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Abstract 

Introduction: Tobacco use disorder (TUD) is a chronic relapsing condition. Existing pharmacotherapy can 

assist smokers to initiate smoking cessation, but relapse rates remain high. Novel therapeutics are 

required to help people quit and also to prevent relapse. The endocannabinoid system has been 

increasingly implicated in reward and addiction processes and the cannabinoid CB1 receptor inverse 

agonist rimonabant has been shown to be effective at promoting smoking cessation but has been 

associated with adverse psychiatric side effects. 

Areas covered: Multiple converging factors likely contribute to the maintenance of smoking and cause 

relapse including nicotine reinforcement, propensity to reinstate drug seeking (induced by nicotine 

priming, nicotine-associated cues, and stress), the severity of withdrawal signs and executive function 

status. Studies assessing the impact of endocannabinoid (CB1 receptor, CB2 receptor, anandamide, and 

2-arachidonoylglycerol) modulation on these addiction-related factors are reviewed. 

Expert opinion: Endocannabinoid research in TUD is at a relatively early stage. Based on current evidence, 

CB1 receptor neutral antagonists and fatty acid amide hydrolase inhibitors demonstrate positive effects 

in studies assessing several addiction-related factors. This suggests they offer the greatest promise as 

novel cessation and anti-relapse agents. Future research avenues are discussed, notably to translate 

findings into humans. 

 

Keywords: Anandamide, Cannabinoid receptor, Endocannabinoid, Executive function, FAAH inhibition, 

Nicotine Reinforcement, Reinstatement, Tobacco use disorder, Withdrawal, 2-Arachidonoylglycerol. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Article highlights 

• Multiple factors likely contribute to continued smoking and relapse including nicotine 

reinforcement, propensity to reinstate drug seeking (induced by nicotine priming, nicotine-

associated cues, and stress), the severity of withdrawal signs and executive function status. We 

review the impact of endocannabinoid modulation on these factors. 

• Inverse agonism and neutral antagonism at CB1 receptors reduces nicotine self-administration, 

reinstatement of nicotine seeking, as well as some withdrawal signs and may improve executive 

dysfunction. 

• Inhibitors of fatty acid amide hydrolase (FAAH) attenuate reinstatement of nicotine seeking, 

reduce nicotine self-administration in some animals, and may reduce some withdrawal 

symptoms. There is mixed evidence for effects on executive function. 

• CB1 receptor inverse antagonism is associated with adverse psychiatric effects. Neutral 

antagonism at this receptor may have an improved psychiatric side effect profile. FAAH inhibitors 

have anxiolytic and antidepressant effects. 

• Research examining the impact of endocannabinoid modulation on addiction-relevant factors is 

at a relatively early stage. There is currently limited or mixed evidence for effects of alternative 

endocannabinoid modulating mechanisms on these addiction-relevant factors. 

• Preclinical evidence suggests that CB1 receptor neutral antagonists and FAAH inhibitors hold 

promise as novel smoking cessation and anti-relapse agents. These findings need to be validated 

in human smokers. 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

1.0 Introduction 
With over 1 billion smokers worldwide [1] and the prevalence of daily smoking estimated at 15% in 2015 
[2], tobacco smoking is a global health problem. Specifically, it has been estimated that tobacco use is 
associated with over 8 million deaths [1] and thousands of billions of dollars in health care costs and 
productivity losses across the globe annually [3,4]. Further, in 2017 there was estimated to be more than 
1.5 million youths (aged 12 to 17 years) using cigarettes over the preceding 12 months in the U.S. alone 
[5], suggesting tobacco-related problems will likely continue to some degree in to the future. Quitting 
smoking can significantly improve health outcomes and decrease the risk of dying from smoking-related 
disease [6]. Unfortunately, tobacco use disorder (TUD) is a chronic condition characterised by multiple 
cycles of quitting and relapse [7]. Indeed, nearly 70% of smokers report wanting to quit smoking [8] while 
as few as 3-5% of unaided quit attempts may be successful [9].  
 
Pharmacotherapy can increase cessation success and there are currently three FDA-approved first-line 
medications for smoking cessation: nicotine replacement therapy (NRT), varenicline, and bupropion. 
These evidence-based medications show cessation efficacy but there is diminishing benefit of cessation 
medication over the first 12 months [10,11]. Further, modelling of data from over 40 smoking cessation 
trials suggests that 12 month abstinence rates are just 23% or less with use of these medications [12]. 
Therefore, relapse remains the most likely outcome of any cessation attempt even using approved 
medication. While there is clearly much need for improved cessation pharmacotherapy, there have been 
no new medications approved for smoking cessation by the FDA since varenicline in 2006 [13]. 
 
The lack of efficacious, newly approved smoking cessation pharmacotherapy is not due to an absence of 
potential candidates. Indeed, several recent reviews on the theme of existing and emerging drug 
treatments for smoking cessation [14-16] indicate there has been no shortage of pharmacological 
candidates, and that these have had a wide variety of pharmacological mechanisms of action. For 
example, Beard et al., [14] compares over 20 potential smoking cessation drugs on a number of criteria 
including efficacy, cost, ability to serve new patient groups and ease of use. Gómez-Coronado et al., [15] 
review over 40 conventional and novel pharmacotherapies and our own review of innovative smoking 
cessation interventions [16] highlights that a range of pharmacological agents have been evaluated in 
clinical trials in the last decade alone. An adverse side effect profile (such as that observed with 
rimonabant, discussed briefly below), difficulty translating findings between the preclinical and clinical 
worlds (perhaps as a consequence of relying on overly-reductionist assays and models to explain a 
complex disorder), and the small number of high quality studies (i.e. with large sample sizes and adequate 
abstinence follow-up durations) with any one promising candidate likely contributes to the lack of new 
approved medications despite an active field of contenders emerging from preclinical studies. 
 
Arguably one of the most promising candidates for smoking cessation in recent years was rimonabant, an 
anti-obesity drug and inverse agonist at the cannabinoid (CB) receptor 1. Indeed, abstinence at the end 
of 10 weeks of treatment with rimonabant (20mg/day) and at 48 weeks follow-up was higher than placebo 
in a pooled analysis of three randomized double-blind controlled trials [17]. However, the high rate of 
psychiatric side effects, notably the induction of anxiety and depression and risk of emergence of suicidal 
ideation [18], led to the voluntary withdrawal of rimonabant from the European market in 2008 [19]. 
Nevertheless, there is an increasing understanding of the role of the endocannabinoid system in reward 
processing and addiction [20,21] suggesting that there may still be potential tobacco smoking cessation 
candidates found that work via endocannabinoid modulation. In this review, we provide a brief 
description of the endocannabinoid system before consolidating existing findings regarding the impact of 
endocannabinoid modulation strategies on outcomes relevant to TUD and smoking cessation. We focus 
on presenting studies that assess drug effects on factors thought to drive the maintenance or relapse of 



 

 

tobacco use including: the rewarding properties of nicotine (reinforcement and motivation), propensity 
to reinstate use/relapse (induced by nicotine priming, nicotine-associated cues or stress), nicotine 
withdrawal signs and executive function status. In this way, we draw upon research findings from multiple 
experimental designs, tasks and assays in order to avoid the pitfalls of a reductionist approach, that could 
occur from presenting research from one of these research areas alone. At the beginning of each section, 
we briefly introduce each of these research areas by defining them and describing how they are linked to 
tobacco use disorder and/or relapse. Then we review the available evidence for effects of CB1 and CB2 
receptor modulation, as well as for modulation of the levels of the two main endocannabinoid 
neurotransmitters, N-arachidonolylethanolamine (anandamide) and 2-Arachidonoylglycerol (2-AG). 
Ultimately, it is hoped that this review will help to identify which endocannabinoid modulating therapeutic 
strategies look most promising for TUD given existing findings. In addition, this review may help stimulate 
further research where this is warranted, either because research is limited in certain areas or because of 
initial positive findings. Thus, this review will also provide a basis for endocannabinoid modulation drug 
development strategy. Together, we are hopeful that this will result in a more strategic discovery process 
that leads to more efficacious pharmacotherapies for smoking cessation. 
 
2.0 Overview of the endocannabinoid system 
Within the brain, the endocannabinoid system is a lipid-based retrograde synaptic transmission system 
[22]. This form of communication fine-tunes information flow within all major neurotransmitter pathways 
and contributes to synaptic plasticity in several key brain regions involved in neuropsychiatric disorders, 
including addictions [23]. This system consists of the endocannabinoid neurotransmitters, with 
anandamide [24] and 2-AG [25,26] being the most well studied. These two neurotransmitters have been 
shown to have both complementary and mutually inhibitive functions [27-30]. There is some evidence 
that these endocannabinoids are stored in intracellular adiposomes or are bound to fatty acid binding 
proteins [31]. However, the most widely supported belief is that unlike conventional neurotransmitters, 
endocannabinoids are not stored in vesicles. Instead they are thought to undergo de novo synthesis on 
an as needed basis by receptor-stimulated cleavage of lipid precursors [32]. Such a tightly controlled 
signalling system may imply that ligands acting directly on the receptors have greater side-effects than 
those modulating endocannabinoid tone. Anandamide can be synthesized from N-arachidonoyl 
phosphatidylethanolamine (NAPE) via several pathways including the biosynthetic enzyme N-
acylphosphatidylethaloamine-hydrolysing phospholipase D (NAPE-PLD) [33]. Cellular reuptake of 
anandamide is thought to occur via the hypothetical anandamide reuptake transporter [34-36] and it is 
predominantly metabolized by fatty acid amide hydrolase (FAAH) in to arachidonic acid (AA) and 
ethanolamine (EtNH2) [32,37,38]. The major synthetic pathway for 2-AG is from diacylglycerol (DAG), by 
the action of the biosynthetic enzyme diacylglycerol lipase (DAGL) [39,40],  and it is predominantly 
metabolized by monoacylglycerol lipase (MAGL) in to AA and glycerol [41].  
 
The endocannabinoid system also consists of the brain and peripheral receptors. The CB1 receptor is the 
most abundant G-protein coupled receptor (GPCR) in the brain. It is localized pre-synaptically on both 
GABAergic and glutamatergic neurons, in line with its neuromodulatory role [42-44]. The CB2 receptor is 
mainly found in the immune system [45] but is also found centrally where, like their CB1 counterparts, 
they can modulate midbrain dopamine neuron activity [46]. Other non-CB1 and non-CB2 cannabinoid-
related receptors have been proposed, including GPCR18 and GPCR55, but these remain to be fully 
validated pharmacologically [47]. The principle components of the endocannabinoid system within the 
central nervous system are shown in Figure 1. For more details relating to the molecular pathways 
involved in the biosynthesis, uptake and degradation of the endocannabinoid neurotransmitters see [48]. 
 
[INSERT FIGURE 1 NEAR HERE] 



 

 

 
3.0 Nicotine reinforcement and motivation 
An important driver of tobacco use are the rewarding/reinforcing properties of nicotine. The rewarding 
and reinforcing effects of nicotine have mainly been assessed using conditioned place preference (CPP) 
and self-administration procedures. Nicotine self-administration has been observed under both fixed and 
progressive ratio schedules. Under fixed ratio schedules a fixed number of responses must be achieved 
before a nicotine infusion is given. Increased nicotine self-administration, often indexed as a higher rate 
of responding, indicates that nicotine is more rewarding. Under progressive ratios the response 
requirement for nicotine infusion increases after each nicotine infusion. Progressive ratio schedules are 
used to assess motivation for nicotine as they provide an index of ‘how hard’ individuals are willing to 
work for nicotine infusions. For example, initially naïve non-human primates provided access to 
intravenous nicotine infusion have been shown to make up to 600 operant responses for a single nicotine 
injection [49], indicating that they are highly motivated to respond for nicotine and that it is an effective 
reinforcer. CPP is also used to investigate rewarding effects of drugs of abuse. Typically, CPP studies with 
nicotine will measure the amount of time animals spend in an area that has previously been associated 
with nicotine. Animals that find nicotine most rewarding will spend more time in areas associated with 
nicotine. These animals are described as exhibiting CPP [50]. While the expression of CPP reflects the 
influence of environmental stimuli previously associated with a drug, the development of drug-primed, or 
drug-induced, CPP after extinction is thought to reflect the reinforcing effects because approach behavior 
and time spent in a drug-paired environment can be considered an index of drug reward seeking behavior. 
The following sections summarize the existing findings regarding the impact of endocannabinoid 
modulation on nicotine self-administration and nicotine-induced CPP.  
 
3.1 CB1 receptor modulation 
Studies have indicated that CB1 receptor antagonism or inverse agonism attenuates self-administration 
of nicotine [51-53]. For example, Schindler et al., [51] show that high rates of nicotine taking in squirrel 
monkeys are reduced by both the CB1 receptor antagonist AM4113 and the inverse agonist rimonabant. 
Studies investigating the effects of central injection into specific anatomical brain regions implicate 
cortico-limbic CB1 receptors in the control of nicotine reinforcement and subsequent nicotine seeking 
behavior. For instance, injection of the CB1 receptor antagonist AM251 into rat ventral tegmental area or 
nucleus accumbens resulted in attenuation of self-administration for ventral tegmental area injection only 
[52]. In contrast, bilateral injection of rimonabant into the rat nucleus accumbens shell, the basolateral 
amygdala or the prelimbic cortex leads to reduced nicotine seeking maintained by cues previously 
associated with nicotine [54]. This suggests there may be subtle regional differences underlying the effects 
of CB1 receptor blockade on nicotine self-administration and nicotine seeking following extinction. 
Studies investigating nicotine reinforcement using progressive ratio schedules have also implicated CB1 
receptors in nicotine motivation. The non-selective CB1/CB2 receptor agonist WIN 55,212-2 increased 
self-administration under a progressive ratio schedule, an effect that was reversed by administration of 
the CB1 receptor inverse agonist rimonabant [55]. Similarly, motivation to respond for nicotine is 
attenuated by administration of rimonabant [56] or the CB1 receptor neutral antagonist AM4113 [57].   
 
CB1 receptors have previously been implicated in nicotine CPP. For example, evidence from genetic 
studies shows that while nicotine produces CPP in wild-type mice, this effect is absent in CB1 receptor 
knock-out mice [58]. Several studies indicate that administration of CB1 receptor antagonists or inverse 
agonists inhibit nicotine-induced CPP [59-61]. In particular, bilateral injection of the selective CB1 receptor 
antagonist AM251 in to the ventral tegmental area [62] or basolateral amygdala [63] inhibits nicotine-
induced CPP, implicating amygdala-striatal CB1 receptors in drug reward seeking. One study found that a 
single pre-injection of rimonabant inhibited short-term nicotine-induced CPP i.e. 24 hours after the last 



 

 

conditioning session, but not long-term nicotine-induced CPP that was 3 or 12 weeks after acquisition 
[64]. However, further work showed that pre-test injection of rimonabant could retain the capacity to 
inhibit long-term nicotine-induced CPP when accompanied by daily injection of rimonabant post-
acquisition [65]. In contrast, the non-selective CB1/CB2 receptor agonist WIN 55,212-2 can induce a 
significant place preference to an area previously associated with nicotine when administered alone, or 
with a low ineffective nicotine dose [63,66]. Taken together, studies evaluating modulation of activity at 
CB1 receptors demonstrates the pivotal role of this receptor in nicotine reinforcement and motivation. 
Research demonstrates that these important drivers of nicotine use may be reduced by CB1 receptor 
blockade. In line with this, CB1 receptor blockade inhibits nicotine-induced dopamine release in the 
nucleus accumbens [67]. 
 
3.2 CB2 receptor modulation  
The effects of CB2 receptor ligands on nicotine reinforcement assessed via studies of self-administration 
or nicotine-induced CPP have provided equivocal findings. Initial studies in rats indicated that there were 
no effects of CB2 receptor stimulation or blockade on nicotine self-administration under fixed or 
progressive ratio schedules [55,68]. In contrast, CB2 receptor knock-out mice self-administer less nicotine 
compared to wild-type mice [69] and do not show nicotine-induced CPP [69-71]. These genetic studies 
also employed pharmacological CB2 receptor modulation demonstrating that the CB2 receptor agonist O-
1966 produced a conditioned place preference when administered with a sub-threshold dose of nicotine 
[70], and that CB2 receptor antagonists block nicotine-induced CPP [69-71]. In addition, CB2 blockade 
reduced nicotine self-administration under fixed and progressive ratio schedules in mice [69]. Taken 
together, these studies suggest that CB2 receptors may play a role in nicotine reinforcement  and 
motivation but that there may be species differences in CB2 mediated control of these factors. However, 
a more recent study has provided findings that conflict with these previous reports [72]. In this study, 
administration of the dietary terpenoid and CB2 receptor agonist Beta-caryophyllene inhibited, rather 
than increased, nicotine self-administration and motivation for nicotine seeking in both rats and mice. In 
addition, the CB2 receptor antagonist AM630 blocked Beta-caryophyllene-induced reduction in nicotine 
self-administration. However, the reduction in nicotine self-administration was only partially blocked by 
CB2 receptor knock-out, with a blocked reduction in self-administration evident in knock-out mice 
administered low but not high dose Beta-caryophyllene. These findings suggest that the effects of Beta-
caryophyllene on nicotine reinforcement may be mediated by both CB2 and non-CB2 receptor 
mechanisms and this may account for the differences compared to prior findings. 
 
3.3 Anandamide modulation 
Conditioned reinforcing properties of drugs of abuse including nicotine are mediated by the dopaminergic 
system [73]. It has been suggested that phasic dopamine release evoked by abused substances, and 
important for a range of addictive behaviors, requires cannabinoid receptor activation [74]. 
Endocannabinoid neurotransmitter tone (anandamide and 2-AG levels) may therefore play an important 
role in mediating nicotine-reinforcement. Studies of pharmacological modulation of anandamide have 
used both FAAH inhibitors and anandamide reuptake inhibitors to increase synaptic anandamide by 
blocking the breakdown and reducing neuronal uptake respectively. Studies assessing the impact of FAAH 
inhibition or anandamide re-uptake inhibition on nicotine self-administration have found either no effect 
[56,75,76] or reductions in drug taking [77,78] in studies with rats and non-human primates. Specifically, 
the anandamide reuptake inhibitors VDM11 and AM404 both failed to affect nicotine self-administration 
under fixed and progressive ratio schedules of reinforcement in rats [75,76]. Similarly, FAAH inhibition 
with URB597 did not affect nicotine self-administration under a progressive ratio schedule in rats [56]. In 
contrast to these reports, URB597 prevented the acquisition of nicotine self-administration in rats [77] 
and shifted the nicotine self-administration dose response curve consistent with reducing nicotine reward 



 

 

in squirrel monkeys as did another FAAH inhibitor, URB694 [78]. Interestingly, these effects on nicotine 
self-administration in squirrel monkeys were reversed by the peroxisome proliferator-activated receptor 
alpha (PPAR-α) antagonist MK886. It is important to note here that while anandamide reuptake inhibitors 
should selectively increase anandamide levels, FAAH inhibition will also prevent metabolism of other 
bioactive fatty acid ethanolamides such as oleoylethanolamide and palmitoylethanolamide. These non-
cannabinoid fatty acids may be able to regulate endogenous cannabinoid activity and could modulate 
anandamide responses (a phenomenon similar to the so called ‘entourage effect’) [79,80]. They are also 
PPAR-α ligands and have been shown to suppress mesolimbic dopamine neuron activation [81]. Further, 
PPAR-α agonists have also demonstrated potential to decrease nicotine self-administration in preclinical 
studies [82]. 
 
Studies assessing effects of FAAH and anandamide re-uptake inhibition on nicotine CPP have also 
presented mixed findings. In mice, both genetic knock-out and pharmacological inhibition of FAAH, with 
URB597, enhances the expression of nicotine CPP [83]. In contrast, URB597 and the anandamide reuptake 
inhibitor AM404 prevented the development of nicotine-induced CPP in rats [77,84]. This species 
difference is also evident in the effects of FAAH and anandamide reuptake inhibitors on striatal dopamine 
release. In mice, FAAH inhibition has been shown to enhance nicotine-induced dopamine release in the 
nucleus accumbens [85]. In contrast, FAAH inhibition blocks nicotine-induced excitation of ventral 
tegmental area dopaminergic neurons and blocks nicotine-induced dopamine release in the shell of the 
nucleus accumbens, via CB1 receptor and PPAR-α mediated mechanisms in rats [86]. Similarly, 
anandamide reuptake inhibition reduces nicotine-induced increases in dopamine levels in the nucleus 
accumbens in rats [84]. 
 
Taken together, the studies described in this section indicate that there are important species differences 
in the effects of pharmacological manipulation of anandamide on nicotine reinforcement and motivation. 
Perhaps the strongest evidence for positive effects is that FAAH inhibition reduces nicotine reinforcement 
in non-human primates [78], although these effects may be mediated by a non-cannabinoid mechanism 
and further studies are required to confirm this. Interestingly cannabidiol has been proposed to inhibit 
FAAH and elevate anandamide levels [87,88] and it is noteworthy that one week ad hoc administration of 
cannabidiol in 12 smokers significantly reduced cigarette smoking (self-administration) relative to placebo 
[89] (it should be noted that this was a pilot study and this has not yet been replicated). However, the 
pharmacology of cannabidiol is complex affecting multiple targets [90], including modulation within both 
GABA and glutamate systems [91]. Therefore, it is not entirely clear that this effect is mediated by actions 
at FAAH. 
 
3.4 2-AG modulation 
It has been suggested that 2-AG may be the main endocannabinoid transmitter regulating phasic 
dopamine activity and long-term plasticity induced by drugs of abuse [92,93]. However, there have been 
few studies assessing the effects of 2-AG modulation on nicotine reinforcement and motivation. In mice, 
the MAGL inhibitor JZL184, which reduces metabolism of 2-AG, had no effect on nicotine self-
administration under fixed and progressive ratio schedules of reinforcement [94]. However, inhibition of 
DAGL (2-AG biosynthesis) reduces nicotine self-administration in rats without disrupting responding for a 
non-drug reinforcer or motor activity [95]. Further studies are required to establish the full impact of 2-
AG modulation on the regulation of nicotine reinforcement and motivation. 
 
4.0 Reinstatement of drug seeking 
Drug relapse and craving are commonly precipitated by acute exposure to the self-administered drug, 
drug-associated cues, or stressors. These relapse-inducing factors are modelled preclinically in laboratory 



 

 

animals with drug reinstatement following acquisition of self-administration and subsequent extinction 
of drug-reinforced responding [96]. In the following sections the impact of endocannabinoid modulation 
on nicotine reinstatement models is summarized. 
 
4.1 CB1 receptor modulation 
There is good evidence that CB1 receptor inverse agonism or neutral antagonism attenuates nicotine 
seeking behavior that is nicotine primed or cue-induced [51,53,54,56,57,97,98]. For example, Gueye et 
al., [57] found that the CB1 receptor antagonist AM4113 reduces nicotine primed and cue-induced 
reinstatement of nicotine seeking. The same study also found that AM4113 attenuated stress-induced 
reinstatement of nicotine seeking using yohimbine as a pharmacological stressor. Future work using other 
stressors is warranted to assess the generalization of these initial findings. Finally, this study also found, 
in a different group of animals, that AM4113 decreased dopaminergic neuron firing in response to nicotine 
in the ventral tegmental area suggesting that the reduction in drug seeking may be mediated by an 
attenuation in dopaminergic output. Taken together, evidence suggests that the CB1 receptor mediates 
nicotine seeking behavior. In particular, the effects of CB1 receptor neutral antagonists on nicotine and 
cue-induced reinstatement suggest they may help with the maintenance of abstinence.  
 
4.2 CB2 receptor modulation 
Few studies have investigated the effects of CB2 receptor modulation in models of nicotine reinstatement. 
Stimulation and blockade of CB2 receptors, with the agonist AM1241 and the antagonist AM630 
respectively, failed to effect nicotine seeking induced by nicotine priming or by nicotine-associated cues 
in rats [68]. Further, the CB1/CB2 receptor agonist WIN 55,212-2 enhanced reinstatement effects of 
nicotine-associated cues in rats. However, whereas the CB1 receptor inverse agonist rimonabant was able 
to reverse effects on nicotine seeking, the CB2 receptor antagonist AM630 was not [55]. This suggests 
that CB2 receptors are unlikely to mediate nicotine seeking. Administration of the dual CB1 receptor 
antagonist and CB2 receptor agonist Δ8-tetrahydrocannabivarin attenuated cue-induced and nicotine-
induced reinstatement of nicotine seeking in rats [99] but given previous findings with selective CB1 and 
CB2 receptor ligands, it appears likely that these effects are driven by CB1 receptor antagonism rather 
than CB2 receptor agonism. 
 
4.3 Anandamide modulation 
The anandamide reuptake inhibitors VDM11 and AM404 have both been shown to attenuate 
reinstatement of nicotine seeking induced by nicotine priming or nicotine-associated cues in rodents 
[75,76]. Similarly, several studies have found that FAAH inhibition also reduces nicotine primed or cue-
induced reinstatement of nicotine seeking [56,77,78,100]. The effect of FAAH inhibition on nicotine 
reinstatement may be mediated by both endocannabinoid and non-endocannabinoid mechanisms. For 
instance, one study in rats found that the FAAH inhibitor URB597 reduced cue-induced reinstatement of 
nicotine seeking and that the effect was reversed by rimonabant, but not by the CB2 receptor or PPAR-α 
antagonists AM630 and MK886 respectively [100]. This suggests a CB1 receptor mediated mechanism. In 
contrast, a study in squirrel monkeys found that URB597 and another FAAH inhibitor, URB694, attenuated 
both nicotine primed and cue-induced reinstatement of nicotine seeking, but the effect on nicotine 
priming induced reinstatement was blocked by MK886 [78]. This suggests a PPAR-α mediated mechanism. 
Indeed, PPAR-α agonists have previously been shown to reduce reinstatement of nicotine seeking in both 
rats and squirrel monkeys [82]. Taken together, evidence suggests that pharmacological modulation of 
anandamide impacts nicotine seeking behavior. FAAH inhibition, via a CB1 receptor or PPAR-α mediated 
mechanism, appears to reduce nicotine reinstatement and may offer efficacy as an anti-relapse agent in 
human smokers. Interestingly, cannabidiol, which appears to inhibit FAAH alongside having other targets, 
attenuates context and stress-induced drug seeking in rats with alcohol and cocaine self-administration 



 

 

histories [101]. Moreover, after overnight abstinence, an 800mg dose of cannabidiol reduces the 
pleasantness of cigarette cues and reverses attentional bias towards cigarette cues in smokers, suggesting 
that it impacts cue salience [102]. Given the evidence for attenuation of cue-induced relapse by more 
selective FAAH inhibitors (described above), it is intriguing to speculate that this effect may operate via a 
reduction in cue salience and further research is warranted in this area. 
 
4.4 2-AG modulation 
Few studies have investigated the effects of 2-AG modulation in models of nicotine reinstatement. 
Administration of the MAGL inhibitor JZL184 increased nicotine cue-induced reinstatement of nicotine 
seeking in mice [94] suggesting that elevation of 2-AG may induce relapse in the presence of nicotine-
associated cues. In support of this finding, another MAGL inhibitor, MJN110, has been shown to enhance 
cue-induced non-drug reward seeking in rats, an effect that was blocked by rimonabant [103]. Together 
this implicates 2-AG in cue-induced reward seeking for both drug and non-drug rewards and suggests that 
endocannabinoid tone at CB1 receptors is an important regulator of cue-induced reward seeking. 
 
5.0 Nicotine withdrawal signs 
Symptoms of withdrawal may be experienced after reducing or quitting tobacco use including irritability, 
anxiety, difficulty concentrating, restlessness, increased appetite, depressed mood and sleep problems. 
These symptoms can appear 4-24 hours following cessation, peak on approximately the third day of 
abstinence and gradually reduce over the proceeding 3-4 weeks [104]. Bidirectional relationships between 
withdrawal symptoms and smoking relapse have been reported. However, analyses evaluating temporal 
relationships more strongly support a negative reinforcement interpretation [105] whereby negative or 
aversive states motivate the resumption of tobacco smoking. Therefore, addressing the withdrawal 
syndrome is an important aspect of smoking cessation treatment. The following sections summarize the 
studies examining the impact of endocannabinoid modulation on withdrawal. 
 
5.1 CB1 receptor modulation 
Genetic knock-out of CB1 receptors does not appear to impact nicotine withdrawal symptoms [58,83]. 
Castañé et al., [58] induced somatic signs of nicotine withdrawal in chronic nicotine-treated mice using 
mecamylamine-precipitated abstinence. No difference in severity of nicotine withdrawal signs was found 
between CB1 receptor knock-out and wild-type mice. Merritt et al., [83] also found that CB1 receptor 
knock-out mice had equivalent severity withdrawal signs compared to wild-type mice after spontaneous 
withdrawal induced by termination of nicotine delivery. In contrast, this study also found that mice 
treated with the CB1 receptor inverse agonist rimonabant had reduced somatic signs of withdrawal 
compared to vehicle-treated mice. Similarly, the CB1 receptor antagonist AM251 was also shown to 
significantly reduce withdrawal signs in mice after 24 hours of nicotine abstinence [106]. However, the 
CB1 receptor partial agonist Δ9-tetrahydrocannabinol has also been shown to decrease somatic 
withdrawal signs associated with mecamylamine- or naloxone-precipitated abstinence. In addition, it also 
reverses conditioned place aversion associated with naloxone-precipitated nicotine abstinence suggesting 
that it may prevent physical and motivational aspects of nicotine withdrawal [107]. 
 
CB1 receptors have been implicated in some specific nicotine withdrawal associated phenomena. For 
instance, genetic variation in the CB1 receptor of human smokers moderates withdrawal-related cognitive 
disruption [108]. Similarly, in mice selective genetic deletion of CB1 receptors in forebrain GABAergic 
neurons or administration of rimonabant was able to block nicotine withdrawal associated memory 
impairment [109]. The CB1 receptor inverse agonists rimonabant and taranabant moderate weight in 
smokers during cessation treatment with those of a normal weight tending not to lose weight, while those 
who are overweight or obese tending to lose weight [110]. This is a useful property given that smoking 



 

 

cessation may increase appetite. However, rimonabant is anxiogenic [18], may exacerbate anxiety during 
nicotine abstinence [111] and as noted previously has been withdrawn from the market due to adverse 
psychiatric side effects. In contrast, the CB1 receptor antagonist AM4113 has no effect on anxiety and 
shows an antidepressant-like effect [57]. Taken together, CB1 receptors appear to have a role in the 
manifestation of at least some nicotine withdrawal associated signs. Both CB1 receptor inverse agonists 
and neutral antagonists may reduce some withdrawal signs, however neutral antagonist may have an 
improved psychiatric side-effect profile. 
 
5.2 CB2 receptor modulation 
Few studies have examined the role of the CB2 receptor in nicotine withdrawal and the limited existing 
findings have been equivocal. Δ8-tetrahydrocannabivarin a dual CB1 receptor antagonist and CB2 receptor 
agonist attenuated nicotine withdrawal signs in mice [99], but the non-selectivity of this ligand does not 
allow conclusions to be drawn regarding the role of CB2 receptor modulation. Another study found no 
differences in withdrawal signs when comparing CB2 receptor knock-out and wild-type mice on 
mecamylamine-precipitated abstinence [70]. In contrast, a further study found that somatic signs of 
mecamylamine-precipitated withdrawal were absent in CB2 receptor knock-out mice compared to wild-
type mice and that AM630, a CB2 receptor antagonist, blocked withdrawal signs in wild-type mice [69]. 
The reason for differences in the findings of these studies is unclear but may result from other genetic 
strain differences of the mice used. More research is required to establish the role of CB2 receptors in 
nicotine withdrawal. Further, CB2 receptor agonism in mice may be associated with an anxiolytic and 
antidepressant profile that is prevented by pre-administration of a CB2 receptor antagonist [112] however 
studies examining this effect in relation to nicotine and abstinence-induced anxiety and depressed mood 
are lacking and further work is required in this area. 
 
5.3 Anandamide modulation 
Some degree of species difference has been postulated regarding the impact of FAAH inhibition on 
nicotine withdrawal [113]. In mice, FAAH inhibition with URB597 or genetic deletion of FAAH exacerbates 
somatic withdrawal signs. Further, FAAH knock-out mice, but not pharmacological inhibition of FAAH, 
enhances withdrawal-induced conditioned place aversion [83]. In contrast, URB597 has been shown to 
reduce anxiety associated with spontaneous nicotine withdrawal and have no effect on somatic 
withdrawal signs in rats [114]. Several studies find that FAAH inhibitors exert anxiolytic and antidepressant 
effects [115,116]. It is perhaps somewhat surprising then that one study has found that chronic URB597 
administration during nicotine abstinence induces development of a depressive phenotype [117]. In 
contrast, the anandamide reuptake inhibitor AM404 has been demonstrated to exert antidepressant 
effects in nicotine withdrawn mice. This effect may be mediated by CB1 and 5-HT1A receptor mechanisms 
since prior administration of antagonists at these receptors blocked the antidepressant effect [106]. A 
small number of studies have shown that FAAH inhibition with URB597 can have some pro-cognitive 
effects, improving attention and memory in rodent models [118,119]. However, further work is required 
to specifically assess the impact of FAAH inhibition on abstinence-induced cognitive impairment. 
Interestingly, cannabidiol has been shown to abolish nicotine-withdrawal associated memory impairment 
in mice [120] but it is important to remember that cannabidiol has multiple pharmacological targets 
besides the proposed inhibition of FAAH. Taken together evidence suggests that pharmacological 
manipulation of anandamide levels is likely to improve some aspects of nicotine withdrawal. 
 
5.4 2-AG modulation 
The strongest evidence that modulation of 2-AG may impact nicotine withdrawal comes from cross-
species work using a range of molecular, genetic and pharmacological techniques [121]. This 2015 report 
contains data from mouse and human studies and finds that in mice: basal MAGL mRNA expression 



 

 

correlates with nicotine withdrawal signs, genetic knock-out of MAGL attenuates nicotine withdrawal, and 
inhibition of MAGL with JZL184 reduces somatic and aversive nicotine withdrawal signs. These effects of 
MAGL inhibition were blocked by rimonabant providing evidence for a CB1 receptor mediated 
mechanism. Further, human evidence is presented demonstrating an association between genetic 
variation within the MAGL gene and smoking withdrawal. In another study, MAGL inhibition with JZL184 
had no effect on cognitive deficits associated with nicotine abstinence in mice. However, inhibition of the 
biosynthesis of 2-AG with O7460 prevented such deficits [109]. MAGL inhibitors have anxiolytic properties 
[115,122] but this has not been examined in relation to nicotine and abstinence-induced anxiety. Together 
these findings are consistent with the theory that increasing 2-AG levels may reduce withdrawal signs. 
Therefore, further work examining the impact of 2-AG modulation on nicotine withdrawal is warranted. 
This work should consider potential adverse effects of ligands used. For instance, it has been suggested 
that MAGL inhibition may be associated with impaired motor activity and cannabimimetic side effects 
whereas this is not the case with FAAH inhibition [122,123]. Dual FAAH/MAGL inhibitors such as SA-57, 
which is 100-fold more potent at inhibiting FAAH than MAGL, have also been developed. SA-57 appears 
to have efficacy at reducing withdrawal effects in morphine-dependent mice [123] but research in nicotine 
dependent animals is lacking. 
 
6.0 Executive function 
It is widely accepted that there are three core executive functions, working memory, inhibition, and 
cognitive flexibility [124]. As these executive functions help us to set and obtain goals amidst changing 
environments/situations, impairment in these executive functions may contribute to the initiation, 
maintenance and relapse of drug use. Conversely, enhancing executive function may improve outcomes 
in substance use disorder. However, there is limited and mixed evidence that existing pharmacotherapy 
improves executive function [125]. In the following sections we highlight research assessing the impact of 
endocannabinoid modulation on these three core aspects of executive function. 
 
6.1 CB1 receptor modulation 
Evidence suggests that the CB1 receptor is implicated in executive function. In humans, variations in the 
gene encoding the CB1 receptor (CNR1 gene) are associated with working memory and attentional control 
performance [126-128] and a positron emission tomography study also suggests CB1 receptor availability 
is associated with working memory [129]. In rodents, overexpression of the CB1 receptor in rats impairs 
cognitive flexibility [130] and CB1 receptor knock-out mice display impaired working memory and 
cognitive flexibility [131,132]. 
 
Several studies have examined the impact of pharmacological modulation of the CB1 receptor on 
executive function. In rodents, administration of the CB1 receptor inverse agonist rimonabant or the CB1 
receptor antagonist SLV330 has been shown to improve executive function. Specifically, rimonabant 
improves working memory and SLV330 improves inhibition [133,134]. However, rimonabant and another 
CB1 receptor antagonist, AM251, have also been shown to impair inhibition and working memory 
respectively [135,136]. Consistent with CB1 receptor blockade improving executive dysfunction, studies 
show that impairments in working memory, inhibition and cognitive flexibility due to pharmacological 
(scopolamine, amphetamine, nicotine or nicotine withdrawal) or other (e.g. ischemia, chronic stress) 
challenges are prevented or attenuated by administration of rimonabant, SLV330 or AM251 [109,136-
145]. 
 
Impairments in working memory, cognitive flexibility and inhibition have been observed in studies in 
which rodents have been administered the CB1 receptor agonist ACEA or the non-selective CB1/CB2 
receptor agonist WIN-55,212-2 [132,146-150]. However, WIN-55,212-2 exposure has been shown to 



 

 

improve cognitive flexibility [151] but the non-selective pharmacology limits firm conclusions. On the 
other hand, studies using animal models of conditions associated with impairments in executive function 
(e.g. ADHD) and studies that have induced impairments in executive functions using stressors have shown 
improvements or normalisation of  executive function following administration of WIN-55,212-2 or 
exogenous cannabinoids [152-154]. Taken together, there is reasonably strong evidence that modulation 
of CB1 receptors impacts executive function. However, there are mixed findings with both improvements 
and impairments in executive function reported after blockade at this receptor. This suggests that other 
factors may moderate the effects of CB1 receptor ligands on executive function. Conversely both CB1 
receptor blockade and stimulation tend to improve executive function when tested in models of executive 
dysfunction. 
 
6.2 CB2 receptor modulation 
There have been few studies examining the impact of CB2 receptor modulation on executive function. 
Disruption of CB2 receptor expression in mice using CRISPR-Cas9 genome-editing has been shown to 
enhance working memory [155]. Similarly, CB2 receptor knock-out mice display enhanced working 
memory. However, CB2 receptor blockade by AM603 had no effect on working memory [156]. In contrast 
to these findings, the CB2 receptor agonist beta-caryophyllene has been found to reverse age-associated 
deficits in working memory in rats [157]. These findings suggest that CB2 receptor modulation does impact 
executive function. However, there appears to be differences with reports of both genetic deletion and 
pharmacological stimulation of CB2 receptors enhancing working memory. Further studies are required 
to fully establish the impact of CB2 receptor modulation on executive function.  
 
6.3 Anandamide modulation 
In humans, peripheral anandamide levels positively correlate with cognitive flexibility while there is no 
significant correlation between anandamide and inhibition [158]. This suggests anandamide modulation 
may impact some aspects of executive function. Indeed, several studies have examined the impact of 
FAAH inhibition on executive function with results being somewhat mixed. FAAH inhibition has been 
shown to improve working memory and inhibition in some rodent assays [118,119]. Further, FAAH 
inhibition has been shown to reverse impairments in working memory that are induced by head or brain 
injury models in mice [159,160], and to reverse an impairment in inhibition induced by maternal 
deprivation in rats [161]. In contrast, one study assessing the effects of five structurally different FAAH 
inhibitors found that one, AM3506, impaired working memory in rats while four others (URB597, URB694, 
PF-04457845 and ARN14633) showed no effect [162]. Mixed findings have also been reported regarding 
the impact of FAAH inhibition on cognitive flexibility with studies showing impaired reversal 
learning/discrimination reversal in rats after administration of URB597 [145] but no effects of anandamide 
or URB597 administration in squirrel monkeys [163]. Further, it is noteworthy that cannabidiol, which may 
inhibit FAAH, had no effect on working memory and impaired inhibition during smoking abstinence [164]. 
However, as discussed previously cannabidiol has multiple pharmacological targets and these effects may 
not be mediated via FAAH inhibition. Basal levels of endocannabinoids may explain mixed executive 
function findings with FAAH inhibition. FAAH knock-out mice, which have elevated levels of anandamide, 
have an increased sensitivity to the impairing effects of anandamide on working memory compared to 
wild-type mice [137]. Since nicotine abstinence is associated with increased anandamide in the prefrontal 
cortex [114], a region implicated in executive function, it will be important to establish if basal 
anandamide levels do indeed impact the cognitive effects of FAAH inhibitors.  
 
6.4 2-AG modulation 
There is a negative correlation between peripheral 2-AG levels and cognitive flexibility and no significant 
correlation between 2-AG and inhibition [158]. This suggests 2-AG modulation may impact some aspects 



 

 

of executive function. However, few studies have directly assessed the impact of 2-AG modulation on 
executive function. There was no effect of the MAGL inhibitor JZL184 on working memory in rats [162]. In 
contrast, elevation of anandamide by inhibition of alpha/beta hydrolase domain 6 (a novel 2-AG hydrolytic 
enzyme responsible for some 2-AG metabolism) improved working memory in a mouse brain injury model 
[165]. As with FAAH inhibition (described above), mixed findings may relate to a moderating effect of 
basal endocannabinoid levels. In support of this, MAGL inhibition with JZL184 impairs working memory in 
FAAH knock-out mice but in wild-type mice, only high dose JZL184, and not low dose, impairs working 
memory [166]. The low number of studies in this area limits further discussion and further research is 
required to clarify the impact of 2-AG modulation on executive function.  
 
7.0 Conclusions 
The studies reviewed here support the involvement of the endocannabinoid system in nicotine 
reinforcement and motivation, reinstatement of drug seeking, severity of withdrawal signs and executive 
function. The main findings are summarized in Table 1. In particular, CB1 receptor blockade and FAAH 
inhibition may represent promising novel pharmacological approaches to smoking cessation and relapse 
prevention and the main findings supporting this conclusion are summarized below. 
 
[INSERT TABLE 1 NEAR HERE] 
 
Several strands of research implicate CB1 receptors in TUD. For example, positron emission tomography 
indicates that smoking is associated with an abnormal density of CB1 receptors [167]. In addition, in two 
independent samples of smokers, genetic evidence shows significant single nucleotide polymorphism and 
haplotype associations with the Fagerstrom Test for Nicotine dependence for variants within CNR1, the 
gene encoding the CB1 receptor [168]. In particular, CB1 receptors mediate reinforcing, motivational and 
reinstatement effects of nicotine. As reviewed here, studies tend to find that the inverse agonist 
rimonabant as well as neutral antagonists reduce nicotine self-administration and attenuate 
reinstatement of nicotine seeking. There is also evidence that blockade at this receptor may result in 
reduced severity of some withdrawal signs and may improve impaired executive function. Thus targeting 
the CB1 receptor in this way appears to have effects that should promote cessation and prevent relapse. 
While rimonabant has adverse psychiatric side-effects, neutral antagonists may have an improved 
psychiatric side-effect profile [57]. However, this may not be true of every neutral antagonist [169] and 
future drug candidates should be thoroughly assessed to ensure they do not induce anxiety and 
depression-like phenotypes. 
 
As reviewed here, FAAH inhibitors also demonstrate anti-addictive properties in several studies. FAAH 
inhibition attenuates reinstatement of nicotine seeking and has been shown to reduce self-administration 
of nicotine in some animals. There is also some evidence that FAAH inhibition reduces severity of 
withdrawal signs and may enhance executive function, although evidence for the latter is limited and 
mixed. Importantly, FAAH inhibitors exert anxiolytic and antidepressant effects [115,116]. These 
properties may make FAAH inhibitors particularly useful for individuals vulnerable to anxiety and mood 
problems during withdrawal, and for those smokers with comorbid anxiety or depression. 
 
Research examining the impact of modulation of the endocannabinoid system on addiction relevant 
factors is still at a relatively early stage. Evidence for effects of CB2 receptor or 2-AG modulation on the 
addiction relevant factors included in this review are either limited or tend to have provided more mixed 
findings than for CB1 receptor and anandamide modulation. Based on existing research, CB1 receptor 
neutral antagonists and FAAH inhibitors have the strongest support for continued development but it may 
be too early to rule out alternative endocannabinoid modulating mechanisms. 



 

 

 
8.0 Expert Opinion 
The global human and economic cost of tobacco smoking coupled with high rates of relapse among 
smokers, even when using current first line medication [12], highlights the need for novel and improved 
pharmacotherapy approaches in the management of TUD. The ideal drug candidate requires both 
smoking cessation efficacy and anti-relapse efficacy so that initial cessation can be maintained over the 
long-term. Multiple factors likely converge to maintain drug taking behavior and lead to relapse including 
the rewarding effects of nicotine, the propensity to reinstate drug seeking (in response to nicotine 
priming, nicotine associated cues or stress), the severity of withdrawal signs and executive function status. 
For this reason, a non-reductionist approach should be taken during assessment of candidate drugs for 
TUD. Here we have reviewed the impact of endocannabinoid modulation in a range of studies relevant to 
the maintenance of nicotine use and relapse. 
 
While we are still at the beginning of our understanding regarding the impact of endocannabinoid 
modulation on addiction relevant behaviors, initial research has produced promising findings for CB1 
receptor antagonists and FAAH inhibitors. Research efforts in the next few years will increase the 
understanding of this system in TUD, and in substance use disorders more generally. We will likely see 
further studies examining reinstatement of nicotine seeking. In particular, data relating to stress-induced 
relapse models would be desirable given that the majority of reinstatement studies have focused on 
nicotine primed and cue-induced drug seeking. We know that yohimbine-induced stress provokes 
reinstatement of nicotine seeking and that CB1 receptor antagonism can attenuate this [57]. Future work 
using non-pharmacological stressors will assess the generalization of these initial findings. Further, it 
might be expected that FAAH inhibition will have a larger effect on stress-induced relapse relative to CB1 
receptor antagonists given their anxiolytic properties. 
 
Regarding self-administration studies, previous research suggests that studies are most likely to show 
translational concordance between laboratory assessments and clinical outcomes when the former 
provide repeated administration (chronic treatment) of the candidate medication of interest, and also 
demonstrate behavioural selectivity [170-172]. Regarding CB1 receptor neutral antagonists, these criteria 
have been met. For instance, chronic injections (over 10 days) of the CB1 receptor neutral antagonist 
AM4113 attenuate nicotine self-administration in rats but have no impact on operant responding for food 
[57]. To date, none of the studies assessing the effects of FAAH inhibition on nicotine self-administration 
have used a chronic dosing schedule. However, behavioral selectivity has been demonstrated. For 
instance, acute FAAH inhibitor administration, over 5 consecutive self-administration sessions, reduced 
nicotine self-administration in non-human primates, with no effects on cocaine or food self-
administration [78]. To increase translational predictive validity, future self-administration studies should 
aim to use a chronic dosing schedule of the candidate medication and include assessment of behavioral 
selectivity of drug effects. 
 
Increasing our understanding of the impact of anandamide reuptake inhibitors should also be a research 
focus given that they attenuate reinstatement of nicotine seeking and may also reduce nicotine self-
administration, and some withdrawal signs. To date, the majority of research examining the effects of 
anandamide modulation has come from studies using FAAH inhibitors. Given the scarcity of studies with 
the reuptake inhibitors, it has been difficult to draw firm conclusions regarding their impact. An important 
consideration regarding anandamide reuptake inhibition relates to the potential for abuse. Squirrel 
monkeys self-administer the anandamide reuptake inhibitor AM404 [173] suggesting reuptake inhibitors 
may have some risk for abuse. In contrast, the FAAH inhibitor URB597 was not self-administered in squirrel 
monkeys [174] while the newer FAAH inhibitor URB694 was self-administered at a moderate rate [78]. 



 

 

Whether self-administration of AM404 represents a specific property of this compound or a more general 
drug class effect requires further research. Careful assessment of abuse risk will be required for both FAAH 
inhibitors and anandamide reuptake inhibitors going forward. 
 
Given that some of the anti-addiction effects of FAAH inhibitors appear to be mediated by PPAR-α, 
another focus for future research should relate to establishing interactions of the endocannabinoid 
system with other systems. However, of note here is that gemfibrozil, a partial PPAR-α agonist, failed to 
effect nicotine reinforcement, cue-reactivity or smoking cessation relative to placebo in a recent study of 
treatment seeking smokers [175]. Interestingly, there are interactions between the endocannabinoid and 
nicotinic cholinergic systems [176]. For instance, anandamide inhibits nicotinic acetylcholine receptor 
function in mouse thalamic synaptosomes [177] and in amphibian oocytes [178]. Whether these effects 
occur in other species, and whether they impact on the reported effects of FAAH inhibitors reviewed here 
will be of interest. Finally, there are some compounds which have yet to be extensively tested in a number 
of addiction relevant assays, but which may be likely to yield positive findings. Given the promising CB1 
receptor antagonist findings, we suggest that allosteric modulators of the CB1 receptor [179] should be 
evaluated. Also, given that TUD is a complex condition with multiple factors converging to maintain drug 
taking behavior and cause relapse, it is unlikely that a single pharmacological target will be enough to 
prevent relapse. Therefore, given that dopamine D3 receptors have been proposed as another alternative 
pharmacological target for relapse prevention [180], we suggest that innovative multi-target ligands such 
as dual modulators of dopamine D3 receptors and FAAH [181], or dual modulators of dopamine D3 and 
CB1 receptors [182] be investigated. 
 
The ultimate goal of this research is to see translation of findings in successful clinical trials and the 
subsequent availability of novel pharmacotherapeutics for those wanting to quit smoking. We reiterate 
that we believe that for such successful translation to occur, a non-reductionist, multi-dimensional 
approach to modelling factors relevant to the maintenance of smoking and relapse is required during 
preclinical research. We suggest that clinical trials in smokers are now required for neutral CB1 receptor 
antagonists and FAAH inhibitors. Of these two endocannabinoid modulating strategies, neutral CB1 
receptor antagonists might be expected to have the greatest chance of smoking cessation success, given 
previous clinical findings with rimonabant which blocks the same receptor. However, they might also be 
expected to have increased risk of psychiatric side effects for the same reason. On the other hand, there 
is little clinical experience to draw upon regarding FAAH inhibition and none in those with TUD. However, 
the tools for such a study are available, the FAAH inhibitor PF-04457845 has recently shown efficacy and 
safety in a clinical trial for cannabis use disorder [183]. Further, unlike CB1 receptor modulation, anxiety 
and depression risk may be low given the mild CB1 receptor stimulating effects of FAAH inhibition. We 
are seeing the emergence of cannabinoid pharmacotherapy for several brain disorders [184], and there is 
potential for development of a novel endocannabinoid modulating medication for smoking cessation. 
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Figure 1: Principle components of the endocanabinoid system in the central nervous system. 

The main enzymes involved in biosynthesis and metabolism of (A) 2-AG and (B) Anandamide. (CB1R = 

Cannabinoid Receptor 1; 2-AG = 2-Arachidonoylglycerol; DAG = Diacylglycerol; DAGL = Diacylglycerol 

Lipase; MAGL = Monoacylglycerol Lipase; AA = Arachidonic Acid; Anandamide = N-

arachidonolylethanolamine; NAPE = N-arachidonoyl phosphatidylethanolamine; NAPE-PLD = N-

acylphosphatidylethaloamine-hydrolysing phospholipase D; FAAH = fatty acid amide hydrolase; EtNH2 = 

Ethanolamine). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

Table 1: Main findings for the impact of endocannabinoid modulation on addiction/relapse relevant 

factors. 

 CB1 Receptor 
Modulation 

CB2 Receptor 
Modulation 

Anandamide 
Modulation 

2-AG Modulation 

Nicotine 
Reinforcement 
and Motivation 

Convincing evidence 
that CB1R neutral 
antagonists and 

CB1R inverse 
agonists ↓ 

Few studies and 
mixed findings but 

some evidence that 
CB2R antagonists ↓ 

Mixed findings but 
some evidence that 
FAAH inhibitors ↓ 

Few studies 
conducted. DAGL 
inhibition may ↓ 

Reinstatement 
of Nicotine 

Seeking 

Convincing evidence 
that CB1R neutral 
antagonists and 

CB1R inverse 
agonists ↓ 

Few studies. Some 
evidence that 

modulation has no 
impact. 

Some evidence that 
anandamide 

reuptake inhibitors 
↓, Convincing 

evidence that FAAH 
inhibitors ↓ 

Few studies 
conducted. MAGL 
inhibition may ↑ 

Withdrawal 
Signs 

CB1R neutral 
antagonists and 

CB1R inverse 
agonists may ↓ 

some withdrawal 
signs. CB1R inverse 

agonists ↑ 
abstinence-induced 

anxiety but CB1R 
neutral agonists may 

have improved 
psychiatric side-

effect profile. 

Few studies. Difficult 
to draw any 

conclusions at this 
point. 

Mixed findings but 
some evidence that 

anandamide 
reuptake inhibitors 
and FAAH inhibitors 

may ↓ some 
withdrawal signs. 

MAGL inhibition 
may ↓ some 

withdrawal signs. 

Executive 
Function 

Mixed findings but 
some evidence that 
CB1R blockade may 

reverse 
impairments. 

Few studies and 
mixed findings. 
Difficult to draw 

conclusions at this 
point. 

Mixed findings but 
some evidence that 
FAAH inhibitors may 

reverse 
impairments. 

Few studies and 
mixed findings. 
Difficult to draw 

conclusions at this 
point. 

 

Abbreviations: CB1R = Cannabinoid Receptor 1; CBR2 = Cannabinoid Receptor 2; 2-AG = 2-

Arachidonoylglycerol; FAAH = fatty acid amide hydrolase; DAGL = Diacylglycerol Lipase; MAGL = 

Monoacylglycerol Lipase. 

 
 
 


