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Abstract—Most work in evolutionary robotics centres on evolv-
ing a controller for a fixed body-plan. However, previous studies
suggest that simultaneously evolving both controller and body-
plan could open up many interesting possibilities. However, the
joint optimisation of body-plan and control via evolutionary
processes can be challenging in rich morphological spaces. This
is because offspring can have body-plans that are very different
from either of their parents, leading to a potential mismatch
between the structure of an inherited neural controller and the
new body. To address this, we propose a framework that combines
an evolutionary algorithm to generate body-plans and a learning
algorithm to optimise the parameters of a neural controller. The
topology of this controller is created once the body-plan of each
offspring has been generated. The key novelty of the approach
is to add an external archive for storing learned controllers that
map to explicit ‘types’ of robots (where this is defined with respect
to the features of the body-plan). By initiating learning from
a controller with an appropriate structure inherited from the
archive, rather than from a randomly initialised one, we show
that both the speed and magnitude of learning increases over time
when compared to an approach that starts from scratch, using
two tasks and three environments. The framework also provides
new insights into the complex interactions between evolution and
learning.

Index Terms—Evolutionary robotics, Embodied Intelligence

I. INTRODUCTION

The idea of embodied intelligence — describing the design
and behaviours of physical objects situated in the real-world
— was first introduced by Brooks in 1991 [1]. Pfeifer and
Bongard’s seminal text "How the body shapes the way we
think” [2] expanded on the idea that intelligent control is
not only dependent on the brain but at the same time both
constrained and enabled by the body. Increasingly, artificial
evolution approaches have been used in robotics to jointly
optimise both the body-plan and controller of a robot to
accomplish a desired task. This has the potential advantage of
allowing evolution to discover the appropriate balance between
morphological and brain complexity and functionality.

However, much of this work has taken place in restricted
morphological spaces, for example using regular shaped mod-
ules to construct body-plans, in which each module can be
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individually actuated [3], [4]. In richer spaces which can give
rise to complex and irregular robot skeletons with multiple
forms of sensing and actuation (e.g. joints and/or wheels),
then more complex controllers that link multiple sensors and
actuators are required. In addition, the evolutionary process
becomes more challenging: reproduction between two mor-
phologically distinct parents might result in a viable body-plan,
but a directly inherited controller is at best unlikely to provide
adequate control and, at worst, will not work at all because
inputs and outputs do not correspond to the new body-plan.

One approach to address this is to evolve a morphology-
independent control mechanism, for example using a compo-
sitional pattern producing network (CPPN) [5] to generate a
controller, thereby enabling direct inheritance of the generator
[6]. However, evolutionary algorithms (EA) using generative
methods tend to need more generations to converge than EAs
using fixed-size genomes. An alternative is to add a learning
cycle into the evolutionary loop [7], [8]. This can either
improve an inherited controller over an individual’s lifetime
– when the inherited controller has an appropriate structure –
or learn a new controller from scratch otherwise. Here, we
follow the latter approach and propose a novel framework
for combining evolution and learning that is capable of joint
optimisation of body and control of robots in a complex
morphological space when using controller encodings that do
not permit direct inheritance, i.e. when the topology of a child
controller does not match the inherited body.

The framework contains a morpho-evolutionary algorithm
(MEA) to optimise the body-plan and a learning algorithm to
optimise the parameters of the controller. Two optimisation
processes are nested; for each body-plan produced with the
MEA, the learning process is invoked to optimise its controller.
The key novelty of the approach is the addition of an external
controller archive. This multi-dimensional archive stores the
best-found controller for a given ‘type’ of robots, where type
is defined by a vector describing the robot’s morphological
features (e.g. number of wheels, number of sensors of form
A, number of sensors of form B, etc.). If a body-plan is
produced that is of the same type as a controller already
stored in the archive, the learning process is initiated with
this controller, otherwise, it starts from scratch. The archive
is updated over generations as better controllers are found.
Essentially the archive can be viewed as a form of inheritance,
storing successful controllers per robot type that can be used
to bootstrap learning in future generations. Hence the frame-
work is named MELAI: morpho-evolution with learning using
archive inheritance. Specifically, for the MEA, we use the
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matrix-based CPPN morpho-evolution (MCME) introduced in
previous work [9] to evolve body-plans. The learning algo-
rithm used is a novelty-driven evolution-strategy, that uses an
increasing population size (NIP-ES), and was also introduced
in previous work [10]. It learns the weights of a controller
specified by an Elman network that has a topology matching
the generated child body-plan.

The contributions of the method are two-fold: (1) it offers a
novel approach for the joint optimisation of both body-plans
and controllers of robots, that integrates evolution and learning
– uniquely, it uses a morpho-evolutionary algorithm for the
former and an evolution-strategy for the latter; (2) it proposes
the use of an external archive as an efficient mechanism for
transferring control knowledge from parents to offspring in
situations where offspring are morphologically distinct from
their parents.

We show the benefits of using an archive (which interacts
only with the learning process) in terms of increasing the
efficiency of the approach compared to methods that learn
from scratch and provide new insights into the interplay of
evolutionary and learning processes. Moreover, our results
show the emergence of different types of robots for different
tasks.

The rest of the paper is organized as follows: section II anal-
yses previous studies related to the joint optimisation of robot
body-plans/controllers. In section III MELAI is explained in
detail. The experimental protocol is described in section IV
and the results are presented in section V. Finally, sections VI
and VII discuss the results and conclude the paper.

II. RELATED WORK

Among the numerous studies in the field of evolutionary
robotics, the majority address either the evolution of the body-
plan alone or the evolution of the controller alone. This
section focuses on literature that describes methods for the
joint optimisation of body-plans and controllers. We focus
attention on approaches that permit the evolution of offspring
that require a controller topology that is different to either
parent. That is, methods that evolve changes to morphology
that do not impact the topology of controllers (i.e. the number
of inputs and outputs of a neural controller) are out of scope.
For example, this excludes work in which morphological
change is restricted to repositioning sensors [11] or altering
the length, weight and size of joints, e.g. [12], [13], [14],
[15]. We first discuss methods that create controllers that are
directly correlated to a specific type of body-plan, followed by
morphology-independent methods, i.e. those that are capable
of generating a controller for any given body-plan.

A naïve approach to avoiding a potential mismatch between
a controller and body-plan is to evolve only the body-plan and
then learn a new controller with the correct topology from
scratch for each child body-plan. The work of Gupta et al.
[16] follows this approach by using evolution for the body-
plans and reinforcement learning to optimize the controllers
for simulated robots composed from articulated 3D rigid parts
connected via motor actuated hinge joints. Learning starts
from a randomly initialised controller for each body-plan,

and uses a distributed implementation across multiple CPU
to minimise computational cost. Liao et al. [17] also proposes
a similar nested optimisation process, with the aim of finding
the best morphology for a walker micro-robot. Here, Bayesian
optimisation is used to learn the controller. However, despite
Bayesian optimisation being known to be sample efficient, it
only works well for small parameter spaces [10].

Instead of learning from scratch, an alternative approach is
to use a morphology-independent control generation mecha-
nism that can generate control parameters for any given body-
plan. For example, Cheney et al. [18], [19] evolves soft-robots
built from voxels, in which each voxel has a parameterised
local controller. Both body-plans and controller parameters
are outputs of two separate compositional pattern producing
networks (CPPN) [5], both of which are evolved via the well-
known neuro-evolution with augmenting topology (NEAT)
algorithm [20]. However, due to the distributed nature of the
controller, the variety of possible behaviours for the same
body-plan is limited. Sims [21] also used a decentralised form
of control, proposing a genotype that contains a nested graph;
the graph specifies morphological nodes describing the robot
shape, each of which contains another graph specifying the
neural circuitry for that node. More recent work has achieved
a similar effect with the use of Lindenmayer-Systems (L-
systems) instead of a graph-representation, e.g. [22], [23], [24].

In the later work [24], an additional learning mechanism
was applied to improve the inherited brains of newborn robots:
the authors showed that learning not only influences the
morphology of the resulting robots but also that the capacity
to learn increases over generations. Jelisavcic et al. [25] also
employed a learning mechanism. Their genome carried a pool
of CPPNs used to specify the weights of a controller generated
to match the child body-plan. In contrast to the work of Cheney
et al. which encoded a single CPPN that undergoes evolution,
here a child inherits a subset of CPPNs from each parent.
A learning algorithm (HyperNEAT) is then applied to the
inherited pool to evolve a new pool. The process is therefore
Lamarckian.

To summarise, in the context of joint optimisation of body
and controller, on the one hand, the literature has shown
that using generative encodings (with and without additional
learning) can mitigate the issues arising regarding inheritance
of controllers that might not be applicable to a new child body-
plan. However, these methods often require many evaluations
to converge [6] and add additional hyper-parameters which
may be difficult to optimise. On the other hand, neural
controller encodings which are explicitly tied to a body-plan
can be rapidly optimised as they only require weight rather
than topological optimisation. Although they often cannot be
inherited, this can be addressed by learning a controller from
scratch, e.g. as in [16], although at the expense of ignoring
any previously learned knowledge.

In this paper, we choose to use a fixed structure neural
network for reasons of efficiency, motivated by the goal of
eventually evolving directly in hardware. As in previous work,
we use a learning algorithm to optimise a controller that has a
fixed structure that matches the new body-plan [10]. However,
in order to avoid starting from scratch for each body-plan, we
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introduce a novel method for storing past solutions that can
be accessed by the learning algorithm to bootstrap learning.
This takes the form of an archive that stores the weights of
a controller for each ‘type’ of robot that has previously been
encountered as described in the previous section. This archive
or ‘brain pool’ is dynamically composed and adapted during
the evolutionary process.

Note that the term archive should not be confused with
other uses of the word in the wider evolutionary literature.
For example, archives are commonly used in multi-objective
optimisation to either drive the population toward the Pareto
front or to maintain population diversity, that is, they directly
interact with an evolving population. Our approach has more
in common with methods that try to enhance a search pro-
cess by re-using past experience gained when solving related
problems. For example, Louis and McDonnell [26] maintained
a store of past solutions from similar instances which are
periodically injected into an evolving population. However
their approach is only applicable if instances share structural
properties, hence cannot be applied to controllers with differ-
ent topologies. Feng et al. [27] attempted to reuse structured
common knowledge captured in the optimized solutions of
past search experiences in a form independent of solution
representation, however, their specific implementation was
tailored to combinatorial optimisation. Here, we draw inspi-
ration from [26] in maintaining an archive of past solutions.
Extending this concept, we store solutions with different types,
corresponding to different controller topologies, organised in
the form of a grid. While our use of a grid-based container to
organise solutions according to a set of features resembles the
quality-diversity algorithm MAP-Elites [28], the role of the
archive in our work is different: (1) in MAP-Elites, the grid is
first filled using randomly generated solutions, which form a
population; (2) the population is acted on by an evolutionary
process that performs mutation and/or crossover to generate
new solutions which are projected back to the grid. In our
work, the archive does not act as a population but as a library.
Cells are only filled with a controller if and when a particular
‘type’ is generated by the MEA. A single controller from the
library is selected to initialise a separate learning algorithm.
In summary, the processing of filling cells is governed by
the MEA, while the stored controllers are used to inform the
learning algorithm.

III. METHODS

A. Algorithm Description

Morpho-evolution with learning using an archive inheritance
(MELAI) is a nested optimisation algorithm. As illustrated
in figure 1, body-plans are optimised with an evolutionary
algorithm, then for each body-plan, a learning process is used
to optimise their controller.

The first optimisation algorithm (MEA) uses a generative
encoding to produce the robot’s body-plan, based on our
previous work described in [9]. This is a matrix-based CPPN
morpho-evolution denoted MCME. The second optimization
algorithm (learning) optimises the parameters of a controller
which is a fixed size neural network structure. Therefore, the

Fig. 1. Diagram illustrating the MELAI algorithm. MELAI has two nested
optimisation processes. As the main process, a morpho-evolution algorithm,
shown in black, divides into four main steps: computation of the fitness values,
update the controller archive with the best ones from the current population,
Selection, mutation, and recombination, and finally send the new population
of new body-plans to the learning process. For each body-plan, a controller is
learned, shown in blue. The learning process can either start from a random
controller, an inherited controller, or a controller from the archive. Then, the
learning process runs until reaching an end condition.

number of parameters is fixed. The novelty-driven increasing
population evolutionary strategy (NIP-ES) algorithm [10] is
used for learning. A detailed description of both MCME and
NIP-ES is given in the supplementary materials. Although the
instantiation of MELAI described in this paper uses MCME
and NIP-ES, the framework itself is general in that any kind
of MEA or learning algorithm could be used.

Inheritance of controllers from parents to children is chal-
lenging for MELAI as previously noted, since children might
have different body-plan configurations than their parents. One
way to address this issue is to learn the controller for each
robot from scratch as in [16]. However, this has a number
of disadvantages, including the fact that previously learned
information from past learning cycles is wasted. In order to
address this issue MELAI, has three alternative initialisation
options. These are:

1) Select a controller from the archive with the same
number of sensors and actuators assuming one exists,
or

2) Start from a randomly initialised controller, or
3) Direct controller inheritance if the parent and child share

the same number and type of actuators and sensors.
In this paper, the third option of direct inheritance is not

considered because the encoding and the morphological space
used in MCME make it unlikely that a parent and child will
share the same number and type of actuators and sensors.
Thus, the benefit of direct inheritance is likely to be negligible.
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This allows experiments to focus directly on determining the
benefit of the archive over random initialisation.

As noted, the learning algorithm used is NIP-ES, first
described in [10]. The core of this method is a co-variance
matrix adaptation evolutionary strategy (CMA-ES) algorithm
in which a normal multivariate distribution (MVND) is used
to sample a new population at each iteration. When using a
controller from the archive, it is used to provide the starting
mean of the MVND and thus the starting population is sampled
in the surrounding parameters of this controller. When starting
from scratch, CMA-ES starts from a random mean.

The learning process stops when one of the ending condi-
tions is reached:

• A satisfactory solution is reached: the learning algorithm
finds a controller with a task-performance value above a
certain threshold.

• The maximum number of evaluations is reached: each
optimisation process has a maximum number of updates.
For the MEA, this parameter is the number of generations
and for the learning process is the number of evaluations.
The values of these parameters are chosen according to
the difficulty of the task and environment, and according
to the constraints of the system on which the algorithm
is running. Here, a constraint of 100000 maximum eval-
uations is used. Given this overall budget, an additional
choice that must be made is to decide how to divide it
between the MEA and the learning process.

• The performance of the robot stays very low during a
trial period. The trial period is defined by a fixed number
of evaluations (50 in all experiments). If a robot has not
moved by the end of this period then the learning process
stops.

In the rest of the paper, the fitness indicates the value used
by the MEA for selection. The term task-performance is used
by the learning algorithm to assess the quality of behaviour.
Several fitness functions can be used for the MEA. The most
natural fitness function is the best task-performance value
found during the learning. This is the one used in this paper.
However, the learning process produces additional data which
could also be exploited in future, such as statistical information
regarding the progress of the learning algorithm or the novelty-
scores used by NIP-ES.

B. Controller Archive

The controller archive stores the best controller found for
different ‘types’ of robot. A ‘type’ is defined as a =-tuple,
where each dimension represents a component of the body-
plan, e.g. a specific form of sensor or actuator. An archive
thus consists of an n-dimensional cube, where each dimension
is discretised into cells corresponding to the number of each
kind of component. A cell contains the best controller found
for a body-plan described by a given tuple generated by the
MEA, and is empty otherwise.

For instance, consider a morphological space with one kind
of actuator (x) and sensor (y) as shown in figure 2. Assume
a body-plan is generated with 2 actuators and 3 sensors.

Fig. 2. Diagram illustrating the update of the controller archive. A body-plan
with 2 actuators of type x and 3 sensors of type y has a new controller output
of the learning process. If the cell corresponding to 2 actuators of type x and
3 sensors of type y is not empty, the new controller is compared with the
stored one. The new controller replaces the stored one if its task-performance
is greater.

When the learning process has ended, its controller’s task-
performance value is compared with the stored one in the
corresponding cell and replaces it if its task-performance value
is greater. If the cell is empty the new controller is added to
the cell.

We consider two kinds of actuators (wheel and joint), and
one type of sensor. So, a ‘type’ of robot, in this case, is defined
by a tuple <num_sensors, num_wheels, num_joints>. The con-
troller archive can be considered as a new form of inheritance.
All the behavioural knowledge from past generations is stored
in a common archive to be used by future generations. In this
way, new child robots can leverage the learned behaviours of
their ancestors.

IV. EXPERIMENTS

A. Experimental protocol

The experiments presented in this article aim to answer the
following questions:

1. To what extent does using a controller-archive to boot-
strap learning improve effectiveness and efficiency when
compared to learning from scratch? And

2. To what extent does the distribution of effort between
the morpho-evolution process and the learning process
influence performance?

Experiments are conducted with and without the controller
archive to answer question 1. In this way, the role of the
controller archive in MELAI can be isolated. The variant
of MELAI that does not use a controller archive is denoted
morpho-evolution with learning (MEL).

Two tasks are used in experiments: exploration and photo-
taxis with multiple targets (explained in detail in section IV-D).
For both tasks, the learning process has a budget of 200 eval-
uations. This learning budget is optimal for our experiments
(see figure 8). For the exploration task, the evolution runs
for 20 generations and for the photo-taxis task it runs for 15
generations. Experiments on the photo-taxis task run for fewer
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generations because each robot needs to be evaluated for each
target, thus, it is computationally expensive.

To answer question 2., more experiments are conducted
only on the exploration task. For all of them, a fixed budget
of 100000 evaluations is shared between the two optimi-
sation processes. This has the objective of studying trade-
offs in resource allocation between the two components of
the framework. Parameter values tested are the following:
[100,40], [150,30], [200,20], [400,10], [800,5], where the first
value corresponds to the number of evaluations for each
body-plan during the learning phase and the second to the
number of generations of the MEA. Also, these variants of
MELAI are compared with a baseline algorithm in which
the learning process is replaced by a process that simply
generates controllers using Latin Hypercube Sampling (LHS)1

[29], i.e. there is no directed learning, only random sampling
of controllers. This variant is called Morpho-Evolution with
Latin Hypercube Sampling (MELHS). MELHS runs for 40
generations and for each body-plan 100 random controllers
are sampled. These experiments are conducted only with the
controller archive.

All experiments feature a population of 25 body-plans for
the MEA. The hyper-parameters used for the experiments are
given in the supplementary materials. All experiments are
conducted in the three environments described in section IV-D
and shown in figure 4. Twenty replicates are performed for
each experiment. The robots and environments are simulated
using the CoppeliaSim version 4.2.0 simulator2. The source
code to run these experiments and their data are available
here: https://bitbucket.org/autonomousroboticsevolution/tcds-
2022/src/tcds_rev/.

Fig. 3. Active and passive components are used for the experiments shown in
this paper. The active components are the wheel, joint and sensor. The passive
component is the castor wheel. The head is the central processing unit of the
robot.

B. Body-plans

The body-plans evolved using the MEA (as described in
section III-A) have two main features: skeletons can have
complex and widely differing shapes and different numbers
of components3. The components can be active (e.g. a wheel
driven by motors, sensors) or passive (e.g. a castor-wheel)

1LHS samples evenly the parameter space. This gives a better sampling
than using a simple uniform distribution.

2https://www.coppeliarobotics.com/
3All components have been designed to match the physical ones which

are used in the ARE project [30] in order to be able to conduct experiments
directly in hardware in the future.

where the active ones interact with the controller. The dif-
ferent component types are shown in Figure 3. The controller
interacts differently with each active component:
• Each wheel takes one output from the controller which is

translated to the speed of the rotational movement of the
wheel.

• Each joint takes one output from the controller which is
translated to the frequency of the oscillatory movement
of the joint. Oscillatory control has previously been
demonstrated to give good results for locomotion [25],
[24].

• Each sensor provides two inputs to the controller where
the first input is binary denoting detection of a beacon and
the second input is the distance from the closest obstacle.
The detection of a beacon uses a simulated IR sensor
and the distance measure uses a simulated time-of-flight
sensor.

The head is the central processing unit of the robot and
therefore is a special component of a body-plan. It is always
positioned in the centre of the skeleton (see figure 10). To
obtain an accurate simulation, the mass of the body-plan has to
be estimated. This is calculated as the sum of its components’
and skeleton’s weights. To estimate the mass of the skeleton,
which can take various shapes, the density of a common plastic
used for 3d printing is used to estimate the mass of a voxel.
Skeleton mass is then obtained by multiplying the voxel mass
by the number of voxels used. This results in robots that have
a mass between 0.5kg and 2kg depending on the size of the
skeleton.

C. Controllers
The controller used in this study is a modified version of an

Elman network [31]. An Elman network is a recurrent neural
network with two hidden layers (see the figure in section
C in Appendix II of the supplementary materials). The first
hidden layer is fully connected to the input and output layers.
Then, each neuron is forward connected to one neuron of
the second hidden layer, called the context layer. Neurons
in the context layer (context units) are recursively connected
to themselves, and the context units are also fully backward
connected to the hidden layer. Each neuron uses a sigmoid
function as its activation function. The context layer acts as
a short term memory and allows the network to process real
number sequences such as time-series [31]. Elman networks
have been shown to be more efficient as controllers for a
navigation task than a simple feed-forward network [6] due
to their ability to capture time-dependent information from
sensors.

For each body-plan, each Elman network has a number of
inputs and outputs corresponding to its body-plans’ number
of sensors and actuators. The hidden and context layers have
a fixed structure for all the body-plans. In all experiments,
the hidden layers have 8 neurons each. Transferring a trained
network from one body-plan to another is not possible unless
they have the same number of sensors and actuators.

D. Task and environments
Two tasks are considered: exploration and photo-taxis.
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a) Exploration task: In this task, the robot has to max-
imise the number of zones visited in a limited time (30
seconds). Zones are equal-sized squares forming a grid. Task-
performance is computed by counting the number of zones
visited and dividing the count by the total number of zones.
The grid is 8 by 8 with cells of 25cm sides, so the total
number of zones is 64. Each evaluation lasts 30 seconds and
takes place in the obstacles environment (see figure 4). In
this task, there is no target performance value therefore the
first stopping criterion defined in section III does not apply.
Although a target performance value could have been set, it
is impossible for the robot to visit all zones in 30 seconds,
therefore the choice of a number of tiles would have been
arbitrary.

b) Photo-taxis task: In this task, the robot starts at one
point and has to reach a target where a beacon is placed.
The robot must first find the beacon in the arena and then
go towards it. As the beacon is detected using a simulated
IR sensor, the robot can not see it when it is occluded by an
obstacle. The robot is evaluated three times with the target at
different positions. The task performance is then the average
of the task performance obtained in each evaluation. The task-
performance function is the normalised distance between the
final position (? 5 ) of the robot (at the end of the evaluation)
and the position of the beacon (?1) (see equation 1). This
distance is subtracted from 1 in order to define a maximisation
function. The distance is normalized by the length of the
diagonal of the arena. As the arenas are squares of two by
two metres the diagonal measures � =

√
23 ' 2.83.

� = 1 −
‖? 5 − ?1 ‖

�
(1)

The success threshold used to stop the learning process is
equal to 0.95 for this task. This value corresponds to a circle
with a radius of 14 cm around the target.

c) Environments: Three different environments (figure 4)
are used in the experiments dubbed obstacles, escape room and
arena. They are all square (2 metres sides) and have a tiled
floor. Each is designed to be reproducible in reality. The tiles
are spaced with a small gap of 1 millimetre which corresponds
to the floor of our real arenas and the walls in the obstacles
environment have feet to hold them standing. These constraints
in design introduce small irregularities.

V. RESULTS

This section is split into four parts: experiments relating to
the efficiency and effectiveness of the algorithm, the controller
archive dynamics, the influence of learning, and the robots’
diversity. The first part focuses on comparing the algorithm
with and without an archive by measuring the quality of the
solutions produced and the efficiency of both variants. The
second part examines the controllers stored in the archive
in terms of their number and quality. The third part studies
the influence of learning by comparing MELAI with different
learning budgets and a variant without learning. Finally, the
last part investigates the influence of the task and environment
over the type of robots generated. Where it is relevant a
statistical test is conducted. The test used is the Mann-Whitney

Fig. 4. The three environments used for the experiments in this paper:
obstacles, escape room and arena.

U [32] under the null hypothesis using the distribution from the
final generation. The test is two-tailed. Where the distributions
are significantly different the p-value and the critical value
(the U value of the Mann-Whitney U test) are indicated on
the plots. All experiments have been replicated 20 times.

A. Efficiency and effectiveness

Three measures are used to assess the efficiency and effec-
tiveness of MELAI: (a) the best fitness for each population
of MEA, (b) the best and average initial task-performance
of the learning process of the population and, (c) the total
number of evaluations. The best fitness (a) is calculated for
each population after the learning has finished. The initial
task-performance (b) is the lowest task-performance from the
first iteration of NIP-ES. The number of evaluations (c) used
during one generation is the sum of the number of evaluations
used by the learning process for each body-plan in the pop-
ulation. The best fitness and the initial task-performance are
measures of the performance (effectiveness) of the complete
MELAI algorithm while the number of evaluations measures
the efficiency of the algorithm.

Figure 5 shows the plots of the best fitness (first row)
and the best and average initial task-performance (second
row) over the generations. For the exploration task and the
arena with three targets, MELAI achieves better performance
than MEL, corresponding to visiting more zones during the
exploration task and minimising the distance from the target
for the photo-taxis task. With the exploration task, MELAI
generates robots that are able to visit between 26 and 28 zones
out of a potential 64, whereas with MEL, the best robots visit
between 22 and 24 zones. In the arena, MELAI finds a solution
that reaches the success threshold (approximately 0.14 metre
from the target) in fewer generations (∼ 4 generations) than
MEL (∼ 6 generations). All replicates find a solution that
reaches the target threshold with MELAI, while with MEL,
some replicates do not reach the success threshold. However,
both MELAI and MEL produce similar results on the escape
room. More interestingly, on the three environments, the best
and average initial task-performance (see the second row of
figure 5) of MELAI is above the one obtained by MEL. This
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Fig. 5. Measures of effectiveness of the algorithms. In the first row, the best fitness values over the generations and in the second row the best and average
of the initial task-performance values over the generations. These experiments have been conducted with a budget of 200 evaluations per body-plan and 20
generations for the exploration task and 15 for the photo-taxis task The coloured areas correspond to the confidence interval around the mean. The difference
between the distributions of the last generation is significant when a p-value and its critical value are indicated. The significant test is the Mann-Whitney U
test.

shows that starting from a controller from the archive provides
a better start for the learning algorithm.

Another benefit of the controller archive is with respect to
efficiency (figure 6). On the photo-taxis task, the total number
of evaluations used per generation decreases over time for both
algorithms (MEL and MELAI). The number of evaluations
used by MELAI is fewer than MEL, and also decreases faster
(see figure 6). This dynamic does not appear in the exploration
task because the learning algorithm does not have a target
performance value for this task. So, when possible, transferring
the controllers through the generations speeds up learning. In
other words, the learning process increases its efficiency over
generations when the archive is used.

Moreover, the difference between the initial and best per-
formance values (learning delta) stays constant over the gen-
erations for both MELAI and MEL. As the archive allows
learning to start from a better solution, MELAI can reach
a better solution after learning and in a shorter time for
the photo-taxis task. Additional figures can be found in the
supplementary material which plots the learning delta over
the initial task-performance and the learning delta over the
generations and support the above interpretation.

B. Controller archive dynamics

To analyse the dynamics associated with using the controller
archive, two metrics related to the controllers stored in the
archive are monitored: the average and best task-performance
value (first row of figure 7) and the number (second row of
figure 7). The number of controllers in the archive corresponds
to the number of ‘types’ of body-plan generated by the MEA
(according to the 3-dimensional descriptor used).

The best task-performance in the archive corresponds to
the best task-performance found so far (see figure 5). The
average and best task-performance of the controllers stored
in the archive follow the same dynamics as the best fitness

of the population of body-plans (see figure 5). The average
task-performance value remains low as the controller archive
retains controllers in cells that correspond to robots that have
unsuitable body-plans for the tasks (e.g. no wheels).

The accumulation of controllers is shown in the second row
of figure 7. The controller archive accumulates controllers
through the generations: some controllers are replaced over
time by higher-performing versions, while others may never
be updated if the type of body-plan they belong to is never
re-used. The rate of increase slows over time. As the number
of controllers corresponds to the number of ‘types’ discovered
by the algorithm, figure 7 shows that in the first generations
tens of ‘types’ are discovered. Then, it slows down to 2 or 3
‘types’ per generation.

C. Influence of learning

In addition to the controller archive, the combined evolution
of morphology and learning of behaviours in MELAI leads
to added complexity in analysing results. To gain insight
into the interaction between these two optimisation processes,
MELAI was run with five different budgets ([800,5], [400,10],
[200,20], [150,30], and [100,40]) which correspond respec-
tively to [learning budget, number of generations]. All the
variants have a population of 25 body-plans. Thus each variant
tests a different total number of body-plans, for instance, the
variant [400,10] tests 250 body-plans. However, all the variants
have the same total number of evaluations of 100000. These
variants are compared with MELHS as the baseline, conducted
on the exploration task.

Figure 8 shows the best task-performances (number of zones
visited) over the number of evaluations. As expected, the
advantage of using learning is clear. The best individuals
produced by MELHS visit on average between 8 and 9 zones
while all the variants of MELAI reach between 23 and 28 on
average. With MELHS, the quality of the solutions increases
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Fig. 6. The number of evaluations per generation. The values are plotted for MEL and MELAI. These experiments have been conducted with a budget of
200 evaluations per body-plan and 20 generations for the exploration task and 15 for the photo-taxis task. The coloured areas correspond to the confidence
interval around the mean. The difference between the distributions of the last generation is significant when a p-value and its critical value are indicated. The
significant test is the Mann-Whitney U test.

Fig. 7. Plots of three metrics over the generations related to the controllers in the archive. First row: the average and best task-performance. Second row: the
number of controllers in the archive. The coloured areas correspond to the confidence interval around the mean.

very slowly, starting from 8 and reaching barely 9 at the end.
However, MELAI demonstrates an obvious learning curve for
all variants tested.

On the other hand, the difference between the different
budgets using MELAI is small. The variant [800,5] is sub-
optimal compared with the others. The variant [100,40] is
the fastest to reach a satisfactory solution with an average of
25 zones visited after around 15000 evaluations. Generally,
reducing the learning budget speeds up convergence. This
is due to the generational aspect of MELAI: for a given
number of evaluations, smaller learning budgets enable more
generations to be conducted. Ultimately, apart from [800,5]
all the variants converge to similar task-performances.

D. Robot diversity

Finally, figure 9 shows the distribution of the number of
wheels, joints and sensors of the robots with the highest
task-performance over the generations. These show that the
majority of successful robots have between three and five
wheels for all the environments and both tasks. In contrast,
the majority of successful robots have no joints. This is unsur-
prising as the three environments have a flat floor rendering
joints unnecessary. MELAI discovers that for photo-taxis at
least one sensor is required, while for the exploration task the
majority of the best solutions does not feature sensors. Indeed,

to reach the target at three different locations in the photo-
taxis, a sensor is required. On the contrary, ‘blind’ robots can
easily visit multiple zones.

These results are not surprising given that the main opti-
misation process in MELAI is an MEA. Evolution is most
likely to proceed along the ‘easiest’ path that enables it to
maximise the fitness function. In this case, this corresponds
to robots with only wheels. This type of robot is easier to
control and therefore it is easier to learn a controller than for
robots with joints and sensors. Sensors emerge only if they are
necessary as in the photo-taxis task. Thus, MELAI is able to
produce different ‘types’ of robots depending on the task. This
is evidenced in additional plots provided in the Supplementary
Material. Illustrations of the most common and efficient de-
signs found by MELAI for each task are shown in figure 10
as examples. Only one robot is shown for the photo-taxis task
because for both environments arena and escape room the
algorithm converges to the same ‘type’. However, additional
pictures are provided in the Supplementary Material. Worthy
of note is that similarity and ‘minimalism’ of both body-plans.
The similarity confirms the lack of diversity in the best robots
generated. The simplistic design shows that MELAI reduced
the cost of production of such robots despite the lack of an
explicit objective to do so.
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Fig. 8. Best fitness over the number of evaluations on the exploration task for six variants: [evaluations, generations] of [800,5],[400,10],[200,20], [150,30],
and [100,40] and MELHS. The coloured areas correspond to the confidence interval around the mean.

Fig. 9. For each of the three environments, distribution of the number
of wheels, joints and sensors over the best robots of each generation. The
coloured areas correspond to the confidence interval and the solid curves to
the central tendency.

Fig. 10. The most common and efficient design found by MELAI for each
task. On the left for the exploration task and on the right for the photo-taxis
task.

VI. DISCUSSION

Advancing previous work in the domain of body-brain
evolution, we have proposed a method to evolve robots in a
rich morphological space that includes a variety of sensors and
actuators, and that can realise skeletons with diverse forms and
sizes. Hence, a considerably more diverse range of body-plans
can be produced in this space than in previous work that either
uses modular systems [24] or spaces in which the components
have common control mechanisms [16]. The richer space
increases the likelihood that a controller produced via evo-
lutionary operators will not match a new body-plan. Although
using a generative (morphology-independent) encoding can
address this inheritance issue, the time-complexity associated
with these methods can be prohibitive when working with
physical robots.

To address this we have proposed the use of an external
archive that stores a learned controller associated with a ‘type’
of robots. As described in section V, we have demonstrated
that the archive significantly improves the quality of the
solution and efficiency in evolving a body-plan capable of
solving multiple tasks. The role of the archive and the various
components of the framework that lead to this result is
discussed below.

Each cell of the controller archive stores the best con-
troller learned during an individual lifetime. The archive thus
represents a history of knowledge discovered in previous
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generations that can be passed to future generations. Therefore,
it acts as a novel form of inheritance. In the sense that it stores
information learned during an individual lifetime, it shares
characteristics with Lamarckian artificial evolutionary systems
[25]. Note that the tuple defining a ‘type’ is deliberately
simple. However, it should be clear that many different body-
plans can be mapped to a single cell, given that for any given
combination of sensors and actuators, the robot’s skeleton they
are attached to can vary enormously in shape and size, and
the configuration of components can also vary. Given this
variation, it might be expected that inheriting a controller of
the correct ‘type’ would not necessarily bring many benefit.
However, it is clear from figure 5 that shows the best and
initial task-performance, that starting from a controller from
the archive brings a significant advantage. Interestingly, this
suggests that there is some generalisation of controllers across
a range of body-plans. The results, shown in the second row
of figure 5, show that inheriting from the archive bootstraps
the learning process, and the size of this effect increases in
magnitude as the generations progress.

It would of course be possible to define each cell using
a higher degree of granularity, although it is reasonable to
assume there is a balance to be struck in not making the
archive too granular (which at the extreme would map every
robot to an individual cell). Another way to approach this
would be to store multiple controllers per cell, and either try
them all, select one at random, or use clustering or species
system to select the most suitable one. Also, increasing the
granularity of the archive requires defining an appropriate
morphological descriptor. This is not an easy task. In our
previous work [9], different morphological descriptors were
studied in the context of novelty search, designed to reflect
different types of control (e.g. due to symmetry). The results
showed that in fact, the most simple descriptor that simply
counted components was better in producing a greater diversity
of body-plans.

Recall that the framework consists of two components: an
MEA that learns body-plans and a learning algorithm based on
an evolutionary strategy that learns controllers. The former is
selected for its ability to explore a diverse space of plans and
based on previous work [9]. The selection of NIP-ES as the
learner is deliberate in that this algorithm demonstrates high
exploration capabilities. This is essential as the learner might
have to start from scratch if no controller is available in the
archive, or a selected controller might not be well adapted to a
new body. In contrast, previous work which has used learning
as a mechanism to enhance a controller selected by evolution
(e.g. [24]) can afford to be much more exploitative.

Despite the diversity produced by MCME, the successful
robots are all of the same ‘type’: mostly wheels, a few sensors,
and almost no joints. In fact, MELAI falls into the local optima
of the robots for which it is easy to learn a controller. This
issue is common in evolutionary robotics and it is accentuated
by the joint optimisation of body-plan and controllers. In the
work of Cheney et al. [18], this issue is explained by the fact
that promising body-plans for which it takes longer to learn a
controller are quickly dropped by the EA. One of their later
works [19] proposed the morphological innovation protection

mechanism. Each body-plan has an attribute corresponding to
its age, which increases with each generation. The selection
mechanism favours younger body-plans and thus protects new
body-plans that need more time to learn a controller. In
MELAI, this solution could be implemented by attributing
bigger budgets to the learning process for younger body-plans
and decreasing their budgets as they age. Another possible
reason for the premature convergence to a local optimum
is the generational aspect of the EA. At each generation,
the selection mechanism is applied to the whole population
with the result that a high performing solution will often
invade the population. An asynchronous parallel evolution
(APE) approach proposed by Gupta et al. [16] provides a
possible solution. As a side-effect, they observe that this
results in more diversity in the highest performing body-plans.
APE applies tournament selection to small groups of four
individuals asynchronously. A low performing robot can be
preserved for longer as it is not always compared to the highest
performing individuals.

Given the importance of the learning loop just discussed
when jointly optimising body-plans and controllers, it is nat-
ural then to discuss how a computational budget should be
balanced between the outer evolutionary loop and the inner
learning loop. The results shown in figure 8 shed some light
on this by varying the budget assigned to the learning from
100 to 800 evaluations. The smaller learning budget delivers
a faster bootstrap in both environments as generations are
shorter. However, 200 evaluations is the necessary minimum
budget to allow NIP-ES to reach its full potential [10] (see
supplementary materials). So, the choice of the budget is
dependent on the learning algorithm used in MELAI. Also,
it is worth noting that the decision of how to split this budget
is influenced by whether one is working in simulation or on
physical robots: in simulation, generating a body-plan has
negligible cost whereas in reality, producing a physical robot
can take weeks [17]. In contrast, evaluations are cheap in both
environments hence this may influence the choice.

Finally, many design choices made in this work are made
with the intention of applying the scheme to a physical system
[30]. In particular, NIP-ES and the controller archive reduce
the number of evaluations needed to reach a satisfactory
solution. However, further progress is still required in this
direction: on the photo-taxis task in the arena, MELAI needs
around 15000 evaluations shared among 100 body-plans tested
to find a robot that completes the task. In future work, hybrid
methods using both simulated and real robots will therefore
be investigated.

VII. CONCLUSION

This paper has proposed a new framework MELAI for the
joint optimisation of body-plans and controllers in a diverse
and complex morphological space. The framework intertwines
an evolutionary algorithm MCME for evolving body-plans
with an evolution strategy NIP-ES for learning individual
controllers. Its key novelty is in the use of an external archive
for storing learned controllers for different ‘types’ of robots.
This acts as a means of transferring learned information
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between multiple generations and is used to bootstrap the
learning mechanism. Hence it can be seen as a form of non-
genetic inheritance. It is shown to bring benefits with respect to
efficiency, leading to increased rates and magnitude of learning
over generations. Finally, it provides new insights into the
complex interactions between evolution and learning, adding
to the growing amount of recent literature on this subject (e.g.
[16], [17], [24]).

Looking ahead, the work provides a foundation for moving
towards applying the framework to the evolution of robots
in a hybrid system that mixes evolution in hardware and
simulation. In such a space, increasing the efficiency of the
evolutionary cycle is key for reasons that include time, cost
of materials, and wear and tear on robotic parts.
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