the formazan to give a homoge-
neous blue solution suitable for absorbance measurement. The absorbance of each well was measured at 570 nm using 
the Microplate Reader (TriStar LB 941, Berthold Technology GmbH & Co). Viability was calculated and expressed as 
a percentage of the positive control (i.e. untreated cells), Eq. 2:

=






 ×% Cell viability Absorbance of treated cell

Absorbance of untreated cell
100

(2)

Storage stability. Sizes of all prepared liposomes and lipoplexes were investigated in PBS aqueous medium 
(pH 7.4) for vesicles’ stability at 4 °C (using a fridge) and at 37 °C (using an oven); samples were stored for 12 
weeks. The samples were measured, weekly, in triplicate.

Statistical analysis. All measurements were replicated at least three times. The results were evaluated sta-
tistically with SPSS software. Univariate analysis of variance was used as statistical analysis. Levene test was used 
to test the sample has equal variances. Equal variances cross sample is called homogeneity of variance. Tukey 
test was used for normal distribution. The data are considered significant if P < 0.05. All data were stated as 
mean ± standard deviation.
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