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Abstract
3D printing is increasingly becoming an important technology in the manufacturing sector and has the potential to revolutionize manufacturing. 3D printing allows customization, which produces sophisticated structures while lowering waste and at the same time allowing more flexibility in the design. This paper includes a brief overview of the main types of additive manufacturing (AM) technologies. It reviews the work carried out in various types of 3D printing technologies particularly focusing on mechanical characterization. Based on the literature studied, comparisons have been drawn on the various merits and challenges offered by various 3D printed materials. Dedicated sections on various materials aspects and application areas have been included particularly from a medical science point of view. This paper ends with a dedicated section on applications of Additive Manufacturing (AM) in orthopaedic, dental, prosthetics, food and textile sectors. It tries to establish relationships between AM, industry 4.0 and sustainability. This paper shall act as a stimulant to trigger further advancements in the above fields. 
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1. Introduction
The manufacturing landscape is continuously changing. The rise in competition for sustainable designs and the possibility of using materials like alloys and metals are already exhausted. This makes it very hard to attain the highest traits of materials and their performance measures under the most current techniques. Consumers’ expectations for more customized products and services, combined with the introduction of modern production techniques are also the reason for such shifts in manufacturing scale and distribution [1]. Due to this increased competition for sustainable designs and the continuous attempts to achieve the highest traits of the material, 3D printing has emerged as a breakout technology possessing a huge potential for social and environmental transformation. It is the best usable technology with minimal production volumes, regular design changes, and the high complexity of designs necessary. Over the years, this technology has evolved and its machines have become more and more useful along with their lower and affordable prices. 3D printing due to its novel approach has now found its use in various sectors such as engineering, construction, medical, military, aerospace, fashion, architecture, computer industry, etc. This technology is slowly replacing the traditional way of manufacturing as it offers greater flexibility as compared to conventional manufacturing techniques. Most current technologies need materials with a unique combination of the properties found in conventional materials [2]. Therefore, the development of such composites has replaced traditional materials. 3D printing technology is also described as additive manufacturing. This is a quickly rising technology within the manufacturing sector. There has been a drastic decrease in 3D printer costs, resulting in increased demand in the market [3]. 3D printing fabricates components through the use of 3D computerized data having information on the object geometries. 3D printing is the best usable technology with minimal production volumes, regular design changes, and the high complexity of designs necessary  [4]. AM procedures tend to fabricate various computer data and STL files of the geometry existing in the object [5][6]. 3D printing technology is way better suitable unlike the traditional manufacturing procedures. Traditionally, there were lesser volumes of production, constant changes in designs, and also increased complexities of design were needed. The key differences between the additive manufacturing technologies and traditional manufacturing listed in table 1, which highlights some important features of AM such as waste reduction, time efficiency and the feature for product optimization and recreation. However, there are some limitations in printing space. AM is restricted to its printing bed, but this issue is also being addressed by researchers and nowadays we see additive manufactured houses [Ref]. 
Table 1: Key Difference between AM and Traditional Manufacturing
	Description
	Additive manufacturing 
	Traditional manufacturing

	Prototype production
	Does not need any special tooling in making parts [3][7]
	Needs special tools to make parts

	Waste prevention
	Incredibly resource-efficient
	Consumes a lot of resources

	Large-scale production
	Produces parts at speed
	Less efficient and reliable

	Presence of specific materials
	Ability to make objects out of metallic polymers [3][7]
	No ability to make objects out of external materials

	The scale of produced parts
	Restricts to a total area of the printing bed
	Manufactures certain larger parts

	Customization
	Incredible use of small one-off production runs
	Need for several tooling

	Cost
	Costs keep falling
	Not easy to get started

	Waste and energy
	Saves on material waste and energy
	No ability to add a material unit part

	Inventory
	Does not need much hands-on inventory  [3][7]
	Need for a lot of hands-on inventory

	Legacy parts
	Easy to recreate and optimize parts
	Inability to recreate or to optimize legacy parts  [3][7]



This paper is an attempt towards highlighting the role AM can play in implementing Industry 4.0 in various sectors and also at the same time achieving sustainability. This paper is structured in a manner to focus on various technologies and applications of AM particularly the medical field.
2. Literature survey of 3D Printing Technologies.
3D printing technology has improved over the past years. This sector is quite young, and many technological growth and discoveries are still under development. The technology may not manage to revolutionize the manufacturing sector yet in a sizable manner. 3D printers utilize additive manufacturing procedures and other technologies in building layers that become the final objects. There are many varieties of 3D printing technologies that occur under various functions [8]. They are cataloged into seven different groups, as represented in the figure 1:
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Figure 1: Types of 3D Printing


The table 2 represents some of the recent advancements brought in the fields of electronics, aerospace, medicine and construction using 3D printing technologies. 

Table 2: Recent advancements in electronics, space and medical by 3D printing
	Methodology
	Work involved and results

	Hybrid 3D manufacturing system (Stereolithography and direct-write technology) 
	3D embedded electronic structures 3D
555 timer circuit – a 3D embedded electronic circuit was fabricated.[9]

	Fused deposition modeling and ultrasonic wire mesh embedded approach.
	A patch antenna having a gain of 5.5 Db at the resonance peak was developed using this technology [10].

	Inkjet Printing
	Flexible electronics such as cellulose nanofibril-based coatings which control ink penetration to woven cotton fabrics were developed for e-textile manufacturing [11].

	3D Bioprinting
	A bio-ink that combines the outstanding shear
thinning properties of nano fibrillated cellulose (NFC) with the
the fast cross-linking ability of alginate  was formulated by a research group from Chalmers university technology  which has the potential to be used for 3D bioprinting of living tissues and [12]

	3D Bioprinting
	A bionic ear was generated using a cell-seeded hydrogel matrix similar to the shape of the human ear along with the intertwined conducting polymer. Enhanced auditory sensing for radio frequency reception was exhibited by the printed ear [13].

	Selective Laser Manufacturing
	NASA engineers used Nickel-Chromium Alloy powder to construct a complex metal rocket injector component for the J-2X engine on the next-generation Space Launch System (SLS). The part was built into a single piece without joints and was structurally stronger and more reliable and thus was a significant improvement in saving time and cost [14].

	Selective Laser Sintering
	A prototype model of a 25-kN of aircraft engine was fabricated by Hindustan Aeronautics Limited and was on display in the Aero-India expo 2015. The material used for the components was nylon plastic material. The cost and development time of this prototype were significantly reduced as compared to conventional manufacturing [14].

	Fused Deposition Modelling like technique
	A 6-axis robotic arm mounting an extrusion printhead was used to deposit the material layer by layer to produce ultra-high-performance concrete. This technique allowed in producing 3D large-scale complex geometries without the use of temporary support which was not possible before and thereby enabled the multi-functionality of both the structural elements [15].



2.1.  Binder Jetting
This process pertains to rapid prototyping. It also involves creating different parts that are additive to the binding agent in use [16]. Liquid binding agents are utilized for joining powder particles. The binding agent is deposited on top of the metal powder material starting from one layer on the next as per the 3D model [17]. Some of the common materials utilized are metals, sand, ceramics, and even polymers that are granular in form [18]. Other common applications include larger sand casting cores and even mold, cheap 3D printed metallic parts, and full-color fabricated prototypes. Unlike other Additive manufacturing technologies, which use heat or light as the fusing agent of raw materials, Binder jetting glues the material particles layer by layer to form the object of a specific geometry, Hence the heat is not required to bind the material together. It was invented in 1993 at MIT and after two years, Z Corporation acquired the license from MIT for its processing [19][20].  The binder jet printing technology is accessible for materials like ceramics, metals, and polymers [21][22][23][24]. Despite the availability of various materials, it is still useful for just prototyping, as the performance of the printed parts does not meet the required performance standards. This is due to the low packing factor of powder material; hence, the volume of pores is high and low density in the printed parts [25].  These parts generally require post-processing techniques like sintering and infiltration [26]. Among the two, Sintering is the most prominent technique for post-processing. However, this technique is responsible for dimensional inaccuracy, development of creep, and porosity [27][28]. The infiltration involves immersing of printed part into the solution of multi-phase fluid where the infiltrants enter the part through the capillary action. Mostly, among the materials used for binder jetting, ceramics are subjected to infiltration to decrease the percentage of porosity in the printed part [29]. The main problem with this method is that the porosity is not reduced up to the mark due to insufficient deposition of the infiltrant into holes of the binder-jetted printed part size smaller than the average particle size of the solid loadings [30].  The figure 2 shows the various processes/ phases during the binder jetting.
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Figure 2: Processes of Binder Jetting
The process starts with the preparation of raw material, fabrication, and post-processing. At the first, the roller spreads the layer of powder to the building platform from the powder stock then the print head defines the layers with the help of a binder as defined in the 3D design/model file. As the first layer is finished, the height of the layer is lowered and the process starts again for the second layer as of the first layer. The same process is repeated till the full geometry is acquired and this obtained part is known as the green part which is then separated from the powder for post-processing. Curing, de-binding, sintering, and optional densification are some post-processing steps. The green part is heated up to the temperature of 2000C, which toughens the green part by polymerization. The green part is then converted into the brown part in which the binder is burnt down and left for sintering. Here the density is increased and so are the mechanical properties,  This is called the finished product  [31]. Table 3 represents recent work in binder jet printing ranging from orthopedics to space technologies. Most of the studies listed in table 3 put emphasis on the printing parameters and their impact on mechanical and structural properties. 


Table 3: Recent work done in binder jet printing
	Author
	Material Type
	Application Area
	Remarks

	[32]
	Calcium sulfate hemihydrate
	Artificial Bones
	In this study, mechanical Anisotropy and fracture were investigated. Various printing parameters like printing directions, nozzle structure have shown their influence on these properties. Ink/Volume ratio showed its impact on the density as the precipitated content of dehydrating was affected.

	[33]
	porcelain ceramic
	Dental
	Various printing parameters like binder amount, drying power level, drying time, powder spread speed and sintering schedule temperature, holding time, the heating rate on the properties of printed parts for dental applications. It was seen that all the parameters affect the geometrical properties of dental ceramics.

	[34]
	Hydroperm, Lunar Highland Simulant, Zeolite 13X
	Space 
	The paper establishes the dependence of aerosol emission in binder jetting printing on the powder properties as well as on the powder spreading process.

	[35]
	Synthetic Light weight ceramic ((Al–32%), silicon (Si–42.5%) with trace amounts of Fe2O3, CaO2, TiO2.)
	Electromagnetic and Bio-medical implants
	The material stands light weight with high mechanical stresses and corrosion resistance. The material reports a low coefficient of thermal expansion.



2.2. Extrusion Based Methods
This technology is widely utilized since it is cost-effective. Several materials, multi-colored plastics, and living cells are then printed following a material extrusion-based technology [36]. Additionally, this process could be built completely based on the product's functional aspects [37][38]. Fused deposition modeling or fused filament fabrication are methods for material extrusion manufacturing. The fused deposition modeling contains filament-type thermoplastic as the input material, which is fed into the heated nozzle where it is melted and squeezed out from it in the form layers. The layer thickness and pattern of the printing design are fed to the printing software. After one layer is completed, the bed automatically lowers down, and the second layer is printed. This process continues till the final product is completed.  The important feature of extrusion based FDM is to manufacture the products with functionally graded properties [39]. Recent developments in the field have developed this process in such a way that it is now directly being used to manufacture the products rather than the prototypes. Figure 3 shows the various parameters that affect the properties of products manufactured by this technique.
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Figure 3: Process Parameters of FDM

Recently, a lot of work has been done in the field of fused deposition modeling techniques. Effect of various printing parameters like specimen orientation [40] [41][42], raster angle [43][44], nozzle temperature  [43], layer thickness [45] have been studied and their impact on various mechanical, tribological and structural properties have been studied as shown in table 4. Secondary parameters, like environmental parameters, have also shown their effect on the mechanical properties of materials printed with fused filament fabrication [46] [47][48]. 
Table 4: Effect of Process Parameters on the Printability of Various Materials
	Author
	Material type
	Process Parameters
	Observation

	[49]
	ABS and PLA
	Layer Thickness
Raster Angle
	With the increase in layer thickness, frictional force and 450 show better wear resistance. Also, PLA shows less wear resistance than ABS.

	[50]
	PA12 (Polyamide12)
	Layer Thickness
Extruder Temperature
Filling Structure
Occupancy rate
	Layer Thickness has the maximum effect on the tensile and impact strength. The optimized Mechanical properties are obtained at: 0.25 mm layer thickness, 50% occupancy, Rectilinear Filling structure, and 250°C extruder temperature.

	[51]
	ABS
	Layer thickness, Deposition temperature, Deposition speed (speed of material application), Chamber temperature.
	Layer thickness is the most important parameter among all mentioned for ultimate tensile strength. For moist filaments, thin layers should be used.

	[52]

	Stainless steel 316L
	The comparative study is performed between the 316L steel manufactured by SLM and that of FDM
	The specimens developed by the SLS technique showed very little porosity in comparison to the specimens of FDM. The yield strength and ultimate tensile strength of SLS samples are more than that of FDM samples.

	[53]
	poly
(acrylonitrile-butadiene-styrene)/multi-walled carbon
nanotubes

	Raster angle
Layer Thickness
In fill % of CNTs
	Results showed that with the increase in nano-filler percentage, the tensile strength and elastic moduli increase. With the increase in layer thickness, the tensile strength decreases. The raster angle did not have a significant impact on the properties.



 From the literature cited in table 4, it is very clear that in terms of porosity, extrusion based FDM is quite effective but in the case of mechanical properties, SLS is more dominant. Here also, the printing parameters play an important role for deciding the mechanical and tribological properties of products. Thus, it is very important to understand the impact on properties with respect to each printing parameter taken into the consideration independently.
2.3.  Powder Bed Fusion
This method generates products with precision. The technique utilizes electron beams and laser in melting and fusing the material powder [21]. This assists in the manufacturing of a wide array of geometrically sophisticated products. Materials brought into use here are metals, ceramics, composites, polymers, and hybrids [54] [55]. Powder Bed Fusion surely presents many viable technologies such as SLS, SHS, SLM, and EBM. SLS (Selective Laser Sintering) is a 3D printing procedure that utilized lasers for sintering  [56]. The coalesce powdered materials are sintered one layer after the other in coming up with solid structures. Loose powder assists in enveloping the end products that are taken out using brushes and pressurized air. In essence, SLS is a 3D printing technique that functions at extremely high speeds with increased accuracy as it changes with the finishing of surfaces. SHS (Selective Heat Sintering) is yet another 3D printing method that do not utilize high power laser [57]. However, it uses thermal print heads for melting the material that produces 3D objects. SHS 3D printers utilize thermoplastic materials. These heated platforms offer layers of thermoplastic powder that are applicable using rollers. Such thermal print heads would normally sinter the top layers of powder by tracing various objects under cross-sectional regions over the powder. This goes on until the initial layer is to be completed. The process repeats until a 3D object is formed. SLM (Selective Laser Melting) is a sintering process that is done directly on metal through technical principles that yield metallic parts exclusively [58]. SLM undertakes complete melting of powder that is attained for single component metallic parts such as aluminum. Sintering of powder is normally restricted for alloys alone. To lower the occurrences and distortions of high residual stress, various techniques would be induced as extra support is brought in. EBM (Electron Beam Melting) is another 3D printing technique enhancing energy source to the heated material [59]. It is a highly useful technology for high value industries such as aerospace and defense. This is because it utilizes minimal energy as it yields lesser residual stress because it works faster than the SLS. The contribution of powder bed fusion (PBF) techniques in various domains is given in table 5. The most common PBF methods that are being used widely in the medical and aerospace sector are SLS and SLM.  Nowadays, researchers have been using SLS for the pharmaceutical industry. In the case of orthopedic and dental applications, they have their dominance over the other manufacturing technologies. Literature in table 5 clearly shows that PBF techniques are mostly used for metallic materials. The mechanical properties like creep and flexural strength have been enhanced using PBF for high temperature applications. 

Table 5: Contribution of Powder Bed fusion Techniques in various domains
	Authors
	PBF Method
	Material
	Domain
	Remarks

	[60]
	SLS
	lopinavir 

	Pharmaceutical 
	This study has developed an amorphous LPV using an SLS printer. The study is the first of its kind with SLS. 

	[61]
	SLS
	Copovidone and Paracetamol


	Pharmaceutical
	This work deals with the development of solid oral dosage forms using SLS. Various important features including porosity for drug-releasing capacity have been enhanced.

	[62]
	SLS
	Polyamide, Alkali lignin
	Mechanical/bio material
	In this study, lignin replaced PA12 for cost-effectiveness and while maintaining the cost-effectiveness. SLS proved an effective method for thermal stability and wettability.

	[63]
	SLS
	silica-based ceramic cores
	Aerospace
	The flexural strength of the material was increased with the increase in infiltration time. SLS improved high-temperature flexural strength and creep deformation.

	[64]
	SLM
	Ti6AI4V 
	Orthopedic implant

	SLS is used to develop a heterogeneous porous structure for orthopedic implants.  Hydrothermal treatment and FEA simulations assist the process. The mechanical properties were enhanced due to the core-shell structure.

	[65]
	SLM
	316L stainless steel
	Stent Application (Surgery)
	The paper shows the manufacturing of Stent with the SLS process. Surface roughness, constituting phases were analyzed and significant changes were recorded in the final product. The technique proves to have the potential for the generation of patient-specific medical devices.

	[66]
	SLM
	AlSi10Mg alloy
	Aerospace Application
	The Manufacturing of the Flapping wing mechanism with SLM brought 99% dimensional accuracy. There are cost cuts, which were prevailing in the previous conventional manufacturing processes. 

	[67]
	EBM
	Ti6Al4V

	Medical Implants
	This is the state of art review focused on the developing implants of Ti6Al4V using Electron beam melting. This review gives the advantages of using EBM for biomedical applications.




2.4.  Direct energy deposition
Directed energy deposition (DED) technology develops different parts by melting various materials and depositing them in the workplace one layer after the next. DED differs from material extrusion in that the DED nozzle may not be fixed to a certain axis before moving it in various directions. DED is utilized in repairing and adding extra material to the existing components. DED technology is a sophisticated process that produces sound quality products given its great control of the grain structure [37]. DED pertains to various technologies that distinguish each other as per the material that has been fused  [68]. It enables the printing of material by simply melting the powder. This method has been employed on ceramics, polymers but it has been widely used on metal powder, hence it is also known as metal deposition technology. LENS (Laser Engineering Net Shaping) deposition is an example of a DED technology that utilized lasers controlled by the computer in building objects [69]. The procedure followed here is layer after another starting from powdered materials such as metal, alloys, and ceramics. Through exploitation of thermal energy utilized for melting, LENS technology assists in accomplishing DED. EBAM (Electron Beam Additive Manufacturing) is yet another 3D printing technology that utilizes electron beam guns [70]. This deposits metallic materials with wired feedstock one layer after the other. This goes on up until the net shape is attained. EBAM is usable in the production of large-scale metallic structures. The main issue with the DED is with the residual stresses caused by the non-uniform thermal contraction and expansion, which result in the formation of cracks due to distortion. Researchers developed a stereo-based path planning and laser scanning system to overcome the above mentioned problem [67]. The other issue arises with the surface finishing of DED manufactured parts. The parts printed with DED show low geometrical tolerance and surface finish [71] [72].  These defects can be solved by post processing given in figure 4.
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Figure 4: Post processing techniques for DED


2.5.  Sheet Lamination
This 3D printing process allows various sheets of materials to become bonded together [73]. Initially, the material is bonded in place over an existing layer using adhesives. The required shape is then cut out through the use of a digitally guided laser. In essence, high-resolution colored objects are constructed through this process. Other technologies adopt the process of laminated object manufacturing (LOM). LOM may form 3D objects using localized energy sources, given that the laser is used for binding stacks of metal sheets. This process has many metal sheet rolls being utilized as a feedstock into the build areas where heat is pressed using heat rollers onto other layers before they are cut using a laser in predetermined shapes. LOM can even produce sophisticated geometrical parts at minimal costs and reduced operational timing [74]. Ultrasonic additive manufacturing (UAM) and ultrasonic consolidation (UC) are the most commonly utilized manufacturing techniques for sheet lamination procedures [75][76][77][78]. The various advantages and disadvantages of Sheet lamination are given in  table 6. The material compatibility and applications are shown in figure 6.

Table 6: Advantages and disadvantages of Sheet Lamination
	ADVANTAGES
	DISADVANTAGES

	Manufacturing time is reduced
	The surface finish is poor

	Low-Cost manufacturing
	Low dimensional accuracy

	Tooling time is reduced
	Difficulty in manufacturing complex shapes

	Applicable for a vast variety of material
	Poor bonds between the layers
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Figure 5: Material Compatibility and applications of LOM

2.6.  Vat Polymerization
This technique of 3D printing utilizes photo-polymerization of materials to form solid parts. Materials such as photopolymers and liquid are amassed in a vat. The materials are then successively put in layers by irradiating them with light sources resulting in 2D layered patterns [17]. SLA (stereolithography) and DLP (digital light processing) utilize photopolymerization using the 3D printing technique  [79]. Some of the key parameters here include the exposure time, wavelength and the power supplied. Among the all-additive manufacturing processes, vat polymerization is referred to as the scalable method, since it can be used for micro-manufacturing [80]. SLA photo-polymerization occurs either by a top-down printing approach or a bottom-up approach. In a top-down approach, the laser is positioned above the platform where the material is cured. With each layer being processed, the bed lowers down for the second layer and this process continues till the whole part is manufactured. For the bottom-up approach, the laser is placed at the bottom and the layer formation starts from the bottom, then the bed rises to complete the process. The DLP works on vat photo-polymerization process with a light mask projector [4].  This method is adopted from the dynamic mask projection, which uses layer-wise curing of materials (liquid photosensitive resin) when exposed to UV light [81]. 
3. Material Considerations
The AM processes are divided based on the state of materials being used in them. There are three types of AM processes based on this classification; solid, liquid, and powder. In addition, the mechanical properties of the materials should be acceptable and should also meet the service standards. The variety of materials suitable for 3D printing is limited but work is going on to increase the domain of materials that can be used in different 3D printing techniques. The most common type of materials being used in 3D printing includes plastics, metals, ceramics, and composites. Plastics have two types; thermoplastics and thermosets. Thermoplastic materials are used in two processes; material extrusion and powder bed fusion. Among these types, amorphous thermoplastics are used for material extrusion processes because of their melt properties. They form a highly viscous melt which is ideal for extrusion. The typical nozzle size used for extrusion of these materials is 0.2-0.5mm [82].  The two most common examples of such plastics are Polylactide (PLA) and Acrylonitrile butadiene styrene (ABS). Some other examples of amorphous materials being used in material extrusion are Polycarbonate (PC), PC/ABS blend, and Polyetherimide (PEI). In the case of powder bed fusion, semi-crystalline thermoplastics are used. These materials are melted and fused using an IR laser or IR or UV heat source. The most common material being used for powder bed fusion is Polyamide 12 (nylon). Its melting point is around 35oC above the recrystallization temperature and recrystallization takes place uniformly only after the print has completed and also minimizes the residual stresses. Highly dense and low porous objects can be fabricated using these materials by adjusting various process parameters. Other examples of semi-crystalline materials being used in powder bed fusion are Polypropylene and Polyetheretherketone (PEEK). In the case of thermosets, the most common examples are Acrylics, Acrylates, and Epoxies. Photopolymers undergo a process called “curing” in which the oligomers become cross-linked upon exposure to light and form network polymers which are thermosets in nature. These photopolymers are made up of monomers, oligomers, and some additives like antifoaming agents and antioxidants which enhance the properties of these photopolymers [81]. Toughening agents are also being used actively in resins to improve their mechanical properties. These toughening agents can either be reactive or non-reactive. In some forms, the elastomeric cores have a reactive shell [83]. Some examples of such core materials include are polysiloxane, polybutadiene, and rubber while the examples of reactive shells include compounds with epoxy, hydroxyl, vinyl ester, vinyl ether, and acrylate groups. Thermosetting materials are also being used in the material jetting process. Material jetting becomes useful in cases of deposition of multiple materials. This is done by using different nozzles for different materials. If this process is used for the deposition of different materials in the same layer, the final product will have properties different from the properties of materials constituting it. The mechanical properties of products manufactured using material jetting have been shown to have the property of anisotropy and at the same time have significant variance in tensile and compressive properties [84]. Researchers have specified that the properties of the part change over time and have also revealed the consequence of aging [85]. From the perspective of metals, powder bed fusion and direct energy deposition are the two most commonly used powder-based AM techniques to manufacture metal products. However, in direct energy deposition, there is a provision of using a metal wire in place of powder as well. In addition to these two techniques, binder jetting is also used to manufacture metal prints. The most commonly available commercial metals/alloys for use in 3D printing include pure titanium, Ti6Al4V [86], 316L stainless steel [87], 17-4PH stainless steel [88] and 18Ni300 maraging steel [89], AlSi10Mg [90] [91], CoCrMo [92], and nickel-based super-alloys Inconel 718 and Inconel 625 [93][94]. This list of materials is continuously increasing as new materials for use in 3D printing are being developed. Selective laser melting is used for printing objects while using silver and gold and platinum as raw materials [95]. There are several reasons for the limited number of metals available for 3D printing. In aluminum and aluminum alloys, the affinity with the air is a problem. It forms an aluminum oxide layer at the surface and causes problems in particle sintering. 18Ni300 maraging steel and Inconel 718 also cause problems in the melt pool as they form stable oxides which rise to the top [96]. Alloys having low absorption and high thermal conductivity like copper, aluminum, silver, and gold create problems in establishing the melt pool. Furthermore, in metal 3D printing, the amount of residual stresses is also a matter of concern. The residual stresses include high tensile stresses at outer surfaces accompanied by zones of compressive stresses in the center. In addition, stress gradients also form in the product and depend on product height, product geometry and build direction. Ceramics are also being increasingly used in AM. However owing to their high melting point and low toughness, they pose problems in their direct use in AM  [97]. Direct energy deposition and powder bed fusion techniques have been employed to print using alumina and its alloys [97] [98]. Many methods were adopted to directly use ceramics in AM but they resulted in thermally induced cracking. In the case of indirect use of ceramics in AM, a binder is needed to bind the object together. Barring direct energy deposition, all the other AM technologies are used in the indirect fabrication of ceramic products [99]. When ceramics were introduced in AM, one of the first methods adopted was mixing ceramic (essentially alumina or silicon nitride) with a stereolithography resin. The binder used in indirect AM of ceramic materials is typically transient. It is either removed or converted in post-processing which results in the final product being purely ceramic or a ceramic composite. Freeze-form extrusion fabrication (FEF) is a technique that produces 3D objects by using ceramics while keeping an environmentally friendly approach. It builds the object layer upon layer which is controlled by a computer in the form of aqueous colloidal pastes that have slight quantities of organic binder [99]. Since FEF makes objects by deposition of these pastes in a controlled freezing pattern, there are however certain problems associated with this. One biggest problem associated with FEF is big crystals of ice are formed during freezing which results in low densities of the final product as well as formation of pores in the product which affects its overall properties. One way to deal with this problem is adopting Ceramic-on-demand technique which is carried out at room temperature and employs radiation for drying the product. It is also very useful in producing complex shapes using ceramic materials [100] [101]. The use of composites in 3D printing is on the rise and new composites with improved properties are being developed continuously. While developing a composite, the most important properties to consider are the feedstock material, properties and their homogeneity. There should be appropriate bonding between the composites and they should have good mechanical properties. The most commonly used composites are polymer composites, metal composites and ceramic matrix composites. Fiber reinforced composites, generally carbon fiber reinforced composites/fiberglass are also used as composites in AM. Their mechanical properties are a function of the orientation of the fibers. These fibers are further classified into whiskers, short or continuous fibers. The metal composites being used in 3D printing encompass laminates, particulate composites, fibrous composites and functionally graded materials. The fabrication of metals by AM is mostly done by Selective laser melting (SLM) and Laser metal deposition (LMD). Metal composites can also be developed from powder form by using Liquid phase sintering (LPS) and has already been tried on metal-matrix composites. In case of functionally graded materials, controlling grain growth and the coefficient of thermal expansion are key factors which need attention and additives are being used to control these parameters. Functionally graded materials are finding an increasing use in aerospace applications in which different properties are needed in a single component like as in propulsion nozzles where different thermal and mechanical properties are required [102]. Composites of ceramics are also being used in AM especially in biomaterials and it is a rapidly developing research field [103] [104]. Ceramic polymers require very less amount of post processing and the products manufactured by using them can be used immediately after their production [105]. Binder jetting is most commonly used to manufacture ceramic matrix products because of its high accuracy and intricate geometry. A novel AM technique called Selective laser gelation (SLG) has also been developed which has enabled manufacturers to use ceramic sol-gel along with SLS. This technique opened new opportunities with regards to including slurries in AM while providing good flexibility. A typical example of this method is silica sol with embedded stainless steel [106]. Furthermore, the FEF technique with respect to ceramic composites has been advanced to incorporate functionally graded materials including tungsten and zirconium carbide [107]. The processing of dense components can be effectively done using ceramic suspensions and improvements have been done in this regard by incorporating opaque suspensions in stereolithography [108]. Some important AM materials and their application is given in table 7.
Table 7: Some important AM Materials and there applications
	AM Material
	AM Process
	Application

	TilAl4V [109]
	EBM
SLM
	Aerospace

	Inconel 718 [110]
	EBM
SLM
	Aerospace

	Polyphenyl-sulfone [111]
	FDM
	Space Applications

	ULTEM™ 9085 [111]
	FDM
	Space Applications

	Aluminium-filled polyamide 12 powder  [111]
	SLS
	Space Applications

	Ti6Al4V  [98]
	DEED
	Medical Implants

	Ciba–Geigy 5170 [112]
	VP
	Prostheses

	AlSi10Mg  [113]
	PBF-LB
	Ballistics

	Maraging steel [114]

	SLM
	Ballistics



4. Bio Manufacturing
The field of additive manufacturing is expanding day by day. Due to its layer-by-layer formation, it has tremendous potential for bio manufacturing. Fields like dentistry or implant generation where the anisotropy is needed as per the requirement pose as best clients for additive manufacturing. One of the important medical applications for AM is the implant section. The implants are customized as per the needs are requirements of the patients, hence AM can help in printing those implants as needed [115]. For dentistry, splints, models, and drill guides are developed with the help of AM. Also, AM has been used for the development of artificial tissues and organs [116]. Moreover, the AM technique is widely used nowadays for 3D models of organs, which are useful for understanding the complex human anatomy. It is estimated that the market of AM for bio manufacturing is going to reach 26 billion U.S dollars by 2022 [117]. These sections deal with the comprehensive review of additive manufacturing techniques for various aspects of medical needs. Some important medical sections that are emerging in the AM domains are discussed below:
4.1.  AM for orthopedics and prosthetics
       The bone has a porous and anisotropic structure, which means that the density of bone changes along with the length/breadth or height. The porosity of the bone helps in bone ingrowth, pore size helps in cell proliferation [117]. In addition, different pore shapes can be responsible for the change in permeability, which can lead to different bone ingrowth [118]. Also, the ingrowth of the bone is directly responsible for developing effective mechanical properties. Researchers have shown that the compressive strength and young’s modulus can be altered by simply controlling the porosity and pore shape and size of scaffolds [119] [120].  Hence, from the above-mentioned literature, it is clear that scaffolds need to have precise pore shape, size, and the type of pore distribution for optimal mechanical property and behavior as that of the actual bone. This problem can be better addressed by considering additive manufacturing. Researchers used SLS for porous scaffold generation using hydroxyapatite (HA) and poly(ε-caprolactone) PCL composite [121]. The SEM analysis shows that the microspheres of the scaffolds by SLS were well established and connected. The SLS is also used for bio ceramic scaffolds. Researchers have successfully used SLS for β-tricalcium phosphate (β-TCP) and bio-glass [122] [123]. Apart from the above-mentioned materials, SLS has posed to be an excellent method for the manufacturing of scaffolds with low dimension materials as additives (carbon Nanotubes, graphene, and boron nitride Nanoparticles) [124]. For metallic scaffolds, SLM can be used due to the high energy density laser for the metal melting process [125]. Researchers have used SLM for scaffolds manufacturing with 316 L stainless steel. The results show that scaffolds were highly porous (87% by volume) and mechanical properties were similar to that of trabecular bone [126]. The other common method of AM for scaffold generation is the FDM, mainly used for polymers with low melting temperatures. Researchers have shown the use of FDM for scaffolds using PCL at different printing orientations. The porosity of 56% and more was achieved with pore size ranging from 380 to 590µm [127]. FDM has been used to design and fabricate the scaffolds of polymer and ceramic composites with mechanical properties similar to that of the actual bone [128] [129]. The products of FDM require post-processing to attain better mechanical properties as the shrinkage characteristic comes into play. EBM can also be the better player for scaffold manufacturing, but the only disadvantage is that it can work with conducting materials. Besides that, EBM takes a lot of time which certainly decreases the efficiency of the production system. Orthosis is one of the basic thing that orthopedics recommend for supporting the skeletal and neuromuscular system externally. The development of orthosis by additive manufacturing is not too old as it started just a decade ago and their manufacturing is still manual. By employing AM for this job, Orthosis manufacturing has become more cost-effective and comfortable for the user [130] [131]. Material for orthosis is in the form of foams, composites, and thermoplastics [132]. Apart from this, it has been also used for the development of the diabetic foot, plantar fasciitis [133] [134].
4.2.  Dental Applications of AM
 AM for dental practices is not a new talk of the town. It has been there for almost 20 years. For metallic dental crowns, Researchers have used FDM, SLS, SLA, and LOM techniques for dental applications specifically for dental pieces, crowns, bridges, etc. [135] [136]. SLA and FDM are generally used for non-metallic oral implants, models for dental study, orthodontics, crowns and bridges, and surgical equipment, specifically surgical guides for dental surgery[137].  The researchers are using additive manufacturing for maxillofacial implants where the metallic powder using selective laser melting method (SLM) [138] [139] replaces the entire jaw of the patient. Additive manufacturing technologies have been used for creating complete or partial dentures. DLMS, a direct laser metal sintering process has been used for creating metallic dentures [140] [141]. FDM, the fused deposition modeling technique has the potential for creating polymer dentures with hollow, semi-hallow, or solid structures [142]. Now the research is being conducted for developing the dentures using AM, which have the anti-microbial property [143]. Researchers have used processes such as FDM and SLA for the generation of bioresorbable polymer dental implants , which even exhibit odontogenic properties [144] [145]. Some Recent advances in the field given in table 8 clearly show that powder bed fusion technologies are taking lead in dental applications. Moreover, the roughness associated with the printed parts can be problematic. Therefore, some processing needs to be done for reducing the roughness in dental implants.
Table 8: Recent advances in AM for dental applications
	Author
	Material
	AM Process
	Dental Domain
	Remarks

	[146]
	PVA filament
	FDM
	Provisional Dental Crown
	LAVA –TDS was used to scan the molar abutment. Surface accuracy was compared with a conventional model made by a conventional stone cast model. The author concludes by saying that 3D printed PVA models can be used for crown fabrication with good accuracy. 

	[147]
	Alumina-Ceramic
	FDM
	Dental Crown
	The author of the infiltration of glass into the alumina. The specimens were pre-sintered at 11500C. Mechanical properties are similar to that of pure alumina. The method proves to be energy efficient, the cost has also been reduced.

	[148]
	Co-Cr alloy
	SLM
Conventional Milling
	Dental Prostheses
	The Shear bond strength in the specimens manufactured by two processes had no significant impact. However, the roughness of the specimen is enhanced with the SLM process.

	[149]
	Co–Cr–W alloy

	SLM
	Dental inlays and bridges
	The roughness was modified after 3D printing of specimens using different blasting media and altering the roughness as per the medical need. The sand blast process increased the hardness.

	[150]
	3Y-TZP dental ceramics

	SLM+Cold isostatic pressing
	A dental crown,  prostheses, dental restoration.
	The sample sintered at 15000C has maximum flexural strength and maximum densification. This method laid the foundation of SLS/CIP technology for 3Y-TZP dental ceramics





5. Aerospace Applications of AM
3D printing technology has been on the rise ever since its introduction in the manufacturing world. As its potential and applicability are being identified, it is finding increasing use in almost every industrial facet. The aerospace industry is no exception to this trend. It is one of the rapidly growing sectors with revenues expected to cross $100 billion in the next two decades [14]. The advantages provided by additive manufacturing such as superior flexibility, complex geometries, and faster production are ideal for aerospace applications. In addition, the capability of 3D printing to produce highly intricate and lightweight parts with almost no material waste has brought the attention of many industries towards it. The requirements of the aerospace industry such as thin-walled, durable, strong, and lightweight components are fulfilled by 3D printing. Furthermore, the aerospace industry has been able to advance the process by combining design to end-use parts as well as repairs [151]. Among the various AM processes, ones best suited for use in the aerospace industry are Selective Laser Sintering (SLS), Selective Laser Melting (SLM), Electron Beam Melting (EBM), and Wire and Arc Additive Manufacturing (WAAM) [152]. The reason behind the increasing use of these technologies in the aerospace industry is the production of very dense parts with considerably less post-processing as compared to traditional manufacturing processes [153]. EBM employs a high energy density electron beam to produce dense and void-less components made out of metals [111]. Friction Stir Additive Manufacturing (FSAM) is also used in the aerospace industry. Researchers showed that not only the mechanical properties were enhanced but the properties that were obtained by using FSAM were different from those achieved by traditional processes [154]. Stiffeners, stringers, wing spars, and longerons are being manufactured using FSAM in the aerospace industry [155]. Laser Metal Deposition (LMD) is best suited for repairs in aerospace parts. It makes use of a metal powder to repair the parts. The metal powder is deposited on the damaged portion and is then cured employing a laser. The strength obtained by this method is the same as that of the original part [14]. Developing new materials, especially metals and metal alloys is the hot field of research in 3D printing. Examples of AM manufactured aerospace parts are shown in figure 7.The domain of the aerospace industry with regards to materials being used is categorized into metallic and non-metallic components [156]. Nickel and Titanium-based alloys are given more attention in the aerospace industry [157]. As far as Nickel-based alloys are concerned, they offer high tensile strength, damage tolerance, and good corrosion and oxidation resistance [158]. In Titanium alloys, Ti-6Al-4V gives different hardness and ductility in different processes like SLS and EBM. The reason behind this is the different coolingrate of Ti-6Al-4V in these processes which results in the different microstructures. Researchers have also shown that the mechanical properties of Ti-6Al-4V manufactured using AM can be altered and adjusted by heat treatment[159][109]. Many aviation industries have started the production of various aircraft components using 3D printing. In March 2015, at least 200 special parts to be used in 10 different aircraft were manufactured by Boeing. Till then, at least 20,000 parts (nonmetallic) had been installed in various airplanes [160]. Till 2019, tens of thousands of components made by AM were installed on 16 different commercial as well as military aircraft by Boeing [161]. In 2017, a minimum of four AM parts made of Ti-alloys were used by Boeing in the manufacture of 787 Dreamliner aircraft. Plans to fabricate 1000 components by using AM were also being made which would end up saving a total amount of $2-3 million per airplane [162]. Boeing has also come forward in the manufacture of thermoplastic parts using laser sintering to be used in its aircrafts such as 737, 747, 777, and 787 [163]. Some components do have an intricate structure but they are fabricated by removing the production limit in less time and enhanced features using 3D printing  [164]. Another leading company in the use of AM in the aerospace industry is Airbus. Airbus A320neo and A350 XWB test aircraft have also been installed with components such as metal brackets and bleed pipes made through AM [165]. Both Boeing and Airbus wanted to eliminate the mechanical and thermodynamic resistance and as a result, they shifted towards 3D printing. Boeing is also in the race of making plastic interior parts using 3D printing. The materials being used for this purpose are Ultem and nylon [111].
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Figure 7: Aerospace AM manufactured Parts(a) GE Leap Nozzle, (b) GE Turboprop, (c)Airbus A350 XWB jet wing bracket, (d)  Titanium door hinge[166].
AM is being actively used by many institutions around the world for manufacturing components to be used in the aerospace industry. One such institution namely Harvest Technologies makes the use of plastic laser sintering from Electro-optical systems (EOS) to manufacture components to be used in Bell helicopters  [167]. EADS innovation works and EOS, one of the front runners in laser sintering of metals performed experiments and concluded that both the energy and emissions were significantly reduced by replacing a cast steel hinge bracket on Airbus A320 with a Titanium part which was made by using additive manufacturing. It further revealed that by doing this, raw material consumption was reduced by 75% and also saved a total of 10kgs in each chipset [168]. National Aeronautics and Space Administration (NASA) is also promoting research in the field of fabrication of aerospace components by using various AM techniques. They are exploring the various possibilities and opportunities to manufacture these components on earth, abroad the International Space Station (ISS), in open space as well as on the moon or mars itself [169]. As far as NASA’s exploration of Mars continues, 3D printing and its potential are being recognized in this field as well. NASA is actively exploring new technologies that will assist in its mission of exploring Mars. In this regard, the engineers of NASA have successfully been able to print the first full-scale engine part for a rocket made of copper [170]. In addition, when metal injectors of rocket engines were fabricated using 3D printing, savings up to 80% in the cost of a $300,000 component were obtained. The manufacture of fuel turbopumps using 3D printing is also being tested [171]. Laser sintering was also employed to produce liquid oxygen and gaseous hydrogen injector by using nickel-chromium. By using this injector, a record thrust of 20,000 pounds was obtained under the testing of NASA [169]. Tethers Unlimited, Inc., US along with the support of NASA have been working on the development of multifunctional aircraft structures in open orbit [169]. Another big company adopting 3D printing in its setup is SpaceX. SuperDraco is a 3D-printed engine manufactured by SpaceX. It is used in the launch of the Dragon spacecraft [111]. In addition to this, SpaceX also manufactures impellers and other components of Merlin engines by using the laser sintering technique. These components are used in the driving of the Falcon 9 launch vehicle [172]. Boeing and GE Aviation have been working together to rebuild and redevelop GE90-94B jet engines by incorporating at least 400 3D printed parts in them. Furthermore, the LEAP jet engine manufactured by GE has 19 fuel nozzles all of which are fabricated using 3D printing have already been flight tested[173][174]. Their main aim is to run Boeing 737MAX and Airbus A320neo aircraft [174]. As far as LEAP and GE9X engines of GE are concerned, the target was to produce more than 100,000 3D printed parts for them by the end of 2020 [175]. Their next aim is to replace Titanium leading-edge blade covers manufactured using forging by remanufacturing them using 3D printing [176]. In the case of Super Hornet jets, more than 100 components are used in their air-cooling ducts [177]. The main area in the aerospace industry where 3D printing can be adopted swiftly is unmanned air vehicles and experimental aircraft because the scrutiny required for them is the least [111]. These areas are rapidly developing and 3D printing is finding an increasing use in both of these setups and is continuing to revolutionize an industry as sophisticated as the aerospace industry.
6. Revolutionized Food Industry with Additive Manufacturing
The concept of AM in food technology originated from the researchers of Cornell University as they developed a printer known as “Fab@home” [178]. Soon various other printers were developed, some of them are: Imagine 3D printer by Essential Dynamics and Choc creator by choc edge [179]. In conventional manufacturing, a lot of time is wasted in between the processes and hectic laboring is required. These problems are to be tackled by AM as all the processes run in the sequential manner without any delay. The concept of 3D food printing is quite different from robotic manufacturing as the process involves the layer-by-layer development of difficult shapes of different sizes and then binding them altogether with some chemical reaction or phase transition[180][8]. In addition, the 3D food printing involves selecting shapes, flavors, ingredients etc as per the requirement of the user [179]. Currently the 3D based food printers are developed on the need basis such as 3D food printers for the manufacturing of 3D chocolates using the laser technology [181]. Input materials supplied to 3D Food printer are classified into the three categories: Liquid, powder and cell culture [182]. Liquid based raw materials are processed by extrusion and inkjet based methods, the powder based input powder binding and for meat bio-printing is used [183]. Extrusion based FDM was used to develop chocolate bars and candies by a prototype digital chocolatier  [184]. In addition, cakes were printed using Fab@home 3D printer. Apart from chocolates, extrusion based methods have been used to print carbohydrate; protein and mashed meat puree [185]. The inkjet printing is the powder based material input printing method that mainly uses liquid material for bonding of solid particles [186]. This method employs piezo-electric mechanism or thermal methods for the printer head. This approach is mainly used for printing of pastries and cakes [187]. De Grood Innovations printer is used to print pizza bases using pneumatic membrane nozzle jets. Powder binding deposition is another type of method for 3D food printing which consists of selective laser sintering (SLS), selective hot air sintering and melting (SHASAM), and liquid binding (LB or PBP: powder bed printing) technologies. SLS is used in making sugar and fat based products[188]. The LB or PBP works on the accumulation of powder layers by direct fusion [189]. Chef Jet printer, which works on the principles of LB was used to print sugar products and fondants [189]. From table 9, it is observed that recent advances in the domain of the food industry is mostly associated with extrusion-based manufacturing. 
 Bio printing technique is used to develop the tissues without using the bio-base. This method deposits the biomaterial layer by layer, which event involves the deposition of culture of living cells. Researchers have used this method to develop edible porcine tissue [190]. The procedure for 3D bioprinting is shown in figure 8.
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Figure 8 : 3D Bio Manufacturing [191]

However, this technology is in its early stage and hence the problem occurs at bulk production. The optimization is not achieved properly yet. Due to its user-friendly features, it will emerge as the leader of the food industry.
Table 9: Recent work in 3D Food Printing
	Author
	Printing  Technology
	Food Printed
	Remarks

	 [192]
	Extrusion Based Printing
	soybean protein and steak-like foods
	This research aims to develop 3D printed steak like food. TSP and DSP ink is used as the substitute for meat like material. The effect of printing parameters like printing pattern, infill percentage on the hardness, gumminess and chewiness is evaluated. Triangular pattern and infill percentage of 60% shows the optimum results.

	 [193]
	Extrusion Based Printing
	Protein based doughs are prepared 
	Pea protein concentrate (PPC), Porcine plasma protein (PPP), Soy protein isolate  (SPI) are used to prepare protein based doughs. The effect of glycerol ratio and the composition of PPP, PPC and SPI  on printing and rheology is studied. The percentage of glycerol has an adequate effect on followability. Further, biopolymers can alter the viscosity and viscoelastic moduli.

	[194]
	Extrusion Based Printing
	Food pastes (Fiber and protein rich material)
	The 3D extrusion based printer was used to check the printability of milk powder, faba protein, oat and cellulose Nano-fiber was examined. The studies suggest that printing shape stability is achieved with semi-skimmed milk powder-based paste.  

	[195]
	Extrusion Based Printing
	Edible Gel Material
	The study focuses on the development of edible gel material using 3D printing technology. Mechanical and Rheological characterization of Agar and Konjac based gels are obtained. The effect of weight ratios on the 3D printing performance is studied. The Konjac content enhances the visco-elastic properties of the gel which can be beneficial for extrusion-based 3D printing. 

	[196]
	Extrusion Based Printing
	Vegetable and fruit gel system
	The reason for this study is to develop protein-based fruit and vegetable composite ink with good printability. The proteins are obtained from five different animals and vegetables, which are taken in a matrix form. Results depict that peanut protein based ink exhibits best printing characteristics. Also, the sensory score of peanut based protein ink secured maximum among the all. 



7. Fashion Industry Empowered by Additive Manufacturing
The highly automated nature of 3D printing has helped in its growth in the fashion industry. Fabrication of complex products with high levels of automation helps in their accurate and precise manufacturing. Production of highly customized products leads to higher customer satisfaction which plays a key role in today’s market [197]. One of the biggest names which uses 3D printing in their manufacturing setup is Nike where 3D printing is used to manufacture lightweight plates which are used in Vapour Laser Talon and Vapour High Agility football cleats [198][199]. Using 3D printing, Nike was able to reduce the time taken in prototyping and manufacturing from two to three years to six months [200]. Many mass market fashion brands are open to providing their customers with customized products using 3D printing [201].  San Francisco-based Continuum manufactures bathing suits on order through their retailer’s website [202]. They have joined hands with Shapeways, a 3D printing company for production of these customized products [203]. In addition, they also use 3D printing to make jewellery and women’s shoes [198]. Most of the modern designers look up to 3D printing as a technique to improve the quality of products as well as their design by allowing the customers to personalize their own products in a unique way [204]. With the advancement in 3D printing technology, the designers are now able to manufacture breathable fabric like materials which result in lightweight and flexible products [205]. Materialise, a Belgian company has developed a new material TPU-92A-1 which is used to manufacture customized products. It is a lightweight material which is characterized by high elasticity and is particularly used in fashion industry [206]. Polyjet Flex material by Solid Concepts Inc. has also developed some materials which offer varying density and stiffness within the same material. These advanced materials can help the designers and fashion experts in designing new outfits. They can efficiently make new garments and take care of the places where the garment needs more rigidity and where it needs more flexibility. This provides more movement and fit to the garment [200]. 3D printing has emerged as a technique which has reduced the complexities and problems like more lead time and extensive wastage associated with the clothing industry [207]. Lead time is vital in the fashion industry [208]. Customer’s changing needs poses a challenge in delivering the fashion products to them in an efficient and time saving method while avoiding over-production. Lead time in such cases becomes more important than cost itself. In traditional practices, raw material is ordered from one place, assembled at other place and finally manufactured at some another place. This is very time consuming. 3D printing cuts the line here as well as it can manufacture the products immediately via on-site manufacturing [209]. It has also provided more freedom to designers in terms of the variety and complexity of the geometries that can be incorporated in the products of dresses and shoes[210][211].
3D printing uses the 3D modelling software before actual printing is started. Using this 3D scanning technique, real time data can be obtained for several products like jewellery, shoes and garments. These scanning techniques come in handy in reverse engineering as well where modifications, alterations and adulterations of products can be made quickly using the scan data. This eliminates the need for developing the base model from the start [212]. The other advantage that 3D printing provides the fashion designers with is the interdisciplinary knowledge and skills, which would greatly help in teamwork and collaboration. 3D printing fashion designers and experts like Van Herpen are looking to collaborate with the people of other fields to create more wearable garments which would otherwise have posed serious challenges for a traditional fashion design team [208].
        8. 3D printing in relation with Industry 4.0 and Sustainability
3D printing, commonly known as additive manufacturing, has been a buzz word in the manufacturing sector in the past decade. The current era of the fourth industrial revolution or Industry 4.0 has also encouraged techniques like 3D printing to be adopted in industrial setups. “The term Industry 4.0 stands for the fourth industrial revolution which is defined as a new level of organization and control over the entire value chain of the life cycle of products, it is geared towards increasingly individualized customer requirements” [213]. Industry 4.0 majorly focusses on meeting customer demands through proper research methodology, product development, manufacturing, order management and recycling [214] and has led to many significant developments in various industrial setups [215]. 
Industry 4.0 has nine fundamental pillars viz. simulation, augmented reality, system integration, cloud computing, big data, advanced robotics, 3D printing, cyber security and IOT [216]. 3D printing, apart from being one of the main pillars of Industry 4.0, has a good link with its other pillars as well. As of now, 3D printing has already found its use in the fields of robotics, AR, cloud manufacturing and IOT. The introduction of 3D printing in modern industries has significantly changed the entire manufacturing and production chains and has transformed them into more sophisticated and automated lines of production with higher accuracy and intelligent data exchange [217]. It has also eliminated the use of many expensive tools, fittings, jigs and fixtures which further make this technology cost and time efficient.
One important aspect of Industry 4.0 is advanced robotics and this field has been revolutionized by 3D printing. 3D printing is widely being used in the manufacture of mobile robots and soft robots [218]. Soft robots have seen an increasing demand in the market and 3D printing due to its time efficiency and labor-friendly nature has emerged as front runners for their manufacture [219]. Augmented reality is another integral part of Industry 4.0 which has benefitted from 3D printing technology. The integration of 3D printing in AR has great potential in the medical field and has proven to be of great help to medical practitioners and physicians as well [220]. In the printing of various medical implants and equipment, a lot of time is invested. Sometimes, due to errors, the final print obtained does not match the required criteria and as a result, time, effort and money is wasted. AR has greatly assisted in such cases by letting the engineers and medical practitioners actually visualize the print before even printing it. This has eradicated all the ambiguity surrounding the printing of various parts where time is the main consideration.
Another important pillar of Industry 4.0 is cloud manufacturing. It involves a series of connected manufacturing services to meet all the needs of customers. Real time communication is key in such systems. 3D printing has helped cloud manufacturing in establishing a completely new production mode capable of replacing the traditional mass production mode by assisting it set up all its services as underlying process equipment [221]. This has assisted customers in making their own customized products in the cloud and enjoy the benefit of having personalized products. IOT is an integral component in almost all new smart equipment. In this system, real time data is collected using sensors and then transmitted to the system which analyses the data and suggests changes according to the needs [222]. This technology has proven to be helpful in solving various problems in the medical industry [223]. Researchers [224] worked on improving the global manufacturing using 3D printing by designing an IOT system in which the customers give their order online. On the basis of location and distance, these orders are distributed in parts to nearby 3D printing outlets. Once printing is complete, these parts are assembled at a main facility and delivered to the customer.
Due to rapidly increasing population and its never ending demands, the exploitation of natural resources is currently on an all-time high. The rate of exploitation of resources is taking place at an alarming rate and if this goes unchecked, soon we will face a time where these resources will become extinct, and we will be in need of other alternatives. This is where sustainability comes into the picture. Sustainability means careful and measured use of these resources to ensure that these last for a long time and the future generations are not deprived of it. The “Brundtland report-1987” of the UN has defined sustainability as “development that meets the needs of the present without compromising the ability of future generations to meet their own needs” (United Nations General Assembly, 11 December 1987. 96th Plenary Meeting. Report of the World Commission on Environment and Development, A/ RES/42/187; [225]). 
Sustainability is majorly concerned with the following three aspects: environment, economic and social aspects. 3D printing has been able to provide various advantages in all these aspects and thus has emerged as a potential solution to various sustainability problems[226]. From a social sustainability viewpoint, researchers have presented 3D printing as a solution to social sustainability problems of supply chain management by introducing distributed production and open design [227]. Ocean plastic accumulation is one of the biggest challenges we are facing today. Large amount of plastic is continuously being dumped into oceans which leads to formation of islands of plastic waste. Researchers gave a possible solution to this problem by suggesting shoreline collection of plastic waste and then remanufactured the same into filaments which will then be used as raw material in 3D printing [228]. 
From an economic sustainability point of view, 3D printing aims at improving resource efficiency by reducing the waste significantly. The concept of Circular economy (CE) has always been around 3D printing. Researchers [16] in their work emphasized on the importance of 3D printing in creating a suitable and favorable environment for economic sustainability and in the application of CE [229]. They also studied the promoters, enhancers and challenges in the path of 3D printing towards attaining CE. In concrete construction technology, researchers  revealed that 3D printing has numerous advantages as compared to traditional techniques from economic point of view as it has proven to save a lot of money associated with labor and framework, mostly in geometrical irregular structures [230]. In order to cover most of the needs to the modern world, many materials are being continuously tested and developed for 3D printing and metals is the most recent addition to that list. The advantages of 3D printing of metals from an economic perspective include shorter processes, shorter assembly chains, less lead time, lesser spare parts and fast manufacturing. However the disadvantages include high cost of production, high manufacturing time and limited part dimensions [231].
In regard to environmental sustainability, 3D printing offers certain unique advantages compared to conventional manufacturing processes. Both carbon dioxide emissions and energy consumption have decreased using 3D printing, however they depend largely on the type of material being used [232]. Reducing the resource consumption, waste management and pollution control are the main aspects of environmental sustainability offered by 3D printing [233]. Since there is almost no use of lubricants and cutting fluids in 3D printing, their associated pollution also gets eliminated and this is considered a big step towards achieving green production [234]. 3D printing also encourages the use of recycled plastic as raw material. Recycled polymer and plastic filaments have been named as second life of polymeric waste [235]. This is one of the major environmental benefits of 3D printing because of the non-biodegradability of many plastics [236]. The waste of metals and various alloys is also recyclable and also contributes in establishing CE [237].   
9. Conclusions and Recommendations 
  The various additive manufacturing technologies due to their ability to handle complex designs and other technical advantages have emerged as a technology for manufacturing advanced products with optimized geometries. The benefits such as waste reduction, energy saving make AM more relevant in an era when industries and nations are focusing on sustainability.     Although a lot of work has been done to optimize the various process parameters and their effect on mechanical behavior, various challenges limit the use of AM technologies at a large scale. The applications of AM in developing various medical applications need to be explored at a large scale. More material options need to be explored to make AM technologies more versatile and widen their application arena. AM being an important pillar of Industry 4.0 is an important enabler for sustainability and hence broadening the application arena of AM and exploiting its potential can help in achieving sustainability as well as in implementing industry 4.0. 
  The paper has dealt with extrusion-based technologies in more detail in comparison to the other technologies. Based on the discussion and literature presented in this paper, future studies could be undertaken to study the various technologies of AM in detail and compare their sustainability potential, cost and role in implementing Industry 4.0. Future studies could be organized in a manner to stress on a particular application and exploit the potential of AM particularly in medical science. 
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