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Abstract  21 

Horizontal jumps are discrete, fast, over-ground movements requiring coordination of the 22 

center of mass (CoM) and base of support and are routinely assessed in sports settings. There 23 

is currently no biomechanics-based system to aid in their quick and objective large-scale 24 

assessment. In this paper, we describe a practical system which uses a single low-cost depth-25 

sensing camera and point-cloud processing (PCP) to capture feet and centre of mass (CoM) 26 

kinematics. Fourteen participants performed 10 single-leg horizontal jumps for distance. Foot 27 

displacement, CoM displacement, CoM peak velocity and CoM peak acceleration in the 28 

anterior-posterior direction of movement were compared with a reference 15-segment criterion 29 

model, captured concurrently using a nine-camera motion capture system (Vicon Motion 30 

Systems, UK). Between-system Pearson’s correlations were very-large to near-perfect (n = 31 

140; foot displacement = 0.99, CoM displacement = 0.98, CoM peak velocity = 0.97, CoM 32 

peak acceleration = 0.79), with mean biases being trivial–small (-0.13cm, 3.8cm, 0.03m·s-1, 33 

0.42 m·s-2, respectively) and typical errors being small for foot and CoM displacement (0.96 34 

cm and 3.8 cm) and CoM peak velocity (0.07 m·s-1), and moderate for CoM peak acceleration 35 

(0.72 m·s-2). Limits of agreement were -1.9cm to 2.0cm for foot displacement, -11.3cm to 36 

3.6cm for CoM displacement, -0.17 to 0.12m.s.-1 for CoM peak velocity and -2.28 to 1.43m.s-37 
2 for CoM peak acceleration. The single camera system using PCP was able to capture foot and 38 

CoM kinematics during horizontal jumps with acceptable precision. Further work to improve 39 

estimates of CoM accelerations and validation across a wider range of populations are 40 

warranted.  41 

Short Title: A practical tool for the measurement of center of mass and base of support 42 

kinematics  43 

Keywords 44 

movement screening, gait analysis, centre of mass, markerless 45 
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Introduction 74 

Movement screening forms a regular component of athlete monitoring, providing important 75 

information on general movement skills and physical performance potentials (Read et al., 76 

2017). Horizontal jumps are common to many screening batteries as a proxy measure of 77 

explosive ability (e.g., Strokosch et al., 2018). These tests involve a coordinated pattern of 78 

countermovement, body rotation and arm swing to generate maximal anterior-posterior 79 

displacement, velocity, and acceleration of the center of mass (CoM) on take-off and then 80 

control CoM above the new landed position of the feet (Wakai and Linthorne, 2005). In 81 

research settings, these kinematic outcomes are quantified directly using force plates or marker-82 

based motion capture (Colyer et al., 2018). In field settings, jump performance is assessed using 83 

a tape measure (McCubbine et al., 2018) and technique assessed visually (Padua et al., 2015). 84 

Such methods are time-consuming and often with low inter-rater reliability (Lindblom et al., 85 

2020), potentially missing important features of jump performance.  86 

There are several emerging technologies for the simultaneous measurement of foot and CoM 87 

kinematics which have potential for monitoring jump performance. Studies using multi-88 

segment inertial measurement units have reported errors for feet and CoM positions of <1cm 89 

and < 2.57cm, respectively (Fasel et al., 2017). While likely to be acceptable for the present 90 

purposes, the costs and ease-of-use for large-scale screening programmes are prohibitive. A 91 

potential alternative is computer vision (see Colyer et al., 2018 for a review). Skeletal tracking, 92 

in which artificial intelligence (AI) is used on images to infer on whole-body joint positions 93 

(Colyer et al., 2018), provides accurate estimates of kinematic parameters in some poses (Galna 94 

et al., 2014; Eltoukhy et al., 2017). The errors for foot, however, can be quite high (>10cm (Xu 95 

and McGorry, 2015)). In contrast, point cloud processing (PCP), in which raw depth data is 96 

converted directly into 3D landmark coordinates, has been shown to achieve greater levels of 97 

accuracy. Notably, studies using PCP have consistently reported errors of <1cm for the foot 98 

(Paolini et al., 2013), ankle (Geerse et al., 2019), pelvis (MacPherson et al., 2016) and knee 99 

(Timmi et al., 2018). In addition, PCP has also been applied (albeit using multiple cameras) to 100 

measure CoM kinematics with similar levels of accuracy (Kaichi et al., 2019).  101 

To date, PCP has so far been restricted to the analysis of cyclical, slow and relatively stationary 102 

activities. Whether this technology is able to track simultaneously the kinematics of the foot 103 

and CoM during discrete, fast over-ground movements involved in the horizontal jump remains 104 

to be determined. This study will describe the development and examine the concurrent validity 105 

of PCP for the quantification of single-leg horizontal jump performance (Figure 1a) in terms 106 

of displacement, velocity and acceleration outcomes. This single-legged jump is a more 107 

challenging version of the standing long jump, requiring the athlete to jump as far as possible 108 

horizontally from one foot to the other - requiring them to control their CoM in relation to a 109 

small base of support on landing. The specific aim of our study is to quantify the concurrent 110 

validity of the displacement, velocity and acceleration outcomes based on PCP against those 111 

from a laboratory-grade system for the single-legged jump. 112 

Methods 113 

The study received ethical approval from The University of Sunderland’s Ethics committee. 114 

Fourteen physically active males (age: 28 ± 10 years, stature: 181 ± 9cm, body mass: 82 ± 115 
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10kg) volunteered and provided written informed consent. All participants were free from 116 

injury and, after a warm-up, performed single-legged horizontal jumps at one-minute intervals 117 

within the capture volume of the PCP and laboratory systems.  118 

Depth sensor system: A low-cost depth sensing camera (Kinect™ V2, Microsoft, USA) was 119 

positioned at 0 mm, 1850 mm, and 2750 mm in the medial-lateral, anterior-posterior, and 120 

superior-inferior directions relative to the global origin. The camera was tilted by -30o about 121 

the medial-lateral axis. Using a rigid calibration frame (600 × 2000 mm) positioned 740 mm 122 

anterior to the origin (0,0,0), a 4x4 transformation matrix was determined (camera to global 123 

system). Following Paolini (2014), markers were attached to the feet, enabling to reconstruct 124 

the foot position from the point cloud data. These foot markers included two retroreflective 125 

strips spaced 70mm apart enabling to track a virtual midpoint on the infrared image (e.g., 126 

MacPherson et al., 2016). The process of automated CoM reconstruction involved 4 stages. 127 

First, points visible in the scene before the athlete entered the capture volume were removed 128 

(i.e., background removal). Second, points with less than 5 neighbouring points (i.e., <5cm) 129 

were considered stray and removed. Third, unit masses were assigned to all remaining points, 130 

thus allowing to determine the weighted centroid. Fourth, a cylindrical volume was attached to 131 

the centroid (height = 2.0m, diameter = 1.2m) and the position at which the summed moment 132 

of all weighted points within this volume was taken to represent the CoM for each frame.  133 

Criterion three-dimensional system: The criterion method of quantifying foot and CoM 134 

kinematics was a nine-camera optoelectronic system (Bonita B10, Vicon motion systems, 135 

Oxford, UK) at 100 Hz. Using a 19-segment plug-in gait model, markers were placed 136 

bilaterally on anatomical landmarks (Vicon motion systems, Oxford, UK). Trajectory data 137 

were low-pass filtered using a fourth-order Butterworth filter with cut-off frequency of 6 Hz.  138 

Data processing: The positional data from both systems were differentiated to yield 139 

displacements, velocities and accelerations. All data were then time-normalised to a percentage 140 

of the jump cycle (Figure 1b), using the first and second trough of the SI-position of the CoM 141 

data (not shown) as anchor points (20% and 55% of the cycles, respectively). The normalised 142 

data were processed to yield outcome measures of jump performance, which were: 143 

displacement of the feet (cm) defined the distance between the right and left toes at 20% and 144 

55%, respectively; displacement of the CoM (cm) defined as the distance between 20% and 145 

55%; peak velocity and acceleration defined as the highest positive velocity and acceleration 146 

in the anterior-posterior direction throughout the cycle.  147 

Statistical Analysis: Since our aims are to assess the agreement between two measurement 148 

systems, rather than to examine any biological outcomes, data from all participants (n = 14) 149 

and their trials (n = 10 pp) were treated as independent measures (i.e., n = 140 datapoints per 150 

outcome measure). We used separate linear regressions (SPSS Version 24, IBM Corp., 151 

Armonk, NY, USA) to examine the criterion-related validity of the foot displacement and COM 152 

kinematics. Criterion-derived values of the outcome measures were entered as separate 153 

dependent variables and the corresponding PCP-derived values were entered as independent 154 

variables. Relationship strength was quantified with Pearson’s product moment correlation 155 

coefficient (r), with the associated R2 value (coefficient of determination) used to express the 156 
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proportion of explained variance. Additionally, the intraclass correlation coefficient was 157 

calculated using a two-way mixed effects model (ICC3,1), but these are not reported as values 158 

were all within ±0.0002 of the Pearson’s r for displacement and velocity and ±0.0274 for 159 

accelerations. Typical errors ([TE], or standard errors of the estimate) were used to represent 160 

unexplained (random) bias. The mean difference between PCP and the criterion was used to 161 

represent systematic (mean) bias. Finally, Bland & Altman’s 95% limits of agreement were 162 

calculated by adding and subtracting 1.96 times the standard deviation of the difference (PCP–163 

criterion) in paired measurements (Bland and Altman, 1986). 164 

Uncertainty in all estimates were expressed using 90% confidence limits (CL), calculated from 165 

the t-distribution for mean differences, the z-distribution for (transformed) correlation 166 

coefficients and the chi-squared distribution for SEE. We declared the magnitude of correlation 167 

coefficients as small moderate, large, very large and near perfect based on standardized anchors 168 

of 0.1, 0.3, 0.5, 0.7 and 0.9, respectively (Hopkins et al., 2009). To provide a real-world 169 

interpretation of mean bias, we used 0.2, 0.6 and 1.2 of the pooled between-participant standard 170 

deviation for each outcome metrics to represent small, moderate and large differences (Hopkins 171 

et al., 2009). These thresholds were then halved to declare practical magnitudes of SEEs (Smith 172 

& Hopkins, 2011). All analyses were performed in SPSS (Version 24, IBM Corp., Armonk, 173 

NY, USA) and Microsoft Excel (Version 16.28, Microsoft, Redmond, WA, USA).  174 

Results 175 

The results of the validity analysis are shown in Table 1 and Figure 1c. The association (r) 176 

between the systems for outcome measures were near perfect for foot displacement, CoM 177 

displacement and peak velocity, and very large for peak acceleration. Mean biases were trivial 178 

for total displacement (~3%) and peak velocity (~1.5%), and trivial-to-small for peak 179 

acceleration (~1 –7%) of the COM. The typical errors were small for foot displacement (~1%), 180 

CoM displacement (~3%) and CoM peak velocity (~4%), and moderate for CoM peak 181 

acceleration (~16%). The limits of agreement (Figure 1c) for foot displacement (-1.9cm to 182 

2.0cm), CoM displacement (-11.3cm to 3.6cm), CoM peak velocity (-0.17 to 0.12m.s.-1) and 183 

CoM peak acceleration (-2.28 to 1.43m.s-2).  184 

Discussion 185 

Biomechanical analysis of movement screening tests could play an important role in both 186 

athletic and clinical settings. In these areas, expediency and validity are highly valued. 187 

Following a ten-minute setup, the system was able run continuously to capture and display 188 

outcome measures within 300ms of task completion. The novel PCP-based system developed 189 

showed excellent concurrent validity with a 3D motion analysis system in tracking CoM and 190 

feet simultaneously during a single-legged horizontal jump. Typical errors between the systems 191 

in foot displacements were 0.94 cm (<1%) which are considered acceptable in field-testing 192 

(Mccubine et al., 2017). The errors in CoM displacement were 3.8 cm, being similar to other 193 

practical measures used in gait research (3 cm, Yang and Pai, 2014; 4 cm Huntley et al., 2017) 194 

but slightly larger than those from inertial suits (2.6 cm, Fasel et al., 2017). As with most areas 195 

of biomechanics, an optimal trade-off may exist between accuracy, practicality, and cost 196 

(Devetaka et al., 2019); this will depend largely on how accurate the system needs to be. 197 

Accordingly, we provided a more practical (real-world) interpretation of our findings for this 198 
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task and found trivial mean biases for all outcome measures, with typical errors being trivial 199 

for displacement, small for velocity and large for accelerations. Our data therefore suggest that, 200 

although not perfect, both foot and CoM displacement can be quantified with acceptable 201 

precision to detect small but worthwhile changes. However, velocities and accelerations may 202 

need further work, and this may entail higher resolution, multiple cameras and/or higher 203 

sampling frequency.  204 

There are important limitations to this study. First, the current single camera was only able to 205 

capture at 30Hz, a possible reason for the only moderate accuracy for the peak accelerations 206 

(~16%). Further improvements such as higher sampling or multiple cameras may be required 207 

to quantify acceleration-based CoM variables. Second, our sample was quite homogeneous in 208 

terms of sex and training status; thus, the accuracy of the system may not be representative of 209 

that in other populations. For example, highly trained (elite) athletes may produce faster 210 

velocity and acceleration during jump tasks, and further examination of validity at these faster 211 

speeds of capture would seem warranted. Third, and finally, we have not modelled all possible 212 

performance outcomes related to the foot and CoM relationship: it is not known how these 213 

errors propagate when other measures, such as dynamic balance (Hrysomallis, 2011), are 214 

calculated. 215 
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10kg) volunteered and provided written informed consent. All participants were free from 43 

injury and, after a warm-up, performed single-legged horizontal jumps at one-minute intervals 44 

within the capture volume of the PCP and laboratory systems.  45 

Depth sensor system: A low-cost depth sensing camera (Kinect™ V2, Microsoft, USA) was 46 

positioned at 0 mm, 1850 mm, and 2750 mm in the medial-lateral, anterior-posterior, and 47 

superior-inferior directions relative to the global origin. The camera was tilted by -30o about 48 

the medial-lateral axis. Using a rigid calibration frame (600 × 2000 mm) positioned 740 mm 49 

anterior to the origin (0,0,0), a 4x4 transformation matrix was determined (camera to global 50 

system). Following Paolini (2014), markers were attached to the feet, enabling to reconstruct 51 

the foot position from the point cloud data. These foot markers included two retroreflective 52 

strips spaced 70mm apart enabling to track a virtual midpoint on the infrared image (e.g., 53 

MacPherson et al., 2016). The process of automated CoM reconstruction involved 4 stages. 54 

First, points visible in the scene before the athlete entered the capture volume were removed 55 

(i.e., background removal). Second, points with less than 5 neighbouring points (i.e., <5cm) 56 

were considered stray and removed. Third, unit masses were assigned to all remaining points, 57 

thus allowing to determine the weighted centroid. Fourth, a cylindrical volume was attached to 58 

the centroid (height = 2.0m, diameter = 1.2m) and the position at which the summed moment 59 

of all weighted points within this volume was taken to represent the CoM for each frame.  60 

Criterion three-dimensional system: The criterion method of quantifying foot and CoM 61 

kinematics was a nine-camera optoelectronic system (Bonita B10, Vicon motion systems, 62 

Oxford, UK) at 100 Hz. Using a 19-segment plug-in gait model, markers were placed 63 

bilaterally on anatomical landmarks (Vicon motion systems, Oxford, UK). Trajectory data 64 

were low-pass filtered using a fourth-order Butterworth filter with cut-off frequency of 6 Hz.  65 

Data processing: The positional data from both systems were differentiated to yield 66 

displacements, velocities and accelerations. All data were then time-normalised to a percentage 67 

of the jump cycle (Figure 1b), using the first and second trough of the SI-position of the CoM 68 

data (not shown) as anchor points (20% and 55% of the cycles, respectively). The normalised 69 

data were processed to yield outcome measures of jump performance, which were: 70 

displacement of the feet (cm) defined the distance between the right and left toes at 20% and 71 

55%, respectively; displacement of the CoM (cm) defined as the distance between 20% and 72 

55%; peak velocity and acceleration defined as the highest positive velocity and acceleration 73 

in the anterior-posterior direction throughout the cycle.  74 

Statistical Analysis: Since our aims are to assess the agreement between two measurement 75 

systems, rather than to examine any biological outcomes, data from all participants (n = 14) 76 

and their trials (n = 10 pp) were treated as independent measures (i.e., n = 140 datapoints per 77 

outcome measure). We used separate linear regressions (SPSS Version 24, IBM Corp., 78 

Armonk, NY, USA) to examine the criterion-related validity of the foot displacement and COM 79 

kinematics. Criterion-derived values of the outcome measures were entered as separate 80 

dependent variables and the corresponding PCP-derived values were entered as independent 81 

variables. Relationship strength was quantified with Pearson’s product moment correlation 82 

coefficient (r), with the associated R2 value (coefficient of determination) used to express the 83 
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proportion of explained variance. Additionally, the intraclass correlation coefficient was 84 

calculated using a two-way mixed effects model (ICC3,1), but these are not reported as values 85 

were all within ±0.0002 of the Pearson’s r for displacement and velocity and ±0.0274 for 86 

accelerations. Typical errors ([TE], or standard errors of the estimate) were used to represent 87 

unexplained (random) bias. The mean difference between PCP and the criterion was used to 88 

represent systematic (mean) bias. Finally, Bland & Altman’s 95% limits of agreement were 89 

calculated by adding and subtracting 1.96 times the standard deviation of the difference (PCP–90 

criterion) in paired measurements (Bland and Altman, 1986). 91 

Uncertainty in all estimates were expressed using 90% confidence limits (CL), calculated from 92 

the t-distribution for mean differences, the z-distribution for (transformed) correlation 93 

coefficients and the chi-squared distribution for SEE. We declared the magnitude of correlation 94 

coefficients as small moderate, large, very large and near perfect based on standardized anchors 95 

of 0.1, 0.3, 0.5, 0.7 and 0.9, respectively (Hopkins et al., 2009). To provide a real-world 96 

interpretation of mean bias, we used 0.2, 0.6 and 1.2 of the pooled between-participant standard 97 

deviation for each outcome metrics to represent small, moderate and large differences (Hopkins 98 

et al., 2009). These thresholds were then halved to declare practical magnitudes of SEEs (Smith 99 

& Hopkins, 2011). All analyses were performed in SPSS (Version 24, IBM Corp., Armonk, 100 

NY, USA) and Microsoft Excel (Version 16.28, Microsoft, Redmond, WA, USA).  101 

Results 102 

The results of the validity analysis are shown in Table 1 and Figure 1c. The association (r) 103 

between the systems for outcome measures were near perfect for foot displacement, CoM 104 

displacement and peak velocity, and very large for peak acceleration. Mean biases were trivial 105 

for total displacement (~3%) and peak velocity (~1.5%), and trivial-to-small for peak 106 

acceleration (~1 –7%) of the COM. The typical errors were small for foot displacement (~1%), 107 

CoM displacement (~3%) and CoM peak velocity (~4%), and moderate for CoM peak 108 

acceleration (~16%). The limits of agreement (Figure 1c) for foot displacement (-1.9cm to 109 

2.0cm), CoM displacement (-11.3cm to 3.6cm), CoM peak velocity (-0.17 to 0.12m.s.-1) and 110 

CoM peak acceleration (-2.28 to 1.43m.s-2).  111 

Discussion 112 

Biomechanical analysis of movement screening tests could play an important role in both 113 

athletic and clinical settings. In these areas, expediency and validity are highly valued. 114 

Following a ten-minute setup, the system was able run continuously to capture and display 115 

outcome measures within 300ms of task completion. The novel PCP-based system developed 116 

showed excellent concurrent validity with a 3D motion analysis system in tracking CoM and 117 

feet simultaneously during a single-legged horizontal jump. Typical errors between the systems 118 

in foot displacements were 0.94 cm (<1%) which are considered acceptable in field-testing 119 

(Mccubine et al., 2017). The errors in CoM displacement were 3.8 cm, being similar to other 120 

practical measures used in gait research (3 cm, Yang and Pai, 2014; 4 cm Huntley et al., 2017) 121 

but slightly larger than those from inertial suits (2.6 cm, Fasel et al., 2017). As with most areas 122 

of biomechanics, an optimal trade-off may exist between accuracy, practicality, and cost 123 

(Devetaka et al., 2019); this will depend largely on how accurate the system needs to be. 124 

Accordingly, we provided a more practical (real-world) interpretation of our findings for this 125 



 4 

task and found trivial mean biases for all outcome measures, with typical errors being trivial 126 

for displacement, small for velocity and large for accelerations. Our data therefore suggest that, 127 

although not perfect, both foot and CoM displacement can be quantified with acceptable 128 

precision to detect small but worthwhile changes. However, velocities and accelerations may 129 

need further work, and this may entail higher resolution, multiple cameras and/or higher 130 

sampling frequency.  131 

There are important limitations to this study. First, the current single camera was only able to 132 

capture at 30Hz, a possible reason for the only moderate accuracy for the peak accelerations 133 

(~16%). Further improvements such as higher sampling or multiple cameras may be required 134 

to quantify acceleration-based CoM variables. Second, our sample was quite homogeneous in 135 

terms of sex and training status; thus, the accuracy of the system may not be representative of 136 

that in other populations. For example, highly trained (elite) athletes may produce faster 137 

velocity and acceleration during jump tasks, and further examination of validity at these faster 138 

speeds of capture would seem warranted. Third, and finally, we have not modelled all possible 139 

performance outcomes related to the foot and CoM relationship: it is not known how these 140 

errors propagate when other measures, such as dynamic balance (Hrysomallis, 2011), are 141 

calculated. 142 
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Figure Legends 

Figure 1.  

a) A schematic view of the movements of the skeleton during a single-legged jump (right to 

left). Note the AP displacements are accentuated for visual purposes. Between 0 to 10% the 

CoM moves laterally to above the position of the standing foot and the landing foot leaves the 

floor. During this initial period, there is flexion of the trunk, right hip, right knee and right 

ankle while the body created a shallow countermovement. At the same time, the athlete begins 

to shift the CoM anteriorly relative to the base of support thus creating anterior misalignment 

between the COM and base of support. The athlete then accelerate horizontally during the push-

off (0-30%) during which time there is extension at the ankle, knee and hip. The peak height 

of the CoM occurs between 30 and 40% and for a short period (approximately 5% of the cycle) 

during which time the body is in free fall. The landing foot then hits the floor (approximately 

60%) and the CoM is decelerated. The athlete attempts to control the CoM above the base of 

support provided by the landed foot and hold this position until the end of the trial. Failure to 

do so resulted in a retrial after a 1min rest. The jumps were performed in the AP direction 

towards the camera. 

b) Time-normalised kinematics from Vicon (blue) and PCP (yellow) (mean ± SD) for the CoM 

in the AP direction (n= 1200) are shown. Overlapping regions of the standard deviations are 

shown in green. Note that all y-axes are scaled to span the range between maximal and minimal 

data points on the time-series. 

c) Limits of agreements (Bland and Altman,1986) for the two systems (±1.96SD) for foot 

displacement (i), CoM displacement (ii), CoM peak velocity (iii) and CoM peak acceleration 

(iv).  
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Table 1. Validity analysis between point-cloud processing (PCP) and criterion-derived 

estimates of jump performance during the single-leg jump  

Outcome 

Measure 

Performance* 

(mean ± SD) 
r 

(±90% 

CL)* 

R2 
Mean bias 

(±90% CL) 

Typical 

Error 

(×/÷90% 

CL) 

Displacement 

Foot (cm) 
140.5 ± 27.2 

0.999; 

±0.0002 
0.999 -0.07 (0.15) 0.92 (1.12) 

Total 

displacement 

CoM (cm) 

126.5 ± 21.2 
0.983; 

±0.005 
0.967 3.84 (0.6) 3.83 (1.12) 

Peak velocity 

CoM (m·s-1) 
1.84 ± 0.30 

0.973; 

±0.009 
0.946 0.03 (0.01) 0.07 (1.12) 

Peak 

acceleration 

CoM (m·s-2) 

5.49 ± 1.46 
0.792; 

±0.059 
0.627 0.42 (0.15) 0.72 (1.12) 

*from the PCP  

 

CL, confidence limits. 
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