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Abstract: Lymphedema is a condition resulting from mutations in various genes essential for
lymphatic development and function, which leads to obstruction of the lymphatic system. Secondary
lymphedema is a progressive and incurable condition, most often manifesting after surgery for breast
cancer. Although its causation appears complex, various lines of evidence indicate that genetic
predisposition may play a role. Previous studies show that mutations in connexin 47 are associated
with secondary lymphedema. We have tested the hypothesis that connexin 37 gene mutations in
humans are associated with secondary lymphedema following breast cancer surgery. A total of
2211 breast cancer patients were screened and tested for reference single nucleotide polymorphisms
(SNPs) of the GJA4 gene (gap junction protein alpha 4 gene). The results presented in this paper
indicate that two SNPs in the 3’ UTR (the three prime untranslated region) of the GJA4 gene are
associated with an increased risk of secondary lymphedema in patients undergoing breast cancer
treatment. Our results provide evidence of a novel genetic biomarker for assessing the predisposition
to secondary lymphedema in human breast cancer patients. Testing for the condition-associated
alleles described here could assist and inform treatment and post-operative care plans of breast cancer
patients, with potentially positive outcomes for the management of disease progression.

Keywords: connexin 37; secondary lymphedema; breast cancer; GJA4 gene; single nucleotide
polymorphism (SNP)

1. Introduction

Connexins are a large family of six-subunit transmembrane hemi-channels. A total of 21 connexin
genes have been described in humans, and 20 in mice [1,2]. Individual hemi-channels (connexons)
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as part of a gap junction channel allow for the diffusion of ions and small molecules between
the extracellular space and the cytosol, and gap junction channels facilitate the diffusion of ions,
metabolites, and signalling molecules between cells [3,4].

Lymphedema is an incurable condition resulting from obstruction of the lymphatic system,
characterised by localised fluid retention, swelling, and susceptibility to infection. The condition
is sub-classified into two varieties: the so-called primary lymphedema is inherited, resulting from
mutations in various genes essential for lymphatic development and function, whilst secondary
lymphedema is generally a post-operative complication of surgery, usually affecting women
undergoing treatment for breast cancer [5–7]. The estimates of the proportion of patients affected range
from 2–80%, no doubt partly reflecting differences in measurement and diagnostic criteria [2]. Several
other medical factors, such as the stage of cancer at the time of diagnosis, the pathological involvement
of lymph nodes, the number of dissected lymph nodes during breast cancer surgery, the type and
extent of surgery, and also the extent and method of radio- and chemotherapy are considered important
in the development of secondary lymphedema in breast cancer patients. Additionally, patient age,
body mass index, and degree of physical activity have all been suggested to influence the risk of
developing secondary lymphedema [7,8].

Intriguingly, there is also some evidence for genetic predisposition to secondary
lymphedema [9,10]. For example, mutations in hepatocyte growth factor/high affinity hepatocyte
growth factor receptor/mesenchymal-epithelial transition (HGF/MET) have been reported in both
primary and secondary lymphedema [9]. This protein is expressed in lymphatic endothelial cells and
has functions in cell growth, mobility, differentiation, and intercellular junctions [9]. Another set of
mutations associated with secondary lymphedema affect the connexin Cx47 [8]. Similar mutations
are also associated with Pelizaues–Merzbacher-like disease (PMLD) [11], spastic paraplegia [12],
and primary lymphedema [11,12]. It has been shown that Cx43 is abundantly expressed in the
ventricular myocardium and in cardiac neural crest cells and plays an important role in human
congenital heart disease [13].

Connexins adopt complex tertiary structures achieved through the coordination of six subunits,
representing a “connexon”, which is capable of generating a gap junction by docking to another
connexon on an adjacent cell [14]. This suggests a general model in which a genetic predisposition to
form inappropriate cellular junctions may explain the development of some secondary lymphedemas.

Here, we demonstrate that polymorphisms in another connexin, Cx37, are differentially
distributed in patients with and without secondary lymphedema, following surgery for breast cancer.
Cx37 is a good candidate marker because it is expressed in the lymphatic system and endothelial
cells [15]. Furthermore, single nucleotide polymorphisms (SNPs) in GJA4 (the gene that codes for
Cx37) have previously been shown to be associated with myocardial infarction and atherosclerosis,
suggesting (by analogy with the wide-ranging effects of mutations in HGF/MET and Cx47), that Cx37
could have a role in secondary lymphedema [16].

2. Experimental Section

2.1. Patients

From an initial screen of 2211 breast cancer patients (admitted to the Sayyed-Al-Shohada hospital
in Isfahan, Iran, between 2009–2015) at least 6 months post chemotherapy, written consents were
obtained and blood samples collected from 102 patients aged between 35 and 70. Patients were selected
for this study if they had breast cancer “lower than stage IIIC” and “tumour size between 3 and 10 cm”.
From the patients with the above characteristics, 51 patients with secondary lymphedema (case group)
and 51 patients without secondary lymphedema (control group) were randomly selected and were
further analysed. The staging system of the International Society of Lymphology (ISL) was used to
characterize the severity of lymphedema, considering the “softness” or “firmness” of the limb, and all
patients in the case group had moderate to severe lymphedema [17].
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All 102 patients either had modified radical mastectomy (MRM) or breast conserving surgery
(BCS). In the case group, an average of 4.7 and in control group an average of 2.2 lymph nodes were
involved. Also, 69% of patients from the case group and 64% of patients from the control group had
BCS, and 31% of patients from the case group and 46% of patients from the control group had MRM.

During the surgery, at least six axillary lymph nodes were removed, and the patients had
chemotherapy and radiation therapy (supplementary material). The external beam radiation method
was applied to all patients using a linear accelerator on an outpatient basis, 5 days a week, over 5 to
7 weeks, depending on each particular situation. The radiotherapy treatment included the breast and
the regional axillary lymph nodes, and there was no clear correlation between the radiotherapy of
regional lymph nodes and the occurrence of secondary lymphedema. DNA extraction from blood
samples was performed using PrimePrep Genomic DNA isolation kit (GeNet Bio, Daejon, Korea) [18].

All subjects gave their informed consent for inclusion before they participated in the study.
The study was conducted in accordance with the Declaration of Helsinki, and the protocol
was approved by the Ethics Committee of the Tabriz University of Medical Sciences, Iran
(IR.MUI.REC.1394.2.058 (1 August 2014)).

2.2. High-Resolution Melting Analysis

High-Resolution Melting (HRM) is an inexpensive, accurate, homogeneous, and post-PCR
method, which enables researchers to analyse genetic variations such as SNPs, mutations, and
methylations in PCR amplicons [19]. The primers for amplification of rs3543 and rs705193
were designed using Primer3web software (version 4.1.0, Howard Hughes Medical Institute,
Ashburn, VA, USA; http://primer3.ut.ee/). The primer sequences and product sizes are shown
in Table 1. PCR amplification and HRM analysis were performed in a reaction volume of 10 µL,
with High-Resolution Master Mix (Solis BioDyne, Tartu, Estonia; https://www.sbd.ee/), 0.5 µL of
each primer (10 pmol), and 30 ng DNA. HRM analysis was performed using a Corbett Rotor-Gene
6000 (Germantown, MD, USA).

Table 1. Primer sequences and amplicon sizes for rs3543 and rs705193 used in High-Resolution Melting
(HRM) analysis.

SNP Allele Amplicon Size Primer

rs3543 C→T 182 bp Forward: 5′ CTGGAGAGGAAGCCGTAGTG 3′

Reverse: 5′ CAACAGAGGGGTCCTGAGAA 3′

rs705193 C→G 194 bp Forward: 5′ CTGATCCAGAGGAACCCAGA 3′

Reverse: 5′ TGATGAAAACAAGGCACCAG 3′

The polymerase chain reaction (PCR) procedure started with a pre-incubation at 95 ◦C for 15 min,
followed by 40 cycles of denaturation (95 ◦C for 15 s), annealing (60 ◦C for 20 s), and extension
(72 ◦C for 20 s). The melting analysis of the amplicons was carried out from 75 ◦C to 95 ◦C at
0.2 ◦C/s. The samples with different melting profiles were selected for direct sequencing by an ABI
3130 sequencer (Applied Biosystems, Waltham, MA, USA; http://www.thermofisher.com).

2.3. Statistical Analysis

SPSS version 22 (IBM SPSS,) was used for all statistical analyses. Parametric analyses were
conducted on continuous data with normal distribution, otherwise non-parametric analyses were
applied. The significance level of p < 0.05 was used in each analysis.

http://primer3.ut.ee/
https://www.sbd.ee/
http://www.thermofisher.com
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3. Results

3.1. Physiological Parameters

Clinical records of patients’ age, height, weight (at the time of sampling and after surgery
and radiotherapy), and body surface area were collected; the statistical analyses showed no
significant differences between lymphedema case and control groups for these parameters (Table 2).
The effects of the physiological parameters on the presence of secondary lymphedema were further
evaluated using binary logistic regression (Table 3). The regression revealed no significant effects
(Cox & Snell R2 = 0.040, Nagelkerke R2 = 0.053, p > 0.05) of these parameters on the presence of
secondary lymphedema.

Table 2. Comparisons of physiological measurements and tumour measurements between the control
and case groups.

Measurements Statistics Significance

Age (year) t = 0.998 p = 0.321, p > 0.05

Height (cm) U = 1342.5 p = 0.775, p > 0.05

Weight (kg) U = 1150.5 p = 0.314, p > 0.05

Body surface area (m2) U = 1249.0 p = 0.720, p > 0.05

Tumour size (cm)

Control Median: 5; Lower: 4; Upper 5 * p = 0.277
Case Median: 5; Lower: 5; Upper 5 ** p = 0.618

No. of lymph nodes removed

Control Median: 10; Lower: 8; Upper 12 * p = 0.132
Case Median: 10; Lower: 9; Upper 10 ** p = 0.997

No. of lymph nodes involved

Control Median: 1; Lower: 0; Upper 2 * p = 0.132
Case Median: 2; Lower: 2; Upper 4 ** p = 0.002

* The range is the same; ** The distribution is the same.

Table 3. Effects of age, height, weight, and body surface area on the presence of secondary lymphedema.

Physiological Parameters Age (Year) Height (cm) Weight (kg) Body Surface Area Constant

β −0.027 0.028 −0.030 −0.618 −0.247
S.E. * 0.026 0.039 0.023 10.118 50.856

Wald ** 10.034 0.533 10.593 0.306 0.002
Sig. 0.309 0.465 0.207 0.580 0.966

Odds ratio Exp (β) 0.974 10.029 0.971 0.539 0.781
95% CI *** for odds ratio

Lower 0.924 0.953 0.927 0.060
Upper 1.025 1.110 1.017 4.820

* S.E., the standard error around the coefficient for the constant; ** Wald, the Wald chi-square test;
*** CI: Confidence Interval.

Age, height, and weight odds ratios were close to 1, indicating no effects (Table 2), while
an increase in the body surface area did appear to correlate with an increased risk of secondary
lymphedema, yet the effect was not statistically significant (p = 0.604).

3.2. Tumour Parameters

In the case group, 35 patients went through the MRM surgical procedure and 16 through the
BCS procedure, while in the control group 28 patients underwent the MRM procedure and 23 the BCS
procedure. There was no statistical significant difference between the two groups (Cramer’s V = 0.141,
p = 0.154). The lymph nodes removed during surgery varied from patient to patient. The highest
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number of nodes removed in the control group was 20 and the lowest 6; 51% had 6–10 nodes removed.
In comparison to the control group, the patients in the case group had a maximum of 28 lymph nodes
removed (1 patient) and a minimum of 6; 66.7% had 6–10 nodes removed. However, the statistical
analyses showed no significant differences in the number of lymph nodes removed between the two
groups (Table 2).

From the lymph nodes removed, the number of nodes that were invaded by the tumour was
assessed (Figure 1); over one-third of the control group had no lymph nodes affected (37.3%), while a
similar number in the case group had up to two nodes affected (39.2%). Although the Moses test of
Extreme Reaction (nonparametric tests algorithms) revealed no statistically significant difference in
the range of the lymph nodes involved (p = 0.132), the Mann–Whitney test of distribution indicated a
statistically highly significant difference between the control and the case groups (p = 0.002).

Binary logistic regression analyses (Table 4) revealed a moderate effects of the tumour parameters
on the presence of lymphedema (Cox & Snell R2 = 0.231, Nagelkerke R2 = 0.309); the overall effect was
statistically significant (p = 0.001). The multivariate model correctly predicted 72.1% (31 out of 45) of
those with secondary lymphedema and 70.6% (36 out of 51) of those without secondary lymphedema;
the overall accuracy was 71.3%.
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Figure 1. Differences in the number of lymph nodes invaded by tumour cells between the control and
case groups.

Table 4. Effects of clinical parameters and genotypes assessed on the secondary lymphedema.

Clinical Parameters and
Genotypes b S.E. Wald p Odds Ratio

95% CI for Odds Ratio

Lower Upper

Surgery Method (MRM) 1.017 0.572 3.162 0.075 2.766 0.901 8.488
Tumour size (cm) 0.050 0.130 0.149 0.699 1.052 0.815 1.357

No. of lymph nodes removed −0.089 0.076 1.385 0.239 0.914 0.788 1.061
No. of lymph nodes involved 0.150 0.099 2.277 0.131 1.162 0.956 1.411

rs3543 (CC) −1.570 1.037 2.296 0.130 0.208 0.027 1.586
rs3543 (CT) −0.351 0.637 0.304 0.582 0.704 0.202 2.454

rs705193 (CC) −1.025 0.931 1.212 0.271 0.359 0.058 2.226
Constant 0.275 1.316 0.044 0.835 1.316
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3.3. Connexin 37 Genotypes

3.3.1. Melting Profiles

Figures 2 and 3 present the melting profiles of rs3543 and rs705193 genotypes, respectively.
Homozygous wild-type, mutant, and heterozygote samples are shown on a standard normalized
melt curve in Figures 2 and 3. The results for rs3543 show three different melting profiles of analysed
amplicons and two melting profiles for rs705193.
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3.3.2. Genotypes and Allele Frequencies

Categorical cross-tabulation analyses identified significant associations of allele type T (C→T
mutation) with the presence of secondary lymphedema in rs3543 (Table 5). The CC genotype was
more abundant in the control group (without lymphedema), while the genotypes CT and TT showed
moderate and significant associations with the presence of secondary lymphedema in the case group,
respectively. Cramer’s V revealed a medium association which was statistically highly significant
(Cramer’s V = 0.385, p = 0.001).

Table 5. Cross-tabulation analysis of rs3543 allele frequencies in the case and the control groups.

Presence of Secondary Lymphedema
rs3543

Total
CC CT TT

With secondary lymphedema
(Case group)

Count 5 31 15 51
% within Presence of lymphedema 9.8% 60.8% 29.4% 100.0%

% within rs3543 18.5% 58.5% 68.2% 50.0%
Std. Residual (z) −2.3 0.9 1.2

Without secondary
lymphedema (Control group)

Count 22 22 7 51
% within Presence of lymphedema 43.1% 43.1% 13.7% 100.0%

% within rs3543 81.5% 41.5% 31.8% 50.0%
Std. Residual (z) 2.3 −0.9 −1.2

Total
Count 27 53 22 102

% within Presence of lymphedema 26.5% 52.0% 21.6% 100.0%
% within rs3543 100.0% 100.0% 100.0% 100.0%
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Similarly, in rs705193, the C to G mutation contributed significantly to the increased risk of
secondary lymphedema (Table 6), while the genotype CG showed significant influence. Cramer’s V
indicated a medium association which was highly significant (Cramer’s V = 0.356, p = 0.001).

Table 6. Cross-tabulation analysis of rs705193 allele frequencies in the case and the control groups.

Presence of Lymphedema
rs705193

Total
CC CG

With secondary lymphedema
(Case group)

Count 8 43 51
% within Presence of lymphedema 15.7% 84.3% 100.0%

% within rs705193 24.2% 62.3% 50.0%
Std. Residual (z) −2.1 1.4

Without secondary lymphedema
(Control group)

Count 25 26 51
% within Presence of lymphedema 49.0% 51.0% 100.0%

% within rs705193 75.8% 37.7% 50.0%
Std. Residual (z) 2.1 −1.4

Total
Count 33 69 102

% within Presence of lymphedema 32.4% 67.6% 100.0%
% within rs705193 100.0% 100.0% 100.0%

Interestingly, rs3543 and rs705193 were strongly associated with each other in both the case and
the control groups (Cramer’s V 0.803 and 0.819 respectively, p = 0.003). The association was not
influenced by the allele type TT in rs3543 (−1.96 < z < 1.96, Table 7).

Table 7. Association of rs3543 and rs705193 in the case and the control groups.

Presence of Lymphedema
rs3543

Total
CC CT TT

With secondary
lymphedema
(Case group)

rs705193 CC Count 5 0 3
8Std. Residual (z) 4.8 −2.2 0.4

CG Count 0 31 12
43Std. Residual (z) −2.1 1.0 −0.2

Total Count 5 31 15 51

Without secondary
lymphedema

(Control group)

rs705193 CC Count 21 2 2
25Std. Residual (z) 3.1 −2.7 −0.8

CG Count 1 20 5
26Std. Residual (z) −3.1 2.6 0.8

Total Count 22 22 7 51

Total

rs705193 CC Count 26 2 5
33Std. Residual (z) 5.8 −3.7 −0.8

CG Count 1 51 17
69Std. Residual (z) −4.0 2.5 0.5

Total Count 27 53 22 102

It was evident that for rs3543, the allele type TT had a similar distribution in both the case and the
control groups; CT had a small difference between the two groups, and CC had a significant difference
between the groups. The absence of the rs3543’s CT and rs705193’s CC combination, together with the
lack of the CC and CC combination, contributed to the secondary lymphedema.

4. Discussion

The results presented in this paper indicate that two SNPs in the 3’ UTR of the GJA4 gene are
associated with an increased risk of secondary lymphedema in patients being treated for breast cancer.
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GJA4 was chosen because it encodes Cx37; other studies have already described that two genes (GJC2
encoding connexin 47 and MET gene) also involved in junction formation have mutations associated
with the predisposition to secondary lymphedema [20,21]. The results thus provide strong support for
the hypothesis that secondary lymphedema is caused at least partly by genetic factors that presumably
lead to inappropriate formation of cellular junctions and, consequently, blockage of the lymphatic
system. This has important implications for the diagnosis and treatment of lymphedema.

In comparison to the BCS procedure, although statistically not significant, MRM surgical
procedure seemed to increase the odds of secondary lymphedema (odds ratio = 2.766, p = 0.075,
Table 4). Tumour size, number of lymph nodes removed during the surgery, and number of lymph
nodes being invaded by the tumour had little impact on the presence of lymphedema (odds ratio close
to 1 and p > 0.05).

The Wald statistic did not indicate that the β coefficients for the genotypes were statistically
significantly different from 0 (p > 0.05), however the odds ratios for rs3543 (CC) and in particular
for rs705193 (CC) showed their odds in favour of without lymphedema (internal value without
lymphedema 0, with lymphedema 1).

It is important to note that the SNPs detected are in a region annotated as a 3’UTR, meaning that
a direct effect on the protein sequence is unlikely (albeit we have not shown directly that the protein
sequence is actually unaffected by the variation, and there remains a possibility that the annotation of
this region may be erroneous). Likely, therefore, the mutation associated with secondary lymphedema
affects the post-transcriptional fate of the mRNA through effects on stability, as several microRNAs
have already been shown to target other connexin family members [22].

Alternatively, there might be effects on transcription through long-range interactions. Finally, it is
possible that the variation is functionally insignificant and rather an artefact of linkage or some other
confounding variable. Though possible, we consider this latter unlikely in view of the fact that other
secondary lymphedema-associated mutations also affect junction-forming proteins [23].

From the molecular pathological point of view, the results presented here suggest that a fruitful
approach to secondary lymphedema may be to characterise the cell–cell junctions in healthy and
pathological tissues, with the aim of determining, for example, whether the problem is fundamentally
linked to junctions that are too tight or too loose [15,16]. Given that the 3’UTR of genes is often involved
in RNA stability, we may speculate that the mutations result in loss of function, i.e., less RNA and
therefore less protein, which would probably manifest as “too loose” junctions. Alternatively, if the
mutations remove a microRNA target, the effect would be increased translation, possibly manifesting
as “too tight” junctions. This fundamental and essential work is however beyond the scope of the
present study.

The lymphatic drainage pathways of the breast (axillary, internal mammary, and supraclavicular
nodal groups) are the regional areas most likely to be involved with metastatic breast cancer, and it
has been shown that patients who undergo more extensive surgery, have many lymph nodes
removed, or have radiation therapy to the axilla or groin after surgery are more likely to develop
lymphedema [24].

The next step of our research, also to increase the strength of our results and conclusion, will be to
increase the sample size and to collect similar samples from different geographical areas and other
ethnic groups. It is important to notice the importance of ethnicity on the genetic variations and of
the sample size, because too big or too small sample sizes have limitations that can compromise the
conclusions drawn from studies.

5. Conclusions

The results in this study confirm that the number of lymph nodes being invaded by breast tumours
had a statistically significant impact on the presence of lymphedema and that increased lymph node
invasion correlated with an increased probability of secondary lymphedema.
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Significantly, we have discovered a novel predictive biomarker for the predisposition to
secondary lymphedema in breast cancer patients, following surgical intervention. Testing for the
condition-associated allele should help inform the treatment and post-operative care of patients,
with desirable outcomes for the management of breast cancer. Further study of genes involved
in junction formation may reveal additional secondary lymphedema-associated polymorphisms,
and hence extra biomarkers, offering an exciting new area of breast cancer research.

Supplementary Materials: The Physiological and tumour parameters (.xlsx) are available online at www.mdpi.
com/2227-9059/6/1/23/s1.
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