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Purpose of review 
Since the 1970’s, the concept of differentiation therapy has been viewed as promising and 
revolutionary approach for the treatment of acute myeloid leukemia (AML) and other cancers. 
However, the successful clinical application of differentiation therapy has only been realized 
since the late 1980’s and only in one sub-type on AML, acute promyelocytic leukemia (APL). 
The use of all-trans-retinoic acid (ATRA) and arsenic trioxide (ATO), both of which induce 
degradation of the PML/RARα oncoprotein, in combination with chemotherapy is currently the 
accepted treatment for APL presenting a potential paradigm for differentiation therapy in 
clinical oncology. 

Recent Findings 
We have begun to understand why ATRA fails to induce differentiation in AML. The underlying 
reasons thus far identified are associated with an inability to target the removal of 
leukemogenic fusion proteins, aberrant epigenetic regulation of genes involved in the ATRA 
signaling pathway and the presence of factors that interfere with proper RARa function. 

Summary 
Here we examine the reasons why the exquisite sensitivity of APL to ATRA-based 
differentiation therapy has not been extended to other of AML subtypes. Current 
differentiation-based combinatorial approaches to target AML will also be analyzed. Finally we 
will evaluate the potential of novel strategies, high-throughput screening and functional 
genomics to uncover new differentiation-based therapies for AML. 
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Introduction 

Since it was first described as a distinct sub-type of acute myeloid leukemia (AML) over 50 
years ago, [1] differentiation therapy of acute promyelocytic leukemia (APL) has transformed 
a fatal disease into one that can be considered essentially curable [2==]. The first step on this 
path can be traced back to the early seventies when research demonstrated that AML cells 
could be induced to undergo terminal differentiation [3]. Following on from these studies, it 
was recognized that this process could form a basis for anti-cancer therapy [4] but it was not 
until 1980 that various compounds, among them the retinoid all-trans-retinoic acid (ATRA), 
were found to induce differentiation in an AML cell line and APL (but not other AML sub-type) 
patient samples [5,6]. Around the same time, a research group based in Shanghai and New 
York [7] had started to screen for differentiation inducers (including ATRA) and this led to the 
first ATRA-based treatments in 1985 for APL patients harboring the t(15;17)(q22;q21) 
translocation that encodes the PML/RARa fusion oncoprotein [8,9]. Although ATRA, in 
unprecedented fashion in oncology, was able to induce complete remission as a single agent, 
all cases eventually relapsed [2==]. In contrast, rarely-occurring t(11:17)-associated APL, 
which express the PLZF/RARα fusion oncoprotein, are resistant to ATRA-induced 
differentiation therapy due to unabated transcriptional repression [10,11]. Subsequent 
incorporation of induction chemotherapy into the treatment strategy significantly improved 
long-term patient survival [2==]. In 1992 it was reported Ailing-1, a traditional Chinese 
medicine containing high levels of ATO, induced dramatic remissions in APL patients, even 
those that had relapsed and were resistant to ATRA treatment [12]. Differentiation therapy of 
APL has subsequently undergone further refinements and results from 2007 show that up-
front use of ATRA/ATO plus induction chemotherapy leads to complete remission rates in 
excess of 93% with these patients achieving five-year overall survival rates approaching 100% 
[2==]. Thus, we can see that it has taken a considerable period of time for differentiation 
therapy to reach its full potential in APL (See Figure 1). The majority of AML are characterized 
by specific single chromosomal alterations encoding leukemogenic proteins that function as 
constitutive transcriptional repressors of differentiation and programmed cell death and, in 
common with APL, are therapeutic targets. However, from the late 1980’s until recent years, 
clinical studies were focused on APL and it therefore seems unsurprising that this success still 
remains to be reproduced in the other subtypes AML. 

Can ATRA form a basis for differentiation therapy in non-APL AML? 

Given the poor results of differentiation therapy with ATRA in non-APL AML, the seemingly 
selective effectiveness of this drug in PML/RARa-associated APL poses an important question 
as to whether the presence this fusion protein renders this sub-type of AML uniquely 
susceptible to ATRA treatment. A compelling argument against such a view is that from a 
historical perspective, ATRA effectiveness in AML has been observed in the HL-60 cell line, 
which lacks PML/RARa and is classified as a variant M2 subtype of AML (APL is classified as 
M3). Furthermore, clinical studies with ATRA in previously untreated older patients with AML 
have yielded some encouraging results and several clinical trials have indicated ATRA 
effectiveness when used in combination with other agents such as conventional 
chemotherapy [13,14] or more rationally derived combinations with epi-drugs such as 
inhibitors of histone deacetylases (HDACi) and/or DNA methyltransferases (DNMTi) [15-
18=,19]. However, while it has been shown that ATRA signaling plays an important role in 
myelomonocytic differentiation [20,21] and should be a good target for anti-AML therapy [22] 
some key problems associated with the use of ATRA in anti-AML therapy remain to be 
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resolved. ATRA displays a lack of specificity for either RARa, -b, or -g and we still have an 
incomplete picture of the functional specificities of individual RARs and their isoforms in AML. 
We also have a poor understanding of the mechanisms by which aberrant epigenetics 
functionally affect ATRA signaling pathways in AML. Lastly, we have yet to define how normal 
cross-talk between RARs and cytokine receptor signaling is deregulated in AML. 

AMLs are a heterogeneous group of diseases with different underlying molecular genetic 
abnormalities but they can in all cases be considered to comprise distinct abnormalities that 
confer two properties to the leukemic cells: impaired differentiation (for example due to 
expression of PML/RARa or AML1/ETO fusion proteins) and enhanced proliferation/survival 
(such as activating mutations to FLT3, RAS or KIT) [23]. Mouse models of AML, including 
APL, have demonstrated that while a single mutation may impair hematopoietic development, 
contribute to expansion of the stem cell pool or lead to myeloproliferation, this is not sufficient 
to cause AML [23]. It therefore follows that any differentiation-based therapy that fails to 
contain a component dealing with leukemic cell proliferation/survival will not be effective. This 
problem is of critical significance in relation to targeting AML leukemia stem cells (LSC) and 
obtaining molecular remission in patients (Figure 2). 

Recent research has shed light on why the ATRA/ATO combination induces and maintains 
complete molecular remission in APL, while ATRA treatment alone induces complete 
hematological remission, but with eventual relapse. It has become clear that in contrast to 
ATO, ATRA does not target APL stem cells in a therapeutically useful manner since it fails to 
eradicate PML/RARa-positive LSC and may actually promote their proliferation [24]==. A key 
step in the process by which ATO specifically targets PML/RARa-positive LSC in APL has 
also recently been elucidated. It is a well-established fact that ATO-induced proteasomal 
degradation of PML/RARa is sumoylation dependent and we now know that upon ATO 
treatment, PML and PML/RARa are bound by RNF4, a ubiquitin E3 ligase that specifically 
interacts with polysumoylated PML via four tandem SUMO interaction motifs [25==,26==]. The 
primary events through which arsenic directs this process remain to be uncovered but 
evidence suggests that ATO-induced PML phosphorylation plays a role, possibly as the trigger 
for an interaction with a SUMO E3 ligase [27]. Thus we can see that ATRA-based 
differentiation therapy incorporating ATO (and induction chemotherapy) fulfills the criteria set 
out above in terms of also eradicating LSC and remains a paradigm for treating AML. 

Impairment of the ATRA signaling pathway in AML 

A key barrier to the implementation of successful differentiation therapy in AML is that, in 
contrast to APL, the ATRA signaling pathway in AML fails to respond to pharmacological 
doses of ATRA. Strategies rationally designed to overcome this problem will require a detailed 
picture of the underlying molecular mechanisms involved. Unfortunately, our understanding of 
these processes remains poor, although some progress has been made in the last few years. 
Aberrant epigenetics have been widely demonstrated to play an important role in cancer, 
including AML [28] and we now know that this can impact upon the ATRA signaling pathway 
through the activities of AML1/ETO, which has been found to induce abnormal DNA 
methylation of RARB2, a model ATRA target gene promoter [29==]. AML1/ETO recruited an 
array of negatively-acting epigenetic factors to RARB2 via direct interactions with RAR. Recent 
research has also shown that expression of the RARA gene is diminished in AML in a DNA 
methylation-independent manner and may be due, at least in part, to a decrease in histone 
H3 acetylation and Lys4 (H3K4) methylation [30==]. H3K27 trimethylation has also recently 
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been linked with DNA methylation-independent gene silencing in prostate cancer [31=]. 
Although a role for the aberrant H3K27 trimethylation-associated silencing of genes important 
for myeloid differentiation has yet to be established in AML, it is interesting to note that removal 
of this repressive mark by the JMJD3 histone demethylase occurs during ATRA-induced 
differentiation of neural stem cells [32=]. 

Aberrant epignetics is likely to also play an important role in the ATRA insensitivity of 
PLZF/RARa-associated APL. While treatment with a therapeutic concentration of ATRA 
induces degradation of PLZF/RARa in t(11;17) cells, this is not accompanied by complete 
clinical remission [33]. In this case, PLZF/RARa may recruit negatively-acting epigenetic 
factors that silence RARa target genes without further requirement for the presence of the 
fusion protein. This notion is supported by the finding that HDACi relieve PLZF/RARa-
associated repression of RARa target genes [34,35]. However, the role of the recipricol fusion 
protein generated as a result of t(11;17), RARa/PLZF, which upregulates expression of PLZF 
target genes including CRABP1 (involved in ATRA catabolism) cannot be ruled out [36]. 

RARa binds its cognate response element as a heterodimer with RXRa, and in the absence 
of ATRA RARa associates with co-repressors that repress promoter activity. However, ATRA 
binding causes a conformational change leading to co-regulator exchange and recruitment of 
positively acting factors that promote gene transcription [37]. In addition to potentially 
promoting the aberrant DNA methylation of RARa target genes, AML1/ETO may also interfere 
directly with RARa function by binding to the receptor in a ligand independent manner, thus 
blocking the ability of ATRA to mediate co-regulator exchange and preventing activation of 
RARB2 transcription [29==]. This is consistent with the finding that another AML-associated 
fusion protein, MN1/TEL, blocks RAR-RXR-mediated transcription by preventing the 
recruitment of coactivator complexes [38=]. Overexpression of MN1 is associated with some 
AML subtypes including inv(16) AML [39] and is also linked with a worse prognosis and a 
shorter survival in AML patients with a normal karyotype [40]. MN1 is a co-factor of RAR/RXR-
mediated transcription and a recent study has found that MN1 can both stimulate and inhibit 
ATRA-induced transcription [41=]. MN1 overexpression abrogated ATRA-induced expression 
of a number of genes including DHRS9, which is involved in ATRA synthesis from vitamin A. 
Consistent with the notion of impaired ATRA responsiveness as a feature of AML bone marrow 
transduction/transplantation experiments in mice have shown that MN1 overexpression 
causes myeloproliferative disease, and combined expression in mouse bone marrow of MN1 
and CBFb/MYH11 (the product of inv(16), which causes a differentiation block in transgenic 
mice) resulted in rapid development of AML [39]. 

Future research will surely identify other AML-associated factors that impair ATRA signaling, 
either through direct interactions with RAR/RXR or by affecting other components of the 
pathway. Restoration of ATRA signaling in AML should allow for an effective therapeutic 
response to this agent when used in conjunction with other targeted drugs or conventional 
chemotherapy (Figure 2). 

Current state of research into differentiation therapy for AML 

In contrast to genetic abnormalities, which are irreversible, aberrant epigenetic modifications 
can be reversed pharmacologically. Therefore epi-drugs such as DNMTi, HDACi and inhibitors 
of histone methyltransferases/demethylases, have a strong therapeutic potential and these 
classes of enzymes represent bone fide targets for anti-AML drug development. There has 
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been some progress in recent years with FDA approval granted for the demethylation agents 
azacitidine (Vidaza) and decitabine (Dacogen), used in the treatment of myelodysplastic 
syndrome, and the HDAC inhibitor SAHA (Zolinza) for therapy of cutaneous T-cell lymphoma. 
However, it also has to be acknowledged that from a clinical perspective, up till now epi-drugs 
have not yet met the early expectations placed upon them. Nucleoside analogs such as Vidaza 
and Dacogen need to be incorporated into genomic DNA in order to inhibit DNMTs and induce 
DNA demethylation. Unfortunately, in addition to relieving gene silencing associated with 
aberrant promoter hypermethylation, these drugs also exert non-specific cytotoxic effects [42]. 

With regard to HDACi, a somewhat disappointing characteristic of the vast majority of 
inhibitors that have been developed thus far is an overall lack of selectivity towards individual 
HDAC family members. A potential reason for this is the finding that the region surrounding 
the catalytic pocket of HDAC8 actually undergoes conformational changes to accommodate 
structurally different HDACi [43]. This malleability, if it extends to other family members, may 
at least in part account for the ability of these enzymes to deacetylate diverse target proteins. 
There also still remains much to learn with respect to specific histone and non-histone 
substrates of individual family members and target genes that they may act upon. 

The HDACi valproic acid (VPA), in combination with ATRA and various other drugs including 
DNMTi, has been studied in several clinical trials with AML patients but this strategy has thus 
far had limited success [15-18=]. Furthermore, a note of caution has been recently introduced 
regarding the use of VPA and potentially other HDACi in anti-AML therapy. While therapeutic 
concentrations of VPA killed mature leukemic cells, this HDACi enhanced the maintenance 
and clonogenic capacity of both normal CD34+ progenitors and also, worryingly, AML CD34+ 
leukemic progenitor cells [44=]. Although these data remain to be evaluated in vivo and the 
study has yet to be extended to other HDACi, this issue raises concerns regarding the 
treatment of AML with non-specific HDACi. 

To date one genuinely specific HDACi (tubacin), which targets HDAC6, has been identified 
and it may prove to have therapeutic potential in AML. Tubacin should not actually be 
considered an epi-drug, though, since HDAC6 does not associate with chromatin and histones 
are not its in vivo substrate. HDAC6 can deacetylate hsp90, which leads to inhibition of its 
chaperone function and proteasomal degradation of hsp90 client proteins, which include Bcr-
Abl and FLT3 [45]. From the perspective of novel ATRA-based combination therapies of AML 
it is noteworthy that recent research has found that co-treatment with tubacin and 17-AAG 
(which targets the chaperone activity of hsp90 by inhibiting ATP binding) diminishes the 
viability of primary AML cells [46]. A Class I HDAC-selective inhibitor has been recently 
developed, MGCD0103, which potently targets HDAC1 but also has inhibitory activity against 
HDACs 2, 3 and 11 [47]. While MGCD0103 has not yet been tested in combination with ATRA, 
it has undergone a Phase I trial with high-risk AML and MDS patients with some encouraging 
preliminary results [48]. Looking to the future as the biological activities of individual HDACs 
are uncovered and novel, more specific, HDACi continue to be developed, these agents have 
the potential to be successfully used combinatorially in anti-AML differentiation therapy. 

The potential roles of histone methyltransferases and demethylases in AML are still poorly 
understood, but in contrast to HDACs, these enzymes display a high degree of substrate 
specificity making them ideal candidates for drug development [49]. To date, relatively few 
compounds have been identified but include inhibitors that target enzymes responsible for 
H3K27 methylation [50,51] and H3K4 demethylation [52-54]. 
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So far in this review we have focused on factors that affect the ATRA signaling pathway on 
the genomic level in terms of epigenetic dysregulation of ATRA target genes and impairment 
of RARa-mediated transcription activation. However, aberrant signal transduction also plays 
an important role in AML and APL by promoting proliferation/survival of LSC – as mentioned 
earlier, kinase signaling is required for ATO targeting of PML/ RARa in APL. For an up to date 
review of this topic see Scholl et al [55]. Signal transduction pathways activated by ATRA have 
also been found to play an important role in modulating its effects on differentiation in APL 
cells [56]. There is also significant, although incompletely understood, cross-talk between 
ATRA and myelomonocytic growth factors (GFs) with recent reseach showing that acting, at 
least in part, via the MAP kinase pathway, GFs enhance ATRA-dependent activation of RARa 
and maturation of APL and non-APL AML primary cells [20]. These results suggest that 
combinatorial use of these agents may be effective in differentiation therapy of non-APL AML. 

Perspectives on the future development of anti-AML differentiation therapies 

While this review has focused on the prospects for differentiation therapy in AML utilizing 
ATRA as the differentiating agent, it should be noted that another likely problem underlying 
the lack of success with ATRA in AML is that this retinoid is not RAR isotype-selective. Studies 
from human cell lines and mouse models clearly demonstrate that ATRA acts through RARa 
to induce differentiation [20,21] whereas its effects via RARg are anti-differentiative and 
expand hematopoietic stem cells [57,58]. Therefore the use of RAR isotype-selective synthetic 
retinoids, both agonists and antagonists, could lead to improved clinical results [22]. 

Functional genomic strategies and high-throughput small compound screening will play a 
critical role in the discovery of novel differentiation-based therapies for AML. For example, a 
recent functional genomic RNAi screen using a library of 8500 shRNAs identified a ubiquitin-
conjugating enzyme (UBE2D3) as a mediator of ATRA-induced growth arrest in NB4 APL cells 
[59=]. Also, a high-throughput study that screened around 6000 compounds for their ability to 
induce differentiation in HL-60 cells recently identified 6-Benzylthioinosine as candidate drug 
[60=]. Rather than targeting the ATRA-mediated differentiation pathway, this agent may act to 
induce growth arrest and differentiation through depletion of cellular ATP stores and, 
promisingly, impairs tumor growth in mice. Rationally targeted small-scale drug screens can 
also yield results and in another recent publication this approach identified an inhibitor of 
glycogen synthase kinase 3 (SB216763) as agent active against MLL leukemia cells [61]. 
SB216763 was found to induce G1 arrest in both B cell and myeloid progenitors transformed 
by MLL oncogenes. In the future, these types of study could also identify small molecules that 
sensitize AML cells to the effects of ATRA or retinoids. 

In analogy to the specific induction of PML/RARa degradation by ATRA and ATO in APL, the 
diterpenoid analogues Eriocalyxin B and Oridonin have recently been found to specifically 
degrade AML1-ETO [62,63]. ATO itself may have applications in the treatment of non-APL 
AML since it can also induce the targeted degradation of the AML1/MDS1/EVI1 (AME) 
oncoprotein [64]. Also of note is the finding that wild-type PML, which is also a target of ATO, 
plays a vital role in maintaining the survival of LSC in chronic myeloid leukemia (CML) [65]. 
ATO treatment of LSC in a mouse model of CML significantly diminished the capacity of these 
cells to recapitulate the disease when transplanted into recipient mice. These results, along 
with the development of novel organic arsenic compounds [66] could see the emergence of 
applications for this semi-metal in AML. 
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Another exciting line of investigation that has potential for development as an anti-AML therapy 
in combination with ATRA utilizes peptides or small molecules that block specific interactions 
between oncoproteins and factors required for their leukemic activity. For example, in APL, 
peptides targeting the interface between PML/RARa and NCoR or SMRT have been found to 
restore ATRA sensitivity to differentiation-resistant NB4 cells [67]. Also, a screen for 
compounds that enhance ATRA induced differentiation of leukemic cells indentified 
benzodithiophenes as facilitating the removal of RARα repressor complexes by lowering the 
threshold for ligand-mediated corepressor/coactivator exchange with RARα and enhancing 
changes in ATRA-regulated gene expression [68,69].There has also been development of 
small molecule inhibitors that disrupt the interaction between AML1 and CBFb, thus enabling 
AML1/ETO positive Kasumi and SKNO-1 cells to differentiate in response to ATRA [70,71]. 
Probably the best known inhibitor of protein-protein interactions is Nutlin-3, which binds MDM-
2 and prevents it from interacting with p53, releasing it from negative control by MDM-2 and 
leading to effective p53 stabilization and activation [72]. Treatment of AML patient samples 
with Nutlin-3 induces both apoptosis and differentiation [73] and while Nutlin-3 potentiates the 
effects of TRAIL, it has not yet been tested with ATRA or other retinoids. 

In summary, this review has underlined the importance of developing new and better 
differentiation-based combinatorial therapies that can be targeted against specific 
abnormalities underlying the pathogenesis of a given AML sub-type, or possibly take 
advantage of characteristics shared by different AMLs. Progress towards achieving these 
ends is going to come from both high-throughput techniques and rationally-designed research 
based on improved knowledge of the biology of AML. 
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Figure 1. A timeline of differentiation therapy in AML. Selected milestones in the history of 
differention therapy of AML, and in particular its application in the treatment of APL. Indicated on top 
are some events associated with the characterization of APL. Shown below are milestones associated 
with differentiation therapy. Interestingly, identification of ATRA as a differentiation agent in APL 
preceeded the discovery of its receptor and its role in disease pathogenesis. ATO, arsenic trioxide; CT, 
chemotherapy. 

 

 

Figure 2. For ATRA-based differentiation therapy to find success in non-APL AML, treatments 
will need to be combined to effectively target leukemic cell proliferation/survival and restore 
the ATRA signaling pathway. LSC, leukemic stem cell. 

 


