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 Abstract:  

Acanthamoeba castellanii is a free-living amoeba that exists in two different forms, the 

trophozoite, and the cyst. A. castellanii is known to cause two rare infections: 

Acanthamoeba keratitis (AK), a disease where the parasites infect the cornea, and a 

central nervous system (CNS) infection, known as granulomatous amoebic encephalitis 

(GAE). Patients with AK often lose significant vision in the infected eye and, if both eyes 

are infected, may lead to blindness. The other infection caused by this parasite, GAE, has 

a mortality rate of around 95%. The current chemotherapeutic drugs have not been able 

to reduce the morbidity and mortality associated with AK and GAE and the cost of de-

novo drug development for such rare diseases has led to the development of alternative 

approaches for the identification of drug candidates. This is the driving force for the work 

presented in this thesis and is the overarching theme for the papers included in this work. 

The publications contributing to this thesis describe work on the discovery of novel drug 

targets in Acanthamoeba and the use of this information to identify drugs that could be 

re-purposed for the treatment of AK and GAE. Acanthamoeba castellanii was shown to 

express human-like calcium channels, calcium regulating adapter proteins, G-protein 

coupled receptors and muscarinic receptor-like proteins that are needed for growth and 

proliferation. Bioinformatic analysis based around amino acid sequence homology, 

modeling, drug docking studies and transcriptomic profiles of Acanthamoeba revealed 

these proteins as possible drug targets. There are currently a range of drugs that are 

antagonists for these targets in humans and these are used for a variety of non-infectious 

disease presentations. Our research studied loperamide, amlodipine, digoxin, 

amiodarone, anticholinergic agents like procyclidine, dicyclomine and atropine. Studies 

were able to show that these drugs have activity against trophozoite and cystic forms of 

Acanthamoeba spp. and that many work via disrupting calcium homeostasis. These drugs 

are fully characterised and their profile of adverse effects and the margin of safety and 

toxicity is well known. These drugs could now be evaluated for their clinical utility for the 

treatment of AK and GAE. This is much faster than for traditional novel drug discovery. 

Thus, the major conclusion from this body of work is that the repurposing of drugs, already 

in clinical use for the treatment of non-infectious diseases in humans, will provide an 

alternative and viable option in drug development against AK and GAE.



Introduction 

1 

 

1 Background 

1.1 Global burden of parasitic diseases 

Diseases caused by parasites are known to affect millions of individuals worldwide 

with high morbidity and mortality rates. However, they have been largely neglected 

for drug development because they largely affect underdeveloped countries (Figure 

1). Parasitic diseases cause an enormous burden on the economic growth of the 

affected countries and thus the need to devise prevention and treatment strategies is 

pressing. Most of the current drugs used in the treatment of parasitic diseases are 

decades old and have several limitations, like reduced patient compliance due to 

adverse effects, prolonged duration of chemotherapy, and the emergence of drug 

resistance [1-4]. There is paucity in the discovery of novel and safer drugs for diverse 

parasitic organisms that cause diseases in humans. Hence there is a need to revive 

the drug development pipeline for even common parasitic diseases like malaria which 

is increasing yearly as noted between 2015 and 2018 [5]. With about 1 in 6 individuals 

worldwide experience some form of parasitic disease, it is alarming to note that 

currently, we have no licensed vaccine for any human parasitic pathogen. Infection 

with Entamoeba histolytica, resulting in amoebic colitis and liver abscesses, is the 

second leading cause of death resulting from a parasitic infection. E. histolytica is 

estimated to infect one-tenth of the worlds' population amounting to about 500 million 

people [6]. 
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Figure 1: Global burden of parasitic diseases. 

(A) Geographic overlap and distribution of the seven most common neglected 
parasitic diseases (red-areas in the map). Data from Hotez and WHO. (B) High-
prevalence and other vector-borne neglected tropical diseases [Adapted from Hotez 
PJ, Fenwick A, Savioli L, Molyneux DH. Rescuing the bottom billion through 
control of neglected tropical diseases- Reference # - 7].  
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1.1.1    Challenges in antiparasitic drug discovery 

Parasitic diseases affect millions of people worldwide (Figure 1) and result in 

significant morbidity, mortality, and devastating socioeconomic consequences. Few, 

if any, of the currently available drugs pass through a discovery-stage screening 

process at present, let alone preclinical and clinical development. It is puzzling yet to 

see the development of a new generation of more effective and safer antiparasitic 

drugs for which the answer primarily lies in economics [8]. Parasitic diseases, 

although globally massive in their impact, mainly affect poor people in underdeveloped 

regions which are not viewed as viable target markets by the pharmaceutical industry, 

particularly in today’s post-merger climate. Generally, preclinical models tend to be 

more predictive, and human clinical trials are not more complicated or costly than 

those for other non-infectious chronic disorders. For example, the danger of failure in 

Phase II clinical trials is estimated to be ~50% for a new antimalarial, which is lower 

than the corresponding risk for a non-infectious disease [9]. Current drug discovery 

has not fully utilized the new knowledge of parasite genome sequences, freely 

available from online databases, and the insights that can be obtained from parasite 

genomics and transcriptomics into the novel, vigorous chemical clues that can form 

the basis of innovative drug discovery [10]. 

1.1.2    Mounting interests in orphan drugs for orphan diseases 

According to the US National Institutes of Health (NIH-US), there are close to 7,000 

described rare diseases. In the United States, a disease is considered to be ‘rare’ if it 

affects fewer than 200,000 individuals, and in the European Union, it is defined as 

having a prevalence of fewer than 5 in 10,000 people. One of the most central 

resources for orphan drugs and diseases in Europe is Orphanet, a European society 

that involves about 40 countries globally [11, 12]. It defines “orphan drugs” as “drugs 

envisioned to treat diseases so rare that the drug development industries are reluctant 

to develop them under usual marketing conditions.” Orphan diseases include a wide 

range of infectious and non-infectious disease states [11]. Examples of such parasitic 

diseases include American trypanosomiasis (which affects more than 13 million 
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people), Leishmaniasis (which affects more than 12 million people), and lymphatic 

filariasis (which affects about 120 million people).  

It is only recently that rare diseases and orphan drug development have provided 

attractive opportunities for pharmaceutical companies. They offer advantages such as 

quicker development timelines, less time spent in research, low development 

expenses, a higher likelihood of clinical and regulatory success, premium pricing, 

lower marketing costs, and a lower risk of generic competition. More recently, several 

pharmaceutical companies such as Pfizer and GlaxoSmithKline, have formally been 

incorporating the orphan drug model by launching policies for treating rare diseases 

through partnerships and acquisitions [13]. Recently, orphan diseases have become 

attractive to the industry because of the pricing and the potential to generate 

significant revenues in drug markets. Although early on the majority of approved 

orphan drugs were developed in biotech companies, big pharma has been 

responsible for a growing number of approvals — from 30-35% in 2000–2002 to 50-

56% in 2006–2008 [14]. The following paragraphs highlight the biology and infections 

caused by Acanthamoeba spp. and drug development in the context of these 

infections as orphan diseases. 

1.2 Acanthamoeba species: Biology, pathogenesis, and infections  

Pathogenic and opportunistic free-living amoebae (FLA) such as Acanthamoeba spp., 

Balamuthia mandrillaris, and Naegleria fowleri are aerobic, mitochondriate, eukaryotic 

protists that occur worldwide and can potentially cause infections in humans and other 

animals [15-17]. Some pathogenic genotypes (Table-1) can intermittently invade the 

mammalian hosts and cause diseases [18-20]. These FLA are classified (Table- 2) 

under supergroup and thrive naturally in the environment in cystic (Figure 2 A) and 

trophozoite forms (Figure 2 B) 
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Figure 2. Transmission electron microscope (TEM) of A. castellanii 

An encysted stage (A) and the trophozoite form (B) of Acanthamoeba castellanii. Note spiny 
surface projections, termed acanthopodia in the trophozoites form [Figures courtesy: (cyst), 
Khan NA and (trophozoite), Maritza Omaña-Molina [16, 42]] 

 

1.2.1    Genotypes of Acanthamoeba   

Dr. Thomas Byer classified Acanthamoeba based on rRNA gene sequences. Based 

on the sequence information, Acanthamoeba was classified into 12 different 

genotypes, termed T1 to T12. In 1999, Horn et al. identified two more genotypes, T13 

and T14 [21], whereas Hewett et al. in 2003 proposed the T15 genotype of 

Acanthamoeba [22]. Recently, new genotypes particularly significant to human 

diseases have been reported and the genotypes have been extended to a total of 20 

groups (Table 1). 
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Table 1. Acanthamoeba genotypes 

Known Acanthamoeba genotypes and their associations with human diseases, i.e., 
keratitis and granulomatous encephalitis. *this genotype has been most associated with 
both diseases. ^ basis of T2 division into T2a and T2b has been proposed by Maghsood 

et al. [23]. NA - no disease association has been found yet. 
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1.2.2     Classification of Acanthamoeba species  

Acanthamoeba spp. was first reported by Castellani in 1930 when he reported the 

presence of an amoeba as a contaminant in the cultures of Cryptococcus pararoseus 

[18, 20]. Based on rRNA sequencing, it is estimated that amoebae diverged from the 

mainline of eukaryotic descent, about 1.2 x 109 years ago [24, 25].  Microscopic 

identification of Acanthamoeba is relatively easy due to the presence of spiny surface 

projections, termed acanthopodia, on trophozoites (Figure 2 B), and cystic form 

(Figure 2 A). In protists (plant-like) amoebae, such as Acanthamoeba, food/particulate 

ingestion occurs via phagocytosis (receptor-mediated process) or pinocytosis 

(through membrane invaginations) [26, 27]. The genus Acanthamoeba was 

established in the year 1931 by Volkonsky [28]. Acanthamoeba is placed in the Family 

Acanthamoebidae (Table-2) based on molecular analysis of 16S-like rRNA genes 

[25]. However, the identification of these amebae using morphological criteria at the 

species level has been difficult. Acanthamoeba spp. were placed into three 

morphological groups (I, II, and III) based on cyst size and shape. Nevertheless, the 

classification of Acanthamoeba based on morphological characteristics of the cyst 

wall has proved unreliable because cyst morphology can change depending on 

culture conditions [29-32]. The genus Acanthamoeba comprises several species, 

(Table-2) historically assigned to one of the three groups of 18S ribosomal RNA 

(rRNA) gene [32] and (18S rDNA) sequences. 

1.2.3     Free-living amoebae (FLA) 

FLA have attained significance in the scientific world over the past few decades due 

to their ability to cause severe and sometimes fatal infections in humans and animals 

and the varied roles they play in the ecosystem [34-36]. Though these amoebae are 

free-living organisms, they can occasionally invade a host like animals and humans 

[29, 31, 32]. The term FLA is largely used to denote facultative pathogenic amoebae 

of the genus Acanthamoeba, Balamuthia, and Naegleria. These FLA are 

mitochondriate, aerobic, unicellular eukaryotic protists [36-38]. Culbertson et al., in 

1959 were first to report the pathogenic potential of Acanthamoeba that was 
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demonstrated to exert cytopathic effects on monkey kidney cells in vitro and killed 

laboratory animals in vivo [29]. 

Table 2. Taxonomical Classification of Acanthamoeba spp. Taxonomical Classification 
of Acanthamoeba spp. [Reproduced with permission of Khan NA. Ref # [16] and 
Classification of Acanthamoeba. G.S. Visvesvara-1991 Ref # [33]-Suppl-5]  



Introduction 

9 

 

1.2.4     First report of Acanthamoeba spp. as an FLA  

Round or oval in shape, cells with a diameter of 13.5 - 22.5μm with pseudopodia were 

reported by Castellani in the year 1930. While working with the fungus Cryptococcus 

pararoseus, Castellani observed and considered these amoebae as contaminant 

organisms that had amoeboid motility [16-18, 20]. 

1.3 Life cycle 

Depending upon the environmental, nutritional, and chemical milieu, Acanthamoeba 

spp. exists in either an encysted stage (Figure 2 A) or its infective trophozoite stage 

(Figure 2 B).  

1.3.1   Cyst stage 

When Acanthamoeba trophozoite encounters hostile environmental conditions such 

as significant variation in pH, temperature, or nutritional availability, a process of cell 

differentiation called encystation occurs which leads to the formation of cysts (Figure 

2 A) [36, 38, 39]. 

The mature cyst of Acanthamoeba is composed of a double-walled structure 

consisting of an inner (endocyst) layer and an irregular outer (ectocyst) layer [40, 41]. 

Cysts of Acanthamoeba are on an average of 10-15µm in diameter (Figure 2 A). 

Pores, also called ostioles, are present at different sites in the cysts. 

1.3.2   Trophozoite Stage 

Acanthamoeba exists in trophozoites (Figure 2 B) form if it is provided with an optimal 

nutrient source, temperature around 37°C, neutral pH, and osmolarity ~70 mOsmol. 

In the trophozoite form, Acanthamoeba divides by binary fission [24]. The trophozoite 

is usually about 25 µm in diameter but can be as small as 15 µm and larger forms can 

be 35 µm [18, 34, 36-38]. The trophozoite stage is recognized by the presence of 

thorn-like projections called acanthopodia on its cell surface that assists in adhering 

to surfaces, holding the prey before phagocytosis and motility [37, 38].  
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1.3.3    Cell biology of Acanthamoeba spp. 

Acanthamoeba trophozoites possess a single nucleus that is about 1/6th the size of 

the trophozoite. The nucleus in the trophozoites, like that of any other eukaryotic cell, 

is enclosed within a nuclear membrane [43]. The pores present on this membrane are 

termed nuclear pores. The other prominent structure present inside the nucleus is the 

nucleolus. The cytoplasm constitutes the major portion of the cell and contains typical 

eukaryotic organelles. It possesses a large number of fibrils, glycogen, and lipid 

droplets [39, 43]. Acanthamoeba also possesses endoplasmic reticulum and the Golgi 

complex [43, 44]. The trophozoite contains numerous mitochondria that are primarily 

involved in energy production through adenosine triphosphate (ATP) generation [43]. 

Under normal conditions, cells divide asexually through binary fission; however, the 

generation time differs, from 8 to 24h, for isolates belonging to different genotypes 

[44].  

1.3.4    Feeding in Acanthamoeba spp.  

Acanthamoeba trophozoites are considered a major bacterial consumer [45]. In the 

natural environment, Acanthamoeba feeds on diverse microorganisms [46] through 

the process of phagocytosis [47] whereas liquids are ingested through pinocytosis 

[48].  The intake of food occurs by the projection of acanthopodia, food cup formation, 

and subsequent phagocytosis [26, 27]. During this process, Acanthamoeba surrounds 

the particle to be ingested with its plasma membrane followed by a flask-like 

invagination forming a phagosome (Figure 3) [49]. The phagosome then fuses with 

the lysosome to form a phagolysosome (Figure 3) to digest the ingested substance 

with the help of hydrolytic enzymes [50, 51]. In pinocytosis (Figure-7 A, empty 

invaginations), solutes, and mediums are ingested through membrane invaginations 

[49]. The calculated volume of fluid uptake during the process of pinocytosis is 2μL 

per 106 cells at 30°C, while no pinocytosis occurs at 0°C. The uptake of organic 

material from the culture medium through pinocytosis is around 60μg per 106 cells per 

hour [49]. 
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1.3.5     Interaction between Acanthamoeba and other Microbial Pathogens 

Acanthamoeba (Figure 3 A, B) also serves as a host, acting as a ‘trojan horse’, for 

pathogenic organisms (Figure 3. vacuoles C, D) such as Vibrio cholerae, 

Burkholderia cepacia, Listeria monocytogenes, Escherichia coli O157, 

Mycobacterium Bovis, and Mycobacterium avium, allowing them to replicate and 

survive inside it and thus also serving as a means for transmission and dispersal of 

the pathogenic microbes [17, 37, 38]. The cytosolic locations of these 

microorganisms (Figure 3 C, D) protect them from immune destruction conditions. 

Studies have also suggested that there are a variety of interactions where lateral 

gene transfers occur between the host and the ingested microbe [11]. Interaction of 

pathogens with Acanthamoeba has shown an induction and maintenance 

of virulence factors that increase microbial pathogenicity of E.coli [37, 38]. 

Interaction of the Acanthamoeba with microbes is correlated with the observation of 

higher  

 

https://www.sciencedirect.com/topics/immunology-and-microbiology/virulence-factors
https://www.sciencedirect.com/topics/immunology-and-microbiology/pathogenicity
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Figure 3. Interaction between Acanthamoeba and Microbial Pathogens 

Schematic diagram showing phagocytosis of the microbe (purple) by Acanthamoeba 
trophozoite (A) with the formation of intracellular phagosomes and phagolysosomes 
(white circles with enzymes as red dots ) (B). Transmission electron micrographs of 
Acanthamoeba trophozoite with phagosomes and vacuoles (M is mitochondria, N is a 
nucleus and V is the vacuole) (C-D). [Images B-D were acquired from the book 
“Biology and Pathogenesis of Acanthamoeba”, with permission of Khan NA Ref-# 
[38]].   

gene numbers and the DNA content of amoeba-resistant microorganisms. The 

organisms escape the microbicidal action of the FLA. via mechanisms similar to the 

ones that come in play during the survival of Mycobacterium within the macrophages 

[52, 53] 

1.4  Epidemiology of Acanthamoeba Infections   

Acanthamoeba spp. is an opportunistic protist pathogen, which can be found in soil, 

air, and water samples and as a commensal in human nasopharynx [16, 17, 37]. 

Acanthamoeba can survive in freshwater, humidifiers, sewage, beach sands, home 

aquaria, flowerpot soils, hospital environment, dental and dialysis unit, and contact 

lens cleaning liquids [15-17, 38]. Acanthamoeba spp. can tolerate a wide range of 

temperature, salinity, osmolarity, and pH extremes which permits them to survive in 

tissue culture, mammalian body fluid, and distilled water. If the surrounding conditions 

turn hostile, it assumes a cystic form to re-emerge as trophozoite when the conditions 

turn favorable [17, 37]. The infections caused by the pathogenic genotypes (Table-1) 

are ocular keratitis, encephalitis, sinus, and wound infections detailed below.        

1.4.1    Acanthamoeba Keratitis (AK) 

AK is a non-fatal infection of the human cornea but is nonetheless disabling as it 

causes blindness if untreated and is reported mostly in contact lens users. Around 8 

species and the T3, T4, T5, T6, T8, T10, T11, and T15 genotypes of Acanthamoeba 

(Table 1) have been reported to cause AK [13, 54]. The recreational water sources 

such as lakes, ponds, and swimming pools are environmental sources of 

Acanthamoeba and related FLA infections. In Italy, the presence of Acanthamoeba 

genotypes T3, T4, and T15 were reported in water samples collected in the regions 

https://www.sciencedirect.com/topics/immunology-and-microbiology/gene-number
https://www.sciencedirect.com/topics/immunology-and-microbiology/dna-content
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of Lazio and Puglia, where they were connected to reported cases of AK [55, 56]. The 

incidence rate of AK varies between different countries. An incidence rate of 0.33 per 

10,000 contact lens wearers is reported in Hong Kong, 0.05 /10,000 in Holland, 0.01 

/10,000 in the United States, 0.19/10,000 in England, and 1.49 /10,000 in Scotland 

[16, 38]. In the year 2004, it was estimated that 2% of the total world population, nearly 

~ 120 million people, wore contact lenses which estimates the population susceptible 

to AK [16, 55, 57, 58]. Cysts of Acanthamoeba species can withstand drying and thus 

transport by water and air is possible. Most of the AK cases in the UK have a history 

of contact lens use [99, 100] and the use of contaminated water to clean the contact 

lenses may be the predisposing factor [55, 57]. The high-risk factors for AK are 

wearing contact lenses for extended periods, non-sterile contact lens rinsing, corneal 

trauma, biofilm formation on the contact lens, and swimming in contaminated water 

while wearing contact lens [57, 58]. An outbreak of AK and the prevalence of AK in a 

study (Figure 4) shows a rising trend in this corneal disease in the past 3 decades.  

       

 Figure 4.   Acanthamoeba keratitis cases at Moorefield’s Hospital (1984-2016).  
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The data reported from Moorfields hospital is shown that spreads over 33 years with 
a total of 709 cases of AK. The different periods (x-axis) are labeled and the cases 
reported (y-axis) by color in the figure. Each color represents a different data collection 
method like microbiology laboratory, electronic database / published reports, and data 
available from a national survey, etc. Insert box is the national data *. [Adapted from 
Ref # [55]]. 

Commonly, only one eye is involved but bilateral keratitis has also been reported. 

Acanthamoeba transmission into the cornea is dependent on its virulence and the 

physiological state of the cornea. Corneal traumatism is a prerequisite in keratitis in 

non-contact lens wearers and for individuals with AK, the trauma of the cornea is 

implicated in 85% of contact lens wearers. Genotyping (Table-1) has allowed the 

identification of six isolates of the T4 and one of the T8 genotypes in Hungary recently 

[59]. Between the period of 2002-2017, 111 confirmed AK cases were identified, 

including 75 (67.6%) in Iowa residents in the US alone [60]. Non-contact lens-related 

cases of AK related to contaminated water have also been on the rise in south-east 

Asian countries. An outbreak of AK in 2010-2011 with an incidence threefold higher 

than in 2004-2009 has been reported [55]. Risk factors for AK were: poor contact lens 

hygiene, deficient hand hygiene, and use of contact lenses while swimming or bathing. 

1.4.2    Granulomatous Amoebic Encephalitis (GAE) Caused by Acanthamoeba 

spp.  

GAE is a rare infection of the central nervous system (CNS) that has a very high 

mortality rate [38, 61, 62]. Another worrying aspect of the relevance of diseases 

related to Acanthamoeba spp. in humans is the recent occurrences of GAE in patients 

with solid organ transplantation [63] and patients with systemic lupus [64]. There have 

been a total of about 500 cases of GAE worldwide to date, the exact figure is likely to 

be far higher, with less than 10 % survival rate [62, 64]. The infection is commonly 

seen to affect individuals with a weakened immune system. GAE is an opportunistic 

and fatal disease, which affects immunocompromised or debilitated hosts (particularly 

patients with HIV/AIDS, diabetics, or those who have undergone organ 

transplantation). Studies from around the world have reported genotype T4 to be the 

predominant genotype while less frequent genotypes were T1, T2, T5, T10, and T18. 
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The involvement of the CNS is secondary to a primary site infection, which commonly 

is a wound or a sinus infection.  

1.4.3    Cutaneous and respiratory infections 

Skin infections caused by Acanthamoeba can appear as reddish nodules, skin ulcers, 

or abscesses in the skin (Figure 5, B) [62]. The respiratory infection caused by 

Acanthamoeba spp. are not common, but sinus infections have been reported with A. 

castellanii [65, 66]. The skin lesions morphologically give no clues towards 

Acanthamoeba spp. as the causative agent. Typically, the skin lesions follow a 

protracted course with little signs of healing by regeneration or scar. They appear as 

chronic ulcers that have an irregular margin and cloudy base [67] (Figure 5, C).  

1.4.4    Pathogenesis of Acanthamoeba Keratitis  

Of the predisposing factors described above [55, 68], corneal trauma caused by 

contact lens followed by the use of the lenses that are soaked in water or cleaning 

solutions contaminated with Acanthamoeba are known to cause AK [55]. Initial 

pathogenesis in AK involves adherence of the amoebae to the host cells (cornea, 

vascular endothelium, and stratified squamous epithelium of the skin) followed by 

invasion and damage [16, 55, 57, 58]. Several proteins including mannose-binding 

protein (MBP) [67, 69] and cell adhesion molecules like integrins have been reported 

to facilitate adhesion of the trophozoites to corneal epithelium [70]. Once the 

trophozoite forms colonize the cornea, the metalloproteinase and diverse enzymes 

produced by the trophozoites imitate a cascade of events that helps in the invasion of 

the parasite into the deeper layers of the cornea. Corneal opacities develop commonly 

(Figure 5 A) which reflect the morphological results of the vision-threatening keratitis 

caused by Acanthamoeba spp. In advanced AK, the involvement of deeper layers of 

the eye has been reported with complications requiring surgical interventions. The 

neovascularization from the sclero-corneal junction (limbus) further intensifies the 

inflammation by pouring inflammatory cells into the cornea. As this infection occurs 

usually in an immunocompetent host, a granulomatous reaction could significantly 

contribute towards corneal damage. The ring abscesses are seen to first develop 
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along the limbus, a region from where the blood vessels are known to neo-vascularize 

the cornea in keratitis [71].  

1.4.5    Pathogenesis of GAE 

GAE is the CNS manifestation of Acanthamoeba infection. How the Acanthamoeba 

trophozoite spread from the primary site to the bloodstream to cause GAE is not 

completely understood yet [38, 61, 62], but an invasion of the circulation followed by 

dissemination to the CNS may be the underlying pathway. The human immune 

system mounts a chronic inflammatory granulomatous response instead of an acute 

inflammatory reaction to the presence of Acanthamoeba trophozoite in the tissues 

[72]. A granulomatous response tends to form to wall-off Acanthamoeba trophozoite 

and prevent further spread in the body. This granulomatous inflammatory response is 

the result of a Type-IV hypersensitivity reaction and for mounting such an immune 

response, the individual should be in a complete or partial immunocompetent state. 

Penetration across the BBB possibly involves adhesion of the trophozoites to the 

endothelium followed by the movement of the trophozoites in between the endothelial 

cells or after causing direct damage to the endothelium [61, 62, 73]. The mechanism 

of cellular damage in GAE is known to involve a combination of cellular damage 

caused by cytotoxic enzymes of Acanthamoeba and the inflammatory cytokines 

released by macrophages within the granuloma [72].  

1.5 Clinical Features of Acanthamoeba infections 

1.5.1   Acanthamoeba Keratitis  

Individuals affected with AK often complain of redness of the eyes, ocular pain, blurred 

vision, photophobia, irritation in the eye, and excessive lacrimation (Table-3) [37, 55, 

67, 74]. As these symptoms resemble other common eye infections, an early 

diagnosis is often missed which is essential for effective treatment of Acanthamoeba 

keratitis. AK progresses to produce a ring of abscess at the sclero-corneal junction 

(limbus) [74, 75] (Figure 5 A-2). Untreated AK leads to uveitis, corneal damage, and 

blindness by progressing to the deeper layers of the cornea [16, 17, 74].  
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1.5.2    Skin and Wound infection 

Skin infections caused by Acanthamoeba can appear as reddish nodules, skin ulcers 

with a dirty base, or abscesses in the skin (Figure 5, B, C). Secondary bacterial 

infections in immunocompromised patients may be seen [76]. Both, trophozoite and 

cystic forms of Acanthamoeba spp. are found in the contaminated wounds, which via 

the bloodstream reach the CNS to cause GAE (Figure 5- B-G).  

 

 

Figure 5.  Infections caused by pathogenic genotypes of A. castellani 

Acanthamoeba trophozoites contaminate the contact lenses (A). Wearing infected 
contact lenses leads to AK which causes corneal opacity and blindness (1-3). 
Trophozoites from wounds (B-C) enter circulation (D-E) and travel to the brain via 
blood pumped by the heart (F) to infect the CNS by traversing the BBB. [ Adapted from 
Ref # [67]]. 
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1.5.3    Sign and symptoms in GAE:  

In GAE, clinical symptoms (Table-3) include headache, mental status changes, 

vomiting, photophobia, apprehension, fever, lethargy, cranial nerve palsies, 

hemiplegia, stiff neck, loss of coordinated movements, increased intracranial 

pressure, and lack of speech. Terminal stages include comatose state, fits, and 

respiratory arrest causing death [77-81]. Widespread body infections may occur after 

organ transplantations in humans [79] 

Table 3. Organ involvement, signs/symptoms, predispositions, and prognosis of 

Acanthamoeba infections [Adapted from Baig AM 2018, book chapter Ref# [67]. 

Infections 

caused by 

Acanthamoeba 

spp. 

Predisposing 

conditions and 

source 

Clinical Features 
Prognosis 

and Outcome 

1. Cornea - 

Acanthamoeba 

keratitis (AK) 

1.  Corneal trauma 

caused by contact 

lens or other physical 

causes  

2.  Contact lens 

contamination.                      

3. Swimming and 

showering with 

contact lenses.   

• Redness of the eyes   

• Ocular pain  

• Blurred vision 

• Photophobia 

• Irritation in the eye   

• excessive tears  

• Opacity of cornea  

• Corneal ulceration  

• Uveitis  

• Poor 

prognosis 

without 

treatment.  

• Blindness is 

common 

without 

treatment 

2. Brain and spinal 

cord -  

Granulomatous 

amoebic 

encephalitis 

(GAE).   

1.Immunocompromis

ed- states, like AIDS 

and corticosteroid 

therapy. 

2. Skin lesions, 

infected wounds, 

post-transplantation 

of organs, infected 

air-sinuses.   

3.  Severe 

malnutrition  

• Fever   

• Headache  

• Vomiting  

• Apprehension 

• Photophobia,  

• Cranial nerve palsies  

• Paralysis of one side of 

the body  

• Stiff neck   

• Aphasia   

• Ataxia  

• Raised intracranial 

pressure 

• Very poor with 

death 

occurring due 

to brain stem 

herniation and 

respiratory 

arrest.   
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1.6 Diagnosis of Acanthamoeba Infections 

Acanthamoeba infections are difficult to diagnose because of their clinical similarity 

with infections caused by bacterial and fungal microorganisms [72, 82, 83]. For 

example, GAE is caused by Acanthamoeba spp. resembles fungal or tuberculous 

encephalitis [16, 17, 37, 38]. AK caused by Acanthamoeba is akin in its morphology 

to bacterial corneal keratitis [84-87] and wound infections appear to be similar to 

tuberculous or fungal ulcers [67].  Absolute diagnosis of Acanthamoeba infection and 

its genotyping involves methodologies like RT-PCR [74] and immunostaining with 

Acanthamoeba specific antibodies. Additionally, the diagnosis of the amoebal origin 

of infection requires microscopic examination and culturing in a specialized growth 

medium [75]. Radiological imaging like CT scans and MRIs are only helpful in showing 

the location of the lesions in GAE but do not provide a definitive clue towards the 

diagnosis [17]. In cases with AK and skin lesions, the culture of the biological fluids 

from the lesion and in cases of GAE, the CSF microscopy, culture, RT-qPCR helps in 

establishing Acanthamoeba as the causative agent [17, 76, 79]. Long periods pass to 

resolve the diagnosis which is complicated by the time taken in resolving other 

diseases that are considered in the differential diagnosis [37, 38, 63, 72, 88, 89]. 

Culture remains the gold standard of laboratory diagnosis of Acanthamoeba, but 

several PCR-based techniques are currently available that can accurately diagnose 

Acanthamoeba with certainty [17, 74]. The tentative diagnosis of AK can often be 

made by in vivo confocal microscopy as Acanthamoeba cysts appear as 

hyperreflective, spherical structures that are usually well defined because of their 

3. Skin  

 

 

 

• Contaminated water, 

soil.  

   

 

 

• Multiple or single broad-

based ulcers of the skin 

and sinus mucosa  

• Thick margins around a 

central dirty ulcer base. 

• Fever and pain at the 

site on skin or over the 

air-sinus  

• Poor – Many 

cases 

continue to 

become 

chronic ulcers 

on the skin.   

 

4. Air sinuses   • Immunocompromised 

state, like AIDS and 

corticosteroid 

therapy. 

• Nasal congestion and 

discharge  

• Super-infection. 

• Moderate – In 

cases of air-

sinuses    
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double-wall, but due to varying cyst morphology, a diagnostic identification is not 

forthright [90].  

1.7 Treatment of AK and GAE  

The drugs used in the treatment of AK and GAE consist of a combination of various 

chemical agents, for example, azoles, amphotericin-B, rifampin is given in GAE, and 

mostly biocides in AK (Figure 6), that target Acanthamoeba specific enzymes and 

proteins. With the above-mentioned drugs, the morbidity associated with AK and 

mortality associated with GAE is yet to prove their efficacy. Though drugs that target 

human-like cellular receptors and proteins have shown to be amoebistatic and 

amoebicidal in FLA [108] including Acanthamoeba spp, their targets remain to be 

elucidated. The drugs tested in vitro in the past included chlorpromazine and other 

phenothiazine compounds prescribed in non-infectious human diseases [90] which 

are yet to be tested in AK and GAE.  

1.7.1    Main reasons behind the failure of treatment in AK  

The management of AK has remained problematic and even with a combination of 

several drugs, the outcome remains poor. The factors that have contributed towards 

a failure of treatment and poor outcomes include 

1. Frequent instillation of drugs in the form of eye drops that is difficult to follow.  

2. A longer period of the drug treatment regimen that extends to a duration of 12 

months plus. 

3. The inability of the drugs to exert their action on trophozoites as the drug 

escapes the eye after instillation through tears.  

4.  Irritant effects of the drugs on the eye. 

5. The transformation of trophozoites into cysts to resist the drugs. 

6. lack of interest in drug development due to the rarity of the disease. 
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1.7.2    Acanthamoeba Infections as Orphan Diseases 

The World Health Organization defines orphan/rare diseases as ‘all pathological 

conditions that affect 0.65-1 out of every 1000 inhabitants.’ The EU defines a rare 

disorder as one with a prevalence of 5:10,000 Europeans. Of the diseases caused by 

Acanthamoeba, AK with a # ICD10: B60.1+ H19.2 is listed as an orphan disease at 

Orphanet Rare Disease Platform [91, 92]. Although the incidence of AK infections in 

humans is low, they are notoriously difficult to treat [93]. NIH lists AK and GAE under 

the heading of genetic and rare disease (GARD) and has a web portal that provides 

information on the infections caused by Acanthamoeba spp. [91, 94]. Recognizing AK 

as a rare disease, orphan drug trials are now active in countries like the UK, Italy, and 

Belgium. The fact that AK and GAE are very difficult to treat makes the discovery of 

orphan drugs against these infections challenging.  

Figure 6. Current Drugs used in AK and the ODAK report 2017. 
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(A) Different drugs and biocides are used alone and in combination via the topical 
route (eye drops) and orally in AK for months. (B) A range of off-label drugs tested in 
ODAK trials is shown that were tested in Acanthamoeba keratitis in a report published 
in 2018 by Orphan drug for Acanthamoeba keratitis (ODAK). [Adapted from Ref # [95]. 

 

1.7.3      Orphan drug development in Acanthamoeba infections 

The orphan drugs by definition are pharmaceutical agents developed to target a rare 

disease. The development of orphan drugs for AK is much needed as it has been on 

the rise in the past decade (Figure 4) [91-93]. In this regard, Orphan Drug for 

Acanthamoeba Keratitis (ODAK) (Figure 6), a European research project, has 

investigated the safety and efficacy of polyhexamethylene biguanide (PHMB) eye 

drops to provide the basis for marketing and authorization of this agent [95, 96]. 

Moorfield's Eye Hospital, in the UK, has reported on clinical trials for the effectiveness 

of PHMB and other off-label drugs in AK [55, 56, 58]. 

Another example of an orphan agent is the drug miltefosine that was designated to be 

an orphan drug in the management of AK by the FDA [55]. This agent has also been 

used to treat GAE caused by a related free-living amoeba called Balamuthia 

mandrillaris and primary amoebic encephalitis caused by N. fowleri. Recently, it has 

been used to treat refractory cases of AK [97].  

1.7.4     Key reasons behind the failure of treatment in GAE caused by 

Acanthamoeba spp. 

Though the treatment of GAE is hindered by the difficulties in rapid and authentic 

diagnostic tests, the management of GAE is problematic mainly due to: 

1. The restriction offered to the drugs by the blood-brain barrier (BBB) remains a 

real obstacle even when given via intravenous route [17, 37, 38].  

2. The resistance of the cystic forms to the chemotherapeutics agents. 

3. The inability of the drugs to penetrate the lesion due to the lipid solubility of the 

drugs. 

4. Neurotoxicity associated with the drugs used in GAE. 

5. Lack of interest in new drug development in GAE due to its rarity. 
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1.7.5    Lack of drug development for the treatment of GAE 

As GAE caused by pathogenic strains of A. castellanii (Table 1) is a rare disease, 

there has been a paucity in drug development for this fatal encephalitis. Even after 6 

decades of the first reports of GAE, the mortality rate has remained static for this 

infection. With the single exception of miltefosine, all the remaining drugs are either 

conventional anti-fungal drugs or broad-spectrum antibiotics. Even with miltefosine, 

the success rates in GAE are yet to prove its efficacy. 

1.8 Drugs with the potential to be orphan drugs in infections caused by 

Acanthamoeba spp.   

The phenothiazine group of drugs has been experimentally used against FLA in vitro 

in the past [98] and other members of this group of neuroleptics stand a chance of 

being repurposed, but the precise cellular targets of these drugs are not known. A list 

of diverse biocides [95] and drugs like miltefosine [55] have shown the potential to 

become orphan drugs and have the advantage of already being used in humans, but 

the drugs used in AK need to be evaluated for ocular safety, patient compliance, and 

activity against cystic forms of Acanthamoeba spp. For GAE, there is a need to test 

drugs already prescribed for neurological diseases against pathogenic genotypes of 

Acanthamoeba known to cause GAE (Table-1). 

1.9 Use of Bioinformatics computational tools in anti-parasitic drug target 

discovery  

The use of bioinformatics (a discipline in which biology, computer science, and 

information technology are merged) computational tools in drug target discovery have 

played a fundamental role. Pharmaceutical companies have boosted their ability to 

find novel molecular targets and chemical compounds that can bind these targets by 

exploring the retrievable chemical and biological data accessible from diverse 

databases [99-101]. As the knowledge of the molecular basis of biological systems 

evolves, the tools for storing and analyzing the data on molecular targets have been 

amplified as well.  
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1.9.1    In silico screening in the discovery of Antiparasitic drugs  

In silico drafting or pre-screening of the chemical compound may also be a beneficial 

approach for the identification of novel drug leads for parasitic infectious diseases. In 

silico methods take advantage of modern high-performance computing as well as the 

vast amount of publicly available pharmacological, biological, and chemical data. 

Databases, such as PubChem [100], Drug Bank [101], and ChEMBL [99] contain 

information that can be retrieved and manually curated from the freely available 

literature to guide compound selection (Figure 7). One example, one the forte of data 

mining used to identify drug repurposing possibilities was in the case of 

Cryptosporidium parvum, a protozoan that commonly causes opportunistic infections 

in immunocompromised hosts [102]. Network-based in silico approaches use the 

methods of systems biology and bioinformatics to directly compare host responses to 

pathogens and drugs [103]. Another example in this regard is the work of Chavali et 

al., [104], who used metabolic modeling to generate a list of 15 genes and 8 double-

gene combinations predicted to be relevant targets for the neglected tropical disease 

caused by the parasite Leishmaniasis major. Astemizole was introduced in 1983 as a 

non-sedating selective H1-histamine receptor antagonist for the treatment of allergic 

rhinitis [103, 105, 106]. In 2006, a screen of the Johns Hopkins Clinical Compound 

Library (JHCCL) for inhibitors of P. falciparum identified the antihistamine astemizole 

as an effective agent against chloroquine-sensitive and multidrug-resistant parasites 

in mouse models of malaria [103]. Another success story comes from a recent 

repurposing campaign for inhibitors of Entamoeba histolytica, a protozoan intestinal 

parasite and the causative agent of human amoebiasis. Debnath et al. [107] devised 

and validated a suitable HTS that identified auranofin, an FDA-approved oral, gold-

containing drug that has been in clinical use to treat rheumatoid arthritis for 25 years 
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1.9.2     Identification of Protein Targets in Parasites:  

With the advances in computing bioinformatics computational tools, there have been 

improvements in the scientific research towards the identification of possible targets 

in pathogenic parasites by constructing an atomic-resolution model of the "target" 

protein from its amino acid sequence and an experimental three-dimensional structure 

protein [82, 83]. The selection of protein targets by predicting their three-dimensional 

structures has gained significance in drug development (Figure 7, left panel).  

                           Figure 7. A Workflow of Drug Design Approach. 

A workflow of classical structure and ligand-based drug design approach. The pipeline 
of bioinformatics computational tools that are used in drug discovery and facilitating 
repurposing of already approved drugs and compounds. 

 

With the availability of diverse compound databases, this cost-effective structure-

based or ligand-based strategy can significantly increase the efficiency of drug 

discovery and provide promising avenues to conquer life-threatening diseases. In the 

last decades, three-dimensional structures for over 50,000 proteins have been 
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deposited in the Protein Data Bank (PDB) [108]. Concerning antiparasitic drugs, 

various well-established protein targets had their structures solved, either by X-ray 

crystallography or NMR methods. The enzymes related to the shikimate pathway, 

several kinases, and nucleoside phosphorylases [109] are some examples of these 

parasitic protein targets. Additionally, knowledge obtained from the parasite genome 

databases has been modeled using experimentally determined structures as 

templates [110, 111]. Computational tools have been used to predict structural, 

functional, and immunological characteristics of the putative amino acid sequences of 

Clonorchis Sinensis (Chinese liver fluke) proteins like 14-3-3 protein and propionyl-

CoA carboxylase that could be used as targets for affective parasitic infection control 

strategies [112]. Investigation of genomic databases and metabolic pathways delivers 

a useful conceptual framework for the identification of potential drug targets[113]. 

Extensively integrating complete genomic and proteomic data with other molecular 

databases via bioinformatics analyses has led to the development of novel, viable 

strategies for alternative treatments of Chagas disease caused by Trypanosoma cruzi 

[112, 113] and filarial infections of humans caused by Brugia malayi, Wuchereria 

bancrofti, Loa loa and Onchocerca volvulus [114]. The availability of the genome 

sequence provides a wide range of novel targets for drug design against the drug-

resistant malaria parasite in which gene regulated parasite metabolism and organelle 

function could be attractive targets [115]. In other similar studies, protein homology 

modeling and molecular dynamics simulation study have helped in the identification 

of potential drug targets in Plasmodium falciparum [116]. In other unicellular 

eukaryotes, such as Naegleria fowleri, exploiting the differences present between 

enzymes of vital metabolic pathways has been suggested to synthesize antiamoebic 

drugs. An example of this approach is shown with an example of glucokinase in 

Naegleria fowleri (Figure 8). 
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Figure 8. Amino acid sequence homology and structure of glucokinase. 

(A) Sequence similarities of amino acids of glucokinase of humans (Quer-10001) and 
Naegleria fowleri (Quer-10002) show the regions of similarities (shaded letters) and 
dissimilarities (non-shaded alphabets) between 2 enzymes (arrows in the middle) that 
offer a chance to synthesize specific inhibitors of Naegleria fowleri glucokinase. 
Identities, similarity, gaps, and the score of alignment are shown (lower-right) (B) 
Template-based models developed for humans glucokinase (B1) and glucokinase in 
Naegleria fowleri (B2). [Retrieved from NCBI, Uniprot, and SWISS-MODEL 
databases]. 

 

Identification of homologs and computational analyses using various bioinformatics 

tools have identified over 250 targetable putative ubiquitin-proteasome pathway 

proteins in the T. cruzi proteome along with their homologs in other Trypanosoma 

species [117]. The utility of the transcriptomes, proteomes, metabolomes, protein 

sequence and structure as well as protein-ligand interactions [101, 108, 118, 119] 

data in the identification of novel molecular targets in disease-causing parasites is 

illustrated by the fact that the global computational biology market size is expected to 
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reach USD 13.6 billion by 2026, according to a new report by Grand View Research, 

(GVR) Inc.[120, 121].  

1.9.3    Molecular Docking:  

Molecular docking is a computational methodology that estimates the conformation of 

a receptor-ligand complex. It can also be defined as a simulation process where a 

ligand engagement position is estimated in a predicted or pre-defined binding cleft or 

site in a molecular target. Molecular docking is a tool to predict receptor-ligand 

complexes where a library of several compounds is “docked” against one drug target. 

The source of these chemical compounds has already been described in the previous 

sections. Speed and accuracy are key features for obtaining an induced-fit (near ideal) 

result in docking simulations. There are several docking programs such as DOCK 

[122], AUTODOCK [123, 124], GOLD [125, 126], FLEXX [127, 128], ZDOCK [129], 

M-ZDOCK [130], MS-DOCK [131], Surflex [132], MCDOCK [133] and PatchDock 

(detailed in chapter-3). 

1.9.4   The rationale of the study presented in published work  

The rationale of the published studies pivots around the hypothesis that, being 

eukaryotes, humans and A. castellanii share similarities in proteins and conserved 

pathways specifically that mediate calcium (Ca+2 ) signaling (Figure 9), which can be 

exploited to bring imbalances in the calcium homeostasis in this protist pathogen. 

Conceived from the Greek terminology “Amoeba Proteus”, referring to the God of 

changing shapes, it was hypothesized that paralyzing the motility, phagocytosis, cell 

division, and diverse calcium-dependent physiological functions (Figure 9, highlighted 

text) in A. castellanii by drugs that directly or indirectly act on human-like receptor and 

ion-channels could prove to be amoebicidal and cysticidal in Acanthamoeba spp. 

Already in use drugs like loperamide, amlodipine, digoxin, procyclidine, dicyclomine, 

prochlorperazine, and haloperidol were tested initially that to observe if they exhibited 

antiproliferative effects followed by evidence of the presence of voltage-gated calcium 

channels (VGCCs) like proteins, calmodulin (CaM), and other possible calcium 

channels that are coupled with receptors in Acanthamoeba castellanii. Non-antibiotic 
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drugs like the phenothiazine group of neuroleptic drugs have been tested in A. 

castellanii in the past without the evidence of specific cellular targets of the 

aforementioned drugs [98]. 

 

Figure 9. Calcium-dependent cellular processes in A. castellanii. 

(A) Acanthamoeba spp. uses calcium to carry out physiological processes (B-G) that 
include motility (B1), encystation (C1), phagocytosis, and digestion of the ingested 
nutrients and bacteria. Processes like cell division, metabolism, and growth all use 
calcium (blue dots). Note calmodulin (CaM: yellow circles) dependent cellular processes 
that are executed after the formation of the Ca-CaM complex. Lysosomal fusion with 

pouring of the enzymes (red dots) into the phagosome is also Ca+2 dependent. 

Making the use of post-genomic methodologies like proteomics, and transcriptomics, 

the present study used bioinformatics computational tools seeking sequence 

similarities, homology modeling, and drug docking predictions to provide the evidence 

of human-like proteins that were possibly targeted by drugs used in vitro in 

Acanthamoeba spp., affecting the viability and growth of this protist pathogen.  
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The methodology employed in the studies used the human proteins and receptors 

(that are targets of the drugs experimented) as model molecules that were explored 

in the genome of A. castellanii to find their homologs (detailed in chapter-4). This 

method uses the amino-acid sequence of a human protein to find a match in the 

Acanthamoeba genome. Candidate A. castellanii (T4 genotype) encoded proteins 

were selected based on their sequence similarities with human proteins, ligand 

sharing, and functional attributes were then investigated by homology modeling. 

Additionally, drug docking programs available in online databases were used to 

determine the stability and drug docking prediction for the drugs used in the 

experiments on the selected A. castellanii proteins. This methodology was intended 

to provide a possible explanation for the drug effects observed in the past with drugs 

like chlorpromazine (CPZ) [98] and other non-antibiotic drugs belonging to the 

phenothiazine class experimented in Acanthamoeba spp. 

1.9.5   Aims of the study:                                                                 

 Specific aims of the research and papers published in the past 8 years were to: 

1. Demonstrate the activity of directly and indirectly acting Ca+2 ion modulating 

drugs exerting in vitro amoebicidal, amoebistatic, and cysticidal effects in A. 

castellanii. 

2. Determine amoebicidal and amoebistatic effects of human-like muscarinic 

receptors blocking drugs in A. castellanii. 

3. Demonstrate the types of cell death induced by drugs affecting Ca+2 

homeostasis in  A. castellanii. 

4. Identify primitive forms of human-like two-pore (TPC) VGCCs, L-types VGCCs, 

CaM, G-protein coupled receptors (GPCRs), cholinergic transmission, and 

human muscarinic receptor-like proteins in A. castellanii. 

5. Show docking prediction of the drugs tested in Acanthamoeba spp. over the 

templates of the proteins developed for the trophozoite forms of A. castellanii. 
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Details of the methods used (Chapter-2), the results of experimental assays 

(Chapter-3) along with the evidence of the possible molecular targets and docking 

predictions (Chapter-4) are detailed in subsequent sections.
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2 Material and Methods 

In this section, details of the material and methods used in the series of papers 

submitted for the consideration of Ph.D. by published work are itemized. A detailed 

material and method section is also described in each published paper attached in 

part-2 of this thesis.  

Section -1 

2.1 Experimental Assays 

 

2.1.1    List of the Drugs used in experiments: 

Testing drugs and chemical compounds that exhibit in vitro amoebicidal and cysticidal 

effects in A. castellanii and are already approved by drug regulating authorities can 

offer an opportunity to re-purpose them after testing them in human clinical trials 

against AK and GAE. In vitro drug assays were performed with drugs that are already 

in clinical use in A. castellanii trophozoites and cysts to test amoebicidal and cysticidal 

effects. The published papers show the effects of selected drugs with the rationale 

that disturbing Ca2+ homeostasis by targeting Ca2+ ions transport, intracellular Ca2+ 

dependent adapter proteins, and receptors coupled with Ca2+ influx could affect the 

viability and growth of A. castellanii. Drugs that directly and indirectly affect the Ca2+ 

homeostasis like loperamide, amlodipine, digoxin, haloperidol, amiodarone, 

apomorphine, procyclidine, prochlorperazine, and other FDA approved drugs were 

selected from a large list of chemical compounds to be tested alone and in 

combinations in A. castellanii belonging to the T4 genotype (Table-4). All chemicals 

were purchased from Sigma (Poole, Dorset, United Kingdom) unless otherwise 

stated. Among various drugs tested, amlodipine, nifedipine, verapamil, apomorphine, 

dicyclomine pirenzepine, and loperamide were purchased from Sigma Aldrich; 

procyclidine was purchased from Auden McKenzie Pharma; haloperidol was 

purchased from Searle Pharma Ltd.; amiodarone and prochlorperazine were 

purchased from Sanofi-Aventis, and digoxin was purchased from Glaxo-SmithKline. 
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Table 4. Drugs approved by regulating authorities. 

 Drugs approved by regulating authorities that were hypothesized to, directly and 

indirectly, affect Ca2+ ions hemostasis in Acanthamoeba spp. [Adapted and modified 

from Baig AM, 2013 [134] and Huma K, 2014[135]]  
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2.1.2    A. castellanii cultures, amoebistatic, amoebicidal, encystation, and 

cysticidal assays. 

The drug listed above (Table-4) were tested in the published work for their 

amoebistatic, amoebicidal, encystation blocking, and cysticidal effects and are 

detailed in the individual papers (part-2) and are described below. 

2.1.3     A. castellanii cultures  

A keratitis isolates of A. castellanii trophozoites belonging to the T4 genotype A. 

castellanii (Douglas) Page (ATCC® 50492™) GenBank: Accession # U07401.1, 

obtained from my mentor. They were grown in a growth medium (0.75% [wt./vol] 

proteose peptone, 0.75% [wt./vol] yeast extract, and 1.5% [wt./vol] glucose) (PYG) in 

T-75 tissue culture flasks at 37°C without shaking. The media were refreshed at an 

average of ~18 h before all the experiments. The A. castellanii trophozoites found 

adhering to flasks represented the healthy trophozoites forms and were collected by 

placing the flasks on ice for 30 min with gentle agitation and used in all experiments. 

The cell cultures and in vitro experiments were performed according to the standards 

of Good Cell Culture Practice (GCCP) [136] to ensure reproducibility, reliability, 

credibility, acceptance, and proper application of any results produced. 

2.1.4     Amoebistatic and amoebicidal assays   

1. To determine the amoebistatic activities of drugs, A. castellanii trophozoites were 

incubated in the growth medium PYG with different concentrations of drugs in 24-well 

plates at 30°C for 48 h. After this incubation, the amoebae were counted using a 

hemocytometer.  

2. To determine the amoebicidal effect of drugs on A. castellanii, amoebicidal assays 

were performed. Briefly, A. castellanii trophozoites were incubated with different 

concentrations of drugs in phosphate-buffered saline (PBS) in 24-well plates. The 

plates were incubated at 30°C for 24 h. Following this incubation, amoeba viability 

was determined by adding 0.1% Trypan blue and determining the number of live (non-

stained) and dead (stained) A. castellanii organisms using a hemocytometer. The 
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count from A. castellanii incubated with PBS alone was used as controls. Data are 

represented as the means and standard errors of at least three independent 

experiments performed in duplicate. 

2.1.5    Cysticidal assays.  

For cysticidal assays, encystation was induced by inoculating amoeba trophozoites 

on non-nutrient agar plates, and the plates were incubated for up to 7 days to allow 

trophozoites transformation into the cyst stage. After this incubation, each plate was 

flooded with 10 ml of PBS, and the cysts were scraped off the agar surface using a 

rubber scraper, yielding more than 99% cysts as determined by microscopy. The 

mature cysts were incubated in PBS with various concentrations of drugs for up to 24 

h. After this incubation, the cysts were centrifuged for 10 min at 1,000 g, and the 

supernatants were aspirated, followed by the addition of 0.5 ml of PBS. This process 

was repeated 3 times to remove the extracellular drug. Finally, the cysts were 

resuspended in PYG medium and inoculated in 24-well plates (0.5 ml PYG 

medium/well). The plates were incubated at 30°C for 48 h, and the emergence of 

trophozoites was considered to indicate viable amoebae while the absence of 

excystation was considered a cysticidal effect [Baig AM, 2013 [134]]. In some 

experiments, plates were incubated for up to 2 weeks to observe the emergence of 

viable trophozoites. 
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2.2  Drug combination assays in A. castellanii spp. and Balamuthia 

mandrillaris. 

2.2.1    Materials and methods 

All drugs tested in assays, and their mode of action are indicated in Table 4. 

2.2.2    Human brain microvascular endothelial cell culture 

Primary human brain microvascular endothelial cells were grown in RPMI-1640 

containing 10% fetal bovine serum, 10% NuSerum, 2 mM glutamine, 1 mM pyruvate, 

penicillin (100 U/ml), streptomycin (100 U/ml), non-essential amino acids, and 

vitamins as previously described [Huma K and Baig AM 2014[135]] 

2.2.3    Cultures of B. mandrillaris 

B. mandrillaris, originally sourced from the brain of a mandrill baboon were obtained 

from American Type Culture Collection, ATCC 50209. For routine culturing, 1x 106 

amoebae (suspended in10 mL of RPMI-1640) were inoculated on the HBMEC 

monolayer in T-75 tissue culture flasks. The flasks were incubated in a 5% CO2 

incubator at 37 30°C. The amoebae consumed HBMEC within 48 h and produced 

approximately 5 x 106 amoebae (>95% trophozoites), which were subsequently used 

for experiments performed. 

2.3    Amoebicidal assays 

For amoebicidal effects, A. castellanii were incubated with a different combination of 

drugs (Table 4 and below in result section) at various concentrations (100 µM to 1 

mM) in phosphate-buffered saline (PBS) in 24-well plates (5 x 105 amoebae/mL/well). 

Plates were incubated at 30°C for 24 h. To determine the amoebicidal activity of drugs 

against B. mandrillaris trophozoites, amoebae (105 amoebae/0.5 mL/well) were 

incubated with different combinations of drugs (Table 4) at various concentrations 

(100 µM to 1 mM) in RPMI-1640. Plates were incubated in a 5% CO2 incubator at 37 
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30°C for 24 h. After this incubation, amoebae were centrifuged for 10 min at 1000µg, 

and the supernatant was aspirated, followed by the addition of 0.5 mL of PBS. This 

process was repeated 3x to remove any extracellular drug. Finally, B. mandrillaris 

were resuspended in RPMI-1640 and inoculated in 24-well plates containing HBMEC 

monolayer as a food source. Plates were incubated in a 5% CO2 incubator at 37°C 

for up to 48 h and the emergence of trophozoites was considered as viable amoebae, 

and the absence of amoebae, as well as intact HBMEC monolayer, was considered 

as non-viable amoebae [Huma K and Baig AM 2014[135]] In some experiments, 

plates were incubated for up to 2 weeks to observe the emergence of viable 

trophozoites. 

2.4 Determination of Intracellular Calcium.  

2.4.1   Material:  

Fura 2-AM (CAS # F1221 - Thermo Fisher Scientific) was used which is a cell-

permeable fluorescent probe for Ca2+ used to determine cytosolic Ca2+ that is 

metabolized in vivo to the active ligand Fura 2. Application: Fura 2-AM was used for 

measuring intracellular Ca2+ concentration. The fluorescent excitation maximum of 

the Fura-2 AM undergoes a blue shift from 363 nm (Ca²⁺-free) to 335 nm (Ca²⁺-

saturated), while the fluorescence emission maximum is relatively unchanged at ~510 

nm.  

2.4.2   Fura 2-AM staining Method: 

The Acanthamoeba trophozoites and cysts were seeded in six-well plates in a growth 

medium. Ringer lactate (2 mL) was added additionally to provide free Ca2+ in the 

media. Cells and cysts were then exposed to the drug (s) and were incubated for an 

hour at room temperature. After an hour, the cells and the cysts were collected, the 

supernatant was discarded, and cells were washed twice with phosphate buffer saline 

(PBS). In the case of the cysts staining with Fura 2 AM, the cysts were detached from 

the well plates and moved to the Eppendorf and centrifuged for 5 min at 2500 rpm. 

For both, trophozoites and cysts, a working solution of 5 μM Fura-2 AM was prepared, 

and cells and cysts were suspended in it. Incubated cells and cysts were exposed to 
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Fura-2/AM for an hour at room temperature. The cells and the cysts were centrifuged 

and washed with PBS (×2) and resuspended in a fluorescent mounting medium. The 

cysts and the cells were then transferred to a glass slide, and coverslips were placed 

on it. In the case of KCL and Ca2+channel blocker coincubation assays, 20mM KCL 

was added 45 mins after the drug exposure and the trophozoites were centrifuged 

and washed 3x with PBS to remove excess KCL and drugs before resuspending them 

in the fluorescent mounting medium. Slides were left for an hour and observed under 

an Olympus fluorescent microscope at excitation spectra of 363 nm (calcium-free) 

and 340 nm (calcium complex) with fixed emission at 510 nm. 

2.5 Immunostaining for Muscarinic Cholinergic Receptor in A. castellanii 

2.5.1   Materials and Methods 

An anti-human mAChR1 receptor antibody directed against the mAChR1 receptor 

was obtained from Millipore-Merck.  

2.5.2    Immunostaining 

Trophozoites forms of the A. castellanii were grown on coverslips in PYG overnight at 

30oC. The cells were fixed with paraformaldehyde (4%) in 0.1M phosphate buffer 

saline (PBS) for 30 min. Endogenous peroxidase activity was quenched by incubation 

with 0.2% hydrogen peroxide in 0.1M phosphate buffer saline (PBS) pH 7.3 containing 

0.2% Triton X-100 for 25 minutes at room temperature. After three washes with a 

blocking solution (50 mL of phosphate-buffered saline 0.02M PBS, pH 7.4/casein 2%), 

the cells were immersed with primary mAChR1 antibody (Merck-Millipore) directed 

against rat and human mAChR1 were incubated for 1 h 30oC at and then refrigerated 

overnight. Washing was then done thrice with 0.02M of phosphate-buffer saline. The 

reactivity of immune complexes was identified after co-incubation with horseradish 

peroxidase tagged conjugated goat anti-rabbit antibody (Chemicon Catalog # 

AP132P) for 1 h at room temperature and then refrigerating overnight. The 

trophozoites were then incubated with a solution of diaminobenzidine (DAB) at the 

concentration of 0.0125%, containing 0.05% nickel ammonium sulfate for 10 min at 

room temperature. Cells were then washed with 0.02M PBS, 4x for 10 min, and 



Material and Methods 

39 

 

mounted on coated glass slides, and dehydrated in an ascending series of ethanol 

concentrations as per manufacturer’s instructions. An inverted microscope (Olympus) 

was used to obtain images. The slides were observed at 10x, 20x, and 40x 

magnifications. For positive controls, neurons and smooth muscle cells were stained 

and fat cells we used as negative controls. 

2.6 ACh Detection in A. castellanii trophozoites 

2.6.1   Materials and Methods 

Dicyclomine and pirenzepine were from Sigma-Aldrich and were used to target 

mAChR subtypes. The drug pirenzepine is known to specifically target the human 

mAChR1 receptor subtype. The AChE inhibitor physostigmine was also purchased 

from Sigma-Aldrich, and Acetylcholine Assay Kit (colorimetric; catalog # STA-603 Cell 

Biolabs, Inc.) was obtained from Cell Biolabs.  

2.6.2   Colorimetric Acetylcholine Assay for ACh Detection in Acanthamoeba  

To assess the presence of ACh in A. castellanii, an ACh assay was run as per the 

manufacturer’s protocol (Cell Biolabs). At 24 h before conducting the assay, the media 

were refreshed within a confluent culture flask harboring the cell lines. After the 

Acanthamoeba cells of a single flask were detached by ice shock treatment, they were 

centrifuged at a speed of 3500 rpm for 10 min. The pellet obtained was dissolved in 

chloroform/methanol (2:1, v/v) and centrifuged, followed by incubation for 1 h on an 

orbital shaker, with the addition of 1.25 mL of distilled water; centrifugation was done 

at 1000g for 10 min. The lower (chloroform) organic phase was collected, and the 

upper phase was re-extracted with chloroform/methanol/water (86:14:1, v/v/v).  

Subsequently, the organic phases were combined, lyophilized in a vacuum centrifuge, 

and dissolved in chloroform/methanol/water (60:30:4.5, v/v/v). Another set of samples 

was produced by adding Physostigmine to the chloroform/ methanol before being 

used to suspend the cell pellet. Samples without Physostigmine were diluted to 

concentrations of 1:10, 1:50, 1:100, 1:500, and 1:1000. Samples with Physostigmine 

were diluted to concentrations of 1:50 and 1:400. These samples were mixed with 
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reagents using Acetylcholine Assay Kit (colorimetric; catalog # STA-603 Cell Biolabs, 

Inc.) to which superoxide dismutase was added as per manufacturer’s protocol. The 

plate was read at an absorbance of 550 nm. The concentration of ACh standard curve 

was used to determine the particular concentrations in the samples through a 

regression line. The kit detection limit is 0.75 μM. Androgen independent prostate 

cancer cell lines (PC3) were grown in flasks, and the growth media were refreshed 24 

h before the experiment. The cells that were confluent on the floor of one flask were 

used. To detach the healthy PC3 cells from the floor of the flasks, trypsin was used. 

Samples were prepared and analyzed as described above for Acanthamoeba assays. 

2.7 Apoptosis in A. castellanii belonging to the T4 Genotype 

2.7.1   Material and Methods: 

Digoxin [Lanoxin] was obtained by Glaxo-SmithKline. Acridine orange, Etoposide, and 

Loperamide were purchased from Sigma Aldrich and Merck-Millipore. ApopNexin V 

FITC Apoptosis kit (Cat# APT750) was purchased from Chemicon International and 

7AAD (a fluorescent intercalator that undergoes a spectral shift upon association with 

DNA) was purchased from Invitrogen.  

2.7.2   Immunofluorescence: Imaging Apoptosis at different intervals 

Acridine orange (Sigma Aldrich) and Merck-Millipore (Annexin-V FITC) apoptosis kits 

were used to determine patterns of apoptosis and necrosis that occurred in the 

experiments that were carried out on healthy A. castellanii trophozoites at doses of 

100-150µg/ml of loperamide. Acridine orange stains fragmented DNA in the cell 

undergoing apoptosis. The Acridine orange staining was done and visualized for early 

apoptotic changes at the 6th, 18th, and 24th hours. The trophozoites showing both, 

Annexin V and AO stains were considered to be exhibiting an apoptotic type of cell 

death at the time of staining. The manufacturer’s kit contains Annexin-V in conjugation 

with FITC. The cells undergoing apoptosis uptake Annexin-V which stains the 

externalized phosphatidylserine, on the cell membrane, that occurs during apoptosis. 

Olympus IX71 inverted microscope was used and the images were compared by first 

observing them under normal light and then FITC. The Propidium iodide [PI], included 
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with the kit, was used to differentiate cells undergoing apoptosis with intact 

membranes from necrotic cells with damaged cell membranes. Necrotic cells that 

uptake the Propidium iodide [PI] was detected using a green/red filter with an 

excitation wavelength of 540/25 nm and an emission filter of 605/55 nm. 

2.7.3   FACS Analysis 

A. castellanii (1 x 106 cells/100 μL) were loaded into FACS tubes. The amoebae were 

washed twice with 2 mL PBS and centrifuged at 1500 x g for 5min, and then poured 

out of the buffer from pellets containing trophozoites. A. castellanii trophozoites were 

then added to 100 μL of flow cytometry staining buffer. Following this, 10 μL of 7AAD 

was added to the staining solution to a control tube of trophozoites (2.0 x106 

trophozoites) to adjust flow cytometer settings for 7AAD. 7-AAD is known to enter late 

apoptotic or necrotic cells to stain DNA. After mixing for 30 minutes at 4°C in the dark, 

7AAD fluorescence was determined using the FL-2, as staining alone with 7AAD was 

intended for the determination of the type of cell death. 10 μL of the 7AAD staining 

solution was added to the cell samples treated with 40µg/ml of digoxin and incubated 

for 30 minutes at 4°C in the dark before the analysis. The trophozoite counting was 

optimized from a dot-plot of forward scatter versus 7AAD to measure cell death 

patterns induced by digoxin.   

2.8 Detection of phosphatidylserine (PS) externalization in Acanthamoeba 

PS exposure at the outer plasma membrane of apoptosis cells was detected by using 

ApopNexin V FITC. Briefly, HBMEC and/or A. castellanii trophozoites (5 × 105 

amoebae/0.5 ml) were incubated with various concentrations of doxorubicin, 

melphalan, ethidium bromide, loperamide, dicyclomine, hydrogen peroxide (H2O2) for 

16, 18, and 24 h in 24-well plates at 37°C (in a CO2 incubator in the case of HBMEC). 

For HBMEC, cells were washed twice with 0.5 ml RPMI to remove excess drug and 

incubated with washed with PBS (thrice), and re-suspended in ApopNexin V FITC and 

propidium iodide in 1x binding buffer (10x binding buffer contains 0.1M HEPES, pH 

7.4; 1.4M NaCl; 25 mM CaCl2). HBMEC were incubated in cold for 1 h in dark. Finally, 

cells were washed thrice with PBS to remove the excess of the antibody and 
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visualized under a fluorescent microscope (Olympus BX43 microscope) using Infinity-

1 camera and Lumenera software. For A. castellanii, amoebae were harvested at 16, 

18, and 24 h by centrifugation as described above. Next, cells were washed with PBS 

(thrice), and re-suspended in ApopNexin V FITC and propidium iodide in 1x binding 

buffer and incubated in cold for 1 h in dark. Next, amoebae were washed thrice with 

PBS to remove excess antibody. The final cell pellet was re-suspended in PBS and 

visualized under an Olympus BX43 fluorescent microscope. 

2.8.1   Cytotoxicity Assay - LDH release experiments  

To determine the ability of the diverse drugs (Table-4) used in differential doses to 

induce cell death by cytotoxicity, LDH release assays were performed. Healthy 

trophozoite forms (1x106/well) of A. castellanii were grown in PYG medium and 

exposed to different concentrations of drugs in 96-well plates at 30°C for 24 h. 

Following this incubation, the supernatants were collected and examined for cell 

cytotoxicity by measuring lactate dehydrogenase (LDH) release (cytotoxicity detection 

kit, Promega, Madison, Wisconsin, USA). Briefly, the supernatants were assessed for 

the presence of LDH, the release of which is considered as an estimate of cell death. 

The percentage of the release of LDH was calculated as: (LDH activity in the 

experimental sample [measured by optical density at 492 nm]-LDH activity in control 

samples/total LDH activity release-LDH activity in control samples×100=% 

cytotoxicity). Control samples were obtained from well plates in which Acanthamoeba 

trophozoites were incubated alone without any drug. Total LDH activity release was 

determined by total A. castellanii trophozoite lysis with 1% Triton X-100 for 30 min at 

37°C. 
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Section 2. 

2.9 Genome databases and bioinformatic computational tools in the 

identification of drug targets in A. castellanii. 

2.9.1   Transcriptomics of A. castellanii.  

Recently, the analysis of the RNASeq data for A. castellanii has been reported [137]. 

This study has presented the orthology association analysis and gene ontology (GO) 

description in conjunction with the gene expression estimation of different gene 

groups for A. castellanii. The expression of mRNA encoding proteins that were 

presumed as a drug target in A. castellanii was retrieved from the AmoebaDB 

database [137]. Once the expected molecular targets of the drugs were drawn (details 

below in the result section), the mRNA encoding the relevant proteins were retrieved 

and analyzed for their gene expression as compared to other protein encoded by A. 

castellanii. 

    

2.10 Reverse transcription-polymerase chain reaction (RT-PCR) with Real-time 

polymerase chain reaction (qPCR)  

 

2.10.1 Processing of Acanthamoeba trophozoites: 

Acanthamoeba trophozoites were harvested from the T75 flask and shifted to 15ml 

falcon tubes. Cells were centrifuged at 2500rpm for 10 minutes. The supernatant was 

discarded, and the cells were re-suspended and washed with PBS thrice. After 

washing, cells were counted and 0.5x 106 Acanthamoeba trophozoites were collected 

in a separate tube. These cells were then re-suspended in 40µL PBS and processed 

for mRNA extraction. 
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2.10.2  Processing and Treatment of PC3/DU145 with trifluoperazine: 

0.5x 106 prostate cancer cells, PC3, and DU145 cells were grown in 6 well plates for 

24 hours in RPMI and DMEM respectively. The cells were then exposed to 

trifluoperazine 10, 20, 30, and 40 µg/mL and incubated at 37oC for 24 hours. After 

completion of the incubation period, cells were collected in Eppendorf tubes and 

centrifuged at 2500rpm for 10 minutes. The supernatant was then discarded and re-

suspended in PBS. The cell pellet was washed with PBS three times and the 

supernatant was discarded. The PC3/DU145 cells were re-suspended in 40µL of PBS 

and used for mRNA extraction. 

2.10.3  Extraction of WBCs: 

The whole blood specimen in a heparin tube was obtained and an aliquot of 1ml blood 

into a 15ml conical centrifuge tube was prepared for lysis of the RBCs. The tube was 

filled with a fresh cold RBC lysis buffer. The tube was mixed gently by inverting the 

tube for ~10 minutes at room temperature until the liquid became clear red. The tubes 

were centrifuged at 4oC for 10 minutes at 300 x g. WBCs were washed with PBS and 

10ml cold PBS was added as per manufacturer protocol. WBCs were counted and 

cells were adjusted to ~0.5x 106/mL.  

2.10.4 mRNA Extraction from Acanthamoeba trophozoites, PC3, and 

DU145 cells: Preparation of lysis buffer: 

The mRNA catcher plus plate was used to extract mRNA from each sample. The 

PC3/DU145 cells, suspended in 40µL PBS, were loaded in mRNA catcher plus plate. 

An equal volume of lysis buffer was added to each well. The solution was mixed by 

pipetting in and out. After mixing the solution, the plate was incubated at room 

temperature for 45-60min. After incubation, the whole solution was dispensed out of 

wells. Wells were washed by dispensing 100µL of wash buffer for 1minute (x3). 80µL 

of elution buffer was added and the plate was incubated at 68°C for 5minutes and 

kept on ice immediately to cool down. 
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2.10.5 Detection of RNA concentration: 

 Nanodrop was used to analyze RNA concentration in the sample 

2.10.6  cDNA synthesis: 

15ng of RNA was used to form cDNA. The reaction mixture was prepared by adding 

dNTP and RT enzyme as per the manufacturer’s protocol. The tubes were labeled for 

each sample. Following this, 15ng of RNA samples were added into their respective 

tube and 6.4µL from the reaction mixture was added to each tube. After adding all the 

reagents and samples, the total volume was brought up to 20µl with nuclease-free 

water, mixed gently, and centrifuged. The plate was incubated in a thermocycler and 

the temperature was set at 25°C for 10min, followed by 50°C for 30minutes. The 

reaction was terminated by heating at 85°C for 5 minutes and holding it at 4°C. 

2.10.7 Real-Time PCR: 

All the reagents were gently vortexed and centrifuged and tubes were labeled for each 

sample. 2µL of cDNA was added to the samples in the respective tube. Beta-actin 

was used as standard and it was run along with test samples. 13.24µL of regent was 

added from the reaction mixture in each tube. A volume up to 25µL was made with 

nuclease-free water, mixed gently, and centrifuged briefly as per the manufacturer’s 

instructions. The thermal cycler was programmed according to the recommendations, 

samples were placed and the process was initiated. 

2.10.8 qPCR Analysis: 

The data were analyzed by using the Cq values obtained by qPCR. Results obtained 

from beta-actin was used to compare and analyze the results. 
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2.11  Methodology: Genomic, Transcriptomic, and Bioinformatics 

Computational Tools used in drug target discovery.  

 

2.11.1 General sequence identification and similarity searches 

Sequence identification and similarity search for A. castellanii proteins were done by 

using the Basic Local Alignment Search Tool for proteins (BLASTp). BLASTp was 

used to conclude the functional and evolutionary relationships between sequences as 

well as to help identify members of gene families [138-140]. The BLAST program uses 

a set of algorithms that attempts to find a fragment of a query sequence that aligns 

with that of the subject sequence and uses a heuristic algorithm [138, 140] which is 

designed to solve a problem in a faster and more efficient fashion than methods like 

FASTA. The EMBL-EBI automated server has a powerful cross-referencing and 

functional data retrieval capability and was used to generate the BLASTp results 

mainly, as resolving the functions of the query Acanthamoeba protein was important 

to relate it to the observed drug effects seen in the in vitro assays done in A. castellanii. 

Running a BLASTp in EMBL-EBI automated server is a multiple steps process and 

was used to generate results with function annotations (detailed below in results). 

BLASTp searches were done by submitting FASTA sequences of amino acids of a 

particular protein encoded in Acanthamoeba spp. The sequences of Acanthamoeba 

proteins encoded and expressed are designated as ACA1_ followed by unique ID (6-

digit numbers) in the AmoebaDB.org database. In our study, these proteins are either 

identified as ACA1_xxxxxx or by name as annotated in the databases.  

2.11.2    BLASTp: Scores and E-values 

In BLASTp results, the scores describe the overall quality of the alignment between 

the query and the hit. Higher scores correspond to a higher-quality alignment and can 

be used to deduce similarity. To determine whether a score is good or just may be 

caused by chance, a statistical procedure is needed to assess its reliability. The e-

value threshold is a statistical measure of the number of expected matches in a 
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random database. The e-value estimates how many times one expects to see such 

an alignment occur by chance and thus e-value along with scores on BLASTp 

searches for Acanthamoeba proteins allowed us to quantitatively assess the 

significance of the alignment that we have reported in many of our studies including 

[Baig AM, 2017d [141]], [ Baig AM, 2017e [142]]. The lower the e-value, the more 

likely the match is to be significant [138, 139, 143]. The e-values between 0.1 and 10 

are generally dubious, and over 10 are unlikely to have biological significance [143]. 

In our studies, the Acanthamoeba proteins that had the highest scores and lowest e-

values in BLASTp searches were selected for homology modeling and drug/ligand 

docking (detailed in result section).  

2.11.3 PSI-BLAST 

The PSI-BLAST algorithm is based on the standard BLAST algorithm. A query 

sequence is scanned against a database of sequences and high-scoring alignments 

are detected [138]. Multiple alignments of detected sequences are then used to 

construct a profile [140]. The PSI-BLAST algorithm is iterative which means that 

subsequent searches that detect related homologs are used to further refine the 

profile [138, 139]. In our studies, we used PSI-BLAST for Acanthamoeba protein 

(detailed in the result section) that had low sequence similarities but shared functional 

attributes with the human proteins that are known drug targets.  

2.11.4 Multiple Sequence analysis (MSA) and alignment with functional 

annotations  

While the pairwise analysis can be applied to the problem of finding homologs, it 

cannot (by itself) be used to conclude a family of sequences. MSA can reveal levels 

of similarity between sequences. Conserved regions might represent motifs that are 

essential for function [138, 144]. MSA is the foundation for the identification of 

functionally important regions, building a sequence profile for further sequence 

search, protein family classification, phylogenetic reconstruction, etc. [139, 145]. 
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To this end, we needed to take all the members of a family into account to characterize 

sequence signatures caused by similarity in the fold, membrane topology, residues 

participating in the active site, or ligand binding by aligning the member sequences in 

one big alignment like in the case of VGCCs [Baig AM, 2019d [146]] and Aquaporin 

protein [Baig AM, 2018d [147]]. The automated servers in NCBI [138], Uniprot [143], 

EMBL-EBI, and NCBI that is hosted by the European Bioinformatics Institute (EBI) 

were used for MSA that are reported in my studies [Baig AM, 2018d [147]].  

2.11.5 Evolutionary analysis of A. castellanii protein. 

     Our study attempted to not only provide evidence of finding a homolog of human 

protein in A. castellanii but also endeavored to trace the reported proteins on an 

evolutionary timeline. We used NCBI and Pfam automated servers, with the neighbor-

joining (NJ) algorithm, for assessment of protein distance measures by the 

construction of rooted tree (rectangle cladograms) and sunbursts (circular tree). For 

example, a distance matrix calculation employed in the automated MSA tool in NCBI 

and Pfam webserver was used to generate an evolutionary analysis of the sequences 

of protein family AQP and superfamily MIP protein family. [Baig AM, 2018d [147]].  

     As the presentation of the complex proteomic data arising in evolutionary algorithms 

remains a challenge, treemaps (cladograms/dendrogram) and sunbursts forms 

(circular trees) shown in our studies helped us in visualizing such complex data. In 

our result sections, shown are treemaps and sunbursts (circular treemaps) developed 

in NCBI and Pfam severs (using neighbor-joining, NJ-method), that display important 

aspects of the evolutionary distribution of protein family and superfamily in between 

species.  

2.11.6 Homology Modeling: Automated Protein Homology Modeling  

Servers 

     Homology modeling  (or comparative modeling ) depends on evolutionarily linked 

structures (templates) to create a structural model of a protein of interest (target). In 

automated web resources for homology modeling like Phyre2 and SWISS-
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MODEL[195], the process typically comprises the following steps: (i) template 

identification, (ii) template selection, (iii) model building, and (iv) model quality 

estimation. In summary, a library of experimentally determined protein structures is 

searched with sensitive sequence search tools to identify proteins that are 

evolutionarily related to the target protein [148]. The SWISS-MODEL server was used 

for the homology modeling of A. castellanii proteins,  which interactively searched for 

templates, clustered them by sequence similarity, structurally compared alternative 

templates, and selected the ones to be used for model building. For some well-studied 

protein families, ( like in our studies with VGCCs and mAChR ) finding diverse 

numbers of templates for a target protein is not unusual [148]. Often, these represent 

different functional states or structures in complex with different ligands, the latter was 

more important to us (as mentioned above). In cases where evolutionarily conserved 

proteins like CaM, cytochrome-c, and adapter protein involved in the execution of 

intrinsic apoptotic pathway, homology modeling parameters like Qualitative Model 

Energy ANalysis (QMEAN) and Global Model Quality Estimation (GMQE) that access 

the model quality estimation [148] were considered as important parameters.  

2.11.7 Annotation of ligands in SWISS-MODEL template library (SMTL) 

      In most crystal structures low molecular weight ligands are observed, but only some 

of those are functionally or structurally relevant for the protein [148]. Instead of their 

natural ligands, some structures contain synthetic analogs or inhibitors which occupy 

competitively the same binding site [148] as in the case of Tiotropium bound to human 

mAChR1 [Baig AM, 2017a, [149]]. SMTL implements a two-stage process to 

annotate biologically relevant ligands and synthetic analogs. The first stage uses a list 

of rules to automatically categorize the ligands based on their chemical identity.  

2.11.8 Template search and selection 

      The STML was searched in parallel both with BLAST and Hhblits (online server for 

protein structure prediction that uses homology information) to identify templates and 

to obtain target-template alignments [148]. This feature in homology modeling in 
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SWISS-MODEL helped us to study the target-template alignments and use the 

templates for prediction of docking drugs  (detailed in the result section) 

2.11.9 Modeling of the Ligands: 

      Depending on the intended application of a model, selecting a different template than 

the top-ranked one might be necessary, e.g. to build a model of a protein in complex 

with a ligand rather than its apo form [148]. This template selection method was done 

in our study for example in the case of homology modeling of A. castellanii   GPCRs 

that we postulated to have conserved ACh (agonist) and tiotropium (orthosteric 

antagonist) binding amino acid residues. Recently, the functionality of SWISS-

MODEL homology modeling has improved with models of generation of oligomeric 

structures of target proteins that include evolutionarily conserved ligands such as 

essential cofactors or metal ions in the template-based models [148]. The 

implementation of the new web interface of SWISS-MODEL allowed an interactive 

comparison of alternative templates (as in the case of VGCC) and selection of those 

which are more suitable for the intended application of the model (e.g. based on the 

presence/absence of specific ligands). 

2.12    Drug and Ligand docking predictions:  

       The task of calculating the interactions between a pair of molecules, usually a ligand 

/drug and a receptor, is usually referred to as docking (detailed in chapter-1). 

Molecular Docking is the method of molecular modeling that assesses the atomic-

level interactions between a small molecule and a receptor-like enzyme or any other 

protein. [150]. Molecular Docking is a cost-effective, fast technique that has been an 

essential tool in the process of drug discovery as well as a complementary tool to 

many experimental biophysical techniques [151]. In the published papers, molecular 

dockings of ligands and drugs were carried out on the web-based PatchDock server 

[152]. PatchDock is based on object recognition and image segmentation techniques 

usually used in computer vision, as docking can be compared to the assembly of a 

jigsaw puzzle [153]. 
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2.12.1 PatchDock: Molecular Docking Algorithms: 

       PatchDock [152] is a geometry-based molecular docking algorithm that is aimed to 

find docking transformations that yield good molecular shape complementarity. 

Docking transformations, when implemented, induce both wide-interface areas and 

small amounts of steric clashes. A wide-interface is ensured to include several 

matched local features of the docked molecules that have complementary 

characteristics to determine the contact area. The PatchDock algorithm divides the 

dot surface representation of the molecules into concave, convex, and flat patches. 

Then, complementary patches are matched to generate candidate transformations. 

Each candidate transformation is further evaluated by a scoring function that 

considers both geometric fit (contact area) and atomic contact energy (ACE) (an 

electrostatic and/or van der Waals energy loss due to the interaction between ligand 

or protein and solvent upon binding). Generally, ACE is the energy of replacing a 

protein-atom/water contact, with a protein-atom/protein-atom contact, and the more 

negative it is the more it is considered to favor a binding in an induced-fit configuration.  

2.12.2 The PatchDock web server: Input, Output, and results 

As the crystal structures of the ACA1_ proteins reported in our studies have not been 

resolved yet, therefore for the docking calculations we used the PDB ID of templates 

that were generated for Acanthamoeba proteins during homology modeling in the 

SWISS-MODEL server and were used for input in the PatchDock Server. Similarly, 

for the drug a PDB-ID (or PubChem ID) of the chemical compound was submitted to 

the automated PatchDock server. The run time of PatchDock for two input proteins of 

average size (about 300 amino acids) is <10 min on a single 1.0 GHz PC processor 

under the Linux operating system. In the results, the geometric score, ACE, the 

interface area size, and the actual rigid transformation of the solution are shown [152-

154]. The results of the ligand docking that turns up with a higher docking score and 

minimum ACE values were considered optimal for interacting residues that are 

predicted for ligand-protein binding [154]
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3 Experimental Assays, immunostaining, ELISA, colorimetric analysis,   

     FACS analysis and DNA staining. 

 

3.1 Introduction: 

As detailed above in chapter-1, the rationale behind targeting Acanthamoeba 

trophozoites and cysts were to exploit the Ca+2 ion dependency of this parasite. 

Our approach was to first identify selective drugs (Table-4) that are known to, 

directly and indirectly, affect the Ca+2 ion concentration or Ca+2 homeostasis in 

human cells (Figure-9) and to test them in assays performed in vitro. Though 

the biology of Acanthamoeba and related free-living amoeba (FLA) has been 

studied in detail in the past, the role of Ca+2 and regulatory mechanisms that 

maintain a physiological level of this vital ion in the intracellular space in A. 

castellanii has not been studied in depth. Also, though the basic physiological 

functions like motility, phagocytosis, the formation of phagolysosome, role of 

Ca+2 ion -bound CaM regulating metabolic processes all are presumed to be 

related to Ca+2 ion in A. castellanii, but the effector adaptor proteins were not 

been reported or studied with the intention of druggable targets in the past. 

Molecular targets that are shared between humans and Acanthamoeba spp. 

have been reported in the past [17, 79, 102], but have not been elucidated yet, 

also targeting L-type VGGC like proteins as has been reported for parasites like 

Leishmania donovani [155], but not in A. castellanii. Based on the rationale that 

human-like Ca+2 regulatory mechanisms exist in A. castellanii (Figure 9), there 

was a need to experimentally validate the presence of the Ca+2 ion related 

proteins like VGCCs, CaM, and GPCRs that are coupled with Ca+2 ion in A. 

castellanii. For example, it was aimed to test VGCC blocking drugs (Table-4) on 

the growth and viability of A. castellanii to provide evidence of the possible 

presence of human-like VGCCs in A. castellanii (Figure 10 black parallel bars). 

Additionally, intracellular imaging for Ca+2 by the use of Fura 2 AM staining was 

aimed to provide evidence for the disturbances in Ca+2 regulatory mechanisms 

exerted by the drugs tested in our studies. Likewise, the chelation of 
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extracellular Ca+2 by EDTA and Pirenoxine was hypothesized to clarify the 

dependency of A. castellanii on extracellular Ca+2. It is known that human 

mAChR1and mAChR3 muscarinic receptors are coupled with channels that 

mediate Ca2+-influx [143], but these muscarinic GPCRs have not been reported 

in A. castellanii. Immunostaining for human-like mAChR (Figure 10, green 

ribbons) and the testing of known mAChR1 and mAChR3 receptors blockers, 

by the use of antagonists like procyclidine/prochlorperazine, was hypothesized 

to reflect the role of Ca+2 ion-regulating proteins coupled to G-proteins in A. 

castellanii.   

   Figure 10.  Molecular targets that were hypothesized in A. castellanii. 

Drugs used in humans in (blue text) [        ] non-infectious diseases that target 
Ca2+channels and intracellular Ca2+homeostasis regulating proteins were tested 
in trophozoite and cystic forms of Acanthamoeba spp. Human-like drug targets 
(red-text)    [        ] were hypothesized to be expressed and perform vital roles in 
Acanthamoeba spp. and related FLA. Stimulation or induction is shown with (+) 
and inhibition/antagonism is represented by (–) signs. Where a drug target in 
Acanthamoeba trophozoite was in doubt a (!) sign is used.  
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As an ionic form of Ca2+ is needed for vital functions of this cation in cell biology, 

drugs like acetazolamide that inhibit carbonic anhydrase and therefore the 

above-mentioned state of calcium, were expected to clue towards the cardinal 

role of Ca2+ in the growth and viability of A. castellanii. The effects of loperamide 

were compared with doxorubicin and etoposide in inducing apoptosis by causing 

dysregulation of Ca+2 homeostasis. Cytosolic proteins like calmodulin (CaM) 

which is cardinal Ca+2 homeostasis affecting protein (Figure 10, red circle) was 

considered as drug targets of the drugs loperamide, haloperidol, and 

prochlorperazine. Targets of the drugs that affect the Ca+2 homeostasis 

indirectly like digoxin and amiodarone (Figure 10) were hypothesized to affect 

the viability and growth of A. castellanii. 

Results (below) of methods like testing the effects of VGCC agonist-antagonist 

on the growth and viability A. castellanii, Fura 2 AM staining intracellular calcium, 

immunostainings of mAChR1, ligand identification, LDH release, and 

establishing an apoptotic cell death were performed to explain the reasoning 

behind the selection of drugs (affecting Ca+2 homeostasis) (Table-4) and 

attaining the aim of the study (mentioned in chapter-1).  

3.1.1   Materials and Methods overview 

The source of the drugs, chemicals, dyes, antibodies, and calcium staining 

probe Fura 2 AM that were used in the experimental assays are detailed in 

chapter-2. Mostly, three independent experiments were performed in duplicates. 

For statistical analysis of the results, mostly, paired t-test, with one-tail 

distribution were done and at times when needed, one-way ANOVA with 

Dunnet’s post-hoc was done and indicated in the legend. In all of the 

experiments that involved antibodies and fluorescent dyes, the manufacturer's 

instructions were followed.  
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3.2  Amoebistatic, Amoebicidal, and cysticidal drug assays  

In assays, prochlorperazine, haloperidol, and digoxin showed inhibition of the 

proliferation and growth of A. castellanii trophozoites (Figure 11), at a dose of 

25 µg per ml (Figure 12 A and [Baig AM, 2013, [[134]]]. Of the drugs tested in 

higher doses of 500 µg per ml amlodipine, loperamide, digoxin, and 

prochlorperazine showed amoebicidal effects in trophozoites of Acanthamoeba 

castellanii that were about 99% (Figure12-B) [Baig AM, 2013, [134]]. In later 

studies (cytotoxicity assays detailed below-Figure  27), we curtailed the doses 

to determine the minimal doses at which the drugs tested (Table-4) were 

capable of inducing amoebicidal effects in trophozoites of A. castellanii. 

 

               Figure 11.  Effects of drugs tested in Acanthamoeba trophozoites. 
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Images (40x) of Acanthamoeba trophozoites (1x105) after 24h of exposure to 
different drugs. (A) A. castellanii trophozoites grown in growth medium PYG. 
Anti-muscarinic agents dicyclomine, procyclidine, and atropine (B, C, and D) 
showed anti-proliferative effects at doses of 90, 250, and 300µg per ml 
respectively. Amlodipine at 25µg per ml (E) and Loperamide at doses of 250 µg 
per ml (F) exhibited amoebicidal effects. Digoxin (G) Haloperidol (H) and 
Prochlorperazine (I) in doses of 25µg per ml each showed amoebicidal effects. 
The results are representative of at least three independent experiments 
performed in duplicate. [Adapted from Baig AM 2013, [134]]   
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Figure 12.   Results of drugs tested in vitro in trophozoites of A. castellanii 

   (A) A. castellanii (2x105 trophozoites) incubated with various concentrations of 
drugs in PYG medium at 30°C for 48 h. All drugs tested showed significant 
inhibition of A. castellanii growth at the indicated concentrations (P < 0.01; paired 
t-test; one-tail distribution). (B) Effects of tested drugs in A. castellanii trophozoites, 
the bars represent Trypan blue stained (dead) trophozoites. The results are 
representative of at least three independent experiments performed in duplicate. 
The data are presented as means and standard errors. [Adapted from Baig AM, 
2013, [134]]. 

  

Figure 13. Effects of drugs against cysts: Encystation blockage and activity 
against cysts in A. castellanii. 
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(A) When tested for blocking encystation in A. castellanii all of the drugs except 
apomorphine and haloperidol prevented cyst formation (encystation). (P < 0.01; 
paired t-test; one-tail distribution).  (B) As compared to controls (no-drugs), cysts 
treated with 250µg/ml of loperamide, 200µg/ml amlodipine, and 50µg/ml of 
prochlorperazine did not show encysted trophozoites to excyst in PYG for  2 weeks 
of incubation. For the rest of the drugs (250µg/ml) which included amiodarone, 
apomorphine, and haloperidol, the excystation of amoeba trophozoites was 
observed. The percentage of excysted amoebae in controls was considered as 
100 % and the effects of drugs are expressed as relative change. The results are 
representative of at least three independent experiments performed in duplicate. 
[Adapted from Baig AM, 2013, [134]].  

Additionally, all the drugs except apomorphine and haloperidol prevented the 

process of encystation (Figure 13 A). Also, as compared to the control 

loperamide, amlodipine and prochlorperazine (Figure 13 B) showed to be 

effective against cysts of A. castellanii [Baig AM, 2013, [134]], as the cysts 

exposed to these drugs failed to excyst till 2 weeks of incubation in growth 

medium PYG. The rest of the drugs which included amiodarone, apomorphine, 

and haloperidol were not seen to be effective against the cysts as amoeba 

trophozoites remerged in well plates and appeared motile and healthy [ Baig 

AM, 2013, [134]] 

3.3 Reproducibility and the effects of drug combinations in A. castellanii 

and related FLA.   

As the drugs used exerted their inhibitory effects on diverse human cellular 

receptors and adapter proteins (Figure 10), it was tested if the results 

obtained previously [Baig AM, 2013, [134]] could be reproduced by 

experimentations of the drugs used alone and in combinations in 

Acanthamoeba and related FLA like Balamuthia mandrillaris [Huma K, Baig 

AM, 2014, [135]].  Acanthamoeba castellanii trophozoites were tested and 

showed susceptibility to a combination of 100 - 250 µM concentration of 

various drugs in vitro with drugs exhibiting drug synergism (Figure 14) [Huma 

K, Baig AM, 2014, [135]]. Drugs were also evaluated for their safety on 

human brain microvascular cells (HBMEC). Incubation of HBMEC with 

amoeba but without the drugs destroyed the human HBMEC but it was shown 
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that in the presence of the drugs, the amoebae were turned incapable of 

exerting their cytopathic effects on HBMEC.  [Huma K, Baig AM, 2014, 

[135]]. 
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Figure 14. Effects of drugs used in combinations A. castellanii for 24h. 

20x Images of the effects of combinations of different FDA approved drugs on the 
proliferation of (1x 105) A. castellanii trophozoites. The sign (-) and (+) represent 
growth inhibition growth observed respectively. The combination of 
prochlorperazine + loperamide (A-A1), procyclidine + loperamide (B-B1), 
apomorphine + haloperidol (C-C1) in a dose of 100µM inhibited the growth of the 
trophozoites of A. castellanii. 250µM of digoxin + amlodipine also proved to be anti-
proliferative for the trophozoites initially, as can be seen (D-D1), but growth 
continued after 48h (D1). Growth in the control (E) without any drugs was seen to 
be several folds of the initial seeding (E1). [[Adapted from [Huma K, Baig AM, 
2014, [135]].  

3.4 Drugs targeting Ca2+ signaling adapter proteins:  

The drugs amlodipine, gabapentin and loperamide target various types of 

voltage-gated Ca2+ channel (VGCC) in humans (Table-4), with the latter drug 

also known to inhibit CaM. It was shown earlier that minimum inhibitory 

concentrations (MIC- 50% growth inhibition) needed to attain amoebistatic 

effects with VGCC blockers like amlodipine and prochlorperazine were as low 

as 50-25 µg/ml respectively (Figure 13 A) as compared to the doses range 

between 250-500µg/ml needed for amoebicidal effects as reported previously 

[Baig AM, 2013, [134]]. To determine the minimum cytotoxic concentrations 

(MCC) needed to exert amoebicidal effects (~50%) for the VGCC blockers in 

particular and the rest of the drugs in general, further experiments were carried 

out. For amlodipine, it was shown that in the dose range of 40-50 µg/ml, this 

drug can exert significant amoebicidal effects [Baig AM, 2019d, [146]] (Figure 

15 A). For gabapentin, a related drug that blocks the alpha2/delta1 VGCC in 

humans showed to exert significant amoebicidal effects (P<0.001) in doses 

between 80-100 µg/ml [Baig AM, 2019d [146]] (Figure 15 B). The effects of 

these VGCC blockers on the proliferation of Acanthamoeba trophozoites 

showed reduced trophozoites cell counts after 24h (Figure 15 A2, A3, and B2-

B3) 
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Figure 15.  Amoebistatic effects of Amlodipine and Gabapentin in A. 
castellanii trophozoites. 

Effects of minimum inhibitory concentration (MIC) of amlodipine (A) and 
gabapentin (B). (A1-B1). are controls of amlodipine and gabapentin respectively. 
Effects of 40 µg/ml and 50 µg/ml of amlodipine (** P < 0.05) (A2-A3) are shown (20x 
images). Effects of 80 µg/ml and 100 µg/ml of gabapentin (* P < 0.001) (B2-B3) 
respectively are shown (40x images). Histograms (A, B) show the MCC effects of 
amlodipine and gabapentin as compared to the controls. A paired student t-test; 
one-tail distribution was used. The results are representative of three independent 
experiments performed in duplicate. The data are presented as means and 
standard errors. [Adapted from Baig AM, 2019d [146]].  
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3.4.1     VGCC blocker exert apoptotic and amoebicidal effects  

The known molecular targets of loperamide in humans are the P/Q type VGCC, 

opioid receptors, and CaM (Table-4). Amoebicidal and apoptotic effects in 

differential doses of loperamide were reported in our studies [Baig AM, 2017d 

[141]] in A. castellanii where loperamide possibly acted by affecting CaM and 

human-like VGCCs [Baig AM, 2019d [146]] in a dose range of 100-150 µg/ml. 

It was shown that loperamide exerts minimum cytotoxic concentration MCC 

(~50%) at 150 µg/ml (Figure 16 A and D). Also, loperamide (80 µg/ml) when 

combined with the haloperidol (30 µg/ml) proved to reduce the proliferation of 

trophozoites of A. castellanii. (Figure 16 A) as compared to the control. Our 

studies show that in addition to amlodipine, gabapentin [Baig AM, 2019d [146]] 

(Figure 15), and loperamide [Baig AM, 2017d [141]] (Figure 16), other VGCC 

blockers like verapamil and nifedipine also exert significant amoebicidal effects 

in a dose range of 50-100 µg/ml (Figure 17 and 28).  
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Figure 16.  Effects of different doses of loperamide in A. castellanii 
trophozoites. 

The minimal cytotoxic concentrations (MCC) of loperamide were observed at 150 
µg/ml in the histogram (A-lane-5, and D) and control (20x Image B). At 100 µg/ml 
loperamide (A-lane-4, and C) did not exert significant amoebicidal effects. Also 
shown in the histogram are the effects of loperamide with haloperidol in different 
concentrations in (1x105) A. castellanii trophozoites. Loperamide 80 µg/ml + 
haloperidol 30 µg/ml showed significant growth inhibition (last 3 columns- A) as 
compared to the solvent control. (** P<0.01 paired t-test; one-tail distribution). One-
way ANOVA and Dunnet’s comparison test (post hoc test) were done for Lop-Halo 
assays. The results are representative of at least three independent experiments 
performed in duplicate. The data are presented as means and standard errors.  
[Adapted from Baig AM, 2017d [141]]. 

 

Figure 17. Effects of different doses of nifedipine and verapamil in A. 
castellanii  

(A)  Nifedipine: showed significant antiproliferative effects in dose ranges of 
100 and 50µg/ml (*** P< 0.001 and ** P< 0.005 respectively - paired student t-test; 
one-tail distribution) (A: lane-5 and 6 respectively; Images A4-A5) as compared to 
controls. Doses of 1-2-5 µg/ml (A lane-2, 3, and 4) did not show significant 
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antiproliferative effects. (B) Verapamil: showed significant antiproliferative effects 
in doses range of 100 and 50µg/ml (*** P< 0.0001- paired student t-test; one-tail 
distribution) (B: lane-4 and 5; Images B4 B5 respectively) as compared to control. 
Doses of 5 and 10 µg/ml (B-lane-2 and 3) did not show significant antiproliferative 
effects. The results are representative of at least three independent experiments 
performed in duplicate on 0.15x106 cells after 24h. The data are presented as 
means and standard errors. [Adapted from Baig AM, 2019d j [156]]. 

 

3.5 Fura-2 AM staining of trophozoites treated with VGCC blockers 

Drugs used in studies were aimed to bring Ca2+ depletion and disrupt the Ca2+ 

homeostasis in the cytosol (detailed in chapter-1). Amlodipine, loperamide, 

gabapentin, nifedipine, and verapamil that belong to the VGCC class of drugs 

were used to deplete the intracellular Ca2+ inhibiting their influx via VGCC. 

Prochlorperazine, procyclidine, and other related drugs are known to antagonize 

receptors that are coupled with calcium channels [143], and therefore were also 

expected to lower the intracellular Ca2+ as assumed previously [Baig AM, 2013 

[134]]. Our experiments showed that the neuroleptic drugs that are antagonists 

of biogenic amine receptors [143] coupled with calcium channels like 

promethazine also proved to be amoebistatic and amoebicidal in doses in a 

range of  31.25 – 125 µg/ml respectively [Baig AM, 2019h [157], (Figure 27) and 

presumably acted via affecting the intracellular Ca2+ ion concentrations. 
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Figure 18.  Fura-2AM staining in Acanthamoeba trophozoites.  

A. castellanii trophozoites demonstrated Ca2+dysregulation caused by drugs 
blocking VGCC and muscarinic receptors. The Fura-2AM staining was 
compared with controls in PYG (A) and PBS (B) without drugs [[Adapted from 
Baig AM, 2019i, [157]] +Unpublished data]. 

The fluctuations in Ca2+ ions after exposure to various drugs used in our assays 

(Table-4) was established by the use of Fura- 2 AM staining (method details in 

chapter-2), which was compared with the amoeba in the controls (PYG) (Figure 

18-A) and PBS (Figure 18-B) without drugs. Notable in the Fura-2 AM staining 

was the depletion of intracellular Ca2+ ions induced by VGCC blockers (Figure 

18  C, D). Enhanced Fura-2 AM staining with pilocarpine (Figure 18  H), 

dicyclomine, and digoxin (Figure 18  K, G) was seen. Diffuse homogenous 
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staining with Fura-2AM was seen with prochlorperazine, promethazine, and 

atropine (Figure 18 labeled with names).     

  

             

     Figure 19.  A. castellanii with Ca2+ chelating agents stained with Fura-
2AM 

(A1) Effects of EDTA 10µg/ml with and without pilocarpine. (A2) 
Pirenoxine dissolved in the solvent in a dose of 25 µg/ml with and without 
pilocarpine. (** P< 0.005: paired t-test; one-tail distribution) (B) Fura-2 AM 
staining in control without any drug in PYG medium, with EDTA10µg/ml 
and Pirenoxine 25µg/ml (left to right) showed reduced staining with Ca2+ 
chelating agents. Pilocarpine (Ca2+ influx inducing agent) failed to rescue 
the trophozoites. The results are representative of at least three 
independent experiments performed in duplicate. [ Adapted from Baig 
AM, 2019i, [158]] 
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3.5.1    Ca2+ depletion caused by Ca2+ ion chelators EDTA and pirenoxine 

in A. castellanii   

To show the dependency of A. castellanii on extra-cellular Ca2+ in other 

experiments, we tested the effects of Ethylenediaminetetraacetic acid (EDTA) 

and pirenoxine that are known to chelate the extra-cellular Ca2+. Both drugs 

reduced the growth and proliferation of Acanthamoeba castellanii. [Baig AM, 

2019i [158]] (Figure 19). 

3.6   Effects of Drugs targeting human-like ion channels and proteins 

A. castellanii trophozoites showed susceptibility to amiodarone which targets 

K-channel (KCN) and VGCC alpha-2/delta-1 protein in human cells. 

Amoebicidal and amoebistatic effects were observed with amiodarone in a 

dose range of 40-80 µg/ml respectively (Figure 20, A and E-F, and Figure 

27) [Baig AM, 2017e, [142]].   
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Figure 20.  Amoebistatic and amoebicidal effects of amiodarone. 

(A) Histogram showing a reduction in the number of viable trophozoites at 
a dose of 80µg/ml of amiodarone in 2.5 x105 cells and 20x images were 
taken after a period of 24hrs. (B) -ve control, (C) 20µg/ml, (D) 40µg/ml, (E) 
60µg/ml and (F) 80µg/ml of amiodarone. Note the dark staining 
trophozoites (F), confirmed for cytotoxic effects on staining with Trypan 
blue. (** P-value <0.05 paired t-test; one-tail distribution). The results are 
representative of at least three independent experiments performed in 
duplicate. The data are presented as means and standard errors. 
[Adapted from Baig AM, 2017e, [142]]. 

Acanthamoeba trophozoites were hypothesized to express human-like water and 

pH regulating adapter proteins (details below) like proton pumps, aquaporin 

(AQP), and carbonic anhydrase. The latter two are known targets of amlodipine, 

acetazolamide (AZM), and brinzolamide (BRZ). The trophozoites assumed 

rounded morphology and reduced growth and proliferation was observed. At 80 

and 100 µg/ml, the drugs showed more profound effects than lower doses. 

(Figure 21 and Figure 27) [Baig AM, 2018d, [147]]. BRZ also showed similar 

effects (data not shown). The latter two drugs are already used in the eye for the 

treatment of glaucoma [159] in the form of topical eye drops, therefore, they could 

be repurposed after clinical trials in humans with AK. 
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Figure 21. Effects of carbonic anhydrase inhibitor on Acanthamoeba 
castellanii. 

(A) Control without AZM. Images (B, C, D, E) show the effects of 20-60-
80 and 100µg/ml of acetazolamide respectively after 24h in trophozoites 
of Acanthamoeba castellanii. The trophozoites assumed a rounded 
morphology and showed reduced growth and proliferation. 
Concentrations of 80 and 100 µg/ml had more profound effects than 
lower doses (D, E). Data are representative of at least three 
independent experiments performed in duplicate [Adapted from Baig 
AM, 2018d, [147]]. 



Experimental Assays, immunostaining, ELISA, colorimetric analysis,   

          FACS analysis and DNA staining. 

70 

 

 

3.7 The first evidence of a cholinergic ligand and druggable human-like 

muscarinic receptor (mAChR) like protein in Acanthamoeba spp.  

3.7.1   Anti-human mAChR1 Antibody showed Immunostaining in A. 

castellanii trophozoites.    

It was previously hypothesized that that Acanthamoeba trophozoites express 

human-like muscarinic receptors (Figure 10, green ribbons) that bind agonists 

like pilocarpine and ACh and are antagonized by muscarinic receptor 

antagonists [Baig AM, 2013 [134]]. In follow-up studies, we provided the 

evidence of a human mAChR like receptor [Baig AM, 2017a, [149]], with 

immunostaining using anti-human mAChR1 antibody that showed positive 

staining in A. castellanii trophozoites (Figure 22).  

Figure 22.   Immunostaining with anti-human mAChR1 antibody. 
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(A) Acanthamoeba trophozoites, star showing positive staining of A. castellanii 
trophozoites (10x). 

     (B) Cytoplasmic staining of A. castellanii trophozoites (white-star) (20x). 

(C) Smooth muscle cells showing staining (20x -positive control).  
 
(D) Fat cells showing an absence of staining (20x -negative control) [Adapted 
from Baig AM, 2017a, [149]] 
 
 

3.7.2     Validation of the presence of ligand Acetylcholine in  

Acanthamoeba castellanii trophozoites.  

A complete cascade of enzymes (detailed below) needed for ACh synthesis and 

the presence of the ligand ACh that exerts a possible growth promoting 

autocrine and paracrine effects in A. castellanii was reported [Baig AM, 

2018a,[160]]. Colorimetric assay for ACh detection in the trophozoites was used 

(Figure 23) to demonstrate the presence of ACh in lysates of trophozoites of A. 

castellanii.  
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Figure 23. Colorimetric assay for acetylcholine (ACh) detection 

The absorbance of trophozoite samples was tested and plotted against a 
standard curve. ACh was present at a concentration of 8.4 µM when the 
Acanthamoeba lysate was diluted 100 times. The red line (green arrow on 
the y-axis) represents absorbance and the corresponding concentration, 
while the orange line shows the presence of ACh in prostate cancer PC-3 
cells as a positive control. The blue line represents the standard curve. The 
results are representative of at least three independent experiments 
performed in duplicates. [Adapted from [Baig AM, 2018a,[160]] 

 

3.7.3    mAChR antagonists exert amoebicidal effects in  

   Acanthamoeba castellanii trophozoites.   

Assays performed with 90 µg/ml of dicyclomine and 100 µg/ml of pirenzepine 

(Figure 24, Images, and histogram) showed significant amoebicidal effects 

[Baig AM, 2017a, [149]]. Taken together the growth assays, antagonist 

effects, immunostaining positivity for mAChR1 like protein, and virtual isolation 

of ACh in lysates of A. castellanii were the first reported [Baig AM, 

2018a,[160]] evidence of the existence of a druggable cholinergic system.
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Figure 24. mAChR antagonists affect the growth and viability of 
Acanthamoeba trophozoites 

(A) Solvent control in PYG.(B-C) Effects of 150 µg/ml and 200 
µg/ml of pirenzepine respectively at the 12th h. (D-E) Effects of 150 
µg/ml and 200 µg/ml of pirenzepine respectively at the 24th h. (F). 
Solvent (methanol) control at the 24th h. The histogram shows the 
effects of 90 µg/ml of dicyclomine and 100 µg/ml of pirenzepine in A. 
castellanii trophozoites (0.5x106)incubated with these mAChR1 
antagonists. Experiments were performed in duplicates. One-way 
ANOVA showed a P-value of 0.0003. Dunnet’s comparison test 
revealed a P-value < 0.01 for control vs dicyclomine 90 μg/mL and a 
P-value < 0.01 for control vs pirenzepine 100 μg/ml. 20x images of 
Acanthamoeba trophozoites. The results are representative of at least 
three independent experiments performed in duplicate. The data are 
presented as means and standard errors. [Adapted from Baig AM, 
2017a, [149]]. 

3.7.4    Agonist effects clue towards human-like receptors and VGCC in   

A. castellanii 

One important way to elucidate that the amoebistatic effects of the drugs tested 

(Table-4) occurred at the molecular level of human-like receptors and ion-

channels was to observe if the agonists of these proteins can show growth-

promoting and proliferative effects.  Both ACh (Figure 25  C and second column 

D) and its indirect agonist physostigmine (Figure 25 E) caused growth and 

proliferation of trophozoites.  
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Figure 25. Effects of mAChR agonist in Acanthamoeba trophozoites. 

Effects of agonists of cholinergic receptors in Acanthamoeba trophozoites 
1x106 after 24h showed that as compared to control PYG medium (40x) (A) the 
proliferation of trophozoites continued without signs of encystation in PBS with 
ACh (B and the fifth in column-D). The proliferation of Acanthamoeba 
trophozoites continued with ACh despite the depletion of yeast in the growth 
medium (C and the second column in D) with peptone and glucose (PG) alone. 
Indirectly acting cholinergic agonist Physostigmine also showed proliferative 
effects in Acanthamoeba trophozoites as compared to controls (E). (** P-value 
<0.05, paired t-test; one-tail distribution). The results are representative of at 
least three independent experiments performed in duplicate. The data are 
presented as means and standard errors. [[Adapted from Baig AM, 2017a 
[149] and Baig AM, 2018 a, [160]]. 

 

Due to the unavailability of direct agonists of VGCC to antagonize VGCC 

blockers at their binding sites, we tested an indirect agonist Potassium chloride 

(KCL) instead (normally used in experiments involving tissue baths to open 

VGCCs), to alter the transmembrane potential in cells, to open unbound VGCC 

like proteins in A. castellanii. 
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    Figure 26.  Effects of KCL and VGCC blocking drugs on Fura-2 AM 
staining in Acanthamoeba trophozoites. 

Top row: Control shows Fura-2 AM staining in trophozoite compared to KCL in a 
dose of 20mM showed slightly enhanced staining with KCL alone (last two images).  

Middle row: KCL, when tested with 100 µg/ml of the VGCC blocking drugs showed 
to oppose the effects of gabapentin and nifedipine (bright staining), but not 
verapamil. 
 
Bottom row: Effects of VGCC blockers alone in a dose of 100 µg/ ml each for 
comparison. [Unpublished Data and partly adapted from Baig AM, 2019d j [156]- 
Methodology described in chapter-2, page #46] 
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This experiment showed that KCL like in human cells can open VGCC (Figure 

26-top row) and oppose the effects of drugs like nifedipine and gabapentin but 

could not effectively oppose the effects of verapamil (Figure 26 middle-row).      

3.8 Elucidation of cell death mechanisms in Acanthamoeba trophozoites 

and cysts 

3.8.1    Cytotoxic death in Acanthamoeba trophozoites  

We used a combination of methods to demonstrate the cytotoxicity (amoebicidal 

effects) exerted by the drugs tested (Table-4) in Acanthamoeba trophozoites. 

Trypan blue staining (detailed above- Figure 13, 14, 16, 18, 21, 24), FACS 

analysis of the drug-treated cell, and staining with propidium iodide (PI) were a 

few of the various methods (detailed below in Figure 28) that were used to 

demonstrate the necrotic cell death in the trophozoites incubated in the in vitro 

assays. In almost all the cases the trophozoites presumed to be dead after 

exposure to the drugs were re-incubated in PYG to look for re-emergence of 

motile amoebal trophozoites. The latter was also done for the confirmation of 

cysticidal assays (Figure 13). Also, the trophozoites, considered to be dead, 

were tested by co-incubation with HBMEC to observe any cellular damage. The 

trophozoites were considered to be dead if only the mono-layers of HBMEC 

were seen to be intact [Huma K, Baig AM, 2014, [135]]. Additionally, to confirm 

the amoebicidal effects, LDH assays were also performed (Figure 27). 

Experiments were repeated several times to assure reproducibility. At times, a 

cluster of trophozoites that turned rounded in few hours and appeared to be 

dead (Figure 21), were observed for periods of 24h, and if the trophozoites 

regained their healthy states, it was reported [Baig AM, 2018d, [147]]. 

 



Experimental Assays, immunostaining, ELISA, colorimetric analysis,   

          FACS analysis and DNA staining. 

77 

 

 

  Figure 27. 1x106 A. castellanii trophozoites were incubated with and 
without drugs.  

The supernatant was collected from 1x106/trophozoites/well and LDH 

concentration was measured in each sample by using the LDH assay kit. Results 

showed that LDH was released (y-axis) by exposure to all drugs in various 

concentrations (x-axis) in a dose-dependent manner. A paired student t-test with 

one-tail distribution was used, *P<0.05, **P<0.01, ***P<0. 001. The results are 

representative of at least three independent experiments performed in duplicate. 

The data are presented as means and standard errors. [Unpublished data- 

methodology described in Chapter-2, Page # 43] 
 

 

3.8.2   Programmed cell death: Apoptosis like features induced by drugs   

in A. castellanii 

Some of the drugs tested in A. castellanii in the assays showed amoebicidal 

effects by possibly evoking a programmed cell death (PCD) like mechanism as 

indicated by morphological features akin to apoptosis (Figure 28, and 29). 

Expression of morphological features like formation and shedding of blebs on 

the cell surface in A. castellanii trophozoites was observed after exposure to low 
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doses of loperamide (Figure 29, A) [Baig AM, 2017d [141]] and digoxin [Baig 

AM, 2016b [161]], which is akin to an apoptotic form of PCD [162, 163]. Similar 

features were also observed with known apoptotic drugs like doxorubicin and 

etoposide (control) (Figure 28, D) in Acanthamoeba trophozoites. Our studies 

reported a form of PCD that resembles eukaryotic apoptosis in A. castellanii 

[Baig AM 2017c [164]]. A few studies were done in the same year 2017 [155, 

165] also provided evidence for PCD in Acanthamoeba spp., reinforcing the 

hypothesis that this unicellular eukaryote has the adaptor proteins that are 

required to cascade a PCD-like cell death. Our studies showed Acanthamoeba 

trophozoites after incubation with etoposide exhibited surface blebbing (a known 

feature of apoptotic bodies) (Figure  28, C) with phosphatidylserine staining 

Annexin-V [Baig AM 2017c [164]] and fragmented DNA staining (a known 

feature of cells undergoing apoptosis) with Acridine orange (Figure 28-A) [Baig 

AM, 2017d, [141]].  On flow cytometry, the trophozoites exposed to digoxin 

40µg/ml with 7-Aminoactinomycin (7AAD), normally extruded by viable cells with 

intact cell membranes, was used instead of propidium iodide to measure cell 

death induced by digoxin. The trophozoites scattered first toward early and then 

late apoptotic zones (Figure 28-B, B2-B3 respectively).  DNA laddering (a known 

feature of apoptotic cells) was also noted in trophozoites exposed to loperamide 

(data not shown) at a dose of 100 µg/ml [Baig AM 2017c [164]]. The evidence 

for the presence of adaptor proteins needed to execute the intrinsic pathway of 

apoptosis was identified in A. castellanii. (details in next chapter) and the 

evidence of apoptosis-like PCD was published [Baig AM, 2017c, [164]].   
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Figure 28. Programmed cell death in Acanthamoeba trophozoites. 

(A) Acanthamoeba trophozoites after incubation with 100 µg/ml of loperamide, 
acridine orange (AO) staining shows a progressive increase (1h, 6h, 12h) in 
staining that maximized at 18h. 

(B) FACS analysis showing the A. castellanii incubated with 40µg/ml of digoxin 
and 10μg/ml 7-Aminoactinomycin D (7-AAD). The cells (B1) started scattering 
towards early apoptotic- Q4- (B2) and towards the late apoptotic zone -Q2- (B3) 
at the16th -18th hours after drug exposure.  

(C) Annexin-V-FITC Conjugate (green). Red = propidium iodide (fluorescent DNA 
dye) (40x) images of Acanthamoeba trophozoites after incubation with etoposide 
at 18h. Note membrane blebbing (arrows), a known morphological finding of cells 
undergoing apoptotic.   

(D-D1) Annexin V-FITC Conjugate (green). Red = propidium iodide (PI) 20x images 
of Acanthamoeba trophozoites under normal light (D) and Acanthamoeba 
trophozoites under a fluorescent microscope (D1) at 24h after incubation with 
doxorubicin. AO/PI staining with 250 µg/ml of loperamide show mostly necrotic 
trophozoites 12h after incubation (E).  [Partly adapted from Baig AM, 2017c [164], 
and [Baig AM, 2016b [161]]. 
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Figure 29. 20x Images of loperamide treated A. castellanii trophozoites: 

(A)  Solvent control in PYG (B) loperamide100 µg/ml (C) loperamide 250 
µg/ml.(A1) A. castellanii was seen under normal light at 6h after loperamide 
100 µg/ml. 

(A2) Annexin V exposed trophozoites of A. castellanii seen under FITC at 6h  
 after loperamide 100 µg/ml. No Annexin V fluorescence of the cell membranes 
seen. 
 
(B1) Acanthamoeba trophozoites were seen at the 18th-hour loperamide under 
normal light. (B2) Annexin-V stained Acanthamoeba under FITC at 18th hour.  
 
(C1) PI stained Acanthamoeba incubated with 250 µg/ml of loperamide after 
12 hours of drug exposure, under normal light. 
 
 
(C2) Necrotic PI stained A. castellanii trophozoites incubated with 250 µg/ml of  
loperamide after 12 hours. Green/Red filter excitation at 540/25nm and 
emission at 655/55nm maximum. [Adapted from Baig AM, 2017a [141]] 
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3.9 Summary of findings 

Experiments done in A. castellanii trophozoites and cysts by drugs targeting 

Ca2+ homeostasis in humans (Table-4) showed amoebicidal, amoebistatic, and 

cysticidal effects. Repeatedly, the assays showed the drugs when used alone 

and in combinations were able to affect the growth and viability of A. castellanii. 

The VGGC targeting drugs in particular like amlodipine, nifedipine, verapamil, 

loperamide, amiodarone, and gabapentin directly affected the viability of the 

trophozoites of A. castellanii. Staining with Fura 2 AM showed the dysregulation 

in cytosolic Ca2+ induced by the drugs VGCC blocking drugs used in the 

experimental assays. The use of divalent cation chelating agents like EDTA and 

pirenoxine, which restricts the uptake of Ca2+ions, also proved to inhibit the 

growth and affect the viability of A. castellanii. The drugs that affect the 

intracellular pH by inhibiting the enzyme carbonic anhydrase and therefore the 

ionic state of calcium, like acetazolamide were also seen to exert dose-

dependent amoebistatic and amoebicidal effects. Drugs that act as a cholinergic 

antagonist on muscarinic GPCRs known to be coupled with Ca2+ channels [143] 

also proved to be amoebistatic and amoebicidal A. castellanii. To validate that 

the effects of muscarinic GPCR antagonists like atropine, pirenzepine, and 

dicyclomine, immunostaining was done with anti-human mAChR1 antibody to 

show the expression of human-like mAChR1 receptor in A. castellanii. A 

cholinergic cascade and the presence of ACh were further documented in A. 

castellanii. To emphasize the rationale of the existence of human-like VGCC in 

A. castellanii, KCL was used to affect the transition of VGCC in A. castellanii. 

Finally, the mechanisms involved in cell death-like apoptosis and necrosis were 

shown. To show that trypan blue staining was due to cytotoxic effects of the 

drugs tested in our experiments, LDH release assays were done (Figure 27). 

Apoptosis was validated by Acridine orange and Annexin -V staining and 

experiments showing DNA laddering [Baig AM 2017c [164]]., a hallmark of 

apoptosis. Taken together we were able to show the significance and the validity 
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of the rationale of Ca2+ homeostasis affecting the growth and viability in A. 

castellanii, on which the studies were based.  

3.9.1   Discussion  

In the post-genomic era, the application of omics-based methodologies such as 

proteomics and transcriptomics has extended our understanding of parasite 

biology [2] and enabled the drug target prediction in general and in parasitic 

diseases with high mortality rates like malaria [167]. In the pre-genomic era in 

vitro testing of drugs in Acanthamoeba trophozoites and cysts that are 

prescribed in non-infectious conditions in humans can be traced back to 1970 

and 1980s [98]. In 1984, the phenothiazine group of compounds like 

trifluoperazine dihydrochloride and chlorpromazine hydrochloride was shown to 

exhibit in vitro activity against the pathogenic free-living amoebae N. fowleri, A. 

culbertsoni, and A. polyphaga. Later again, the phenothiazines (chlorpromazine 

and trifluoperazine) were tested to show 70-90% of inhibition of Acanthamoeba 

growth by 5 and 10 µg/ml of the drugs [168, 169] with the uncertainty of the drug 

targets in Acanthamoeba spp.  The molecular targets of the above-mentioned 

drugs were unclear. It was thought that either there was a sensitivity of amoebal 

calcium regulatory protein to the phenothiazine compounds or that the effects 

observed were due to the lipophilic action of the drugs on the amoeba plasma 

membrane [99, 168, 169]. A few plant products were also tested in vitro and 

three plants (Ipomoea sp., Kaempferia galanga, and Cananga odorata) were 

found to be cytotoxic for all three species of Acanthamoeba and an extract 

prepared from the plant Gastrochilus panduratum was lytic for A. polyphaga and 

growth-inhibitory for A. castellanii and A. culbertsoni [170, 171].  Miltefosine, an 

alkylphosphocholine was tested against Acanthamoeba spp and other parasites 

like Leishmania spp. and Trypanosoma cruzi and Trypanosoma brucei spp in 

2003 [172] and again in 2009 [173]. Miltefosine is not a conventional antibiotic 

or anti-parasitic agent but exhibited anti-parasitic effects. Drugs having anti-

malarial effects with unclear cellular targets like Artemether have also been 

shown to exert anti-amoebic effects against Acanthamoeba spp. [174]. The use 



Experimental Assays, immunostaining, ELISA, colorimetric analysis,   

          FACS analysis and DNA staining. 

83 

 

of atropine and analgesics in the form of eye drops had been reported to cure 

few cases of AK without any explanation of the molecular targets in 

Acanthamoeba spp. [175]. Other chemical compounds like caffeine and Maslinic 

acid are examples of other non-antimicrobial agents that have been tested and 

reports suggest they affect the growth and viability of Acanthamoeba by 

programmed cell death [176]. The drugs that are used to treat AK and GAE 

clinically in the past like fluconazole and sulphadizine shows that the cellular 

components unique to Acanthamoeba trophozoites were targeted to minimize 

adverse effects during the chemotherapy [16, 17, 36]. Given the drugs that are 

directed against molecular targets unique to Acanthamoeba spp. have not been 

able to minimize morbidity and mortality associated with AK and GAE 

respectively, as can be gauged by the morbidity seen in AK and the existing 

mortality observed in GAE. There is a need to introduce safer agents (Figure 

10- blue-text) with the potential of repurposing, if possible. As evolutionarily 

humans share several proteins and enzymes with other unicellular eukaryotes 

[111, 177] we hypothesized the presence of homologs of diverse forms of 

protein in Acanthamoeba spp. as has been shown in the past [11, 169, 173]. Of 

the drugs tested in the past and experimented in our assays, are the neuroleptic 

agents belonging to the phenothiazine class drugs like prochlorperazine, 

chlorpromazine, and haloperidol which has a high margin of safety (therapeutic 

index) in humans (oral LD50 of 500 to 5000 mg/kg) [159]. This group of drugs, 

in particular, are important as they could be of value for human testing in 

Acanthamoeba infection and possibly repurposing them in AK and GAE. 

Recently our published study has shown that a drug-related to this class, 

promethazine exerts amoebistatic and amoebicidal effects in Acanthamoeba 

trophozoites in doses as low as 62.5-100 µg/ml. [Baig AM, 2019h, [157]].  

Of the drugs tested initially in high doses (250-500 µg/ml), in subsequent studies 

and later by LDH release assays (Figure 27), it was shown that the selected 

drugs (Table-4) exhibited amoebicidal effects in A. castellanii trophozoites in the 

lower doses. 
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3.9.2   Summary 

Drugs used in in vitro assays in A. castellanii have multiple known molecular 

targets in humans (Figure 10), but one feature that is common to most of them 

is that they directly or indirectly were seen to influence the Ca2+ ion 

concentration in A. castellanii. The selection of drugs (Table 4) that are already 

approved by drug regulating agencies and target the Ca2+ homeostatic 

pathways was made. The data presented in the experiments indicate distinct 

evidence of the Ca2+ ion homeostasis regulating VGCCs and proteins like CaM 

in A. castellanii as potential drug targets that can be exploited to obtain 

amoebicidal, amoebistatic, and cysticidal effects. Proteins expressed in form of 

receptors coupled with Ca2+ channels like mAChR are also important druggable 

targets as antagonizing them proved to be amoebicidal and amoebistatic in A. 

castellanii. Also, deprivation of extra-cellular Ca2+ ion by EDTA and pirenoxine 

in our studies has proven to be amoebicidal in trophozoites of A. castellanii.  

3.9.3  Aims Achieved: 

The aims of our studies, as mentioned in chapter-1, that were achieved by the 

published experimental work in a series of papers are listed below: 

 

1. Targeting the Ca+2 homeostasis in Acanthamoeba spp. by drugs already in 

use for non-infectious diseases produced amoebicidal, amoebistatic, and 

cysticidal effects in the trophozoite and cystic forms of A. castellanii 

respectively. 

 

2. Drugs that are known Ca+2 blockers in humans and directly inhibit the VGCC 

in human cells proved to be amoebistatic, amoebicidal, and cysticidal in A. 

castellanii trophozoites in a dose-dependent manner.  
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3. Immunostaining in A. castellanii showed that it expresses human-like 

muscarinic receptors and VGCC in the trophozoite forms, which when 

antagonized, by FDA approved antagonistic drugs of these proteins exhibited 

amoebicidal and amoebistatic effects. 

 

4. Drugs that are known to target Ca+2 homeostasis indirectly in humans 

induced dose-dependent necrotic and apoptotic forms of cell death in A. 

castellanii. 
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4 Identification of drug targets: Bioinformatic computational tools 

and drug docking predictions  

4.1 Introduction:  

The identification of molecular drug targets in a microbe involves a 

diverse range of methodologies as detailed in the chapter-1. The use of 

bioinformatics computational tools in druggable targets have played a 

fundamental role in the repurposing of drugs and novel target discovery 

in microbes [102, 103]. As the knowledge of the molecular basis of 

biological systems evolves, the tools for storing and analyzing the data 

on molecular targets have amplified as well. The methodologies include 

a ligand-based and a structure-based approach (Figure-7). With the 

availability of diverse compound databases, this cost-effective structure-

based or ligand-based strategy has significantly increased the efficiency 

of drug discovery and provide promising avenues to conquer life-

threatening diseases. In the last decades, three-dimensional structures 

for over 50,000 proteins have been deposited in the Protein Data Bank 

(PDB) [178]. Concerning antiparasitic drugs, various well-established 

protein targets have had their structures solved, either by X-ray 

crystallography or NMR methods. Additionally, knowledge obtained from 

the parasite genome databases has been modeled using experimentally 

determined structures as templates [109-111]. The structural information 

of proteins obtained from these genome database repositories has 

opened the avenue to engage screening projects, to determine protein 

targets in specific parasites like A. castellanii. The availability of 

information on the genome, transcriptome, and proteome of A. castellanii 

available in online databases enabled the next step in our studies, which 

was to identify the drug targets hypothesized in A. castellani (aims 

detailed in the chapter-1). The prediction and exploration of the molecular 

targets of drugs used in A. castellani trophozoites were based on the prior 

knowledge of the molecular targets [101, 159] of the drugs in humans 
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(Table-5) that had shown in vitro amoebistatic, amoebicidal and cysticidal 

effects in A. castellani (as detailed in chapter-3). Genomic, proteomic, 

and transcriptome information coupled with the use of bioinformatics 

computational tools can be an enormous source to investigate the 

expression of molecular drug targets. Bioinformatics encompasses a 

diverse range of computational tools to facilitate sequence alignment and 

homology modeling (Figure-7), database design and data mining, 

macromolecular geometry, construction of the phylogenetic tree, protein 

function prediction, gene discovery, and expression data clustering [144]. 

The methodological approach and tools used in drug target discovery in 

our studies are detailed in length in the methodology section (chapter-2) 

which was designed to achieve the aims like a)- Identification of a 

primitive protein homolog (by BLASTp) of the molecular target of the 

drugs tested in experimental assays. b)- Build template-based models of 

the Acanthamoeba protein identified as a drug target homolog in BLASTp 

searches and spot amino acid sequence similarities in the ligand-binding 

pockets between model and template developed for Acanthamoeba 

proteins,  c)- Predict the docking of the drugs tested in experiments on to 

the templates developed for A. castellanii proteins. As based on the 

evolutionary distance that exists between human and Acanthamoeba 

spp., the proteins encoded in Acanthamoeba were expected to have 

differences in chain length and amino acids sequences (except for the 

ligand/drug binding orthosteric sites), a ligand-based homology modeling 

to determine amino acid similarity in the orthosteric ligand/drug binding 

site was considered to be cardinal to explain the drug effects seen in the 

in vitro tests (detailed below).  
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Table 5: Published papers on human-like receptors and proteins 
targeted in vitro by drugs in Acanthamoeba trophozoites and cysts. 

[++++: 80-95%, +++ 60- 75%, ++, 50-55%] 

Drugs Target receptors and 
proteins in Humans 

Approval 
status 

Effects in 
Acanthamoeba 

Year of 
Publication 

• Amlodipine 
 

 

• Loperamide 
 

 

• Gabapentin 

VGCCs, CA, 

 

                              
TPC1, CaM, Opioid 
receptors 

 

      VGCC: 
alpha2/delta1 

FDA 
approved 

 

FDA 
approved 

Amoebicidal 
++++                           

Amoebicidal++ 
(cysticidal ++ 
loperamide-
amlodipine) 

 

Amoebicidal+++ 

Baig AM, 2013 
(Targets 
hypothesized) 

Baig AM, 2017a 

 

 

Baig AM, 2019b 

• Chlorpromazine 
 

 

• Procyclidine 

• Prochlorperazine 

• Haloperidol 

• Atropine 
 

 

Multiple GPCRs 

 

 

mAChRs, 

mAChRs, CaM, 

alpha-adrenergic, D2, 

mAChRs, 

 

FDA 
approved 

Amoebicidal +++ 

 

 

Amoebicidal+++    

 

/ (cysticidal ++ 
prochlorperazine
) 

Schuster, F -
1984 

(targets not 
reported) 

Baig AM, 2013-
14 

 

Baig AM, 
2017b 

Baig AM, 2019 

• Digoxin 
 

• Promethazine 
 

Na-K ATPase, 

 

mAChRs, 

5HTalpha-adrenergic, 
D2, CaM, histaminergic 

FDA 
approved 
FDA 
approved 

 

Amoebicidal +++ 

 

Amoebicidal +++ 

Baig AM, 2016 

 

Baig AM, 2019 

• Amiodarone K- channel, Na- 
channel, ergosterol 
synthase 

FDA 
approved 

Amoebicidal ++ Baig AM, 
2017d 
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4.2 Materials and Methods  

The bioinformatics computational tools that were used in the published 

studies to identify potentially druggable targets in A. castellanii include a 

combination of methodologies (detailed in Chapter-2, section-2) to 

provide the evidence of possible drug targets in A. castellanii. The 

sequence of known molecular drug targets in humans of the drugs tested 

in A. castellanii (Table-5- 2nd column) were downloaded from National 

Center for Biotechnology Information (NCBI) [138] and UniProt [143]. The 

sequence of these proteins was searched for a homolog (evolutionarily 

related protein) in the A. castellani genome by selecting Acanthamoeba 

as the target organism using the BLASTp tool. Sequence similarity 

estimations were aimed to establish the possibility for sequence 

homology that has possibly existed during eukaryotic evolution. For the 

search of molecular drug targets in Acanthamoeba castellanii, proteins in 

Acanthamoeba spp. that had attributes (protein family, GPCR, and Ca2+ 

• Apomorphine 
 

D2-agonist 

5HT-antagonist 

FDA 
approved 

Amoebistatic ++ Baig AM, 2013 

• Nifedipine 

• Verapamil 

• Diltiazem 

VGCCs, L-type, N-type, 
and P/Q -type 

 

FDA 
approved 

Amoebicidal +++ 

Cysticidal + 

Baig AM, 2019j 

 

• EDTA 

• Pirenoxine 
 

• Acetazolamide 
 

 

 

• Etoposide, 
Doxorubicin 

Ca2+ Ions – chelators 

 

Carbonic anhydrase 
and AQP inhibitor 

 

 

Intrinsic apoptosis 
adaptor proteins like 
cytochrome-c 

FDA 
approved 

 

FDA 
approved 

 

 

FDA 
approved 

Amoebistatic 
+++/Amoebicida
l++ 

Amoebistatic++ 

 

 

           
Programmed 
cell death: 
Apoptosis 

Baig AM 2019i 

 

Baig AM, et al. 
2019b 

 

 

Baig AM, 
2017e 
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binding attributes) similar to human drug targets were selected and 

investigated for sequence similarities, ligand binding prediction, 

homology modeling, and drug docking predictions. The A. castellanii 

genome sequences databases that are freely available at The NCBI 

[138], UniProt [143], EBI Europe [179], DDBJ japan [180], AmoebaDB.org 

[181] were accessed to retrieve the genomics, transcriptomics, and 

proteomics data of Acanthamoeba trophozoites. Proteins with transcript 

identities ACA1_xxxxxx (x denotes a six-digit unique identity) were 

downloaded from the AmoebaDB.org database for comparison with 

similar proteins in humans. Homology modeling was performed for 

Acanthamoeba protein that was found to be homologs of human proteins 

drug targets for determining  unique attributes of amino acid sequence 

and orientation in the drug binding pockets between the proteins 

compared. Rectangular cladograms and circular (sunbursts) trees using 

NJ method were constructed to show the distribution of the protein drug 

targets in the eukaryotic time-line. Finally, molecular modeling softwares 

was used to predict the docking of the drugs (Table-5) on the templates 

developed for the Acanthamoeba proteins.  

4.3 The Transcriptome of Acanthamoeba castellanii trophozoites.  

4.3.1    Evidence of mRNA encoding drug target proteins in 

Acanthamoeba spp. 

ACA1_167020, ACA1_092610, and ACA1_270170 are Acanthamoeba 

proteins with attributes of calcium ion-channel, ion-transport and 

evolutionarily belong to the family from which human VGCC has possibly 

evolved [Baig AM, 2017d [141]] were reported to be possible drug 

targets of loperamide, amlodipine, gabapentin [Baig AM, 2019d, [146]], 

[Baig AM, 2017h, [141]]. The percentages of mRNA encoding these 

proteins were retrieved from AmoebaDB.org (Fig 32-top row). This was 

done to analyze the active expression and ranking of expression for this 
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gene compared to all other genes expressed in A. castellanii. mRNA 

encoding the ACA1_167020 and ACA1_092610 showed around 75% 

and 65% expression while ACA1_270170 exhibited below 50% of mRNA 

expression [Baig AM, 2019d, [146]], (Figure 32 -left to right: top row). 

Acanthamoeba ACA1_366720 is a putative CaM and like human CaM is 

composed of 149 amino acids. This protein and its orthologs in A. 

castellanii like ACA1_280720 were hypothesized to be the target of drugs 

like loperamide [Baig AM, 2017d [141]], prochlorperazine [Baig AM, 

2013, [134]] and promethazine [Baig AM, 2019h [181]]. The mRNA 

encoding ACA1_280720 and ACA1_366720 showed above 85% and 

65% of the mRNA encoding these proteins in the transcriptomic database 

of Acanthamoeba castellanii trophozoites [175] (Figure 32, 4th from the 

left in the top row). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 30. Transcriptomics of human-like proteins that were 
hypothesized as drug targets in Acanthamoeba trophozoites. 
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The percentile graph shows the ranking of expression for genes of 

Acanthamoeba proteins that are related to Ca2+ homeostasis (top-row), 
cholinergic receptor and pathways (middle-row), and targets indirectly 
affecting Ca2+ ions (bottom row) compared to all other genes expressed in 
A. castellanii.  [Adapted from Baig AM, 2019d [182]]. 

 

4.4 Induction of CaM gene expression in A. castellanii  

Reverse transcription-polymerase chain reaction (RT-PCR) with Real-

time polymerase chain reaction (qPCR) were done for measuring mRNA 

encodings and cloning CaM from human cells, we thought it would be 

exciting to test the same in Acanthamoeba spp. by using primers 

prepared against human CaM nucleotides in WBCs and prostate cancer 

cells.  We surprisingly found that the primers prepared to synthesize 

cDNA of CaM from human WBCs and human cancer cell nucleotides 

(mRNA) of (PC-3, DU145 cells) were also able to induce the synthesis of 

the CaM in Acanthamoeba castellanii   T4 genotype (Figure 31). The 

similarities of Acanthamoeba castellanii mRNA against the forward and 

reverse primers are shown (Figure 31 A) and detailed in the methodology 

section (chapter-2). With a total of 13 and 11 identical positions in the 

forward primer and reverse primer respectively, the cDNA formed was 

able to induce the synthesis of CaM in A. castellanii (Figure 31 B1-B2) 

and fold difference in CaM expression in the target gene was normalized 

to β-actin relative to the expression at time zero (Figure 33 B2). A near-

identical sequence similarity (85.3%) between human CALM-1 

(NP_008819.1) and Acanthamoeba putative CaM (ACA1_366720) 
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(detailed below), provides a possible explanation for the reason for CaM 

synthesis and expression as was observed in this experiment. 

 

Figure 31. Reverse transcription-polymerase chain reaction (RT-PCR) 
with Real-time polymerase chain reaction (qPCR) 

(A-Top row) Human calmodulin 1(CALM 1) mRNA with a forward 
primer (green-box) and reverse primer shown (brown-box). (A-bottom row) 
BLASTn results of human (query) and Acanthamoeba (sbjct) CaM with 
mounted primers in colored boxes. Targeted CaM DNA amplification in 
Acanthamoeba during the PCR was performed using primers used for human 
CALM1 in WBC and PC3 cells. Amoebal mRNA aligned with human CALM1 
mRNA showed 13 and 11 identical positions with the forward primer and 
reverse primer respectively (A-bottom row) (B) Comparative expression 
levels of CaM (stars in B1 and B2) in prostate cancer PC3 cells, white blood 
cells (WBCs) and ACA Acanthamoeba (ACA-3rd Lane-B1 and ACA-deep 



Identification of drug targets: Bioinformatic computational tools 

and drug docking predictions  

94 

 

yellow star-B2) alone and along with Trifluoperazine (TFP) are shown that 
binds CALM 1 (green lines, without stars). Fold difference in CaM expression 
in the target gene was normalized to β-actin relative to the expression at time 
zero. PCR cycles performed with ambient airflow to maintain temperature and 
relative fluorescent units (RFU) are shown (B2) [Unpublished data Method 
described in Chapter-2 Page # 51] 

 

4.5 mRNA encoding human-like cholinergic enzymes and mAChR 

like proteins 

The Acanthamoeba castellanii hypothetical protein (GenBank ID: 

ACA1_153000: Uniprot-ID; L8HIA6) was hypothesized to be a human 

acetylcholine binding mAChR1-like protein, a target of drugs like 

muscarinic antagonists [Baig AM, 2017a, [149]]. The expression of 

mRNA encoding this protein (Figure 30, the first histogram in 2nd row) and 

human-like choline acetyltransferase and cholinesterase (Figure 30, last 

two histograms in 2nd row) that are involved in acetylcholine (ACh) 

synthesis were also retrieved [Baig AM, 2018 a, [160]] (Figure 30, 2nd 

row).  

4.6 mRNA encoding K-channels, Na-K ATPase, and cytochrome -C  

In our studies done in vitro, Acanthamoeba castellanii trophozoites 

exhibited susceptibility to drugs like amiodarone [Baig AM, 2017e [142]] 

(targets human K-channels-Irk), digoxin [Baig AM, 2016b [161]] (inhibits 

Na-K-ATPase), and intrinsic apoptosis-inducing drugs (inducing 

cytochrome-c release) like doxorubicin and loperamide [Baig AM, 2017 

[141, 161]]. The mRNA encoding the above proteins in Acanthamoeba 

castellanii (Figure 30-bottom row) were retrieved from AmoebaDB.org to 

estimate their expression levels. 

 

 



Identification of drug targets: Bioinformatic computational tools 

and drug docking predictions  

95 

 

 

 

4.7     BLASTp results and phylogenetics of human-like drug 

targets in A. castellanii. 

4.7.1    Identification of Human-like VGCC and CaM in 

Acanthamoeba castellanii.  

The target proteins inhibited by loperamide, amlodipine, nifedipine, 

verapamil, and gabapentin include diverse types of human VGCCs (Table 

5). The protein sequence of human VGCCs like two-pore (TPC), human-

L-type1.1/, alpha-2/delta1, and 1.2, P/Q type 2.1 were searched (detailed 

in chapter-2)  for proteins with sequence similarities in Acanthamoeba 

genome databases to identify VGCCs like targets in A. castellanii. The 
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BLASTp search showed Acanthamoeba  ACA1_092610, ACA1_270170, 

and ACA1_167020 to have sequence similarities with human VGCCs. 

The  

Figure 32. BLASTp results of Acanthamoeba protein ACA1_167020. 

(A) The alignment scores of ACA1_167020 by BLASTp search in NCBI. (B-

D) BLASTp results show functional annotation, sequence identification, and 

homologs (highlighted blue boxes -right panel) with scores, and e-values 

(shown above the highlighted boxes). BLASTp results show human TPC1, 

TPC2, and CAC1F VGCC as homologs of Acanthamoeba  ACA1_167020   

[Adapted from Baig AM, 2017d [141]]  

 

BLASTp results showed its sequence similarities with human TPC-1, 

TPC-2, and VGCC of L-type (Figure 32). The protein sequence alignment 

scores of ACA1_167020 BLASTp in NCBI and EMBL-EBI BLASTp 

results against five to nine databases are shown (Figure 32 B-D). The 

ACA1_167020 gene showed two conserved domains for Ion-trans family 

protein (Figure 33 A) and its evolutionary associations with human 

VGCCs as shown in the phylogenetic tree and the sunburst developed by 

MSA in NCBI and Pfam database (Figure 33 B, C).  



Identification of drug targets: Bioinformatic computational tools 

and drug docking predictions  

97 

 

 

 

Figure 33. Highlights of the Ion-trans domain in the ACA1_167020 
gene and its phylogenetics.  

(A) The ACA1_167020  gene has two Ion_trans domains (green stars-A). 
(B) The VGCC superfamily in the Pfam database (using NJ method) 
showed Ion_trans_2 as a member of the Clan Ion channel (CL0030) from 
which the VGCCs are derived and are shown to be distributed across 
prokaryotes (right panel: green color in sunburst), fungi, unicellular 
eukaryotes and humans (purple color in sunburst with a white arrowhead at 
the margin). (C) Phylogenetic neighbor-joining (NJ) method (left-panel) 
showed the two-pore channel (TPC1 and TPC-2) type human VGCC and 
ACA1_167020 to share a common ancestor (3rd internal node from the left). 
[Adapted from Baig AM, 2017d [141]]. 

The Acanthamoeba protein ACA1_092610 is an EF-hand domain-

containing protein with a calcium-binding domain [181]. The sequence of 

this protein on a BLASTp search showed similarities of these proteins 
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with human diverse types of human VGGCs (Figure 34). The protein 

sequence alignment scores of ACA1_092610 BLASTp in NCBI (Figure 

34 A) and EMBL-EBI automated servers (Figure 34 B-D)  

 

Figure 34. BLASTp results of ACA1_092610 

(A)The alignment scores of Acanthamoeba protein ACA1_092610 by BLASTp 
search. (B-D) BLASTp results (rows with colored bars) show sequence 
identification, functional annotation, and homologs (highlighted blue boxes - 
the right panel) with scores, and e-values (shown above the highlighted blue 
boxes). BLASTp generated human TPC1, TPC2, and L-type human VGCC as 
homologs of Acanthamoeba   protein ACA1_092610 [Adapted from Baig AM, 
[141, 146]] 
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against five to nine databases to find regions of sequence similarity 

generated functional and evolutionary features resembling human 

VGCCs. ACA1_092610the sequence showed human-like VGCCs like 

family domains with significant scores and e-values in BLASTp results 

(Figure 34 B, C, D). The ACA1_092610 gene showed two conserved 

domains for Ion-trans family protein (Figure 35 A-top panel) and its 

evolutionary associations and attributes like human VGCCs as shown 

in the phylogenetic tree and sunburst developed by MSA in NCBI and 

Pfam database (Figure 35 B, C). Ion-trans-2 family protein and the 

VGCC derived from this family are distributed across species as 

shown in sunbursts generated in the Pfam database (Figure 35 right 

panel).  
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Figure 35. Evolutionary distribution of the Ion-trans 2 domain in 
ACA1_092610. 

(A) The ACA1_092610 gene has two Ion_trans domains (green stars). (B) 
The evolutionary origins of a VGCC superfamily developed in the Pfam 
database (using JN-method), showed Ion_trans_2 as a member of the Clan 
Ion channel (CL0030) from which VGCCs are derived and reported to be 
distributed across prokaryotes (right panel: green color in sunburst), fungi, 
early uncharacterized eukaryotes and humans (purple color in sunburst with 
a white arrowhead at the margin). (C) The rooted rectangular cladogram 
server (left-panel) shows protein ACA1_092610 to share a common 
ancestor with various types of known human VGCCs (second internal node 
from the left). Phylogenetic neighbor-joining (NJ) method showed rooted 
rectangular cladogram showing the origins and distribution of human two-
pore VGCC -2 (TPC-2) and Acanthamoeba VGCC-like protein 
ACA1_092610 can be traced back to a common ancestor (node at the 
extreme left) [Adapted from Baig AM, 2017, 2019 [141, 146]] 

 
Another Acanthamoeba protein, ACA1_270170 on the BLASTp search 

showed a similarity of this protein with alpha-2/delta1 VGGCs (Figure 36-

bottom). The BLASTp results (Figure 36 A, C, rows) by fetching data from 

five to nine linked databases to show the functional and evolutionary 

clues towards its structure and function which resembles human VGCC. 

ACA1_270170 sequence showed human-like alpha-2/delta-1 VGGCs 

domain (Figure 36 C). The ACA1_270170 gene showed conserved 

domains for alpha-2/delta-1 (Figure 36-purple segment with annotation) 

and its distribution across species as shown in the sunburst (circular tree 

format) developed in the Pfam database server (Figure 36 C). Pairwise 

alignment of the ACA1_270170 protein sequence with human alpha-

2/delta-1 showed identical Ca-binding sites (Figure 36 A-small black 

arrows) in both protein sequences.  
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Figure 36. BLASTp results and distribution of VGCC alpha2/delta1 
across species. 

(A) Sequence alignment showing identical amino acids in calcium-binding 
residues between human alpha2/delta1 VGCC and ACA1_270170. (B) The 
Pfam automated server using an NJ method, shows a circular tree  
(sunburst) showing the distribution of alpha2/delta1 protein family across 
species from unicellular eukaryotes (white arrow) to humans (black arrow) 
(C) BLASTp results showed functional annotation of VGCC alpha-2 with an 
e-value of 0.001 for ACA1_ 270170 [Adapted from Baig AM, 2019d [146]].  

 
 

Acanthamoeba protein ACA1_366720 is a putative CaM in 

Acanthamoeba spp. Phylogenetics and BLASTp results of CaM showed 

this EF- Hand 7 protein to be evolutionarily conserved across species 

(Figure 37 B) and a sequence identity of 85.3% with human CaM 
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(accession# NP_001316851.1) (Figure 37 A). BLASTp results of 

ACA1_366720 against nine databases highlighted regions of sequence 

similarity with human CaM1-3 with an e-value of 9e-190 (Figure 37 C). 

AmoebaDB [181] showed over 20 orthologs of ACA1_366720 

(accession# XP_004336073.1) putative CaM). 

Figure 37. BLASTp results, Evolutionary origins and functional 
predictions of Acanthamoeba CaM 

(A) Global alignment of two sequences of CaM ( Acanthamoeba spp. and 
human; top and bottom row respectively ) using the Needleman-Wunsch 
algorithm showed 85% sequence identities (B) Sunburst (circular-tree) of 
CaM (EF-hand 7 family) distribution across species in the Pfam database 
using NJ method shows evolutionary conservation of this protein from 
prokaryotes (green area in the sunburst), Acanthamoeba castellanii (black 
arrow at the top) to homo sapiens (white arrow). (C) BLASTp results with 
the functional prediction for Acanthamoeba  XP_004336073.1 showed its 
similarity with human CaM 1 and 3 (C). [Adapted from Baig AM, 2017d 
[141]].                                                                                                                      
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4.7.2   Identification of cholinergic ligand-receptor organizations in 

Acanthamoeba castellanii. 

The Acanthamoeba protein ACA1_153000 like a human- muscarinic 

receptors mAChR showed putative conserved domain of 7tm_GPCR 

superfamily (Figure 38, NCBI-top ) and in the Pfam database (Figure 38 

A), circular tree developed clued towards its evolutionary links to the 

Rhodopsin family (a family to which mAChR belongs) (Figure 38-A) and 

7tm_1 GPCR.  MSA of ACA1_153000 with mAChRs, human GPCR-1/3, 

and Rhodopsin receptor with the development of a phylogenetic tree 

showed its evolutionary links with the 7tm_1 GPCR family (Figure 38 C).  
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Figure 38. BLASTp results, sequence alignments, and Phylogenetic of 
ACA1_153000. 

Acanthamoeba  ACA_153000 gene has conserved domains for 
7tm_GPCR superfamily protein as shown in data retrieved from NCBI 
BLASTp (top panel) and shown in a circular tree (sunburst) (A). 69 
identical positions were shown on Clustal Omega sequence alignment 
of human mAChR1 and  ACA_153000 (B). A rectangular cladogram 
generated showed the common ancestral origin of human mAChR3 
and ACA1_153000 (first orange internal node from the left) (C). MSA 
using Clustal Omega in Uniprot automated server and phylogenetic 
tree using the NJ method showed Acanthamoeba castellanii has a 
single sequence (ACA_153000 ) of 7tm_GPCR family that like human 
mAChRs and Rhodopsin can be traced back to a common node 
[Adapted from Baig AM, 2017a [149]]. 

  On sequence alignment, ACA1_15300 protein with human  

mAChR1(Figure 38 B), 69 identical positions were seen, but the 

sequence identity percentage was low. 
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Figure 39. Sequence alignments of human and Acanthamoeba 
enzymes. 

Acanthamoeba and human choline-carnitine acetyltransferase (top-panel) 
and cholinesterase (bottom-panel) were compared by sequence alignments 
using Clustal Omega in Uniprot automated server showed them to be 
homologs. The distribution of the enzymes across species is shown in Pfam 
using the neighbor- NJ method generated circular trees (left side both panel). 
Note the significant BLASTp scores and e-values for the enzymes 
acetyltransferases (top-panel) and cholinesterases (bottom-panel). 
[Adapted from Baig AM, 2018a [160]]. 

Two cardinal human enzymes cholinetransferase and cholinesterase have 

homologs in Acanthamoeba spp. BLASTp results for human choline 

acetyltransferase and cholinesterase showed a homolog for each enzyme 

in Acanthamoeba castellanii with significant score and e-values (Figure 

39-top-right both panels). Phylogenetic sunburst developed for the choline 

acetyltransferases (Figure 39-top panel) and cholinesterases protein 

family (Figure 39-bottom panel) distribution across species. 
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4.7.3     Identification of human-like individual drug targets in 

Acanthamoeba  castellanii   

Drugs that influence the calcium homeostasis indirectly like amiodarone, 

digoxin, acetazolamide, and apoptosis-inducing drugs also had human-

like molecular targets in Acanthamoeba as detailed below. Amiodarone 

has known pharmacological effects on human-inward rectifying 

K+channel KCN2. [101, 159]. A search for a homolog of human KCN2 in 

Acanthamoeba spp., by BLASTp search, identified a protein 

ACA1_202400  
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Figure 40. BLASTp results, Phylogenetic and functional predictions of 
ACA1_202400 K+ channel protein. 

(A) BLASTp results showed protein ACA1_202400 as a homolog of human 
KCN2. Pfam database showed the domain of IrK in the ACA1_202400 gene 
(A-green segment) and the circular tree (sunburst)  (B) showed the 
distribution of the IrK family of protein across species (B-arrows). Sequence 
alignment with similarities in the motif (C) and the BLASTp results showed 
ACA1_202400 to be an IrK protein (D). [Adapted from Baig AM, 
2017e[142]] 

as the closest match of KCNH2 [Baig AM, 2017e, [142]]. Pfam database 

showed the domain of IrK in the ACA1_202400 gene (Figure 40 A-green 

segment) and a sunburst of the distribution of this family protein across 

species (Figure 40 B). Sequence alignment showed similarities in domain 

and motifs (Figure  40 C) and functional prediction for the ACA1_202400 

(Figure 40 D). 

Figure 41. Multiple sequence alignment, evolutionary distribution, and 
functional predictions for ACA1_108830. 
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(A) MSA between human lanosterol synthase, ACA1_108830 cycloartenol 
synthase, and lanosterol synthase of T.cruzi showed identical active and 
binding sites (top-panel). (B) A rectangular cladogram shows the 
evolutionary origins of ACA1_108830 cycloartenol synthase, human and 
T.cruzi lanosterol synthase (blue nodes and branches). (C) BLASTp  
identified ACA108830 and human lanosterol synthase to be homologs 
(bottom panel) [Adapted from Baig AM, 2017e[142]] 

 

As Amiodarone has been shown previously to target lanosterol synthase 

in Trypanosoma cruzi [183],  it was hypothesized that the presence of a 

similar enzyme in Acanthamoeba spp. could have contributed to the 

amoebicidal effects reported in our studies. BLASTp results showed a 

lanosterol synthase-like protein both in Acanthamoeba  (ACA1_108830) 

and the human genome (accession # P48449). MSA of the enzyme from 

three species showed the proteins exhibit similar binding and active sites 

(Figure 41, top-panel green-red highlights). The phylogenetic tree using 

the NJ method constructed by the NCBI automated server showed an 

evolutionary distribution of lanosterol synthase across species (Figure 41 

middle panel). BLASTp showed ACA1_108830 to be near identical to 

human and T.cruzi enzymes (Figure 41-bottom panel).   

Digoxin is a drug that is known to target Na-K ATPase in human cells. 

BLASTp search for the presence of a homolog protein in Acanthamoeba 

spp. fetched ACA1_313610 as a match for human Na-K ATPase with 

30% sequence identities, higher scores, and an e-value of 1e-120. 

(Figure 42 A). The human gene for Na-K ATPase has a cation ATPase 

domain (Figure 42, A-green circle). BLASTp results of Acanthamoeba  

ACA1_313610 showed human Na-K ATPase as a match with a score of 

1012 and an e-value of 1e-120. A circular tree showing the distribution of 

the cation ATPase domain of human Na-K ATPase showed its origins in 

prokaryotes (Figure.42 C-green), humans, and Acanthamoeba  spp  

(Figure 42 C – inserts with arrows) 
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     Figure 42. BLASTp results, conserved domains, and evolution of 
Cation_ATPase family. 

The human gene for Na-K ATPase (NP_001153705.1) has a cation ATPase 
domain (A-green circle). Acanthamoeba  P-type ATPase ACA1_313610 has 
a conserved domain for cation ATPase (arrow with a green star). (B)  
BLASTp results of Acanthamoeba  ACA1_313610 showed human Na-K 
ATPase as a match with a sequence identity of 30%, a score of 1012, and 
an e-value of 1e-120. (C) Pfam using the NJ method shows a sunburst 
(circular tree) reflecting the distribution of the cation_ATPase protein domain 
across species (C-arrows). The cation_ATPase domain showed its origins in 
prokaryotes (C-green area), Acanthamoeba castellanii, (C- upward-directed 
arrow), and homo sapiens (C- downward directed arrow) [Adapted from 
Baig AM, 2016b [161]]. 

 

In studies mentioned above, amoebicidal effects were observed with 

amlodipine in doses as low as 25-30µg/ml in Acanthamoeba. This drug 

has a proven antagonist action on human VGCCs but has been reported 

to have other cellular targets as cytochromes and carbonic anhydrase 

(CA) [101, 159]. It was planned to test its effects on independent proteins 

like CA with established CA inhibitors like acetazolamide and 

brinzolamide. As shown in the previous sections, both the drugs had 
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inhibitory effects in trophozoites of Acanthamoeba spp. and a homolog of 

this human enzyme was searched in the Acanthamoeba database. Our 

results show an amoebal carbonic hydratase on MSA with diverse CA 

expressed in human cells has in a common proton acceptor site (Figure 

43- A-red arrow). Phylogenetic tree as rectangular cladogram (Figure  43- 

C) and sunburst (Figure 43-B) of Carb_anhydrase family across species 

show the encoding of this protein in humans and early unicellular 

eukaryotes like Acanthamoeba spp. 

Figure 43. MSA of Acanthamoeba carbonic hydratase and its 
evolutionary origins. 

 (A) Acanthamoeba carbonic hydratase on MSA with diverse carbonic 
anhydrases expressed in humans showed a common proton acceptor 
site (A). circular tree sunburst (B) and rooted rectangular cladogram 
(C) of the Carb_anhydrase family across species constructed using the 
NJ method show its expression in humans (B-white arrow).[Adapted 
from Baig AM, 2018d [147]].  
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4.8 Homology Modeling : 

Homology modeling for Acanthamoeba proteins that were hypothesized 

as drug targets were expected to clarify the effects of the drugs that were 

observed and confirm the finding of the BLASTp results and functional 

prediction made for the ACA1 proteins as mentioned in the previous 

section (above).  

4.8.1    Human-like VGCC and CaM in Acanthamoeba  castellanii   

The automated SWISS-MODEL web server homology modeling tool was 

used for the construction of template-based models for ACA1_167020 

as detailed in chapter 2. Template-based models of human VGCC L-

type (Figure 44-A) and model of human TPC-1(Figure  44-B) were 

retrieved that showed identical ligand binding amino acid residues 

between the model and template.  
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Figure 44. Homology Modeling of Protein ACA1_167020. 

Two template-based models, (A) VGCC L-type and (B) human two-pore 
calcium channel protein 1(TPC1), were generated for ACA1_167020. (A) 
Highlighted amino acid residues within the rows (encircled) show binding 
site for dihydropyridine class (amlodipine -nifedipine) of VGCC blockers 
projected to the binding site on the model of VGGC L-type. (B) Encircled 
in the rows are ligand (trans-Ned 19) binding amino acid residues 
(alphabets)  projected to the TPC1 model (arrow) developed for 
ACA1_167020 in the SWISS-MODEL automated server. [Adapted from 
Baig AM, 2017d, 2019d [141, 146]] 

 
For ACA1_092610 three template-based models namely TPC-1, TPC-

2, and L-type VGCC were constructed using templates 5dqq.1A, 5jp8.1 

D, and 6nq0.1 A respectively. Model-template alignment for TPC-2 

(Figure  45 B, colored rows) showed identical residues for ligand (EUJ) 

binding which also appeared in the model (Figure 45 C, top-right). 

Alignment of  ACA1_092610  with human TPC-1 and L- type VGCCs 

showed 29% and 20.7% sequence identities respectively (Figure 45- 

A blue rectangle).       
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Figure 45. Models developed for Acanthamoeba protein 
ACA1_092610. 

(A-B) Three models of TPC1, TPC2, and L-type VGCC developed for 
ACA1_092610 in the SWISS-MODEL automated server using templates 
5dqq.1A, 5jp8.1 D, and 6nq0.1 A respectively. The sequence identities and 
coverage of model-template amino acids are shown. (B) Model-template 
alignment for human TPC-2 (colored rows -B) show identical amino acid 
residues (encircled in the rows) for ligand (EUJ) binding between a template 
for ACA1_092610 (bottom row) and the model (top-row). A binding site for 
EUJ in the model is shown in a rainbow (C) which corresponds to the amino 
acid residues enclosed in a rectangle in colored rows. [Adapted from Baig 
AM, 2017d, 2019d [141, 146]]. 

Acanthamoeba protein ACA1_270170 on homology modeling developed 

a template (6jp5.1C )-based model (Figure  46- model in ribbons at the 

left) of human VGCC 1.1. The alpha-2/delta1is a component of the human 

L-type VGCC 1.1 (highlighted in the next two ribboned models within 

rectangles). Sequence alignments show identical NAG (Figure  46 pink 

circles) and Ca2+ ion binding sites (Figure  46 grey circles) in the template 

and model. 
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Figure 46. Homology modeling of Acanthamoeba protein 
ACA1_270170. 

The model of human L-type VGCC 1.1 is shown (the model in ribbons at 
left). Shown in the same model is the component alpha2/delta1protein 
(highlighted in the model in the middle within the rectangle) and folds at the 
extreme right model show ligands NAG (pink circles) and Ca2+ ion (grey 
circles) in the bound state. The homology modeling of ACA1_270170 
developed a template (6jp5.1C )-based model of human alpha-
2/delta1(blue-strip in the middle) with identical positions of amino acid 
residues that bind the ligands calcium and NAG (encircled residues). 
[Adapted from Baig AM, 2017d, 2019d [141, 146]]        

 

The protein ACA1_366720 is a putative CaM and homology modeling 

developed a template-based model of human CaM in the automated 

SWISS-MODEL server. A template (1cll.1.A)-based model of human 
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CaM retrieved is shown (Figure 47-top right ribbon). The model and 

template showed identical ligand (Ca2+) binding amino acid residues 

(Figure 47 pink rectangles – bottom rows) which are also shown in the 

transparent model (Figure 47 top-right).  

 

Figure 47. Homology modeling of ACA1_366720 a putative CaM in A. 
castellanii 

The homology modeling for the ACA1_366720 developed template 
(1cll.1.A)-based model of human CaM. This model was developed with 30% 
sequence identities. The model (top colored row) and template (bottom 
colored row) show identical ligand (Ca2+) binding amino acid residues 
(highlighted in the boxed area). [Adapted from Baig AM, 2017d [141]] 

 

4.8.2    Evidence of human-like muscarinic receptor and 

cholinergic enzymes in A. castellanii. 

We had shown earlier that like human mAChR1 the ACA1_153000 has a 

7tm conserved domain and had a phylogenetic relation to mAChRs 

(Figure 38). On homology modeling, ACA1_153000 developed a 

template-(5cxv.1) based model (Figure 50- full-colored ribbon A1 ) oh 

human mAChR1 with ACh orthosteric antagonist Triotrpium (0HK) bound 

to (Figure 48- A2-transparent model at right) it. Both the template and the 
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model show identical amino acid residues (Figure 48-highlighted amino 

acid residues in rows) that engage tiotropium shown in the model (Figure 

48 A3).     

 

Figure 48. Homology modeling of Acanthamoeba protein 
ACA1_153000. 

 (A) Template-based model for ACA1_153000 constructed in the SWISS-
MODEL server. The template 5cxv.1 (A) was selected to build the model of 
human-mAChR1 (A1-A2). The model (top colored row of the aligned 
sequence) and template (bottom colored row of the aligned sequence) 
showed identical amino acid residues (highlighted in rows) that engage an 
antagonist Tiotropium (0HK). The model of human mAChR1 is shown where 
ACh binds as an orthosteric agonist and Triotropium 0HK as an antagonist 
(A3).  [Adapted from Baig AM, 2017a [149]] 
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Figure 49. Alignment of the Model and template developed for 
ACA1_15300 hypothetical protein. 

The amino acid residues between the model (human mAChR1) and the 
template generated for ACA1_153000 showed 100% sequence identities. 
The 0HK- Tiotropium docking is shown (top-right). The model-template 
alignment is shown in colored rows. The global and local quality estimates 
with comparison are shown (bottom panel), model template ribbon overlap 
with docked tiotropium is shown on the left side. [Adapted from Baig AM, 
2017a [149]]. 

The human mAChR1(model) and template 5cxv.1(for amoebal protein 

ACA1_153000) on sequence alignment (Figure 49-middle panel) showed 

identical amino acid residues needed for drug docking. The QMEAN,  

local quality estimate, and comparison are shown (Figure 49 bottom 

panel). A template model overlap (Figure 49-right panel) shows the 

similarity between the proteins human mAChR1 and the template 5cxv.1 

in the drug tiotropium docking site.  
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Of the several enzymes and transport proteins involved in ACh formation, 

degradation, and transport, the homology modeling of 2 cardinal 

enzymes, choline acetyltransferase, and cholinesterase of A. castellanii. 

Template-based models for these 2 enzymes are shown in Figure 50. 

The models were developed for template 2fy2.1 and 4me01 against 

amoebal choline/carnitine-o-aceyltransferase and cholinesterase 

acetyltransferase (Figure 50 A) and human cholinesterase (Figure 50 B) 

respectively.  

Figure 50.  Homology modeling of Acanthamoeba enzymes involved 
in the cholinergic cascade. 

  SWISS-MODEL automated server developed template-based models for 
Acanthamoeba choline/carnitine aceyltransferase (A1) and cholinesterase 
(B1). The sequence identities, coverage, and 3D models developed in 
ligand-bound states are shown (blue strips A, B). The  transparent boxes 
along the rows (B- highlighted in the boxed area) show similarities between 
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the model and template for ligand binding as also shown in the model (B2) 
[Adapted from Baig AM, 2018a, [160]]   

 

4.8.3   Human-like K-Channels in Acanthamoeba  castellanii   

The homology modeling of ACA1_202400 developed a template 

(4kfm.1)-based model of G-Protein activated human inward rectifier K-

channel (Figure 51-A). The model (Figure 51 A-top row of the colored 

sequence) template (Figure  51 A-bottom row of the colored sequence) 

showed identical amino acid residues engaged in binding 4 K ions (Figure 

51 A1-A2-solid and transparent ribbon models). Also shown is the model 

(B1) template (B2) overlap (B3) that shows the degree of structural 

similarity between the model and template developed for ACA1_202400.    
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Figure 51. Homology modeling of Acanthamoeba ACA1_202400 K+ 
channel protein. 

(A1) SWISS-MODEL homology modeling automated server developed a 
model of human G-protein gated inward rectifier K-channel protein for the 
Acanthamoeba  ACA1_202400 K+ channel protein. Ligand binding residues 
(boxed in rows) showed identical amino acids between the model (A- top 
colored row) and template (A- bottom colored row) and identical position 
(arrows) in the model (A2 top-right). (B). Shown are a model (B1), template 
(B2), and their overlap (B3). [Adapted from Baig AM, 2017e [142]]. 

 

 

4.8.4    Human-like Na-K ATPase in Acanthamoeba castellanii   

Of the ion-channels and protein pumps inhibited by drugs used in vitro, 

digoxin is known to inhibit human Na+-K+ ATPase [101, 159]. Homology 

modeling of ACA1_313610 developed a template (4xe5.1)-based model 

of mammalian Na+-K+ ATPase (Figure 52 A). Binding of digoxin and 

similar Na+-K+ ATPase inhibiting drugs bufalin and ouabain to the crystal 

structure of the mammalian Na+-K+ ATPase is shown (Figure  52, A1, A2, 

A3) with highlighted areas between model and template that bind digoxin 

and bufalin (Figure  52, B-orange boxes) as shown in the cutout segments 

(Figure  52- C). 
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Figure 52. Homology modeling of Acanthamoeba protein 
ACA1_313610.  

(A) Homology modeling of ACA1_313610 in the SWISS-MODEL automated 
web server developed a template (4xe5.1)-based model of mammalian 
(bovine) Na-K ATPase. The binding of drugs like digoxin, bufalin, and 

ouabain to the crystal structure of the mammalian Na+-K+ ATPase is shown 
(A1, A2, A3). (B) The highlighted areas between model and template that 
bind digoxin and bufalin (B-orange boxes in colored sequences) and cut out 
segments (C). [Adapted from Baig AM, 2016b [161]] 
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4.8.5     Human-like Carbonic anhydrase and Aquaporins in 

Acanthamoeba  castellanii   

Homology modeling of amoebal ACA1_130470 which was found to be a 

homolog of human carbonic anhydrase was performed to study ligand 

binding attributes of the template for ACA1_130470  and model 

generated for this protein. A template (4X5S.1) -based model of carbonic 

anhydrase constructed in SWISS-MODEL server showed identical amino 

acid residues shown in sequences that engage the drug acetazolamide 

(Figure 53 A- highlighted and boxed in colored rows) and also highlighted 

in the models (Figure 53 A1 models on the right side). 
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Figure 53. Homology modeling of A. castellanii carbonic anhydratase 
and major intrinsic protein (MIP). 

(A) Amoebal carbonic anhydratase ACA1_130470 developed a template 
(4X5S.1) -based model of carbonic anhydrase that has identical amino acid 
residues (A- highlighted and boxed in between colored rows) that engage its 
inhibitor acetazolamide projected to model (A1). (B) Acanthamoeba major 
intrinsic protein on homology modeling developed a model (B1) of human 
AQP-1. The sequences of template and model are aligned (B-colored rows) 
with no ligand specified  [Adapted from Baig AM, 2018d [147]]. 

Homology modeling on an Acanthamoeba major intrinsic protein (MIP) 

developed a template-based model of human Aquaporin-1 (AQP-1) 

(Figure 53 B1) with 32.86% sequence identities.   

4.8.6    Human-like Cytochrome-c in Acanthamoeba castellanii   

Programmed cell death that resembles apoptosis was hypothesized in 

Acanthamoeba castellanii that uses adapter proteins of intrinsic apoptotic 

pathways [Baig AM 2017c, [164]]. With homology modeling of A. 

castellanii ACA1_175250, a template with PDB ID 5exq.1 was used to 

develop the model of human cytochrome-C. On sequence alignment, the 

model showed identical amino acid residues with the template (Figure 54 

bottom colored rows) that bind HEME as a ligand. The amino acid 

residues (highlighted in the boxed area) in the template that was 

developed, an identical area of ligand interaction in the model developed 

(Figure 54, top-right model with the encircled area) is shown.  
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Figure 54. Homology modeling of Acanthamoeba ACA1_175250 
cytochrome c, putative. 

The SWISS-MODEL web server generated a template-based model of 
human cytochrome-c. The template with PDB ID 5exq.1 was used to 
develop the model of human cytochrome-c. The aligned sequences of the 
model (top row) with the template for ACA1_175250 (bottom row) showed 
identical amino acids residues (highlighted in the boxed area) that engage 
the ligand HEM (arrows pointed to the encircled areas in the model) 
[Adapted from Baig AM, 2017c [164]]. 

4.9 Results of Drug Docking Predictions: 

4.9.1   Molecular Docking of Loperamide on templates generated 

for A. castellanii proteins 

The drug docking prediction was performed to figure out if loperamide can 

dock on the hypothesized VGCCs in Acanthamoeba like protein 

ACA1_366720, ACA1_270170, and ACA1_167020. Loperamide showed 

induced-fit docking on the templates 3G43, 6NQ0, and 3BXK (Figure 55) 

which are PDB IDs for CaM, human TPC2, and P/Q type VGCC 

respectively. The scores, contact area, and atomic contact energy (ACE) 

for docking are also shown that clue towards the docking prediction of 

this drug to the templates developed for amoebal proteins.  
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Figure 55. Molecular docking of loperamide on the templates 
generated for Acanthamoeba proteins. 

The PatchDock was used to dock loperamide on the SIWSS MODEL 
generated templates for ACA1_366720, ACA1_270170, and ACA1_167020. 
Loperamide is shown in an induced-fit configuration docked onto the 
templates. Scores, contact area, and ACE are shown under the result 
column. Scores were calculated based on atom-pairing frequencies and 
ACE values [Adapted from Baig AM, 2017d [141]] 
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4.9.2    Molecular docking of Amlodipine on templates generated 

for Acanthamoeba proteins.   

Amlodipine is known to have multiple cellular drug targets in humans. 

PatchDock was used to dock amlodipine to templates developed for 

Acanthamoeba proteins as detailed above. Amlodipine showed docking 

on to the templates 5GJV, 3ML5, and 4FX5 (Figure 56). The scores, 

contact area, and ACE for docking are also shown that hint towards the 

probability of an induced-fit docking of this drug to the templates 

developed for amoebal proteins. 
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[ 

Figure 56. Molecular docking of amlodipine on templates generated 
for Acanthamoeba proteins. 

The PatchDock was used to dock amlodipine on the SIWSS MODEL 
generated templates for ACA1_092610, ACA1_130470, and 
ACA1_270170. Amlodipine docked in an induced-fit configuration onto 
these templates. Scores, contact area, and ACE are shown under the 
result column. A four-digit score based on the ordered arrangement and 
atomic contact energy shows the docking probability of amlodipine on the 
templates  [Adapted from Baig AM, 2019d [146]].   
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4.9.3    Docking prediction of Atropine on templates generated for 

ACA1_153000            

Template 5.cxv.1 was developed for Acanthamoeba protein 

ACA1_153000, The PacthDock predicted the docking of Atropine ( an 

antimuscarinic agent that binds to human mAChRs) on the template 

5cxv.1. A docking prediction of atropine on Acanthamoeba  

ACA1_153000 was obtained with a high score of 4762, a contact area of 

556.80, and atomic contact energy (ACE) of - 224.53 shows the induced-

fit docking (Figure 57). 

 

Figure 57. Molecular docking of atropine on a template for 
ACA1_153000. 

The PatchDock was used to dock atropine on the SIWSS MODEL 
generated templates for ACA1_153000. Atropine (left-panel) docked onto 
the template 5cxv.1(image with black background). Scores, contact area, 
and ACE are shown under the result column. A high, 4 digit score based 
on the geometric fit (contact area 556.80) and atomic contact energy 
(ACE -224.53) showed an induced-fit docking probability of atropine on 
the template 5cxv.1 [Adapted from Baig AM, 2017a [149]] 
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4.9.4    Molecular docking prediction for Amiodarone on templates 

generated for Acanthamoeba proteins. 

A VGCC like Acanthamoeba protein ACA1_092610, Acanthamoeba 

cycloartenol synthase (ACA1_108830), and KCN like ACA1_202400, 

showed docking prediction of amiodarone on the templates (Figure 58, in 

the center).  

 

Figure 58. Molecular docking of amiodarone on template generated 
for Acanthamoeba proteins. 
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Amiodarone (left panel) docked on the templates (images with black 
background) developed for ACA1_202400, ACA1_092610, and 

ACA1_108830. These proteins had developed models of KCN, L-type 
VGCC, and cycloartenol synthase on homology modeling. A high, four-digit 
score was generated for three dockings based on the geometric fit (contact 
areas) and ACE showed an induced-fit docking probability of amiodarone on 
the templates (areas of docking zoomed out, right side). The Scores, contact 
area, and ACE enabling the induced-fit configuration are shown under the 
result column. [Adapted from Baig AM, 2017e [142]] 

 

 

4.9.5    Discussion 

Application of computational tools like BLASTp, MSA, homology 

modeling, and molecular docking prediction of drugs on templates of the 

target proteins was used to provide a clue towards the mechanism of 

action of the drugs tested. In silico sketching or pre-screening of the 

compound, libraries may also be a beneficial approach for the 

identification of novel drug leads for parasitic infectious diseases. As 

mentioned previously, information that can be retrieved and manually 

curated from diverse online databases [99-101], can guide in drug 

selection. In the case of drug development strategy established on the 

reuse of existing licensed drugs for new medical indications, biological 

experiments conducted on a computer or via computer simulation are 

profited by pharmacological and clinical information available for 

approved drugs. A computational platform for drug discovery relies mostly 

on molecular docking, predicting the drug orientation within the binding 

site. This ligand-based technique has already been implemented for drug 

repurposing efforts. Computational drug repurposing is still waiting to see 

its first translational success with a compound reaching the market, but 

there is ample experimental evidence to support the feasibility of this 

approach. The need to discover novel antimicrobial drugs is expected to 

continue to grow the research community with ever-growing data stores 
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and computational tools for analysis making it possible for scientists to 

identify likely candidate drugs for repurposing. For diverse parasites, in 

silico screening has played a significant role in drug target discovery as 

has happened with the discovery of inhibitors of Entamoeba histolytica, a 

protozoan intestinal parasite and the causative agent of human 

amoebiasis. As detailed previously, Debnath et al. [107] formulated 

auranofin, which has been in clinical use to treat rheumatoid arthritis for 

over 20 years for the treatment of human amoebiasis in 2012 that has 

gained an orphan-drug status.  With the advances in computing 

bioinformatics computational tools, like BLASTp searches, homology 

modeling, and drug docking predictions, there have been developments 

in the identification of possible targets in pathogenic parasites by 

constructing an atomic-resolution model of the "target" protein from its 

amino acid sequence and an experimental three-dimensional structure 

protein design [27, 29]. Additionally, parasite genome databases are an 

enormous source of knowledge that can be used to investigate the protein 

expressions. The structural information of proteins obtained from these 

genome databases enables scientists to engage in screening projects 

that have helped in determining protein targets in specific parasites. In 

the case of drug target discovery in Acanthamoeba spp. there has been 

a paucity in the utilization of its available genomic, transcriptomic, and 

proteomic information [182]. Although recent studies have used the 

genome and transcriptome of Acanthamoeba spp. to elucidate drug 

targets in this protist pathogens [184-186], the use of homology modeling 

and drug docking prediction in the identification of molecular targets in A. 

castellanii needs to be fully employed to test new drug molecules for 

repurposing the drugs and chemicals already in use for non-infectious 

diseases. Ligand-based homology modeling as shown above in results 

can play a critical role in identifying evolutionarily related primitive 

molecular targets in parasites like A. castellanii. It has been shown that 

conserved regions for ligand docking in primitive proteins can be 
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exploited to target A. castellanii. Molecular docking prediction of the 

receptor-ligand complexes has proved to be important for obtaining an 

induced-fit result in docking simulations.  

 

4.9.6   Summary  

The data presented here is the summary of studies performed for the 

identification of drug targets in A. castellanii with the use of bioinformatic 

computational tools. This study is attempted to provide an explanation for 

the effects of the drugs targeting Ca2+ homeostasis in A. castellanii 

(chapter-3) and validate the rationale of the Ca2+dependency in A. 

castellanii, as detailed in chapter-1. The transcriptomic of trophozoites of 

A. castellanii showed the mRNA encoding diverse human-like proteins 

that were found to be homologs of human TPC, L-type, P/Q type, and 

alpha2/delta1 variants of VGCCs. Homology modeling with ligand binding 

attributes further confirmed the BLASTp findings (chapter-3) of the 

published data on VGCC like proteins in A. castellanii. Drug docking 

showed an induced-fit docking prediction of the drugs tested on the 

templates of the VGCCs and CaM like proteins reported in A. castellanii. 

Additionally, the template-based homology modeling (Figure 48, 49) was 

able to identify a possible human-like mAChR receptor in A. castellanii 

[Baig AM, 2017a [149]]. Also, a possible cholinergic cascade that 

synthesizes ACh was uncovered in the published studies, which can 

prove to be a potential drug target. Potential molecular targets of drugs 

like amiodarone, digoxin, and acetazolamide that affect the Ca2+ 

homeostasis were also uncovered by BLASTp, homology modeling, and 

drug docking predictions reported here and in the published papers. 

Overall, the results of the genomic, transcriptomics, bioinformatics 

computational tools coupled with drug docking prediction were able to 

attain the aims shown below as was aimed (chapter-1). 
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4.9.7  Aims Achieved: 

1. Putative human-like two-pore (TPC), L-types VGCCs, CaM, G-protein 

coupled receptors (GPCRs), apoptosis regulating cytochrome-c and 

muscarinic receptor-like proteins coupled with Ca+2 channels that are 

known targets of drugs tested in experimental assays, were identified 

in A. castellanii.  

 

2. The evolutionary link between the human proteins that include the 

two-pore (TPC), L-types VGCCs, CaM, G-protein coupled receptors 

(GPCRs), apoptosis regulating cytochrome-c, and muscarinic 

receptor-like proteins with their homologs in A. castellanii were 

identified. 

 

3. With drug docking predictions, evidence was shown for induced-fit 

docking of the drugs tested in Acanthamoeba spp. over the templates 

of the protein models developed for the trophozoite forms of A. 

castellanii
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5 Evaluation of my contribution to the biology and drug target discovery 

in Acanthamoeba spp. 

5.1 Contribution to the knowledge of drug targets in trophozoites and 

cysts of A. castellanii. 

The published papers for the very first time have identified human-like proteins 

in A. castellanii. Evidence in support that the findings reported and its 

contribution to the knowledge in drug target discovery in A. castellanii can be 

gauged by the fact that previously in vitro assays with the drug belonging to the 

phenothiazine class were performed  [98, 168, 175] but the receptors involved 

and their effects in dysregulation of Ca+2 homeostasis was not known. Also, 

human-like VGCC proteins were for the very first time revealed in A. castellanii 

in the published work and they were proven to be viable drug targets by the 

results shown in in vitro effects of drugs (Chapter-3) like amlodipine, nifedipine, 

verapamil, and gabapentin. Similarly, the effects of the antagonism of a human 

muscarinic receptor mAChR like protein in A. castellanii (Chapter-3) are novel 

contributions made by the published work that implore to repurpose them in AK 

and GAE. Other examples of the contribution to the knowledge by the papers 

published between 2013-1019 include the discovery of a near-identical human-

like cytochrome-c (59% -sequence identities and an e-value 0.0 on BLASTp 

results) involved in the intrinsic apoptosis pathway [Baig AM, 2017c [164]].], 

VGCCs, CaM, Na-K ATPase, and K-ion channels in A. castellanii (Table-5) 

reflect the contribution of the published work to the biology of A. castellanii.  

5.1.1   Providing explanations to the cure of retrospective cases of 

Acanthamoeba keratitis. 

After reporting the amoebicidal effects of anticholinergic drugs like procyclidine 

and atropine, it was noted that in a retrospective clinical case of AK, there were 

reports of complete recovery in AK patients with the use of atropine in the eye 

(given as an adjuvant in AK) for which there was no explanation. In this context, 

the published research added an explanation to this occurrence by revealing 
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that successes with atropine were due to a possible antagonism of human-like 

mAChR in Acanthamoeba spp. [[Baig AM, 2014d [166]]. The published work 

provided the reason why successful outcomes were seen in AK with the use of 

atropine in retrospective cases [175].    

5.2 The first evidence of the role of extracellular Ca2+ ion in the biology of 

Acanthamoeba trophozoites  

Though A. castellanii has been known for its motility, phagocytosis, and other 

cellular events that use calcium for their execution, the role of the utilization of 

extracellular Ca2+ ion in the growth and viability of A. castellanii was not reported 

in the studies done in the past. The published work for the first time has shown 

that depletion of extracellular Ca2+ ion availability by chelation of this ion with 

EDTA, pirenoxine [Baig AM, 2019c [156, 158], and that the Ca2+channel 

blockers [Baig AM, 2019d [146]] produce amoebicidal effects. In vitro models 

for Fura-2 AM staining of trophozoites and cysts after exposure to the above-

mentioned drugs used in clinical practice were shown in the published papers 

for the very first time. This has a translational significance, as Ca2+channel 

blockers, in particular, can be repurposed in AK and GAE after human clinical 

trials (details below) 

5.3  Potential of the re-purposing drugs tested in my assays in AK.  

In the published work, the superiority of the drugs tested in vitro over biocides 

and natural products with unknown molecular targets [Baig AM, 2019 [156, 

158]], used in AK has been highlighted. The drugs tested in the studies were 

published with the title “Re-purposing of Drugs” in the world-leading journal on 

ocular diseases [[Baig AM, 2019, [156, 158, 162]]. The later publications have 

debated the rationale of targeting the Ca2+ ion dependencies of A. castellanii to 

attain therapeutic gains in patients with AK.   
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5.4 Potential of the possible use of the experimented drugs in clinical 

trials and treatment of GAE 

Like miltefosine, the drugs that were experimented with in my studies have 

possible molecular targets that are shared between humans and Acanthamoeba 

spp. [163, 173, 187], which includes targeting L-type VGGC as has been 

reported for Leishmania donovani [155]. The drugs experimented with and 

reported in published papers are safer than the list of drugs currently used in the 

treatment of GAE, of which the phenothiazine group has a wider margin of safety 

[159]. In the management of patients with GAE, we had proposed and published 

a neuroleptic-opioid combination of haloperidol-loperamide instead of fentanyl 

and droperidol for the induction of anesthesia in GAE to control seizures and 

pain as well as exert their amoebicidal effects [[Baig AM 2014,[165]]. Given the 

safety and known expected adverse effects [159, 181], we expect that drugs 

reported by this study will make it to the treatment of GAE after human clinical 

trials as drugs like procyclidine, prochlorperazine, apomorphine, and 

anticholinergic agents are already used in CNS diseases [Baig AM, 2013, 

[134]]. The drugs cross the blood-brain barrier (as they are given in diseases of 

the CNS) and have shown to be cysticidal previously [Baig AM, 2013, [134]],  

and recently [[Baig AM, 2020,[188]]. If repurposed, the use of the above drugs 

would reduce the chances of occurrence of GAE after organ transplantation [63, 

79] and recurrences after drug treatment as detailed in chapter-1. Given 

aggressive routes like the intrathecal route, the efficacy of these drugs can be 

tested in clinical trials.          

5.5 Possibility to extend the tested drugs in the treatment of infection 

caused by Naegleria fowleri.   

The drugs that are already approved (Table-5) for clinical use and tested in A. 

castellanii assays (chapter-3) in vitro were also found to be significantly effective 

against trophozoites of N. fowleri [[Baig AM, 2014b [189]]. Popularly known by 

the term “Brain-eating amoeba”, N. fowleri claims the lives of swimmers and 
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water sports enthusiasts and those who perform ablution with water 

contaminated with N. fowleri. The disease is known as primary amoebic 

meningoencephalitis (PAM) with a mortality rate of nearly 99% [61, 62]. The 

currently used drugs have not improved the mortality rate of PAM [17, 36] and 

the drugs tested in our study in vitro have proven to be amoebicidal in 

trophozoites of N. fowleri as well and therefore can be tested in an animal model 

of PAM and repurposed for PAM in humans [[Baig AM, 2014b, Baig AM, 2016 

[189, 190].  

 

5.6  Rationale and experiments of our study projected to test the drugs in 

cancer cell lines 

Acanthamoeba trophozoites are unicellular entities, which have tremendous 

replicative potential, the invasion into circulation, and dissemination to the brain 

and organ. Cancer cells also show similar attributes as their biological behavior. 

After reporting the human-like muscarinic receptors in Acanthamoeba spp, we 

hypothesized and published that similar receptor subtypes could be present in 

the cancer cell line of prostate cancer in particular which over-expresses 

mAChR1 over mAChR3 [[Baig AM, 2017b [191]]. In a later study, cytotoxic 

effects of dicyclomine (dicyclomine) and pirenzepine in LNCaP and PC3 

prostate cancer cells were shown, as reported in our studies in A. castellanii.   

5.7 Summary and Conclusion: 

The reviewers of my published work have endorsed the rationale the use of the 

reported drugs being safer and having a greater target specificity than the 

biocides that are known for a wide range of actions on non-amoebal microbes 

[[Baig AM, 2019i [158]; [94] which can affect the normal flora of the human eye. 

The methodology and the bioinformatic approaches used in the identification of 

drug targets in the published work are being picked up by my peers, who by 

using similar methods in A. castellanii have published studies on drug targeting 
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enzymes in this protist pathogen [192]. The use of genomic and transcriptomic 

data to identify human-like drug targets in A. castellanii has been done 

exclusively reported in our studies that are expected to prove its translational 

significance in diseases like AK and GAE.  

5.8 Publications and their impact: 

After ensuring the reproducibility of the data of the research undertaken in the 

studies, publication in scientific journals was pursued and accomplished at the 

end of the respective project parts, as can be seen in the order in which the 

papers have surfaced between 2013-2019. Therefore, the dates of publication 

are illustrative of the time the results of the projects were undertaken and were 

produced. The relevant publications (a total of 10), which also represent the 

published work submitted for the degree of Ph.D., are attached in part-2 of this 

commentary. The impact of the presented published work is reflected by many 

citations by other researchers including leading scientists in this field. To date, 

the papers included in this thesis have been cited over 100 times as of June 4th, 

2020, as shown by PubMed, Google Scholar, and ResearchGate. The research 

published has pioneered the use of bioinformatics computational tools for drug 

target discovery in A. castellanii, as reflected in the published papers that have 

surfaced. Also important is recognition of the work by the peers who in their 

published work have adopted the methodology of using the sequence similarities 

[192, 193], genome, and transcriptome, to elucidate target enzymes and 

proteins in A. castellanii. After the first published papers in 2016-17 that used 

bioinformatics computational tools in drug target discovery in A. castellanii, 

similar approaches by other scientists working on drug target discoveries in 

protozoa have surfaced [184, 185]. Though my publications are young, they are 

getting cited by my peers [194-203] in their work related to drug target discovery 

in A. castellanii. Scientists are picking up our approach, which has been seen to 

be extended to diverse protozoa like Leishmania infantum spp. [204] and 

Naegleria fowleri [111].  
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5.9 Future Directions: 

It is expected that the published studies will prove to be translational in the 

repurposing of the drugs reported to have amoebicidal and cysticidal effects in 

A. castellanii. Plans are ongoing to design in vivo models of AK and GAE in 

animals to test the safety and efficacy of the drugs reported in this thesis. The 

ocular safety of the drugs reported in this commentary, in animal models of AK, 

is planned to be tested in the incoming months. Collaborations with groups 

working on ODAK-like clinical trials are ongoing, to take the research reported 

in this thesis to the next step. Fluorescent tagging of drug and molecular targets 

by using methods like fluorescence resonance energy transfer (FRET) is being 

planned as this thesis is being written. Downstream and upstream pathways 

affected by the drugs used and reported in this thesis are also under scrutiny to 

explain the mechanism involved in the dysregulation of Ca2+ homeostasis. For 

GAE most of the drugs reported in this study are already in use for CNS 

indications, therefore the drugs like promethazine, procyclidine, and 

prochlorperazine are planned to be tested in animal models of GAE shortly. Our 

group has recently extended collaborations with groups working on AK in Spain, 

Mexico, and the UK as well. 
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