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Abstract: Solar forecasting plays a key part in the renewable energy transition. Major challenges,
related to load balancing and grid stability, emerge when a high percentage of energy is provided by
renewables. These can be tackled by new energy management strategies guided by power forecasts.
This paper presents a data-driven and contextual optimisation forecasting (DCF) algorithm for solar
irradiance that was comprehensively validated using short- and long-term predictions, in three US
cities: Denver, Boston, and Seattle. Moreover, step-by-step implementation guidelines to follow and
reproduce the results were proposed. Initially, a comparative study of two machine learning (ML)
algorithms, the support vector machine (SVM) and Facebook Prophet (FBP) for solar prediction was
conducted. The short-term SVM outperformed the FBP model for the 1- and 2- hour prediction,
achieving a coefficient of determination (R2) of 91.2% in Boston. However, FBP displayed sustained
performance for increasing the forecast horizon and yielded better results for 3-hour and long-term
forecasts. The algorithms were optimised by further contextual model adjustments which resulted in
substantially improved performance. Thus, DCF utilised SVM for short-term and FBP for long-term
predictions and optimised their performance using contextual information. DCF achieved consistent
performance for the three cities and for long- and short-term predictions, with an average R2 of 85%.

Keywords: solar irradiance forecasting; short-term and long-term predictions; machine learning;
support vector machine; Facebook Prophet; contextual optimisation

1. Introduction

Greenhouse gases are major drivers of climate change [1] and are primarily produced
by energy generation from fossil fuels [2]. Substantial research and political attention
have been devoted to renewable energies in order to reduce the consumption of fossil
fuels [3]. According to Huybrechts [4], renewable solar energy generation has continuously
increased in the context of attempts to transition to a net-zero carbon economy, as shown in
Figure 1. However, major challenges arise when a higher percentage of renewable energy
is connected to the grid, due to its volatile nature [5]. If supply and demand are not of
a similar magnitude, energy grids become unstable, potentially leading to blackouts [6].
Load balancing, ensuring that equal amounts of energy are generated and consumed, is
one of the most important and difficult of these challenges [7]. This has conventionally
been achieved by adjusting energy generation to demand patterns and scaling up power
generation whenever necessary. Currently, the backup capacity for load balancing is mostly
provided by fossil fuels, generation of which can be ramped up on demand [8].
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Renewable energy depends on environmental factors [10,11], and is, therefore, harder
to match to demand patterns. This stipulates the need for appropriate energy management,
including the organisation of generation, storage, and consumption. Understanding energy
generation patterns plays a key part in developing effective management strategies. There-
fore, the prediction of renewable power output is necessary to integrate more renewable
energy into the grid and thus reduce the emission of greenhouse gases [12].

In order to forecast the power output of any solar technology, the amount of available
potential energy must be known. If prediction models are specific to one type of device,
it is harder to adapt them to other use cases. The potential energy generated by many
technologies, e.g., PV panels, depends on the amount of solar global horizontal irradiance
received at a certain location. Global horizontal irradiance is the sum of direct and diffuse
radiation on a horizontal plane and is also used to calculate the radiation on an inclined
plane, such as a solar panel [13]. The prediction of solar radiation allows us to infer the
power output of devices, such as photovoltaic cells or solar water heaters. Throughout this
paper, global horizontal irradiance will also be referred to as simply irradiance or radiation.

In recent years, solar prediction in particular has become more sophisticated. Much
of this advancement is attributed to the development of machine learning (ML) algo-
rithms [14]. There has been a tremendous increase in the use of ML for solar predictions in
the last decade. It has been successfully employed and is extensively discussed in review
papers by Sobri et al. [12] and Wang et al. [14]. This paper builds on these insights and
proposes a forecasting algorithm that predicts solar irradiance using ML algorithms and
contextual optimisation.

Motivations and Impact

The need for ML-driven energy management solutions is increasing with the net-zero
carbon by 2050 target set by the UK government [15]. Several contributing parameters to
managing energy in our society include demand, energy usage behaviour, environmental
factors, etc. In this paper, we addressed the question of how to accurately forecast solar irra-
diance. This plays a crucial role in choosing the most optimal energy system management
strategy, and optimising the integration of solar cells [16]. Moreover, we aim to present a
methodological foundation of algorithm and feature selection, and evaluation metrics for
other studies to follow.

The main contributions of this paper are as follows:
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• Data-driven and contextual optimisation forecasting (DCF) algorithm, which accu-
rately predicts solar irradiance in the short- and long term. DCF is a hybrid algorithm
that utilises state-of-the-art ML algorithms and optimises their accuracy using contex-
tual information;

• A comparative study of two ML algorithms (Support Vector Machine and Facebook
Prophet), in which an investigation was made into the effect of adding extraterrestrial
radiation as a feature;

• Comprehensive validation of the forecasting accuracy for short- and long-term pre-
dictions in three cities to ensure that the model is not specific to one location. This
was evaluated by computing the coefficient of determination (R2), mean absolute error
(MAE), and root-mean-squared error (RMSE).

The rest of the paper is organised as follows: Section 2 reviews previously proposed
algorithms for solar forecasting. Section 3 presents the dataset used for training the ML
algorithms and the evaluation methods, respectively. The DCF algorithm is introduced in
Section 4, while Section 5 discusses the forecasting results. Finally, Section 6 concludes this
paper, and Section 7 suggests potential future research.

2. Literature Review

There is a range of ML algorithms that have been used in solar irradiance predic-
tion, such as regression, Markov chain [17], autoregressive integrated moving average
(ARIMA) [18], and neural networks [19]. One of the most commonly used ML algorithms is
the support vector machine (SVM) [12,20–22]. The SVM model is a conventional algorithm
that has been used for more than a decade to predict solar irradiance [21]. There are several
advantages to using an SVM; for example, it is able to model complex nonlinear models
with considerably high accuracy and robustness, and it is usually immune to overfitting.
Furthermore, there are novel algorithms, which are not yet established in solar prediction
but have the potential to increase forecasting accuracy, such as the Facebook Prophet (FBP)
algorithm. FBP was proposed for forecasting time series where nonlinear trends fit with
yearly, weekly, and daily seasonality. It achieves high accuracy with time series that have
strong seasonal effects and several seasons of historical data. Additionally, it is robust in
handling missing data and shifts in the trend and typically reduces the effect of outliers as
shown in Section 2.2.

2.1. Support Vector Machines

SVM is a statistical learning algorithm originally designed for classifying data [23].
It can also be used for regression tasks such as predicting solar radiation [24]. A kernel
function transforms a nonlinear input space into a higher-dimensional space [25]. It allows
efficient computation of the scalar products of multiple vectors in this higher-dimensional
space. Common kernel functions include the polynomial, radial basis (RBF), and sigmoid
functions [21]. In the higher-dimensional space, the optimal hyperplane, which separates
the margins of errors in regression and classes in classification, can be identified.

The use of SVMs in renewable forecasting has increased drastically in recent years [21].
The SVM is an established method, used across the renewable energy sector, especially
for solar forecasting, because of its accurate prediction ability for nonlinear data. Further
advantages include its fast computational speed, as no iterative tuning is required, and its
capability to produce accurate predictions with a small volume of data [26]. SVMs solve a
convex programming problem resulting in the global optimum, avoiding being trapped in
local optima (local optimum is either the highest or lowest point, compared with nearby
data points. The global optimum is the highest or lowest point in the whole function or
dataset. Further reading on convex optimisation problems can be found in [27]).

Zeng and Qiao proposed a least-square SVM to forecast global horizontal irradiance
for 1-, 2- and 3-hour ahead [28]. Their model significantly outperformed an autoregressive
(AR) model, as well as a radial basis function neural network. However, their evaluation
was performed for a short period (10 days) without cross-validating the model performance.
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VanDeventer et al. developed an SVM model in hybrid with a genetic algorithm to forecast
the power output of residential PV systems [29]. The model demonstrated good adaptability
to different locations, weather patterns, and climatic conditions. As, PV power output
depends on the system parameters and technologies, prediction of the power source
(irradiance) is more useful in the long term. An SVM with radial basis function to global
solar irradiance in a single location (Tehran) was used by Ramedani et al. [25]. The radial
basis function was chosen because it outperformed the polynomial as a kernel function.
Furthermore, it outperforms an ANN in terms of root-mean-squared error (RMSE) while
being computationally more efficient.

2.2. Facebook Prophet

Facebook Prophet (FBP) is a decomposable time series model, based on additive mod-
elling [30]. Recently, it has gained significant attention due to its capability to accurately
forecast time series data. For instance, Lim et al. compared FBP to autoregressive inte-
grated moving average (SARIMA) and concluded that FBP outperformed SARIMA for the
prediction of electricity and natural gas demand [31]. Additionally, Shawon et al. predicted
PV short circuit current for the next day, deeming it to be a reliable forecasting method [32].

FBP delivers its peak performance when dealing with a time series with strong seasonal
effects [33]. This applies to solar irradiance and is one of the main reasons to believe that
this algorithm is suitable for solar irradiance forecasting. However, in the literature, FBP
has not yet been utilised for solar irradiance prediction.

FBP models the time series data as follows:

y(t) = g(t) + s(t) + h(t) + εt (1)

where the trend is g(t), the seasonality is s(t), and the holidays are h(t). It is worth
mentioning that holidays and weekly trends were not accounted for, as these have no
influence on solar irradiance, εt indicates the changes not represented by the model and is
assumed to be normally distributed. It has intuitively adaptable parameters, designed to be
used by analysts that have domain knowledge rather than statistical expertise. Therefore, it
is important to know the characteristics of the subject that is being predicted, in this case,
the behaviour of solar radiation.

3. Dataset and Evaluation
3.1. Dataset

The data for this paper were acquired from the National Solar Radiation Database
(NSRDB) [34] for solar irradiance values in Denver, Seattle, and Boston, as shown in Table 1.
These were selected due to their different geographical and meteorological conditions.
Thus, the forecasting algorithm would not be specific to one location.

Table 1. Datasets are from the National Solar Radiation Database [34].

City Station Name ID Latitude Longitude

Denver Denver/Centennial 724666 39.742◦ −105.179◦

Boston Boston Logan 725090 42.367◦ −71.017◦

Seattle Seattle Seattle-Tacoma 727930 47.46◦ 122.317◦

The datasets contained hourly data for 8 years (1998–2005), including global horizontal
irradiance and extraterrestrial radiation on a horizontal surface. Extraterrestrial radiation
on a horizontal surface is the amount of solar radiation received at the top of the atmosphere
on a horizontal surface. This will be referred to as extraterrestrial radiation throughout this
paper (this is not to be confused with the solar constant. Further reading on solar radiation
can be found in Kalogirou’s book Solar Energy Engineering [35]. These datasets were used to
predict hourly values for the global horizontal irradiance.
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By averaging every hour of the day over the given 8 years, 1D and 2D plots were
created and are shown in Figure 2, respectively. While the 1D plot only captures the
seasonal trend, the 2D representation also displays the daily seasonality which depends on
the latitude of the location.
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3.2. Evaluation

The DCF algorithm was assessed for short- and long-term forecasting. The short-term
forecasts for 1-, 2- and 3-hour ahead were generated, as is common in the literature [12,29,36,37].
Forecasts for a few hours ahead help to manage and schedule the start-up of power plants
(load scheduling) [37]. Furthermore, short-term forecasts of 30 min to 6 h are important for
load dispatch and scheduling [24]. Load dispatch means that electricity can be dispatched
on demand, and load scheduling is the management of this electricity and its usage.

The long-term prediction capabilities were investigated by forecasting irradiance data
for 1 year (24× 365 h) ahead. Long-term forecasting of several months up to a year is useful
for scheduling maintenance and has value when bidding on the energy market [38]. There
are few studies on long-term predictions in the literature using statistical methods [12]. It
might relate to the fact that physical models based on meteorological expertise are generally
more accurate at predicting long-term solar radiation [39]. The long-term prediction of this
ML model does not detect any change in weather and only gives an approximate idea of
the radiation values. However, this model is useful, as its implementation is easier and
quicker than the implementation of a physical model and still gives a good indication of
the amount of radiation that will be received

All models were tested on hourly data for a whole year (2005). These results were
affirmed using fivefold cross validation for the SVM model. Cross validation for FBP cannot
be performed like common k-fold validation, as the time series should not be randomly
separated. Therefore, the 1-, 2-, and 3-hour predictions were made for FBP using every
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hour of the year as the starting point, thus generating 8760 × 3 forecasts. Based on these
predictions and target values, several evaluation metrics were calculated. As for k-fold
cross validation, the more starting points there are (the higher the k), the more generalised
the result will be.

The forecasting was evaluated and compared using the coefficient of determination
(R2), mean absolute error (MAE), and root-mean-squared error (RMSE).

The R2 value is obtained as follows [40]:

R2 =
Σi(yi − ŷi)

Σi(yi − yi)
(2)

where yi are the actual values, yi is the mean of the actual values, and ŷi are the predicted values.
MAE has the same units as the predicted value and thus represents the expected

absolute error, which is calculated by [41].

MAE =
1
N

N

∑
i=1
|yi − ŷi| (3)

where N is the total number of samples.
The RMSE value squares the difference between actual and predicted values, em-

phasising larger errors. This is appropriate for solar prediction as larger errors lead to
disproportionally higher costs [42]. RMSE can be calculated as follows [43]:

RMSE =

√√√√ N

∑
i=1

(yi − ŷi)
2

N
(4)

To evaluate the prediction accuracy, the data were trained on radiation data from 1998
to 2004 and tested on data from 2005. Cross validation was performed, showing that the
models generalise well. Furthermore, grid search was applied to tune the hyperparameters.
After training and making predictions, these were adjusted using contextual optimisation.

4. Data-Driven and Contextual Optimisation Forecasting Algorithm

The DCF algorithm consists of two parts, i.e., data-driven and optimisation using
contextual information, as shown in Figure 3. The data-driven part purely depends on the
algorithm and the input data, e.g., the selection of the input features. The optimisation part
uses contextual information to enhance the forecasting of the data-driven models, such as
the elimination of negative predictions. Using this approach, we can harvest the strengths
of both machine learning and the contextual understanding of the data.
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4.1. Data-Driven Model

In the data-driven part, two promising ML algorithms (SVM and FBP) were utilised
to generate the predictions. It was implemented in Python [44] using Scikit-learn [45] and
Prophet Libraries [30]. Initially, a comparative study of the SVM and FBP algorithms was
conducted to assess their accuracy. Subsequently, the effects of adding extraterrestrial
radiation as an input feature to the model were investigated.

For the SVM short-term prediction, three variables were used as initial features, all
past values of the global horizontal irradiance. These are the radiation of the same day 1 h
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ago, the same hour 1 day ago, and the same hour 2 days ago, as shown in Table 2. Zeng
and Qiao found that the same hour of previous days has a stronger correlation with the
target variable than radiation data from 1h ago [28]. For the long-term prediction of the
SVM model, radiation values of the same hour and same day one year ago were used as its
initial feature (see Table 2), as these have a strong correlation [38].

Table 2. Initial and additional features for SVM short- and long-term forecast.

Variable Name Description

Short-term Forecast

Initial Input Features

1H Radiation Radiation values for the same day 1 h ago
1D Radiation Radiation values for the same hour 1 day ago
2D Radiation Radiation values for the same hour 2 days ago

Additional Input Features

1H Extraterr Extraterrestrial values for the same day 1 h ago
1D Extraterr Extraterrestrial values for the same hour 1 day ago
2D Extraterr Extraterrestrial values for the same hour 2 days ago

Long-term Forecast

Initial Input Features

1Y Radiation Radiation from the same hour and day a year ago

Additional Input Features

2Y Radiation Radiation at the same hour and day two years ago
1Y Extraterr Extraterrestrial radiation of same hour and day a year ago
2Y Extraterr Extraterrestrial radiation of same hour and day two years ago

For the Facebook Prophet short-term prediction, the same variable as for SVM was
used, the global horizontal irradiance. However, as FBP has a different algorithm structure,
the feature is the time series of solar radiation up to the values that are predicted. There is
no differentiation of global horizontal radiation (1H-, 1D-, 2D radiation) as for the SVM
model. For example, all values from 00:00 on 1 January 1998 up to 08:00 on 24 June 2005
were used to predict 09:00 + 10:00 + 11:00 on 24 June 2005. Similarly, for the long-term
prediction, the entire past time series up to the predicted year was used. The past time
series should contain at least one year of data so that seasonalities can be captured. Both
the long- and short-term prediction features are shown in Table 3. These will only differ in
their predicted output values (3 h or 1 year).

Table 3. Initial and additional features for FBP short- and long-term forecast.

Variable Name Description

Short- and Long-term Forecast

Initial Input Features

Xt=0 . . . Xt=N Time series of radiation values from 1 January 1998 to 31 December 2004

Additional Input Features

Et=0 . . . Et=N
Time series of extraterrestrial radiation values from 1 January 1998 to

31 December 2004

After choosing the initial features for the data-driven model, further features were
added and their effectiveness evaluated. Adding features to a model can improve its
performance [28]. However, there is no inherent benefit to increasing the model complexity.
Additional features can also lead to worse results or have no impact on performance [46].
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Therefore, additional features must be carefully evaluated and only added if shown to have
a positive impact.

For the SVM short-term forecast, three inputs were added to the initial features, as
shown in Table 2: extraterrestrial radiation for the previous hour of the same day, for the
same hour 1 day ago, and for the same hour 2 days prior. For the long-term forecast, the
irradiance of the same hour and the same day two years ago, as well as the extraterrestrial
radiation were added. The long-term forecast further included the global horizontal
irradiance of the same hour and the same day two years ago, as well as the extraterrestrial
radiation, as shown in Table 2.

It is only possible to add features to FBP if the future values for these are known.
This is not the case for most additional features, such as extraterrestrial radiation. How-
ever, extraterrestrial radiation is approximately the same for every time of the year at a
given location, so it can be predicted precisely. Thus, a time series of predicted extraterres-
trial radiation was added for FBP as additional regressors, for both short- and long-term
predictions, as shown in Table 3.

Hyperparameters are different from “normal” parameters, e.g., the weights (ω) and
biases (b). They are the parameters that cannot be learned by the SVM model but must be
chosen. The hyperparameter were tuned after evaluating the results of the basic algorithm
operations for the default values in Scikit-learn. Hyperparameters should be selected to
give the best results and can be tuned using several different methods. These include grid
search [47], random search [48], and bio-inspired techniques, e.g., swarm optimisation [49].

The hyperparameters for this SVM model were tuned by the grid search cross valida-
tion (grid-search cross-validation searches for the best combination of the given parameters
using cross validation to evaluate each combination of hyperparameters). For this, a grid
of possible hyperparameters was provided. Firstly, the radial basis function (RBF), shown
in Equation (5), was chosen, as it produces the best results in the literature [50]. This was
verified for these solar models. When using an SVM for regression with an RBF kernel,
three parameters must be found: C, the regularisation parameter; ε, the term defining the
size of the error tube; γ, the width of the RBF kernel.

RBF = exp
(
−γ‖x− x′‖2

)
(5)

One drawback of grid search cross validation is its computational cost. Other opti-
misation techniques should be investigated, as discussed in Section 7. To avoid excessive
computations, a log-scale was initially used for all hyperparameters, e.g., 0.1, 1, 10, and
100 for C. Depending on the outcome, the range was adjusted (e.g., 5, 10, and 50). It was
found that C had the greatest influence on the results of this model.

4.2. Contextual Optimisation

The second part of the DCF algorithm optimised the accuracy of the data-driven
predictions using the contextual information of solar irradiance. This information was
derived from comparing the forecasted values to the measured values, thus not relying
on a specific location/time. As shown in Figure 4, optimisation had three steps. It was
observed that the data-driven approaches forecasted negative values, so these negative
values were eliminated. Then, the forecasted values were amended based on the time of
sunrise and sunset, (a similar approach were taken in [19] daytime forecasting). Here, we
used two approaches: one static, in which night hours were defined from 8 p.m. to 6 a.m.,
and one dynamic which determined the hours of sunset and sunrise. The static approach
was implanted by Zeng and Quiao, producing good results [28]. The dynamic approach
is a more accurate representation of reality and thus can be more flexibly implemented in
any location. However, it requires additional computational power. The last step was the
seasonal adaptation in which we amended the forecasted values in the long-term model
according to the month of the year.
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FBP generated large negative values for both long- and short-term predictions. For all
negative predictions (which only occurred in winter), the target value was zero. This shows
that FBP only forecasted negative values during the night hours, as shown in Figure 5. In
summer, all night hour predictions were positive. As there could not be negative irradiance
and most negative predictions occurred at night, all negative values were eliminated and
set to zero. The SVM model also predicted some negative values (around 5% for short-term
and 50% for long-term). For most predictions with negative values, the target value was
zero. For the non-zero target values, the radiation was very low (maximum of 15 W/m2).
Therefore, here too, all negative values were set to zero.
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Figure 5. Three days of long-term FBP prediction displaying negative values at night.

After eliminating the negative values, all values between 8 pm and 6 am were set
to zero, as they were considered night hours [28]. However, this static approach does
not represent that sunrise and sunset hours vary over the year. Therefore, the sunset and
sunrise for every day of the year were determined and subsequently used to set all values
between sunset and sunrise to zero. Both static and dynamic methods were implemented
to compare their impact on the model accuracy.

A seasonal adaptation was created for the long-term models, as a general trend
was detected. For instance, the long-term FBP model would overpredict in summer and
underpredict in winter, especially for the model without extraterrestrial radiation. Further,
there was over- and underprediction trends in both seasonal and daily forecasts. For
example, in some months, morning and evening hours were underpredicted, while the
noon hours were overpredicted, as shown in Figure 6. The seasonal adaptation aimed to
prevent these general trends of over- and underpredicting. The model with extraterrestrial
radiation displayed less of a yearly seasonal trend; however, the daily trend still existed.
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Figure 6. FBP, displaying overprediction in morning and evening and underprediction at noon.

For the seasonal adaptation, for every hour of the day within each month (e.g., the 6th
hour of every day in January), all values from previous years were collected. The average of
these target values for the particular hour was taken for each month, as shown in Figure 7.
The same was carried out for the predicted values. Three different versions of average were
used: the mean (V1), the median (V2), and the mean of median and mean (V3).
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The seasonal adaptation adjusted the values according to the month of the year by
increasing/decreasing every predicted value that was on average lower/higher than the
target values of the same hour of the day of that month in past years. The seasonal
adaptation (SA) is calculated as follows:

ŷ SA = ŷ×
(

1 +
y− ŷ

ŷ

)
(6)

where ŷ refers to the predicted value, y is the target value, and the ŷ is the average predicted
value. The average here refers to either the mean, median, or mean of median and mean,
depending on the version.

In the final DCF, SVM was used for first- and second-hour predictions. Beyond
this, FBP would be used as the core algorithm. Furthermore, the best outcome of every
comparative step was used. In the data-driven part, extraterrestrial radiation was added
as an input feature to the DCF algorithm. The most influential hyperparameter was the
regularisation parameter C, which was chosen to be 120 for the short-term model and 0.5 for
the long-term DCF. In the contextual optimisation, the negative values were eliminated and
dynamic sunset- and sunrise adjustments were performed. For the long-term prediction,
seasonal adaptation was applied. From the seasonal adaptation variations, V3 (mean of
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median and mean) was chosen for the SVM model, while V1 (mean) was selected for the
FBP. This was verified by the results, presented in Section 5.

5. Results and Discussion

This section consists of three main parts. First, the data-driven part of the model is
evaluated, followed by a discussion of the improvements brought about by contextual
optimisation. Subsequently, the final DCF model is presented and validated by the short-
and long-term models in all three cities.

5.1. Data-Driven Model Results

The initial model was based on historical solar radiation data and the respective
algorithm. SVM outperformed FBP in the 1-hour ahead prediction in terms of R2 and
RMSE (Table 4). It also had the lowest MAE for all three horizons. For 2-hour prediction,
the FBP yielded similar results in R2 and MAE to SVM, while beyond this horizon, it
outperformed the SVM model. This is because SVM displayed a stark decline in accuracy
with the increase in prediction horizon. For the long-term forecast, FBP resulted in a
better R2 and RMSE, while SVM yielded a better MAE (Table 5). Adding extraterrestrial
radiation to the model enhanced the performance of SVM and FBP for both the short-
and long-term predictions (Tables 4 and 5). For the short-term prediction, R2 increased
by ca. 7% for FBP, and between 5% (for 1 hour ahead) and 10.5%, (for 3 hours ahead)
for the SVM model. MAE decreased noticeably for FBP, by ca. 34 W/m2, and also, but
less drastically, for the SVM model. RMSE also decreased for both algorithms. The SVM
model, which included global and extraterrestrial radiation of the same hour and day, 1 and
2 years ago, yielded the best results. The R2 value in the long-term model increased by
7% for FBP and 17% for SVM. Furthermore, MAE and RMSE were reduced substantially.
Overall, the addition of extraterrestrial radiation resulted in considerable improvements of
all models. Extraterrestrial radiation on a horizontal surface is a good indicator of potential
global horizontal irradiance, stating how much solar radiation is received at the top of the
atmosphere for a certain location [51].

Table 4. Short-term results using data-driven and contextual optimisation.

Data-Driven Contextual

Algorithm Forecast
Horizon

Initial
Features

Additional
Features Tuned Negative Elimination

and Night Hours
Overall

Improvement

R2

SVM
1 h 83.27% 87.45% 87.64% 87.64% 5.25%
2 h 76.02% 82.74% 83.07% 83.07% 9.27%
3 h 72.05% 79.56% 80.02% 80.02% 11.07%

FBP
1 h 77.84% 83.46% 83.46% 83.55% 7.34%
2 h 77.82% 83.37% 83.37% 83.46% 7.24%
3 h 77.82% 83.33% 83.33% 83.41% 7.18%

MAE

SVM
1 h 73.42 55.2 46.88 46.70 36.40%
2 h 84.71 67.5 58.86 58.86 30.51%
3 h 89.98 74.65 65.99 65.96 26.69%

FBP
1 h 99.49 65.39 65.39 60.69 39.00%
2 h 99.53 65.62 65.62 60.97 38.74%
3 h 99.54 65.79 65.79 61.23 38.49%

RMSE

SVM
1 h 124.93 108.2 107.37 107.37 14.06%
2 h 149.55 126.90 125.68 125.68 15.96%
3 h 161.48 138.07 136.51 136.51 15.47%

FBP
1 h 135.03 116.47 116.47 116.30 13.87%
2 h 135.07 116.78 116.78 116.63 13.65%
3 h 135.09 116.94 116.94 116.81 13.53%
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Table 5. Long-term results using data-driven and contextual optimisation.

Data-Driven Contextual

Algorithm Initial
Features

Additional
Features Tuned Negative

Elimination
Negative Elimination and

Night Hours
Seasonal

Adaptation
Overall

Improvement

R2

SVM 68.72% 80.32% 80.78% 80.78% 80.78% 82.56% 20.13%
FBP 77.83% 83.11% 83.11% 83.19% 83.22% 83.97% 7.89%

MAE

SVM 72.67 54.02 55.61 55.57 55.56 56.67 22.01%
FBP 99.57 67.07 67.07 63.96 62.42 57.81 41.94%

RMSE

SVM 160.33 127.19 125.67 125.67 125.67 119.74 25.32%
FBP 135.02 117.85 117.85 117.59 117.46 114.83 14.95%

The hyperparameters were tuned for the SVM model, using grid search cross valida-
tion. The tunable parameters were the regularisation parameter C, the size of the error tube
ε, and the width of the RBF kernel γ. The influence of ε and γ were minimal, leading to
improvements of less than 0.0004% in R2. Therefore, it was focused on tuning the regulation
parameter C. SVMs are generally strongly dependent on their hyperparameters [10]. How-
ever, tuning the hyperparameters for these models did not lead to significant improvements.
For the short-term prediction, C = 120 led to the best results. This, however, only improved
R2 by 0.5%, MAE by 8.6 W/m2, and RMSE by 1.6 W/m2. These improvements were low,
compared with the addition of features. For the long-term prediction, the best C was 0.5.
The improvements for this were even smaller.

The results of the data-driven model can be seen in Figure 8, displaying the same trend
as described for the initial model (untuned, without added features).
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5.2. Contextual Optimisation Results

The results of further contextual optimisation are presented in this section. Setting all
negative values to zero slightly improved the SVM model. It further enhanced the model,
as it does not confuse the user with the prediction of impossible (negative) values. As the
FBP short-term model had larger negative predictions, eliminating these led to greater
improvements. The R2 increased by 3% and MAE and RMSE decreased by 26 W/m2 and
8 W/m2, respectively. The long-term model improvements were less significant. As neither
of the models predicted negative solar radiation during the day, setting all values to zero
was appropriate. A model that predicted zero values at night, instead of negative values,
was a closer reflection of reality.

There were some positive predictions at night. As this was not possible, sunrise
and sunset adjustments were applied. Setting all values from sunset to sunrise to zero
gave slightly better prediction results than defining all night hours as 8 p.m.–6 a.m. This
was to be expected and true for short- and long-term predictions, in both SVM and FBP
models. Including the flexible sunrise and sunset in the model allowed it to be easily
applied to a location with different geographical conditions. This is particularly important
in locations that are far from the equator, as sunset and sunrise vary more over the year
in those places. However, it must be noted that including this adjustment into the model
requires extra computational power. In locations where there is no significant variation
in sunset and sunrise times during the year, this step may not be worth the marginally
improved performance.

Seasonal adaptation only applied to the long-term forecast. There were three versions
of this amendment, using the mean (V1), the median (V2), and the mean of the mean and
median (V3). For SVM, the seasonal adaptation had a greater impact on the model with
additional features. Version 1 performed best for the R2 value, reducing the error by 11%
and decreasing RMSE by 7 W/m2, as shown in Figure 9. However, MAE increased by
6 W/m2, which should be avoided. Version 2 performed better for MAE, decreasing it.
However, the R2 value decreased by 0.2% and RMSE increased slightly, which is also not
desirable. Version 3 combines aspects of both preceding versions, offering more continuity
and stable results. The R2 and RMSE values for this version were better in comparison with
the previous amendment (sunrise and sunset), while MAE was very similar. Therefore,
version 3 of the seasonal adaptation, using the mean of the median and mean, was chosen
as the last amendment for the long-term SVM model. The improvement of applying the
seasonal adaptation can clearly be observed in Figure 10.
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Figure 9. Comparison of (a) FBP and (b) SVM of seasonal adaptation versions.
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Figure 10. SVM (a) before and (b) after seasonal adaptation.

For FBP, the improvement on the model with additional features was marginal. As
version 1 (using the mean as the average) led to improvements for all metrics, it was
chosen for the FBP model. Interestingly, applying the seasonal adaptation to the FBP model
without the extraterrestrial radiation led to results in R2, MAE, and RMSE that were only
slightly different from the model with extraterrestrial radiation. The seasonal adaptation
had a greater positive impact on the model without extraterrestrial radiation, as shown in
Table 6, with the addition of correcting the daily seasonality. The impact on this model was
larger because the yearly and daily seasonality were both corrected, while for the model
with extraterrestrial radiation mostly daily seasonality was adjusted. Thus, using a model
without extraterrestrial radiation could be considered if these data are not available.

Table 6. Comparison of influence on seasonal adaptation on FBP models with different features.

Initial Features Initial + Additional Features

Sunset and
Sunrise

Seasonal
Adaptation Improvement Sunset and

Sunrise
Seasonal

Adaptation Improvement

R2 80.56% 83.35% 2.79% 83.22% 83.97% 0.74%
MAE 70.1 61.51 8.60 62.42 57.81 4.61
RMSE 126.4 117.01 9.42 117.46 114.83 2.62

Tables 4 and 5 display the results of all steps of data-driven and contextual parts for
short- and long-term forecasts. It is clear that the accuracy was enhanced at each step of
the algorithm, starting from the initial features training to the SA. The proposed model
changes improved R2 of the short-term model by 5% (1 h) to 11% (3 h) for SVM and 7% for
FBP. The MAE for the FBP model decreased by 39 W/m2 and by ca. 25 W/m2 for SVM.
RMSE was also decreased by 17 to 24 W/m2 for SVM and 18 W/m2 for FBP. The overall R2

improvement associated with model changes for the long-term forecast is 20% for SVM
and 8% for FBP, as shown in Table 5. MAE decreased by 42 W/m2 for FBP but only by
16 W/m2 for SVM. For SVM, however, RMSE decreased by 41 W/m2, whereas for FBP, it
decreased by 20 W/m2.

The insights of the individual model results for different horizons were taken to
determine which algorithm to use for which horizon in the final DCF. For DCF, the highest
accuracy for the 1- and 2-hour predictions was achieved using SVM with extraterrestrial
radiation as an additional input feature, using the dynamic night-time adjustment and
version 3 of the seasonal adaptation. Figure 11 shows that the 1-hour prediction SVM
displayed a compact trend line with only a few normally distributed errors. For FBP,
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most values were on a line that was slightly too steep, indicating an overprediction for
those values. However, there were also many points below the dense line, signalling
underprediction. For the 3-hour and long-term predictions, the FBP using V1 of the seasonal
adaptation outperformed all the other versions and algorithms. It can be concluded that
the SVM model should be used for 1- and 2-hour ahead predictions, while beyond that, the
FBP model should be utilised in the final DCF.
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The performance of FBP suffered less from an increase in horizon than the SVM model.
This is due to the underlying characteristics of the algorithm; FBP is specifically designed
for time-series prediction [30]. An advantage is that the performance declines less over time.
However, inputting the whole past time series into the model did not allow emphasising
values that had a higher correlation and were more relevant to the particular prediction.
For SVM, this could be differentiated.

5.3. DCF Performance

In this section, the DCF performance for short- and long-term forecasting is presented.
To validate its performance and ensure that DCF is a generic model that can be utilised for
different locations, forecasts were conducted for three cities, i.e., Denver, Boston, and Seattle.

The results for all three cities and both algorithms are presented in Table 7. It can be
seen that the SVM model performed even better on the short-term prediction in Seattle
and Boston than for Denver, while the general trend remained the same as for the Denver
results. For the long-term prediction, Denver displayed the best results in terms of R2;
however, both MAE and RMSE were as low or lower for Boston and Seattle than for Denver.
Again, the SVM model mostly outperformed FBP in the 1- and 2-hour forecasts, while the
FBP model generally generated better results for 3-hour prediction and in the long term.
This was observed similarly in the results and its trend validated the chosen DCF model.

Two days of short-term predictions by the DCF algorithm are displayed in Figure 12.
It shows that the model was noticeably accurate for sunny days (first day), with smooth
irradiance transitions. Furthermore, it captured trends for changes in weather, as can
be observed on the second day. Despite the rapid change in irradiance, the model still
generated accurate predictions.

As shown in Figure 13, DCF was applicable to different locations, conserving the
general pattern of performance. This validated the DCF algorithm and provided us with
confidence that this model will perform well in other not-yet-tested locations. Results of
around 90% (91.2%, 90.6%, and 87.6%) for the 1-hour predictions were achieved for R2,
while MAE ranged from 36 W/m2 for Seattle to 47 W/m2 for Denver and RMSE from 75
W/m2 for Seattle to 107 W/m2 for Denver. For the 2-hour forecast, the R2 value declined
by about 5%, and MAE and RMSE increased by ca. 12 and 18 W/m2, respectively, for all
locations. The 3-hour prediction still generated R2 of 78% (Seattle) to about 83% (Denver
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and Boston), while MAE ranged from 56 (Seattle) to about 61 W/m2 (Denver and Boston)
and RMSE from 103 W/m2 (Seattle) to 116 W/m2 (Denver and Boston). Even the long-term
prediction for one year ahead still generated good results for all cities, with high R2 values
and low error values, as shown in Figure 13.

Table 7. Comparison of SVM and FBP performance in all cities.

Algorithm Horizon Denver Seattle Boston

R2

SVM Short term
1 h 87.64% 90.62% 91.19%
2 h 83.07% 85.80% 86.77%
3 h 80.02% 82.32% 81.94%

Long term 8760 h 82.56% 78.41% 75.92%

FBP Short term
1 h 83.55% 78.35% 83.53%
2 h 83.46% 78.32% 83.44%
3 h 83.41% 78.32% 83.39%

Long term 8760 h 83.97% 80.29% 78.32%

MAE

SVM Short term
1 h 46.70 37.40 36.15
2 h 58.86 49.27 47.48
3 h 65.96 58.39 57.95

Long term 8760 h 56.67 52.90 58.67

FBP Short term
1 h 60.69 55.94 60.96
2 h 60.97 56.01 61.23
3 h 61.23 56.02 61.48

Long term 8760 h 57.81 51.04 57.86

RMSE

SVM Short term
1 h 107.37 75.36 77.05
2 h 125.68 92.72 94.42
3 h 136.51 103.48 110.29

Long term 8760 h 119.74 106.39 116.94

FBP Short term
1 h 116.30 103.54 116.37
2 h 116.63 103.60 116.69
3 h 116.81 103.60 116.87

Long term 8760 h 114.83 98.77 110.99
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Figure 12. Two days of 1-hour ahead SVM prediction in Boston.
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Figure 13. DCF accuracy, evaluated in three cities using all evaluation metrics. (a) Coefficient of
determination (R2) (b) Mean absolute error (c) Root-mean-squared error.

6. Conclusions

This paper presented the DCF algorithm, a forecasting algorithm that accurately
predicts solar irradiance. Unlike other state-of-the-art models, the forecast accuracy was
validated for short- and long-term predictions in three cities. The DCF algorithm had two
main parts. Initially, it utilised the most accurate data-driven (ML) algorithms and then
optimised their performance using contextual information. SVM and FBP were used as
the data-driven models. SVM has been used for solar forecasting for over a decade. FBP,
in contrast, is a novel algorithm that has rarely been used in the field of solar prediction.
Nevertheless, its design characteristics seemed inherently promising for solar prediction.

Firstly, a basic model was constructed for both algorithms with only hourly solar
irradiance as input. The data were taken from the National Solar Radiation Database
(NSRDB). Adding extraterrestrial radiation led to the largest improvement in R2, MAE, and
RMSE, for both SVM and FBP models. For the SVM model, the regularisation parameter
C was tuned using grid search cross validation. This did not have a significant impact on
the performance of the model. After training the model with the additional input features
and the tuned hyperparameters, solar irradiance was predicted. The prediction was subject
to several adjustments. All negative values and all values between sunset and sunrise
were set to zero. This had a greater impact on FBP than on SVM, as FBP would generate
larger non-zero predictions at night. Furthermore, a seasonal adaptation was applied. This
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increased or decreased every hour of the day for each month if it was above or below the
average of the last years. It led to a significant improvement, as shown in Table 6.

For the 1-hour short-term prediction, the final SVM model outperformed FBP and,
thus, was utilised for the DCF algorithm. As shown in Table 7, it achieved an R2 value
of 87.6% for Denver, 90.6% for Seattle, and 91.2% for Boston. An MAE value of 36 W/m2

was attained for Boston and similar values for Seattle and Denver. RMSE varied from
75 W/m2 (Seattle) and 77 W/m2 (Boston) to 107 W/m2 (Denver). For the 2-hour prediction,
SVM mostly outperformed FBP. On occasions in which this was not the case, the results
were very similar. However, the SVM model displayed a strong decrease in forecasting
accuracy with the increase in the forecast horizon. Therefore, for the 3-hour prediction,
the FBP model yielded better results and thus was used beyond the 3-hour forecast in the
DCF algorithm. The FBP performance only decreased very slightly over time, compared
to the SVM. The reason for its sustained performance is its specific design for time-series
predictions. The FBP model performed better for the long-term forecast than the SVM
model. This was true for all cities and thus validated the use of the suggested model.

7. Future Research

Improvements may arise from analysing and adding further meteorological input
features. This could, for example, be a measure of cloud cover or temperature. Care must
be taken that no features are included that either worsen the prediction or have no positive
impact while making the model more complicated. Adding features could be advantageous
for the SVM model, as for SVM, any features can be added, while for FBP, only features
that are known in the future can be added.

The SVM model might be improved by further analysing the correlation of the irra-
diance with past values. This could reveal correlations with hours that have not yet been
used as input features. Adding these would be a promising path to further enhance the
model. This also suggests another set of experiments that could be executed to examine the
mid-term horizon for both SVM and FBP models. FBP might be better at mid-term forecasts,
e.g., 3 months. However, this has not been experimentally investigated. A correlation
analysis would be of great use for a mid-term SVM model and would therefore lend itself to
being carried out in parallel with a comparative analysis of mid-term SVM and FBP models.

The long-term FBP model showed that applying the seasonal adaptation to Denver
nearly made the extraterrestrial radiation redundant. Both models, with and without
extraterrestrial radiation, displayed similar results. This could be useful for datasets that
do not possess measurements of extraterrestrial radiation. Therefore, the benefits of only
seasonal adaptation instead of adding extraterrestrial radiation to the model should be
explored further.
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