Northumbria Research Link

Citation: Preece, Clair (2016) A study of the diagnosis, treatment and epidemiology of Mycobacterium abscessus in patients with cystic fibrosis. Doctoral thesis, Northumbria University.

This version was downloaded from Northumbria Research Link: http://nrl.northumbria.ac.uk/id/eprint/32572/

Northumbria University has developed Northumbria Research Link (NRL) to enable users to access the University's research output. Copyright © and moral rights for items on NRL are retained by the individual author(s) and/or other copyright owners. Single copies of full items can be reproduced, displayed or performed, and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided the authors, title and full bibliographic details are given, as well as a hyperlink and/or URL to the original metadata page. The content must not be changed in any way. Full items must not be sold commercially in any format or medium without formal permission of the copyright holder. The full policy is available online: http://nrl.northumbria.ac.uk/policies.html

A STUDY OF THE DIAGNOSIS, TREATMENT AND EPIDEMIOLOGY OF *MYCOBACTERIUM ABSCESSUS* IN PATIENTS WITH CYSTIC FIBROSIS

CLAIR L PREECE

PhD

A STUDY OF THE DIAGNOSIS, TREATMENT AND EPIDEMIOLOGY OF *MYCOBACTERIUM ABSCESSUS* IN PATIENTS WITH CYSTIC FIBROSIS

CLAIR L PREECE

A thesis submitted in partial fulfilment of the requirements of the University of Northumbria at Newcastle for the degree of Professional Doctorate

Research undertaken in the Department of Applied Sciences and in collaboration with the Microbiology Department at the Freeman Hospital

November 2016

Declaration

I declare that the work contained in this thesis has not been submitted for any other award and that it is all my own work. I also confirm that this work fully acknowledges opinions, ideas and contributions from the work of others. The work was done in collaboration with the Freeman Hospital, Newcastle upon Tyne, UK

Any ethical clearance for the research presented in this thesis has been approved. Approval has been sought and granted by the Faculty Ethics Committee / University Ethics Committee on 1st November 2013.

I declare that the Word Count of this Thesis is 44,296 words

Name: Clair L Preece

Signature:

Date:

Abstract

Members of the *Mycobacterium abscessus* complex (MABSC) are a highly antibioticresistant complex of organisms within the genus Mycobacterium, increasingly acknowledged as a significant cause of lung infection in patients with cystic fibrosis (CF) and associated with poor clinical outcomes. Current methods of isolation of MABSC are hindered by the fact that they grow at a slower rate in culture than other microorganisms with many patient samples having to be discarded due to the overgrowth of more rapidly growing species. Decontamination of samples has shown to have an adverse effect upon the viability of MABSC, therefore improvements in the isolation of MABSC are urgently required in order to offer the possibility of a more rapid and accurate diagnosis.

A novel medium (RGM) was developed for the isolation of MABSC. Commercially available pre-poured media were compared with RGM and challenged with isolates of rapidly growing mycobacteria and other species. In addition, in a multi-centre study sputum samples collected from patients with CF were inoculated onto RGM medium, BCSA and standard automated liquid culture method and assessed for growth. RGM demonstrated superior sensitivity over currently used methods without any requirement for decontamination and could easily be incorporated into any laboratory alongside routine culture for other CF pathogens.

Chromogenic and fluorogenic substrates were investigated for the possibility of differentiating between subspecies within the MABSC complex. However, the results established that these would not provide any additional benefit to RGM.

Possible environmental sources were explored in order to establish how patients with CF were acquiring MABSC. Although person-to-person transmission has been suggested, there are very few reports to substantiate this at present and many questions remain unanswered. In this study, MABSC was not isolated from any of the environments screened.

Finally, a selection of antimicrobials were investigated against MABSC with the purpose of ascertaining susceptibility and whether any may be used for a more successful treatment outcome. There were no clinically applicable results therefore further work is required in this area.

To conclude, RGM is a novel culture medium, which can be embedded alongside routine culture for other CF pathogens without any requirement for decontamination. This means that all respiratory samples submitted from patients with CF can be conveniently cultured for NTM, considerably improving the service offered to clinicians and patients. Furthermore, it is likely that formal AFB culture methods could be replaced by use of such a medium, potentially enabling substantial savings in terms of materials and labour time.

Dedication

I would like to dedicate this thesis not only to my children and grandchildren, Gary, Jamie, Emily, Heidi, Tyler, Alfie and Ivy, but also to my Mother Judith and Grandmother Jean. I am very proud to say I have undoubtedly inherited my Grandmothers brains and my Mothers free spirit, love of wine and sense of humour. Possibly a blessing they are both no longer with us, as I think the shock of me actually doing something worthwhile with my life at long last would have finished them off.

Acknowledgements

Undertaking this PhD has been a truly life-changing experience for me, predominantly in a positive way, and I have in truth enjoyed almost every moment. However, it has undeniably had its moments over the years, and I am not ashamed to admit that I am relieved it is finally over and I can have my life back again. That said, it would not have been possible to complete without the support and guidance that I have received from countless people.

I would like to begin by saying an enormous thank you to my supervisor Professor John Perry at the Freeman Hospital, Newcastle upon Tyne for providing me with the opportunity to undertake this PhD (... little did he know what he had let himself in for!). I am forever appreciative of his continued support, encouragement, leadership and above all else, his humour, which has kept me motivated throughout. Without his guidance and constant feedback, which I will admit on occasions may have been unwelcome, and whose maddening attention to detail finally drove me to learn how to reference correctly, this PhD would not have been achievable.

I would also like to thank my supervisors at Northumbria University; Professor Stephen Cummings, who offered me continual advice and support, as well as the opportunity to visit the USA and present my work at the North American Cystic Fibrosis Conference. A huge thanks also to Dr Amanda Jones, who took over as my principle University supervisor at a crucial time in my final year. Amanda provided me with reassurance and direction, as well as numerous therapy sessions and a shoulder to cry on too many times to mention, especially in the weeks leading up to my viva. Furthermore, enormous appreciation to Fiona McKie-Bell and Dr Bob Finn, two of my undergraduate lecturers. Fiona for putting my name forward as a potential PhD candidate (although looking back not sure if I should be thanking her or killing her now), and Bob who had to endure me through two Summer Studentships, yet continuously reassured me I was capable, and not too old to undertake a PhD.

I am especially grateful to Audrey Perry who has been an immense support throughout the past three years, offering advice, assistance and counselling. Audrey was also the perfect travel companion for the numerous conferences I attended throughout my PhD. I would like to thank my Freeman Hospital research colleagues Daniel Tierney, Arthur Codd, Emma Marrs and Katy Day for their continued support and for keeping a sense of humour when I lost mine, and to all the staff in the Microbiology Department at the Freeman Hospital for allowing me to work alongside them. Special thanks also go to Anne Barrett, Martin Appleby and all the staff in Newcastle Public Health England Regional Mycobacterial Reference

Laboratory, for their co-operation, advice and patience, and allowing me to work in their laboratory and collect data for my research.

I would also like to thank the Consultants, Dr's, nurses and all the team at the Royal Victoria Infirmary Cystic Fibrosis Unit, Newcastle upon Tyne, for providing me with patient samples and allowing data collection within the unit. Special thanks also go to the many cystic fibrosis centres in both the UK and abroad who have assisted me with the collection of invaluable data, and collaborated on many journal articles published throughout this PhD.

I would also like to mention my viva examiners; Professor John Govan, Professor Gary Black and Professor Iain Sutcliffe, who made me feel at ease during my examination, so surprisingly it was not the horrifying event I had imagined it would be, but in fact a very enjoyable experience, so much so I was actually disappointed when it ended.

Finally, last but by no means least I would like to thank my family and friends whose selfless time and care were on many occasions all that kept me going. Enormous thanks and appreciation go to my children and grandchildren; Gary, Jamie, Emily, Heidi, Tyler, Alfie and Ivy who I have completely and ashamedly virtually abandoned for the duration of this PhD, but who have undoubtedly kept me going with their constant love, pride, motivation and humour. It is quite possible that the only conversation I have had with them in the past three years is to scream, "will you shut up, I'm trying to work!" They have been my true inspiration throughout and to whom this thesis is jointly dedicated to.

My heartfelt thanks and sincerest apologies go to Eddie, who has lovingly endured the most horrifying mood swings, tantrums and tears in the process of this thesis being written, but has continued to encourage, love and reassure me whilst never complaining. I could not begin to put into words what his persistent encouragement, support and above all else his sense of humour has meant to me. I know that he was happier and even more relieved than I was when this was finally complete. I will be forever grateful to him for sticking by me through what was unquestionably the hardest and most stressful time of my entire life.

I am forever indebted to my very good friend Shelly Lowry, who has always believed in me and been there throughout my degree and PhD, providing continuous reassurance and emotional support during times I thought it was impossible to continue. She has provided an endless supply of wine throughout, and also reminded me that it is okay to have a life beyond research. I am forever grateful, yet astounded, that she has actually remained my friend and kept me relatively sane during this entire process. I would also like to express my sincere thanks to Kathleen Heron, Carol Hartley and Clare Simpson for listening to me complain, cry and scream for three years solid and still stick around.

A very special thank you and appreciation goes to Andy Fuller for ensuring that this thesis took half the time it would have taken me otherwise. He has listened to me continuously whine throughout, was always on the end of the telephone to help, quite often through the night, and most importantly prevented me from throwing my laptop out of the window on numerous occasions due to his expert IT skills and word processing knowledge.

I would finally like to thank everyone else who has supported and encouraged me throughout this PhD; I am very appreciative to each and every one of you.

TABLE OF CONTENTS

DECLARATION	
ABSTRACT	IV
DEDICATION	v
ACKNOWLEDGEMENTS	VI
TABLE OF FIGURES	XVII
LIST OF TABLES	xx
LIST OF ABBREVIATIONS	XXII

CH	ΑΡΤ	ER ONE: INTRODUCTION	1
1.	тн	E GENUS MYCOBACTERIUM	2
1.1	ŀ	History of mycobacteria	2
1.2	ę	Species of mycobacteria	3
1.	.2.1	Mycobacterium tuberculosis complex	3
1.	.2.2	Non-cultivable mycobacteria	4
1.	.2.3	Non-tuberculous mycobacteria	4
	1.2	3.1 Slow-growing non-tuberculous mycobacteria	5
	1.2	.3.2 Rapidly-growing non-tuberculous mycobacteria	6
1.3	٦	The structure of the mycobacterial cell	6
1.4	F	Pathogenicity of non-tuberculous mycobacteria and risk factors	for
infe	ctio	n	.13
1.5		Association of non-tuberculous mycobacteria with cystic fibrosis	.14
1.6	(Cystic fibrosis	.16
1.	.6.1	Inheritance of cystic fibrosis	.17
1.	.6.2	Symptoms of cystic fibrosis	
1.	.6.3	Lung disease in patients with cystic fibrosis	.20
1.	.6.4	Common pathogens involved in lung disease of patients with cystic fibrosis	.21

1.7		Mycobacterium abscessus complex	.21
1.8		Host immune response to mycobacterial infection	.28
1.9		Diagnosing non-tuberculous mycobacteria in patients with cystic fibrosis.	.28
1	.9.1	1 Collection of samples from patients with cystic fibrosis	.30
1	.9.2	2 Current detection methods of non-tuberculous mycobacteria in patients with cystic	
fi	ibro	osis	.30
1	.9.3	3 Decontamination steps performed upon receipt of a patient sample	.31
1	.9.4	4 Staining of sputum smears for acid-fast bacilli (AFB)	.34
1	.9.5	5 Current media used for isolation of non-tuberculous mycobacteria	.35
1	.9.6	6 Molecular detection methods for non-tuberculous mycobacteria	.36
1.1	0	Treatment of non-tuberculous mycobacteria in patients with cystic fibrosis	;41
1	.10	0.1 Significance of a first positive non-tuberculous mycobacteria culture in patients with	ı
С	ysti	ic fibrosis	.42
1.1	1	Mycobacterium abscessus complex and lung transplantation	.42
1.1	2	What does the future hold regarding Mycobacterium abscessus complex?	.43
1.1	3	Research aims and objectives	.44

2.	IN	ITRODUCTION	46
2.1		The origins of culture media	46
2	.1.1	General purpose culture media	48
2	.1.2	Selective and differential culture media	49
2	.1.3	Chromogenic culture media	51
2.2		Aims and Objectives	53
2.3		Materials	54
2	.3.1	Bacterial strains used in medium development and evaluation	54
2	.3.2	Growth media and general chemicals	55
2	.3.3	Antimicrobials	56
2	.3.4	Equipment	56
2.4		Methods	58
2	.4.1	Evaluation of various ingredients for optimal growth of Mycobacterium abscessus	
C	omp	olex	58
2	.4.2	Mycobacterial Strains	58
2	.4.3	Evaluation of basal culture media	60
2	.4.4	Preparation of inocula and inoculation onto basal media	61

	2.4.5	Evaluation of various nutrients for the improved growth of mycobacteria	.61
	2.4.6	Investigation of various antimicrobials as putative selective agents	.62
	2.4.7	Non-mycobacterial strains and culture onto media containing antimicrobials	.63
	2.4.8	Investigation of antimicrobial combinations in agar-based media	.64
	2.4.9	Bacterial strains and culture onto media containing combined antimicrobials	.64
	2.4.10	Plating efficiency studies performed on RGM medium	.65
	2.4.11	Statistical analysis	.65
	2.4.12	Evaluation of the stability of RGM medium	.66
	2.4.13	Investigation of various derivatives of C390 as putative selective agents	.66
	2.4.14	Preparation of bacterial strains and inoculation of isolates onto media containing	
	C390 a	nd various C390 derivatives to evaluate the effectiveness in RGM medium	.70
	2.4.15	Preparation of bacterial strains and inoculation of isolates onto various media to	
	evaluat	e the effectiveness of RGM medium against currently available media	.70
	2.4.16	Inoculation of sputum samples onto RGM medium and bioMérieux cepacia agar	.71
	2.4.17	Investigation of the use of RGM medium for the isolation of mycobacteria from the	
	sputum	of patients with non-cystic fibrosis bronchiectasis	.72
	2.4.18	Adaptation and evaluation of RGM medium for recovery of mycobacteria including	
	Mycoba	acterium tuberculosis complex in a broth-based culture medium	.72
	2.4.1	8.1 Health and safety	.73
	2.4.1	8.2 Preparation of clinical samples from cystic fibrosis patients	.73
	2.4.1	8.3 Decontamination procedure for Gram-positive organisms	.73
	2.4.1	8.4 Decontamination procedure for Gram-negative organisms	.74
	2.4.1	8.5 Processing of clinical samples from non-cystic fibrosis patients	.75
	2.4.19	Multi-centre study to examine the effectiveness and convenience of RGM medium	.75
2	.5 R	esults	77
	2.5.1	Evaluation of basal media for optimal growth of Mycobacterium abscessus complex	.77
	2.5.2	Evaluation of enrichment ingredients in basal media	.78
	2.5.3	Investigation of various antimicrobials for the inhibition of non-mycobacterial strains	
	frequen	tly encountered in sputum samples from patients with cystic fibrosis	.79
	2.5.4	Investigation of combined antimicrobials for the inhibition of non-mycobacterial strains	;
	present	in cystic fibrosis sputum	.93
	2.5.5	Evaluation of plating efficiency studies on RGM medium	.94
	2.5.6	Evaluation of the stability of RGM medium	.95
	2.5.7	Evaluation of various C390 derivatives in RGM medium	.95
	2.5.8	Evaluation of selective agars in comparison to RGM for the growth of mycobacteria1	00
	2.5.9	Evaluation of selective agars including RGM for the inhibition of non-mycobacteria1	03
	2.5.10	Evaluation of the effectiveness of RGM medium versus bioMérieux cepacia agar	
	using cl	linical samples1	06
	2.5.11	Investigation of RGM medium for sputum samples of control group patients with no	n-
	cystic fi	brosis bronchiectasis and cystic fibrosis transplant assessment patients1	12
	2.5.12	Evaluation of RGM medium for optimal growth of Mycobacterium tuberculosis	
	comple	x and other slow-growing mycobacteria in broth-based culture medium1	13

2	.6	Disc	cussion	119
	from	patie	ents with cystic fibrosis	117
	2.5.1	3	Summary of studies in other centres using RGM medium for the isolation of NTM	

3.	INT	TRODUCTION12	25		
3.1	C	Current methods of identification of Mycobacterium abscessus complex125			
3.2	C	Direct observation of non-tuberculous mycobacteria in culture medium12	25		
3.3	E	Biochemical tests used in identification of mycobacteria	26		
3.4	G	Genotypic methods for the identification of <i>Mycobacterium abscess</i>	ıs		
com		x12			
3.5	•	Molecular typing of <i>Mycobacterium abscessus</i> complex isolates			
	5.1	Variable number tandem repeat			
	5.2	Rep-PCR for the identification of mycobacteria12			
3.	5.3	Multilocus sequence typing and multispacer sequence typing			
3.	5.4	Whole genome sequencing	<u>29</u>		
3.6	Ν	Matrix-assisted laser desorption/ionization time-of-flight mass spectromet	ry		
(MA	LDI-	-TOF MS)	30		
3.	6.1	Principles of MALDI-TOF MS13	30		
3.	6.2	The use of MALDI-TOF in the identification of Mycobacterium abscessus complex13	32		
3.7	Т	The use of chromogenic and fluorogenic substrates in culture media13	32		
3.8	E	Enzyme substrates13	33		
3.9	A	Aims and objectives13	39		
3.10	N	Vaterials	10		
3.	10.1	Bacterial strains used in the evaluation of fluorogenic substrates14	40		
3.	10.2	Bacterial strains used in the evaluation of chromogenic substrates14	10		
3.	10.3	Growth media and general chemicals14	11		
3.	10.4	Fluorogenic enzyme substrates14	11		
3.	10.5	Chromogenic enzyme substrates14	12		
3.	10.6	Equipment14	13		
	3.10	0.6.1 The Synergy HT multi-detection microplate reader14	13		
3.11	Ν	Nethods14	4		
3.	11.1	Culture medium used in the evaluation of chromogenic and fluorogenic substrates 14	14		

	3.11.2	Preparation of bacterial strains	144
	3.11.3	Evaluation of fluorogenic substrates for both mycobacteria and non-mycobacteria	al
	isolates		144
	3.11.4	Initial evaluation of chromogenic substrates for mycobacterial isolates	145
3.	12 Res	sults	147
	3.12.1	Activity of fluorogenic substrates in both non-mycobacteria and mycobacterial	
	isolates		147
	3.12.2	Activity of chromogenic substrates in non-tuberculous mycobacteria	150
3.	13 Dis	cussion	157

4.	II	NTF	RODU	CTION	160
4.1		Tł	ne epic	demiology of non-tuberculous mycobacterial infections	160
4.2		Tł	ne glob	oal incidence of non-tuberculous mycobacterial disease	162
4.3		Er	nviron	ments providing favourable conditions for the transmissior	of non-
tub	ere	culo	ous my	ycobacteria	163
4.4		Re	educin	g exposure to non-tuberculous mycobacteria	166
4.5		No	on-tub	erculous mycobacteria biofilm formation and its significance	»167
4.6		Ai	ms an	d objectives	169
4.7		M	aterial	s	170
4.8		M	ethods	5	171
4	.8.	1	Culture	e medium	171
4	.8.	2	Enviro	nmental samples	171
4	.8.	3	Water	Samples	175
4	.8.			Samples	
4	.8.	5	Method	ds of identification of all isolates recovered	
	4	.8.5	.1 N	latrix-assisted laser/desorption/ionization time-of-flight mass spectrome	try
	(MAL	DI-TOF	[–] MS)	180
		4.8	8.5.1.1	Preparation of sample for MALDI-TOF MS	
	4	.8.5	.2 G	ram-staining and staining for acid-fast bacilli	181
		4.8	8.5.2.1	Staining of heat fixed films by auramine phenol for the detection by	
		flu	orescei	nce of acid and alcohol-fast organisms	181
		4.8	8.5.2.2	Staining of heat fixed films by Ziehl-Neelson for the detection of acid a	and
		alo	cohol-fa	ist organisms	
		4.8	8.5.2.3	Gram-staining of unidentified isolates to eliminate any non-mycobacte	ria182

	4.8.5.3	HAIN Genotyping protocol for the identification of clinically relevant m	iycobacterial
	species us	sing BEEBlot G45 Automated Platform	183
	4.8.5.3	1 Sample preparation for extraction of DNA	183
	4.8.5.3	2 Amplification of extracted mycobacterial DNA	183
	4.8.5.3	3 Running the Amplification Cycler.	184
	4.8.5.3	4 Hybridisation Test Procedure	184
4.9	Result	ts	186
4.	9.1 Iden	tification of all recovered isolates	197
	4.9.1.1	HAIN Genotyping for the Identification of clinically relevant mycobacter	erial species
	using BEE	Blot G45 Automated Platform	198
	4.9.1.2	Evaluation and interpretation of HAIN results	198
4.10	Discus	ssion	199

5.	IN	TRODUCTION	.206
5.1		Current treatment approaches to non-tuberculous mycobac	terial
infe	ctio	on	206
5.2		Recommended antibiotic treatments for pulmonary infection du	e to
Мус	cob	acteria abscessus complex in patients with cystic fibrosis	206
5.3		Liposomal amikacin for inhalation in patients with non-tubercu	llous
myo	ob	acterial pulmonary disease	210
5.	3.1	Arikace clinical trials completed and in progress for use against non-tuberculous	
m	iyco	bacterial infection	210
5.4		Antibiotic resistance mechanisms in Mycobacteria abscessus complex	211
5.	4.1	Macrolide resistance	213
5.	4.2	Aminoglycoside resistance	214
5.	4.3	The role of the mycobacterial cell wall in antibiotic resistance	214
5.	4.4	Efflux pumps conferring antibiotic resistance in mycobacteria	214
5.	4.5	Other mechanisms known to contribute to mycobacterial drug resistance	215
5.5		Challenges of diagnosis and treatment of Mycobacteria abscessus	216
5.6		Aims and objectives	218
5.7		Materials	219
5.	7.1	Bacterial strains used in antimicrobial testing of non-tuberculous mycobacteria	219
5.	7.2	Growth media	219

5.7.3	3 Antimicrobials	220
5.7.4	4 Equipment	220
5.8	Methods	221
5.8.1	Preparation of the medium for agar dilutions for a range of single antimicrobials again	ist
rapic	dly-growing mycobacteria	221
5.8.2	2 Investigation of various antimicrobials using agar-based dilutions against rapidly-grow	ving
myco	obacteria isolates from patients with cystic fibrosis	221
5.8.3	Bacterial strains and culture onto medium containing single antimicrobial agents	222
5.9	Results	223
5.10	Discussion	229

CHAPTER SIX: FINAL DISCUSSION AND FUTURE RESEARCH......235

6.1	Review and final discussion	236
6.2	Future Research	239

Appendix 1: All isolates used in the development and evaluation of RGM mediun	٦,
chromogenic and fluorogenic substrate testing and antimicrobial susceptibility testin	g
throughout this thesis24	2
Appendix 2: Ingredients and how to prepare 500 ml RGM medium	8
Appendix 3: Antimicrobial supplement for use in MB/BacT bottles	0
Appendix 4: Ethical approval for clinical samples used in the evaluation of RGM26	1
Appendix 5: Structures of substrates used for fluorogenic testing in Chapter 326	4
Appendix 6: Average spectrophotometer readings for fluorogenic substrates after 72 hour	s
incubation	5

CHAPTER	NINE:	PATENTS,	CONFERENCE	PROCEEDINGS	AND
PUBLICATIO	ONS REL	ATING TO TH	IS THESIS		335

9.1	Patents	336
9.2	Conference Proceedings	337
9.3	Publications	346

Table of Figures

Figure 1-1: Structure of the cell wall of mycobacteria (Medjahed et al., 2010)10
Figure 1-2 : Typical bacterial cell walls showings the cell wall of Gram-negative bacteria, Gram-positive bacteria (b) and mycobacteria (c) (Brown <i>et al.</i> , 2015) 12
Figure 1-3 : Transport in CF versus non-CF airways. In the CF airways due to defective or absent CFTR, mucociliary clearance is not able to occur (Kunzelmann, 2013) 17
Figure 1-4: Ways in which an individual can be affected with cystic fibrosis (Cystic Fibrosis Foundation, 2015)19
Figure 1-5 : Normal airway with lumen free of secretions (left). In contrast, airway obstructed and distended by mucus secretions (right) (Quinton, 2010)
Figure 1-6: The <i>M. abscessus</i> CIP 104536T genome23
Figure 1-6: The <i>M. abscessus</i> CIP 104536T genome 23 Figure 1-7: Growth characteristics of rough (left) and smooth (right) <i>M. abscessus</i> subsp. <i>abscessus</i> cultured on Middlebrook 7H11 agar. Image taken from (Ruger <i>et al.</i> , 2014)25
Figure 1-7: Growth characteristics of rough (left) and smooth (right) <i>M. abscessus</i> subsp.

Figure 1-9: GenoType Mycobacterium CM permits the identification of the following mycobacterial species: *M. avium* subspecies, *M. chelonae*, *M.abscessus*, *M. fortuitum*, *M. gordonae*, *M. intracellulare*, *M. scrofulaceum*, *M. interjectum*, *M. kansasii*, *M.malmoense*, *M. marinum/M. ulcerans*, *M. peregrinum*, *M. tuberculosis* complex, and *M. xenopi*.......**38**

Figure 1-10: GenoType Mycobacterium AS provides probes for a series of additional NTM,
namely, M. simiae, M. mucogenicum, M. goodie, M. cellatum, M. smegmatis, M. genavense,
M. lentiflavum, M. heckeshornense, M. szulgai, M. phlei, M. hemophilum, M. kansasii, M.
ulcerans, M. gastri, M. asiaticum, and M. shimoidei
Figure 2-1: A475: 4'-Diethylaminophenyl-9-methoxy-10-phenylacridan66
Figure 2-2: A477/A488/C390: 4'-Diethylaminophenyl-9-chloro-10-phenylacridan67
Figure 2-3: A480a: 4'-Diethylaminophenyl-9-chloroacridan67
Figure 2-4: A503a: 4'-Diethylaminophenyl-9-chloro-10-methylacridan68
Figure 2-5: A503b: 4'-Diethylaminophenyl-9-chloro-10-ethylacridan
Figure 2-6: A505: 4'-Diethylaminophenyl-2-9-dichloro-10-phenylacridan69
Figure 2-7: A520: 4'-Diethylaminophenyl-9-chloro-10-phenyl-4"-chloroacridan69

Figure 2-8: Growth of mycobacteria with and without OADC growth supplement after 168 h incubation
Figure 2-9 : Comparison of the growth of mycobacteria on medium D, without yeast extract (top) and medium L (bottom) containing yeast extract at 48, 72, 96 and 168 h 79
Figure 2-10: Growth of Aspergillus terreus on (left to right) Sabouraud control medium, Medium L, Medium W and RGM
Figure 2-11: Plating efficiencies showing colonies on medium L (left) and RGM medium (right)
Figure 2-12: A477 at concentrations of 1 – 128 mg/L for twenty selected Gram-negative species after four days of incubation
Figure 2-13 : C390 at concentrations of 1 – 128 mg/L for twenty selected Gram-negative species after four days of incubatio
Figure 2-14: 480a at concentrations of 1 – 128 mg/L for twenty selected Gram-negative species after four days of incubation
Figure 2-15: Growth at day four of four isolates of <i>M. abscessus</i> subspecies <i>abscessus</i> on various media. 101
Figure 2-16: Growth of Gram-negative bacteria on various selective agars104
Figure 2-17 : Patient sample at day 4 on BCSA (left) and RGM (right) demonstrating significantly reduced growth of <i>B. multivorans</i> on RGM 108
Figure 2-18: Patient sample at day 4 on BCSA (left) and RGM (right) showing growth of C. parapsilosis and S. maltophilia on BCSA, but only M. abscessus subspecies abscessus on RGM
Figure 2-19 : Patient sample at day 4 on BCSA (left) and RGM (right) showing <i>A. fumigatus</i> on BCSA and two rough colonies of <i>M. abscessus</i> subspecies <i>abscessus</i> on RGM 109
Figure 2-20: Patient sample at day 4 on BCSA (left) and RGM (right) showing growth of A. fumigatus, C. albicans and C. lusitaniae on BCSA, and only pure colonies of M. abscessus subspecies massiliense on RGM
Figure 2-21: RGM medium demonstrating the visual appearance of both smooth and roughcolonies of <i>M. abscessus</i> subspecies <i>abscessus</i>
Figure 3-1: Structure of indoxyl (i) and it halogenated derivatives (ii) 5-bromo-6-chloro-indoxyl and (iii) 6-chloro-indoxyl
Figure 3-2: Structures of fluorescent core molecules (i) coumarin (ii) 7-amino-4- methylcoumarin (iii) 4-methylumbelliferone 137

 Figure 3-3:
 Isolates 3017 *M. abscessus* subsp. *bolletii* and 1054 *M. abscessus* subsp.

 abscessus shown with magenta octanoate (left) added and control plate without magenta octanoate (right)

 151

 Figure 4-1: HAIN Genotype NTM-DR showing a difference in banding patterns between M.

 abscessus complex and M. chelonae

 201

Figure 5-1: Typical MABSC treatment schedule as recommended by the US Cystic Fibrosis Foundation and European Cystic Fibrosis Society (Floto et al., 2016)**208**

 Figure 5-2: Mycobacterial cell wall and mechanisms of drug resistance (van Ingen *et al.*, 2012)

 2012)

List of Tables

Table 1-1: Classification of non-tuberculous mycobacteria according to Runyon (Runyon, 1959)
Table 1-2: Audit of respiratory samples from cystic fibrosis patients received by the Public Health England Laboratory, Newcastle upon Tyne showing contamination rates over a 4 month period in 2012 .34
Table 2-1: Species, origin and VNTR profile of mycobacteria used in medium testing59
Table 2-2: Ingredients of the various media used in initial basal medium evaluation60
Table 2-3: Sensitivity values of basal media. 77
Table 2-4 : Investigation of the growth of NTM and inhibition of non-NTM isolates after sevendays of incubation at 30°C using various antimicrobials in agar-based media
Table 2-5: MIC's (mg/L) of a selection of Gram-negative bacteria for C390 and derivatives of C390 after ten days at 30°C
Table 2-6: Percentage of mycobacteria recovered on various selective agars at 30°C102
Table 2-7: Number of non-mycobacterial isolates recovered on various selective agars after10 days at 30°C105
Table 2-8 : Mycobacteria recovered from culture of 502 sputum samples on Burkholderiacepacia selective agar (BSCA) and RGM medium
Table 2-9 : Other species recovered from culture of 502 sputum samples on <i>Burkholderiacepacia</i> selective agar (BSCA) and RGM medium
Table 2-10: Number of NTM-positive samples from bronchiectasis and transplant assessment samples 112
Table 2-11: Results of 44 AFB positive bottles inoculated with non-CF samples
Table 2-12: Recovery of mycobacteria from 56 pairs of MBacT bottles inoculated with treated samples from patients with CF
Table 2-13: Percentage contamination of samples from patients both with CF and non-CF and percentage of NTM isolated using RGM and LJ slopes at 21 days incubation at 30°C and 37°C 115
Table 2-14 : Comparison of RGM medium and formal AFB culture for the recovery of NTMfrom respiratory samples from patients with CF over a 15 month period
Table 2-15: Summary of studies using RGM medium for the isolation of NTM from respiratory samples from patients with CF 118

Table 3-1: Percentage of isolates possessing enzyme activity with a range of fluorogenic substrates
Table 3-2: Appearance and growth of NTM isolates with Magenta octanoate151
Table 3-3: Appearance and growth of NTM isolates with L-ala-ala-ala-4(4'-aminostyryl)-N-methylquinolinium dichloride 153
Table 3-4: The appearance of NTM inoculated onto RGM medium with the addition of various chromogenic substrates 156
Table 4-1: Environmental areas tested for non-tuberculous mycobacteria
Table 4-2: Water samples tested for non-tuberculous mycobacteria
Table 4-3: All foods tested for non-tuberculous mycobacteria
Table 4-4: Negative controls used in all sampling179
Table 4-5: Amplification profile for DNA
Table 4-6: Description of all areas tested for NTM
Table 4-7: Species identification of recovered isolates in all areas tested
Table 5-1 : Current guidelines for recommended antibiotic dosing regimens in the treatmentof MABSC pulmonary disease in patients with cystic fibrosis (Floto <i>et al.</i> , 2016)
Table 5-2: Range of MIC's of NTM species using a selection of twenty-nine single antimicrobials (mg/L) 226
Table 5-3: MIC's, MIC ₅₀ and MIC ₉₀ of <i>M. abscessus</i> subsp. <i>abscessus</i> , <i>M. abscessus</i> subsp. <i>massiliense and M. chelonae</i> using a selection of twenty-nine single antimicrobials (mg/L)
Table 5-4: Control Organisms, range of antimicrobial tested and EUCAST MIC ranges (mg/L)

List of Abbreviations

4-MU	4-methylumbelliferone
7-AMC	7-amino-4-methylcoumarin
A475	4'-Diethylaminophenyl-9-methoxy-10- phenylacridan
A477/A480	9-Chloro-9-(4'-diethylamino)phenyl-9,10-dihydro- 10-phenylacridine hydrochloride
A480a	4'-Diethylaminophenyl-9-chloroacridan
A503a	4'-Diethylaminophenyl-9-chloro-10-methylacridan
A503b	4'-Diethylaminophenyl-9-chloro-10-ethylacridan
A505	4'-Diethylaminophenyl-2-9-dichloro-10- phenylacridan
A520	4'-Diethylaminophenyl-9-chloro-10-phenyl-4"- chloroacridan
ABC	ATP binding cassette (transporters)
ABPA	Allergic bronchopulmonary aspergillosis
AFB	Acid-fast bacillus
AG	Arabinogalactan
AST	Antibiotic susceptibility testing
ATCC	American Type Culture Collection
АТР	Adenosine 5'-triphosphate
ATS	American Thoracic Society
BCC	Burkholderia cepacia complex
BCG	Bacillus Calmette-Guerin
BCSA	Burkholderia cepacia selective agar
BC-TSP	Benzalkonium chloride-trisodium phosphate
cAMP	Cyclic adenosine monophosphate
C390	9-Chloro-9-(4'-diethylamino)phenyl-9,10-dihydro- 10-phenylacridine hydrochloride
CF	Cystic fibrosis

CFTR	CF transmembrane conductance regulator
CFU	Colony forming units
CLSI	Clinical and Laboratory Standards Institute
CO ₂	Carbon dioxide
CPC-NaCl	Cetylpyridinium chloride-sodium chloride
DNA	Deoxyribonucleic acid
EUCAST	European Committee on Antimicrobial Susceptibility Testing
FDA	Food and Drug Administration
H ₂ SO ₄	Sulphuric acid
HRCT	High resolution computed tomography
IFN-Υ	Interferon gamma
IND	Investigational New Drug Application
ITS	Internal transcribed spacer
KH ₂ PO ₄	Monopotassium phosphate
LAI	Liposomal amikacin for inhalation
LM	Lipomannan
LAM	Lipoarabinomannan
LJ	Lowenstein–Jensen (medium)
MABSC	Mycobacteria abscessus complex
MAC	Mycobacteria avium complex
MALDI-TOF MS	Matrix-assisted laser desorption/ionization time-of- flight mass spectrometry
MFS	Major facilitator superfamily (transporter)
MGIT	Mycobacterial growth indicator tube
MIC	Minimum inhibitory concentration
MLSA	Multilocus sequence analysis
MLST	Multilocus sequence typing
MmpL	Mycobacterial membrane protein large (transporter)

MST	Multispacer sequence typing	
МТЬ	Mycobacteria tuberculosis	
Mycobacterium AS	Mycobacteria additional species	
Mycobacterium CM	Mycobacteria common bacteria	
NALC-NaOH	N-acetyl-L-cysteine-2% sodium hydroxide	
NALC-NaOH-OxA	<i>N</i> -acetyl-L-cysteine–2% sodium hydroxide 5% oxalic acid	
NaOH	Sodium hydroxide	
NCTC	National Collection of Type Cultures	
NTM	Non-tuberculous mycobacteria	
OADC	Oleic albumin dextrose catalase (growth supplement)	
PANTA	Polymyxin B, amphotericin B, nalidixic acid, trimethoprim and azlocillin (antibiotic mix)	
PCR	Polymerase chain reaction	
PI	Phosphatidylinositol	
PIMs	Phosphatidylinositol mannosides	
QRDR	Quinolone resistance determining regions	
RGM	Rapidly-growing mycobacteria (also RGM medium for rapidly-growing mycobacteria)	
SGM	Slow-growing mycobacteria	
ТВ	Tuberculosis	
TNF-α	Tumour necrosis factor alpha	
Trim-Sulf	Trimethoprim/sulfamethoxazole	
TTD	Time-to-detection	
VNTR	Variable number tandem repeat	
WGS	Whole genome sequencing	
XLD	Xylose lysine desoxycholate (Agar)	

CHAPTER ONE

General Introduction

The genus Mycobacterium

The genus *Mycobacterium* is one of the earliest defined, with the name mycobacterium originating from the Greek prefix for fungus "myco", initially designated to a group of organisms that grew as mould like pellicles on the surface of liquid media (Rastogi *et al.*, 2001).

Published in 1896 by Lehmann and Neumann in their Atlas of Bacteriology, the genus *Mycobacterium* at the time contained only two species, *Mycobacterium tuberculosis* and *Mycobacterium leprae*.

Taxonomically, mycobacteria belong to the genus *Mycobacterium*, a genus within the family of Mycobacteriaceae in the order of *Corynebacteriales*. The *Mycobacterium* genus to date comprises more than 170 diverse species (Euzeby, 2015), and with respect to pathogenicity three groups can be subdivided (Ng *et al.*, 2014); *M. tuberculosis* complex, *M. leprae* and non-tuberculous mycobacteria (NTM).

1.1 History of mycobacteria

M. tuberculosis was first discovered to be the causative agent of tuberculosis (TB) in 1882 by Robert Koch. On 24th March 1882, Koch declared to the Berlin Physiological Society that he had established the cause of TB (Koch, 1882). This was a principal event in the history of medicine, and a defining moment in the understanding of the deadly disease that had plagued mankind for centuries. Koch modified previously used staining techniques, and developed a solid culture medium rather than the liquid broths that were used at that time and was able to isolate, cultivate and observe the bacteria. He demonstrated that the disease was due to an external infectious agent by observing lesions characteristic of the disease, that were not present in normal tissues, then by culturing in *vitro*, outside the infected

animal, and reintroducing *in vivo* into a healthy animal subsequently leading to TB lesions (Cambau and Drancourt, 2014).

Only a few years later many other species of mycobacteria had been described (Migliori *et al.*, 2007), which at the time were all considered "atypical mycobacteria". The pathogenicity of these "atypical" mycobacteria to humans was increasingly documented following a significant publication (Buhler and Pollak, 1953) where two cases of pulmonary disease comparable to TB and caused by what the authors termed the "yellow bacillus" after the bright yellow pigment observed upon exposure to light, were described. Today this species is known as *Mycobacterium kansasii*.

As these "atypical" mycobacteria currently make up the majority of species within the genus *Mycobacterium*, the term atypical is contentious, and they are today more frequently known as non-tuberculous mycobacteria.

1.2 Species of mycobacteria

1.2.1 *Mycobacterium tuberculosis* complex

Mycobacterium tuberculosis complex includes M. tuberculosis, Mycobacterium africanum, Mycobacterium caprae, Mycobacterium bovis, Mycobacterium bovis Bacille Calmette-Guerin (BCG), Mycobacterium canettii, Mycobacterium microti, Mycobacterium mungi and Mycobacterium pinnipedii.

With the exclusion of *M. bovis* BCG, which is a vaccine against TB prepared from a live attenuated strain of *M. bovis* (Orduna et al., 2011), these species are considered to cause TB in both humans and animals, and despite their genomic similarity, their epidemiology, pathogenicity and host continuum vary substantially.

1.2.2 Non-cultivable mycobacteria

Mycobacterium leprae, also known as Hansen's bacillus, was the first acid-fast bacterium to be recognised as a source of a human disease in 1873 by Gerhard Armauer Hansen in the skin nodules of patients with leprosy.

Previously termed "the bacteriologist's enigma" (Stewart-Tull, 1982) the causative organism of leprosy has to date obstinately eluded all attempts to culture it *in vitro* never having been successfully grown on artificial culture medium as it is only able to proliferate whilst acting as a intracellular parasite (Davis *et al.*, 2013; Kumar *et al.*, 2014). *Mycobacterium leprae* has the slowest doubling time of all known bacteria taking around fourteen days for cells to divide.

1.2.3 Non-tuberculous mycobacteria

NTM, also known as mycobacteria other than tuberculosis, or atypical mycobacteria, denote all species of mycobacteria that can cause human disease, other than TB and leprosy. NTM can be classified into two categories; slow-growing and rapid growing. This is based on interval to colony formation by subculture onto solid media, with the cut off distinguishing the two estimated at around seven days. To simplify organised clinical and taxonomical study, Runyon suggested the first classification system for NTM based on their colony morphology, growth rates and pigmentation (Runyon, 1959), (see Table 1-1), although this is now somewhat obsolete with the widespread use of molecular techniques. A more applicable method of categorising these organisms is based on the type of clinical disease they produce; pulmonary, cutaneous, lymphadenitis or disseminated disease (Koh et al., 2002).

1.2.3.1 Slow-growing non-tuberculous mycobacteria

This is a group of NTM that generally require more than seven-day's incubation to form visible colonies on culture media. The most common clinically relevant species are *Mycobacterium avium* complex (MAC), including but not limited to *M. avium* and *Mycobacterium intracellulare*, as well as other significant species such as *Mycobacterium kansasii*, *Mycobacterium xenopi*, *Mycobacterium malmoense*, *Mycobacterium simiae*, *Mycobacterium scrofulaceum*, *Mycobacterium marinum*, *Mycobacterium terrae*, *Mycobacterium gordonae* and *Mycobacterium szulgai*. *Mycobacterium ulcerans* is an environmental slow-growing NTM responsible for causing the Buruli ulcer, a chronic and often debilitating disease frequently seen in children and characterised by necrosis of subcutaneous tissue, affecting mainly the skin, but occasionally bones. The exact mode of transmission is unknown and there are currently no preventative measures that may be undertaken (Doig *et al.*, 2012).

Early determination of whether the causative organisms are rapidly-growing or slowgrowing NTM is advantageous for selecting appropriate treatments; since antibiotic regimens can vastly differ, and those that are effective for slow-growing mycobacteria may not be effective for rapid growers (Kim *et al.*, 2013).

Group	Characteristics	Important Species
I Photochromogens	Slow growth > 7 days	Mycobacterium kansasii
	Pigmentation after exposure	Mycobacterium szulgai
	to light	Mycobacterium simiae
II Scotochromogens	Slow growth > 7 days	Mycobacterium xenopi
	Pigmentation with or without	Mycobacterium gordonae
	light exposure	Mycobacterium
		scrofulaceum
III Non-Chromogens	Slow growth > 7 days	Mycobacterium avium
	No pigmentation	Mycobacterium
		intracellulare
		Mycobacterium
		malmoense
IV Rapid Growers	Rapid growth < 7 days	Mycobacterium fortuitum
		Mycobacterium
		abscessus
		Mycobacterium chelonae

Table 1-1: Classification of non-tuberculous mycobacteria according toRunyon (Runyon, 1959)

1.2.3.2 Rapidly-growing non-tuberculous mycobacteria

The group of NTM that are categorised as rapidly-growing will form visible colonies on culture media in less than seven days. As in the slow-growing mycobacteria, time to growth detection can vary between species with some rapid growers being detected in three to four days. These include but not limited to *Mycobacterium abscessus* complex (MABSC); (MABSC includes *M. abscessus* subsp. *abscessus*, *Mycobacterium abscessus* subsp. *bolletii* and *Mycobacterium abscessus* subsp. *massiliese*), *Mycobacterium chelonae*, *Mycobacterium fortuitum*, *Mycobacterium neoaurum*, *Mycobacterium smegmatis* and *Mycobacterium mucogenicum*.

1.3 The structure of the mycobacterial cell

Described as one of the most complex in nature, many of the distinctive characteristics of the mycobacterial cell are to be found in their intricate cell wall (Figure 1-1), where a key finding in the past decade has been the remarkably low permeability of mycobacteria to nutrients and antimicrobial agents. This decelerates growth of mycobacteria, as well as making any disease instigated by pathogenic species very challenging to treat due to their inherent resistance to most antimicrobials and chemotherapeutic agents.

The cell wall of mycobacteria is extremely complex with its most prominent distinguishing feature being its high lipid content, said to account for around 60% of the cell wall weight, compared to 5% in other Gram-positive bacteria and 10% in Gram-negative bacteria (Jarlier and Nikaido, 1990), which could explain the tendency for NTM to grow in clumps. Its unusual structure makes it challenging for any host to impair the cell wall and while intact this offers substantial protection to the mycobacterium from any damage. The cell wall is composed of mycolic acids, complex waxes, and distinctive glycolipids, peptidoglycan (PG) and arabinogalactan (AG). Mycolic acids are a homologous succession of C₆₀-C₉₀ exceptionally elongated side-chain alpha-alkyl and beta-hydroxy fatty acids joined to the muramic acid moiety of the peptidoglycan by phosphodiester bridges, and to arabinogalactan (D-arabinose and D-galactose) by esterified glycolipid linkages, signifying crucial components of the mycobacterial cell wall. They are imperative to mycobacterial growth, survival, and pathogenicity.

A major component of the mycobacterial cell wall is a macromolecule of peptidoglycan covalently-linked through a phosphodiester group to an arabinancapped linear galactan. The arabinan cap is adapted with numerous mycolic acids. Aside from the mycolyl–arabinogalactan–peptidoglycan complex, the cell wall contains non-covalently associated lipids, glycolipids, glycophospholipids, glycopeptidolipids, sulfolipids, and sulfoglycolipids. Among the most abundant of these are a family of associated glycophospholipids containing mannose, termed

the phosphatidylinositol mannosides (PIMs), lipomannan (LM) and lipoarabinomannan (LAM). These molecules share a phosphatidylinositol (PI) anchor, and biochemical and genetic studies support a proposed biosynthesis pathway of PI \rightarrow PIMs \rightarrow LM \rightarrow LAM (Khoo *et al.*, 1995; Schaeffer *et al.*, 1999; Kordulakova *et al.*, 2002).

PIMs are distinctive glycolipids found in abundance in the inner and outer membranes of all mycobacterium species. They are centred on a phosphatidylmyoinositol lipid anchor carrying one to six mannose residues and up to four acyl chains. Phosphatidylmyoinositol mannosides are considered to be crucial structural components of the cell envelope (Guerin *et al.*, 2009).

Glycolipids LAM and LM are key virulence factors in mycobacteria species. Besides their role in the cell wall structure, it is thought they function as toll-like receptors with immunoregulatory and anti-inflammatory effects (Fukuda *et al.*, 2013) allowing their survival by damaging host resistance and acquired immune responses. These mechanisms consist of the inhibition of T-cell proliferation and of macrophage microbicidal activity through reduced IFN-Y response (Knutson *et al.*, 1998).

Arabinogalactan (AG) is a major structural component of the cell wall. It is a highly branched polysaccharide providing a molecular framework facilitating the connection of peptidoglycan to the outer mycolic acid layer and a range of glycolsyltransferases are employed for its assembly. The biosynthesis of the arabinan domains of AG and LAM occurs via a combination of membrane bound arabinofuranosyltransferases (Alderwick *et al.*, 2011).

The role of the complex hydrophobic mycobacterial cell wall has been widely studied, and many of its properties including its characteristic acid-fastness, high lipid content, and the slow rate of growth are thought to play a large part in the poor

diffusion of hydrophilic molecules, including antibiotics (Jarlier and Nikaido, 1990). Genomic analysis has also revealed the presence of other prospective drug resistance elements such as predicted ß-lactamases, aminoglycoside phosphotransferases and aminoglycoside acetyltransferases (Ripoll *et al.*, 2009).

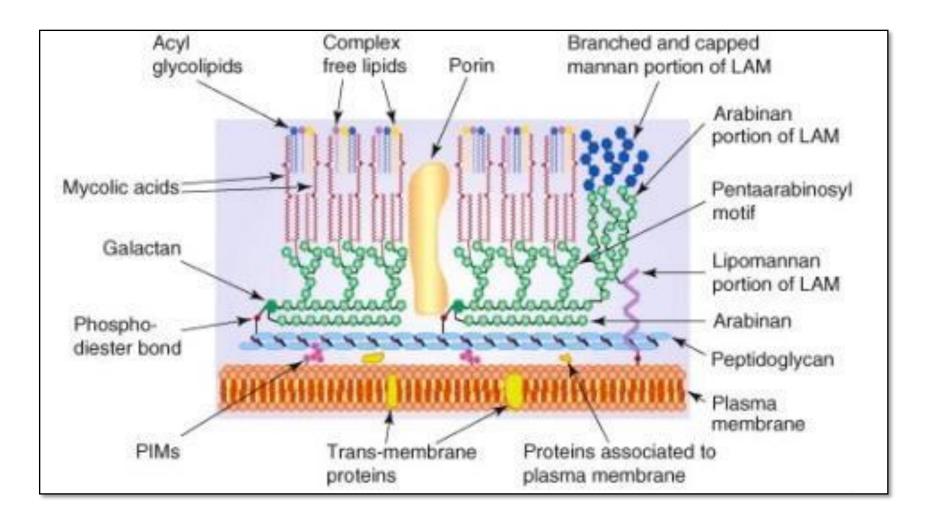


Figure 1-1: Structure of the cell wall of mycobacteria (Medjahed et al., 2010)

Different species are characterised by variation in sugar substitutions in the glycolipids or peptidoglycolipids. Other significant cell wall components are trehalose dimycolate (cord factor), as it is thought to induce growth in serpentine cords on artificial medium, and mycobacterial sulfolipids, which are believed to play a role in virulence (Mendum *et al.*, 2015).

Mycobacteria are categorised as acid-fast organisms, signifying that they are resistant to decolourisation by acids during staining techniques and retain the carbol fuchsin dye when exposed to acid-ethanol.

The presence of porins protects the cell against harmful extracellular composites by allowing the passage of compounds and hydrophilic antibiotics where they can reach the cytoplasm and activate the expression of drug resistance genes (Trias *et al.*, 1992).

The permeability barrier of cell walls of mycobacteria was found to be between 10 – 100 fold lower than that of *Pseudomonas aeruginosa* with the chemical nature of the cell wall being unlike both Gram-negative and Gram-positive bacteria (Figure 1-2).

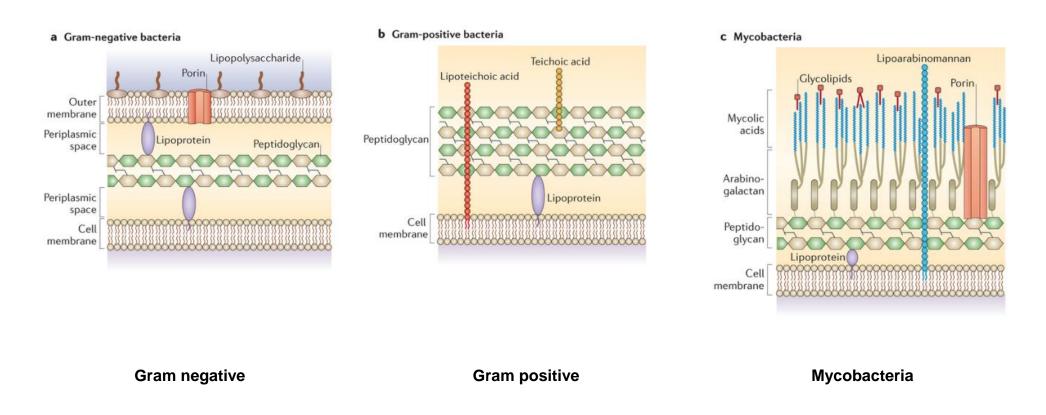


Figure 1-2: Typical bacterial cell walls showings the cell wall of Gram-negative bacteria (a) consists of a thin layer of peptidoglycan between the inner and outer lipid membranes. The outer membrane contains lipopolysaccharides and facilitates transport through channels such as porins. Gram-positive bacteria (b) have a single lipid membrane surrounded by a cell wall composed of a thick layer of peptidoglycan and lipoteichoic acid, anchored to the cell membrane by diacylglycerol. Cell walls of mycobacteria (c) entail thin layers of peptidoglycan and arabinogalactan, and a thick layer of mycolic acids with glycolipids and porins also found in the cell walls, as well as lipoarabinomannan, which is anchored to the cell membrane by diacylglycerol (Brown *et al.*, 2015).

1.4 Pathogenicity of non-tuberculous mycobacteria and risk factors for infection.

NTM are ubiquitous environmental organisms found in soil, dust particles, biofilms and water. The virulence of NTM varies by species, but is usually low in immunocompetent individuals. As exposure to these organisms is widespread and disease is infrequent, it can be established that host defences are normally adequate to impede infection. The infective dose for NTM infection is unknown, however it follows that individuals that develop disease are thought to have abnormal susceptibility, intense exposure or immune defects that permit infection with NTM (Sexton and Harrison, 2008; Al-Anazi *et al.*, 2014).

Due to their profound immune suppression, individuals with HIV infection are frequently identified as having increased morbidity due to NTM (Corti and Palmero, 2008), and a CD4+ T cell count of less than 50 cells/µL is associated with increased risk of disseminated NTM disease (Mirsaeidi *et al.*, 2014). However the prevalence of NTM infections is also increasing in non-HIV patients, for example in patients on tumour necrosis factor α (TNF- α) pathway blockers (Winthrop *et al.*, 2009), individuals with bronchiectasis (Griffith and Aksamit, 2012) or chronic obstructive pulmonary disease (Huang *et al.*, 2012). Patients with genetic syndromes relating to mutations in the interleukin-12 or interferon γ pathways are also at risk for developing opportunistic infections such as those caused by NTM and the same applies to those with immunodeficiency syndromes (Sexton and Harrison, 2008). Additionally, female non-smokers aged between 50 and 80 with a lean body and some with characteristic features such as scoliosis, pectus excavatum, or mitral valve prolapse are more susceptible to pulmonary NTM compared to the rest of the population (Chan and Iseman, 2010). The body morphotype itself may be an

influential characteristic through features such as poor tracheobronchial secretion drainage or ineffective mucociliary clearance (Griffith *et al.*, 2007). Cystic fibrosis (CF) has also been progressively associated with an increased prevalence of NTM infection (Olivier *et al.*, 2003).

Typically the cause of morbidity and mortality is through slowly progressive and chronic lung disease, however NTM have the potential to infect any organ in the human body and have frequently been isolated from skin and soft tissue, bone, joint, septic arthritis and central nervous system disease. Disseminated disease generally occurs in patients who are immunocompromised, and lymphadenitis can occur in otherwise healthy young children (Mirsaeidi *et al.*, 2014).

The most common NTM species associated with pulmonary infection are members of MAC. *Mycobacterium kansasii*, another slow-growing NTM, is the second most common cause of pulmonary infection, followed by members of the rapidly-growing MABSC (Johnson and Odell, 2014).

1.5 Association of non-tuberculous mycobacteria with cystic fibrosis

Interest is now being paid to pulmonary disease in CF patients caused by NTM. Although the occurrence of NTM disease in the general population is around 1 in 100,000, there is a 10,000-fold greater prevalence within patients with CF. It is becoming progressively difficult to recognise and treat (Wentworth *et al.*, 2013) with overall prevalence of NTM in CF sputum varying between 6% to 13% (Olivier *et al.*, 2003; Martiniano *et al.*, 2016). The predominant species of NTM within the CF population in the UK are rapid growers within the MABSC (62% of NTM cases in adults, 68% of NTM cases in children) followed by slow-growing MAC (28% of NTM cases in adults, 27% of NTM cases in children) (Seddon *et al.*, 2013). Other species (*M. gordonae, M. kansasii, M. xenopi, M. fortuitum, M. simiae, M. malmoense, M.*

mucogenicum, M. perigrinum) together make up 8% of the total. In the US, major species are MAC 72% and MABSC 16% (Olivier *et al.*, 2003; Seddon *et al.*, 2013). This was consistent with similar studies completed in France (Roux *et al.*, 2009). A study in Israel had high rates of NTM with 22.6% isolation among patients with CF. Both MAC (14.3% of patients tested) and MABSC (31% of patients tested) were frequent; however the principal species was *M. simiae*, with 40.5% of all CF patients tested being infected with this species (Levy *et al.*, 2008). Intriguingly, of the two predominant species, MAC was rarely seen in patients younger than fifteen years, whereas MABSC was isolated from all ages (Pierre-Audigier *et al.*, 2005).

Before 1990, NTM were not predominantly linked to CF, with only 16 cases reported (Brown, 2010). Since then, NTM have been progressively isolated from the sputum of CF patients and are presenting increasingly complex diagnostic concerns. This could be for a variety of reasons, for example, the rising lifespan of CF patients, recent improvements in culture techniques and increased testing frequency, actively probing for NTM, transmission via contaminated water supplies, biofilms in showerheads (Feazel et al., 2009), and hosts becoming more predisposed (Olivier et al., 1996). Immune impairment due to chronic azithromycin therapy has recently been associated with an increase in the development of NTM infection. For longterm azithromycin therapy, it was demonstrated in primary macrophages that concentrations of azithromycin blocked autophagosome clearance by inhibiting lysosomal acidification, thus impairing autophagic and phagosomal degradation in mice infection models. As a consequence azithromycin treatment repressed intracellular killing of mycobacteria within macrophages consequently resulting in chronic infection with NTM (Renna et al., 2011). Conflicting reports however state that patients with NTM on azithromycin treatment were not more likely to develop active NTM disease than those not taking azithromycin, and were also not less likely

to clear NTM upon treatment (Martiniano *et al.*, 2014). Recent data exists that NTM may also be spread by person to person transmission (Bryant *et al.*, 2013) however conflicting reports suggests there is no evidence for this (Harris *et al.*, 2015).

1.6 Cystic fibrosis

Cystic fibrosis is a complex genetic disease first described in 1938 by Dorothy Andersen, a pathologist at The Babies and Children's Hospital of Columbia University in New York (Andersen, 1938). However the gene responsible for CF was not identified and cloned until over half a century later in 1989 (Kerem *et al.*, 1989). CF is an autosomal-recessive disorder inherited in a typical Mendelian manner and triggered by molecular defects in the CF transmembrane conductance regulator (CFTR) gene (Cutting, 2015). The CFTR gene is located on the long arm of chromosome 7 at position q31.2, and encodes a 1480 residue multidomain protein for an ion channel responsible for the regulation and transportation of chloride (Gadsby *et al.*, 2006), bicarbonate (Chan *et al.*, 2006) and glutathione (Kogan *et al.*, 2003) across epithelial cell membranes.

The CFTR protein is a member of the ATP-binding cassette (ABC) transporter superfamily (Lewis *et al.*, 2004), controlled by cyclic adenosine monophosphate (cAMP), and is essential for the regulation of cell surface salt-water homeostasis, and the natural functioning of epithelia lining the intestinal tract and airways, as well as the salivary, sweat gland and pancreatic ducts. Defects in this gene, such as impaired protein folding, chloride channel gating or translation, subsequently result in a decreased permeability for chloride ions across the epithelial membrane. This in turn is responsible for the characteristic build-up of a thick sticky mucus accumulating in the airways, intestines and pancreas resulting in compromised mucociliary clearance, a predisposition to chronic infection, inflammation and

destruction or loss of tissues (Figure 1-3). This provides an ideal environment for harbouring frequent and often severe bacterial infections. The accumulative effect of chronic infection and inflammation over time will erode the function of the lungs, and this is frequently observed in patients with CF.

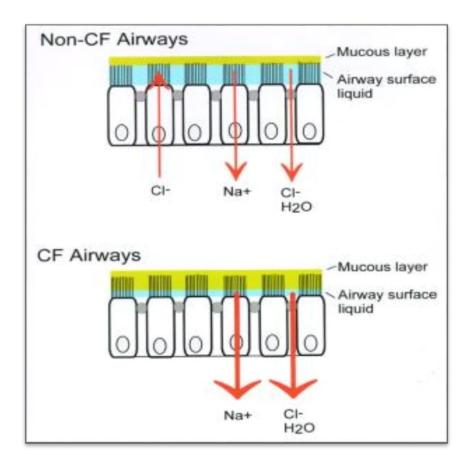


Figure 1-3: Transport in CF versus non-CF airways. In the CF airways due to defective or absent CFTR, mucociliary clearance is not able to occur (Kunzelmann, 2013)

1.6.1 Inheritance of cystic fibrosis

To date there are almost 2000 known CFTR defects (Cystic Fibrosis Mutation Database, 2011), and depending on their effect at the protein level, they are grouped into six classes (Kreindler, 2010; Boyle and De Boeck, 2013). Under normal circumstances, the CFTR gene is transcribed into mRNA, transferred to the

endoplasmic reticulum and in combination with tRNA will be translated into a fully functioning CFTR protein, which is subsequently folded, matured and transferred to the Golgi apparatus for post-translational modification and packaging into transport vesicles. Lastly, the channel is transported to the cell surface for final expression on the apical membrane of epithelial cells. Mutations in the *CFTR* gene can impact each step in protein synthesis: from gene transcription, through protein translation, folding and trafficking, to expression and gating of the channel on the cell surface (Tsui and Dorfman, 2013).

The most frequent mutation, although the frequency does vary among ethnic groups, occurring in around 70% of CF chromosomes is known as CFTR Δ F508. This involves a deletion of phenylalanine at position 508 producing an abnormal CFTR protein (Villella *et al.*, 2013). As a result of this, the protein will be misfolded and subsequently retained within the endoplasmic reticulum failing to reach the cell membrane and function as a chloride channel in the apical membrane of epithelial cells.

As CF is a recessive disorder, two copies of the defective gene must be inherited, however patients can display severe or mild disease, depending on which clinical genotype they possess and whether it is homozygous or heterozygous. Many individuals possess only one copy of the defective gene and are unaware they are carriers of CF (see Figure 1-4). Reports suggest that in the UK one person in every 25 will carry a mutated CF gene, and in the US, one in 31 will unknowingly carry a mutated gene (Cystic Fibrosis Foundation, 2015; Cystic Fibrosis Trust, 2015). Prevalence of CF worldwide differs and is said to be underdiagnosed in Asia as existing evidence suggests it is rare. In the US the incidence is reported to be one in every 3500 births, and in Europe one in every 2000-3000 births (World Health Organization, 2013).

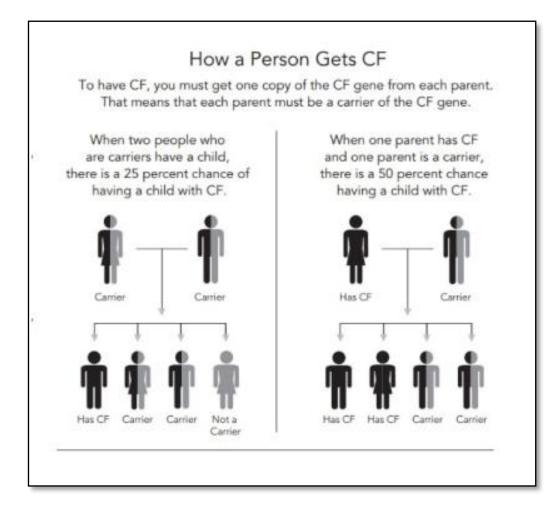


Figure 1-4: Ways in which an individual can be affected with cystic fibrosis (Cystic Fibrosis Foundation, 2015)

1.6.2 Symptoms of cystic fibrosis

The severity of symptoms can vary between individuals, and also fluctuates over time, however characteristic CF symptoms can manifest very early in life, some within days of birth and include salty tasting skin, meconium ileus, wheezing and failure to thrive (Farrell *et al.*, 2008). Patients may have recurrent or chronic lower respiratory tract infections, with approximately one third of infants aged three months being positive for *Staphylococcus aureus* infection rising to 47% by age 17 months alongside *Haemophilus influenzae* 15%, and *Pseudomonas aeruginosa*

13% (Metersky, 2012). Most patients with CF will be infected with *P. aeruginosa* by their late teens. This bacterium has the ability to form biofilms on damaged respiratory epithelium tissue, therefore establishing chronic infection and antibiotic resistance associated with early degeneration in lung function and a rise in mortality (Hurley *et al.*, 2014). Allergic bronchopulmonary aspergillosis (ABPA) is the most frequent fungal infection amongst CF patients (Smyth and Elborn, 2008). Other CF symptoms include stomach pain, nausea, weight loss, increased coughing, shortness of breath, pancreatitis, excess sputum, infertility and loss of appetite. Most patients with CF will die of respiratory failure with the majority of symptoms instigated by chronic and intermittent bacterial infections (FitzSimmons, 1994).

1.6.3 Lung disease in patients with cystic fibrosis

Patients with CF have a median survival of 40 years (Dodge *et al.*, 2006; Hardy *et al.*, 2015) and lung disease is the leading cause of morbidity and mortality. CF patients are predisposed to chronic pulmonary infections, with the lungs frequently colonised and/or infected with multiple species of bacteria concurrently due to defects within the transport of epithelial Na⁺, Cl⁻, HCO3⁻ and unbalanced fluid secretions. It is these defects, which underlie the majority of clinical manifestations observed in CF.

CF patients enter a typically described "vicious cycle" of compromised mucociliary clearance and mucus retention, followed by infection and inflammation subsequently leading to tissue damage (Chmiel and Davis, 2003). This tissue damage, lack of fluid secretion and extreme electrolyte absorption, cause excess viscous and dense mucus to accumulate within the respiratory and gastrointestinal tracts, blocking the airways and preventing mucociliary clearance (Figure 1-5).

Consequently, this provides an ideal environment to promote bacterial growth whilst trapping and enabling inhaled pathogens to accumulate.

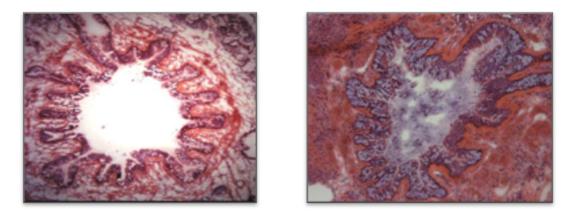


Figure 1-5: Normal airway with lumen free of secretions (left). In contrast, airway obstructed and distended by mucus secretions (right) (Quinton, 2010)

1.6.4 Common pathogens involved in lung disease of patients with cystic fibrosis

During childhood, the first bacterial pathogens to be detected are usually *S. aureus* and *H. influenza*. These pathogens are eventually superseded in adolescence and adulthood where the dominant pathogen is *P. aeruginosa*, and less frequently *Burkholderia cepacia* complex, *Achromobacter xylosoxidans, Aspergillus fumigatus* and NTM - in particular members of the MABSC (Coutinho *et al.*, 2008).

1.7 *Mycobacterium abscessus* complex

MABSC is a highly antibiotic-resistant complex of organisms within the *Mycobacterium* genus (Leung and Olivier, 2013) and increasingly acknowledged as a significant cause of lung infection in patients with CF. Infection with MABSC, predominantly *M. abscessus* subsp. *abscessus*, is associated with poor clinical outcome (Esther *et al.*, 2005) particularly following lung transplantation, with many CF centres eliminating patients infected with MABSC from undergoing transplant

(Gilljam *et al.*, 2010; Watkins and Lemonovich, 2012). Elevated resistance is attributed to a combination of the permeability barrier of the intricate multilayer cell membrane, drug export systems, enzymes that neutralize antibiotics in the cytoplasm and antibiotic targets with low affinity (Nessar *et al.*, 2012).

The genome of *M. abscessus* (CIP 104536T), as shown in Figure 1-6, consists of a 5,067,172 base pair circular chromosome including 4920 predicted coding sequences, an 81kb full length prophage, five insertion sequences and a 23kb mercury resistance plasmid (Ripoll *et al.*, 2009).

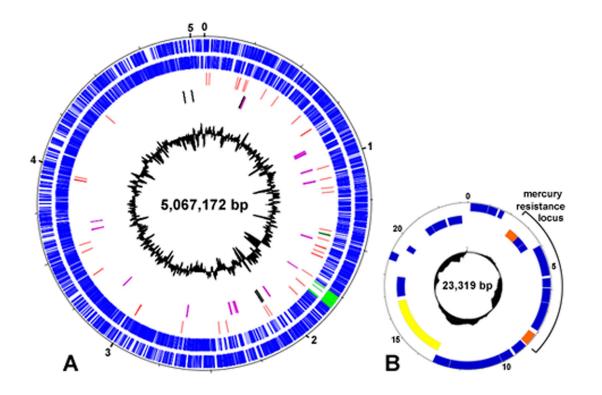


Figure 1-6: The *M. abscessus* CIP 104536T genome.

Figure 1-6 scale is in Mb with the outer blue circles displaying forward and reverse genes, light green phage genes and third circle tRNA genes (red) and rRNA operon (dark green). The fourth circle shows genes acquired from non-mycobacterial organisms, by horizontal gene transfer (purple) and insertion sequence elements (black). The inner black histogram shows the G + C content. The 23kb mercury resistance plasmid, (scale in kb) indicates the forward and reverse genes and the G+C content with the same code as the chromosome map. The plasmid carries a mercury resistance operon flanked by two genes encoding site-specific recombinases (MAB_p04c and MAB_p10, orange); it also encodes a relaxase/helicase that may function in conjugation or mobilization (MAB_p15c, yellow) (Ripoll *et al.*, 2009).

Members of the MABSC are rapidly-growing non-motile, Gram-positive, acid-fast rods of around 0.5 µm in width and 1 - 2.5 µm in length, and can grow on solid agar as either smooth non-cording biofilm-forming colonies, or rough cording, non-biofilm forming colonies as shown in Figure 1-7 (Roux *et al.*, 2016). The rough morphotype is associated with more severe and unrelenting infection and has been shown to persist for many years in an infected host. Glycopeptidolipids are accountable for the formation of smooth colonies and contribute to colonisation of NTMs in the environment through biofilm formation, whereas the loss of these glycopeptidolipids is associated with the formation of rough colonies and expedites survival in macrophages (Jonsson et al., 2007). The rough colony types can evade internalisation by forming cords which compared to the size of most phagocytic cells are particularly large, therefore difficult for macrophages and neutrophils to surround and internalise (Bernut et al., 2014). Strains are also reported to undergo frequent transition between smooth and rough morphotypes during the course of infection, however recent evidence suggests clearly distinct genetic lesions are responsible for the loss of production and transport of glycopeptidolipids making frequent switching between morphotypes questionable (Pawlik et al., 2013).

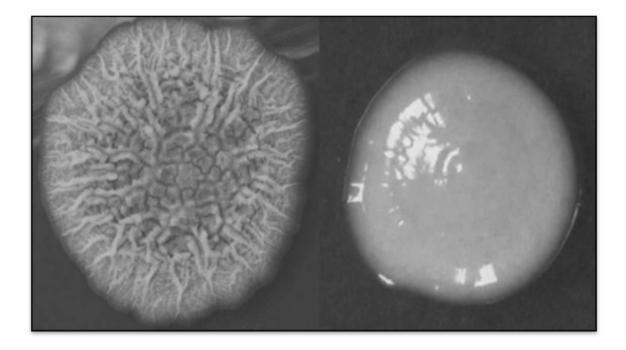


Figure 1-7: Growth characteristics of rough (left) and smooth (right) *M. abscessus* subsp. *abscessus* cultured on Middlebrook 7H11 agar. Image taken from (Ruger *et al.*, 2014)

Since *M. abscessus* was first described in 1953 by Moore and Frerichs after a case report of a human knee infection with deep subcutaneous abscess-like lesions (Moore and Frerichs, 1953), it has undergone numerous changes in its taxonomic status owing to indistinguishable results in discrimination. Prior to 1992, *M. abscessus* and *M. chelonae* were thought to be the same organism or subspecies within the *M. chelonae-abscessus* group (Kusunoki and Ezaki, 1992), and *M. abscessus* has also been grouped within the *M. fortuitum* complex (Kubica *et al.*, 1972).

A further two emerging species of mycobacteria closely related to *M. abscessus* have been discovered In the last decade; *M. abscessus* subsp. *massiliense* (Adekambi and Drancourt, 2004) and *M. abscessus* subsp. *bolletii* (Adekambi *et al.*, 2006). Collectively these three species are frequently referred to as the MABSC,

however, the taxonomy of these organisms, which cannot be distinguished by phenotypic techniques, has initiated some dispute in the literature.

All three species have identical 16S rRNA gene sequences; therefore, discrimination has proved challenging. Blauwendraat et al (2012) described a twogene sequencing approach using PCR and the sequencing of housekeeping gene targets *hsp65* and *rpoB*, which claimed to accurately distinguish the three species (Blauwendraat et al., 2012), however several others have reported findings that partial sequencing of rpoB, hsp65, and secA provided ambiguous results, suggesting members of the *M. abscessus* group undergo genetic exchange (Zelazny et al., 2009). Reports have suggested that the three species are too strongly correlated to be considered as separate species (Macheras et al., 2009), and Leao et al. combined M. bolletii and M. massiliense into one subspecies, named *M. abscessus* subspecies *bolletii* comb. nov and recognised a second subspecies named *M. abscessus* subspecies *abscessus* (Leao *et al.*, 2011). Conflicting reports from higher resolution typing including whole genome sequencing recently supported the suggestion that the species should be divided into three subspecies; M. abscessus subsp. abscessus, M. abscessus subsp. bolletii and M. abscessus subsp. Massiliense (Harris and Kenna, 2014; Nakanaga et al., 2014; Tortoli et al., 2016). Despite consensus not being reached to date, the three species are known to have differing antibiotic resistance phenotypes and genotypes (Kim et al., 2010b), therefore strain typing is advantageous for patients with CF who have MABSC infection to receive the correct course of treatment. The use of comparative rRNA sequencing is frequently done to infer natural relationships between microorganisms (Woese and Fox, 1977). Figure 1-8 shows a phylogenetic tree of 29 mycobacterium species, clearly defining the separation of slow growers from rapid growers and also demonstrates the closeness of the three MABSC species.

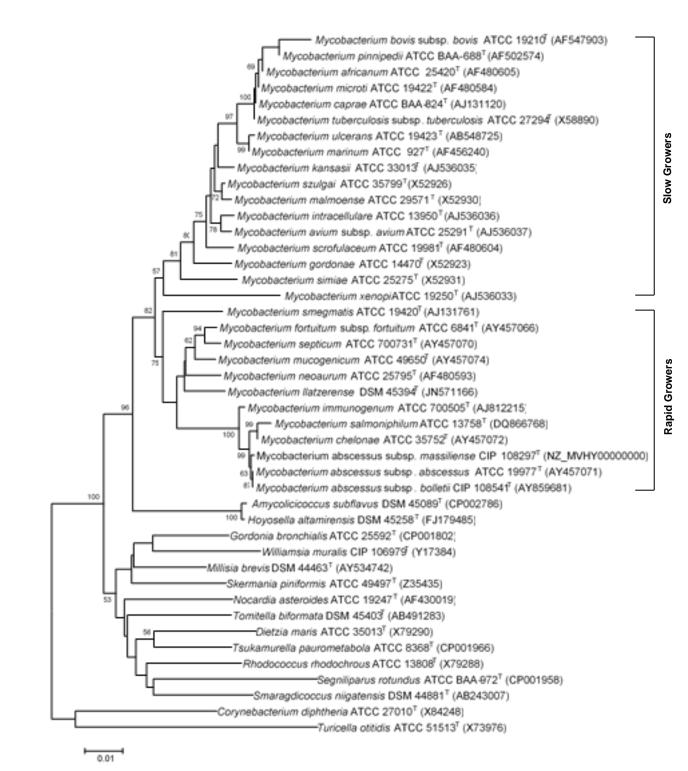


Figure 1-8: Neighbour-joining tree (Saitou and Nei, 1987) based on almost complete 16S rRNA gene sequences showing the positions of 29 members of the genus *Mycobacterium* discussed within this thesis, with representatives of the order *Corynebacteriales*. The numbers at the nodes indicate the levels of bootstrap support based on a neighbour-joining analysis of 1,000 resampled datasets; only values above 50 % are given. The scale bar indicates 0.01 substitutions per nucleotide position. Tree was produced using MEGA7 program (MEGA, 2017).

1.8 Host immune response to mycobacterial infection

Very little is known about the host response to NTM (Chan *et al.*, 2010) and despite the fact that they are ubiquitous in the environment only an small proportion of individuals exposed to NTM develop lung disease. Identifying these individuals with conditions that predispose them to NTM infection can provide an insight into what host immune factors are essential in protection against NTM.

As chronic respiratory infections due to NTM, particularly MABSC are increasingly seen in patients with CF this leads to the hypothesis that these patients may have an inherent susceptibility to NTM, or it could be that persistent bacterial infection is able to provide a suitable environment for colonisation by environmental mycobacteria.

CF is also known to cause a functional defect in antimicrobial peptides known as β defensins found in epithelial cells. These protect against Gram-positive and Gramnegative bacteria, fungi and certain viruses by interacting with the membrane of invading microorganisms (Dalcin and Ulanova, 2013). The surface fluid of normal airways is low in salt, which favours the activity of defensins, however CF fluid has been described to be very high in salt due to dysfunction of CFTR protein that forms chloride ion channels. This high salt environment may inhibit defensin activity and compromise host respiratory defence, therefore patients with CF may have innate susceptibility to NTM infection (Chan *et al.*, 2010).

1.9 Diagnosing non-tuberculous mycobacteria in patients with cystic fibrosis

Identifying patients with NTM is challenging, with conventional culture and acid-fast microscopy continuing to be the mainstay of mycobacterial diagnostics. Current guidelines (Floto *et al.*, 2016) suggest that for any patient suspected of having NTM

lung disease, the following evaluation must be completed: (1) chest radiograph or, in the absence of cavitation, chest high resolution computed tomography (HRCT) (2) three or more sputum samples showing the presence of acid-fast bacilli (AFB) and (3) exclusion of other disorders, for example TB. All are equally significant and must be met. The following criteria have been established for symptomatic patients with radiographic opacities, nodular or cavitatary or an HRCT scan that shows multifocal bronchiectasis with multiple small nodules (Floto *et al.*, 2016). The criteria best fit with MAC, MABSC and *M. kansasii*, as there are still too many ambiguities with regard to other NTM to ascertain whether these criteria are unanimously appropriate for all NTM respiratory pathogens.

Clinical:

(i) Pulmonary symptoms, nodular or cavitary opacities on chest radiograph or an HRCT scan that shows multifocal bronchiectasis with multiple small nodules.(ii) Appropriate exclusion of other diagnoses

Microbiological:

(i) At least two separate expectorated sputum samples with positive results OR (ii) A positive culture result obtained from a bronchial lavage or wash OR (iii) Transbronchial or other lung biopsy with mycobacterial histopathologic features (granulomatous inflammation or AFB) and positive culture for NTM or biopsy showing mycobacterial histopathologic features (granulomatous inflammation or AFB) and one or more sputum or bronchial washings that are culture positive for NTM.

Patients who do not meet the diagnostic criteria but are suspected of having NTM lung disease should be regularly monitored until a positive diagnosis is definitively documented or can be excluded (Griffith *et al.*, 2007).

1.9.1 Collection of samples from patients with cystic fibrosis

There are numerous methods that can be used for the collection of respiratory samples from patients with CF. The traditionally preferred method being the collection of sputum; however, in CF patients who do not expectorate, samples can be obtained preferably by cough swab, as this is less invasive than other methods. Cough swabs however can contain higher levels of oral flora and are less sensitive for detection of mycobacteria compared to culture of sputum. Bronchoalveolar lavage, cough plate, oropharyngeal culture, laryngeal or naso-pharyngeal aspirate can also be used. Current guidelines (Floto et al., 2016) recommend against the use of oropharyngeal swabs as they are said to poorly reflect lung microbiota due to insufficient material for culture, and although culture of bronchoalveolar lavage gives an accurate representation of microorganisms present, it is a method that should be avoided in children as general anaesthesia is often required (Burns and Rolain, 2013). Transbronchial biopsies are to be circumvented, as there is a substantial risk of bleeding and pneumothorax. Updated evidence-based draft guidelines on the Management of Non-tuberculous Mycobacteria in individuals with Cystic Fibrosis have recently been published recommending that preference should be given to sputum, induced sputum, bronchial washings or bronchial lavage samples (Floto et al., 2016).

1.9.2 Current detection methods of non-tuberculous mycobacteria in patients with cystic fibrosis

Although classed as "rapidly-growing" mycobacteria (RGM), the 'rapidity' of the growth rate is only relative to that of other mycobacteria, and they show slower growth when compared to most other CF pathogens (Esther *et al.*, 2011).

Conventionally, a time to detection cut-off of seven days has been used to differentiate rapidly-growing and slow-growing mycobacteria on solid media, however growth detection can fluctuate depending on the number of organisms in the sample and detection times become shorter as the mycobacterial burden rises. Other factors affecting this can include the type of medium used and the age of the sample. In comparison to RGM, *M. tuberculosis* has a TTD of around six to eight weeks. Liquid culture has a more rapid TTD, with a cut off between RGM and SGM of six days, however the rate of contamination of non-mycobacterial species is greater (Chihota *et al.*, 2010).

Overgrowth of cultures by a variety of other faster growing microorganisms, particularly *P. aeruginosa*, is commonly observed in patients with CF, (Bange *et al.*, 1999). Due to this overgrowth, laboratory detection and identification of NTM pose a major challenge, and mycobacterial infections can often be misdiagnosed, or concealed and completely overlooked in routine culture.

To decrease the commensal flora associated with the airways and digestive tract and consequently reduce overgrowth of cultures, samples are decontaminated prior to inoculating them on selective media (See Chapter 2 section 1.9.5 for information on current media used for isolation of NTM).

1.9.3 Decontamination steps performed upon receipt of a patient sample

Decontamination methods take advantage of the fact that mycobacteria demonstrate relative resistance to acids, bases and other antimicrobial agents, compared with non-acid-fast bacteria. *P. aeruginosa* characteristically survives routine sputum decontamination using *N*-acetyl-L-cysteine–2% sodium hydroxide (NALC-NaOH), therefore to ensure eradication, the most universally used laboratory

decontamination process is NALC-NaOH-OxA using 5% oxalic acid (De Bel *et al.*, 2013).

Following a study by Whitter *et al* (1997), it was shown that NALC-NaOH treatment followed by oxalic acid significantly reduced overgrowth by *P. aeruginosa*. This method was further evaluated and results confirmed that although this two-step NALC-NaOH-OxA process improved the yield of mycobacteria as well as reducing other microorganisms, it can also affect the viability of mycobacteria (Whittier *et al.*, 1997).

Bange *et al.*, (1999) reported that treatment with oxalic acid may lead to false negatives being produced, particularly from specimens with low inocula of mycobacteria. Based on this, they reported that samples should be initially decontaminated with NALC-NaOH, and then inoculated for culture. Only those that still contained heavy growth of other species should then be subjected to a second round of decontamination with oxalic acid. This is the strategy currently recommended in the newly published guidelines produced by the US and European Cystic Fibrosis Societies (Floto *et al.*, 2016)

A comparison of four decontamination processes for stool samples from patients known to have *M. avium* was carried out by Yajko *et al.*, (1993). These were NALC-NaOH, cetylpyridinium chloride-sodium chloride (CPC-NaCl), NALC-NaOH-OxA and benzalkonium chloride-trisodium phosphate (BC-TSP). Results demonstrated that a higher yield of colony forming units (CFU) of *M. avium* was obtained following oxalic acid treatment, whereas NALC-NaOH produced around half the number of CFU per millilitre when compared with treatment by oxalic acid. CPC-NaCl and BC-TSP had the lowest rates of survival of non-mycobacterial species, but also yielded the lowest number of CFU of *M. avium*. These results show that although the process of decontamination is essential for the recovery of mycobacteria using

traditional culture methods, a fine sense of balance must be sought as the process of decontamination can still influence the viability of mycobacteria, as well as reducing the growth of non-acid-fast bacteria (Yajko *et al.*, 1993).

The NALC-NaOH-OxA method was compared to a chlorhexidine-based method and it was found that although rates of growth of non-mycobacteria were higher with the chlorhexidine-based method, a higher yield of NTM was also recovered (Ferroni et al., 2006). Although this study used sputum samples from patients with CF, it did not include clinical samples containing *M. abscessus*, a strain most frequently found in these patients so this may not provide an accurate representation. It was confirmed by De Bel et al. (2013) that the use of chlorhexidine did yield more mycobacteria than NALC-NaOH-Oxa, however if liquid culture is used as opposed to solid culture, the recovery of mycobacteria was consistent for both methods (De Bel et al., 2013). A short study undertaken by the Health Protection Agency, Newcastle upon Tyne, UK (personal communication, March 15th 2013) over a 4month period in 2012 exhibited the following rates of contamination of sputum samples in CF patients (See Table 1-2). The decontamination processes used in this study were 4% sodium hydroxide (NaOH) or 0.5N (N/2) sulphuric acid (H₂SO₄) and culture method used was BACTEC mycobacterial growth indicator tube (MGIT) 960 Mycobacterial Detection System with eight weeks incubation.

Current recommendations by the UK Cystic Fibrosis Trust are that either NALC-NaOH-OxA or chlorhexidine methods should be used in order to significantly reduce the viability of other microorganisms, particularly *P. aeruginosa* (The UK Cystic Fibrosis Trust Microbiology Laboratory Standards Working Group, 2010).

	SEPTEMBER	OCTOBER	NOVEMBER	DECEMBER
Number of samples received	39	41	49	33
Culture negative after 8 weeks incubation	27 (69.23%)	29 (70.73%)	29 (60%)	24 (72.7%)
Culture abandoned. Contamination after decontamination	10 (25.64%)	8 (19.51%)	16 (33%)	6 (18.2%)
Culture positive for	2 (5.13%)	4 (9.75%)	3 (6%)	3 (9.1%)
mycobacteria				

Table 1-2: Audit of respiratory samples from cystic fibrosis patients receivedby the Public Health England Laboratory, Newcastle upon Tyne showingcontamination rates over a 4 month period in 2012

1.9.4 Staining of sputum smears for acid-fast bacilli (AFB)

Staining of sputum smears for AFB can be done, preferably using the fluorochrome method with auramine-phenol as opposed to staining by the Ziehl-Neelsen method as the former is reported to be more sensitive and can be advantageous in assessing the burden of organisms in the lungs (Cystic Fibrosis Trust, 2010).

The Ziehl-Neelsen stain is a low cost procedure but is burdensome and carries a higher risk to laboratory workers as it requires heat application during the carbol-fuchsin staining. Overheating may crack the slide, and also cause splashing of the stain. Slides are examined under oil immersion and acid-fast bacteria appear red/pink, and non-acid-fast bacteria as well as other organisms and cellular materials appear blue.

Fluorescent staining, utilises the same approach as Ziehl-Neelsen staining, but carbol fuchsin is replaced by a fluorescent dye (auramine-O, rhodamine). The advantage of the fluorescence method is that it is more sensitive and slides can be

observed at lower magnification therefore allowing the examination of a much larger area in a shorter time period (Annam *et al.*, 2009).

1.9.5 Current media used for isolation of non-tuberculous mycobacteria

The most frequently used solid-based culture media for the isolation of NTM are agar-based Middlebrook 7H10 and 7H11 media or egg-based Lowenstein–Jensen medium (Burns and Rolain, 2013). Culture on *Burkholderia cepacia* selective agar (BCSA) has been shown to be effective for isolation of NTM if incubation is prolonged from five to fourteen days and Esther *et al.*, (2011) demonstrated that extended incubation of BCSA afforded an increased recovery rate of NTM from 0.7% to 2.8% using routine culture methods. However, not all NTM will grow on BCSA and overgrowth, particularly by fungi and Gram-negative bacteria, remains problematic (Esther *et al.*, 2011). Although some endorse this method, it is not specifically recommended in the CF guidelines for management of NTM (Floto *et al.*, 2016). *M. avium* complex cannot be recovered from BCSA, *Mycobacterium haemophilum* requires ferric ammonium citrate in order to grow and *Mycobacterium ulcerans* needs egg yolk supplement in the medium (Griffith *et al.*, 2007).

Other media that have been used for the isolation of mycobacteria include Kirchner medium (Sparham *et al.*, 1984), Stonebrink medium (Stonebrink *et al.*, 1969), Ogawa and modified Ogowa medium (Kalich *et al.*, 1976), however these are most suited to the culture of MTb, rather than NTM. It is recommended that samples should also be cultured in liquid broth medium as this can provide more rapid results as well as an increased yield of mycobacteria (Johnson and Odell, 2014).

The most commonly used liquid broth is the MGIT which contains modified Middlebrook 79H broth base, casein peptone, oleic albumin dextrose catalase (OADC) and PANTA antibiotic mixture comprising of polymyxin B, amphotericin B, nalidixic acid, trimethoprim and azlocillin (Assawy *et al.*, 2014). A fluorescent compound embedded within the tube is sensitive to dissolved oxygen and when actively respiring bacteria consume the oxygen this allows the fluorescence to be visualised under ultra violet light and detected using sensitive instrumentation e.g. the BACTEC MGIT 960 Mycobacterial Detection System (Tortoli *et al.*, 1999).

BacT/ALERT 3D is an automated microbial detection system based on the colorimetric detection of CO₂ produced by growing microorganisms. The growth medium contains oleic acid, glycerol, bovine serum albumin, and amaranth in water, as well as amphotericin B, azlocillin, nalidixic acid, polymyxin B, trimethoprim, and vancomycin (Angeby *et al.*, 2003).

The use of solid media also has the added benefit that colony morphology can be observed, as well as growth rate, the option to perform antibiotic susceptibility tests and recognising if more than one species of NTM is present (Griffith *et al.*, 2007).

Detection of NTM is routinely achieved by culture of sputum onto both solid media, (e.g. Lowenstein–Jensen medium) and automated broth-based methods following decontamination of samples (Whittier *et al.*, 1993; Burns and Rolain, 2013).

1.9.6 Molecular detection methods for non-tuberculous mycobacteria

Although a typical diagnosis of NTM is achieved by direct analysis and culture, molecular based diagnostics are now becoming frequently used to diagnose disease, offering increased sensitivity and specificity (Lima *et al.*, 2013). Despite their availability they can however be costly, labour intensive, demand greater training requirements, and sample contamination could be responsible for producing false results. Sequencing of genes such as *rpoB*, 16S rRNA, and *hsp65* offer prompt and accurate identification although still have technical restrictions, and these

methods may not be readily available in many laboratories (Harris and Kenna, 2014).

Commercial line probe assays such as Genotype Mycobacterium CM (common mycobacteria) and Genotype Mycobacterium AS (additional species) (HAIN Lifescience, 2015), or INNO-LiPA MYCOBACTERIA v2 (Fujirebio, 2015) can accurately identify many of the frequently encountered NTM species. INNO-LiPA MYCOBACTERIA can identify sixteen different mycobacterial species targeting the 16S-23S rRNA internal transcribed spacer (ITS) region (Tortoli *et al.*, 2003). The GenoType Mycobacterium is centred on the reverse line probe hybridization assay, and utilises commercial DNA strip assays used for the detection and identification to the species level of mycobacteria isolated from positive liquid or solid cultures. It comprises two kits: the GenoType CM, for common mycobacteria and GenoType AS, for additional species assays. Genotype Mycobacterium CM (Figure 1-9) targets the 23S rRNA gene and is able to identify 24 NTM species and Genotype Mycobacterium AS (Figure 1-10), which also targets the 23S rRNA gene, can identify an additional 19 NTM species (Gitti *et al.*, 2006).

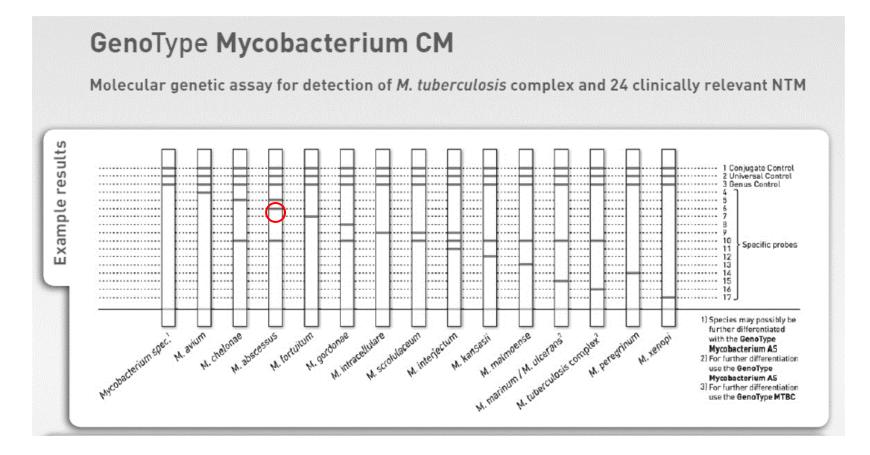


Figure 1-9: GenoType Mycobacterium CM permits the identification of the following mycobacterial species: *M. avium* subspecies, *M. chelonae*, *M. abscessus*, *M. fortuitum*, *M. gordonae*, *M. intracellulare*, *M. scrofulaceum*, *M. interjectum*, *M. kansasii*, *M. malmoense*, *M. marinum/M. ulcerans*, *M. peregrinum*, *M. tuberculosis* complex, and *M. xenopi*.

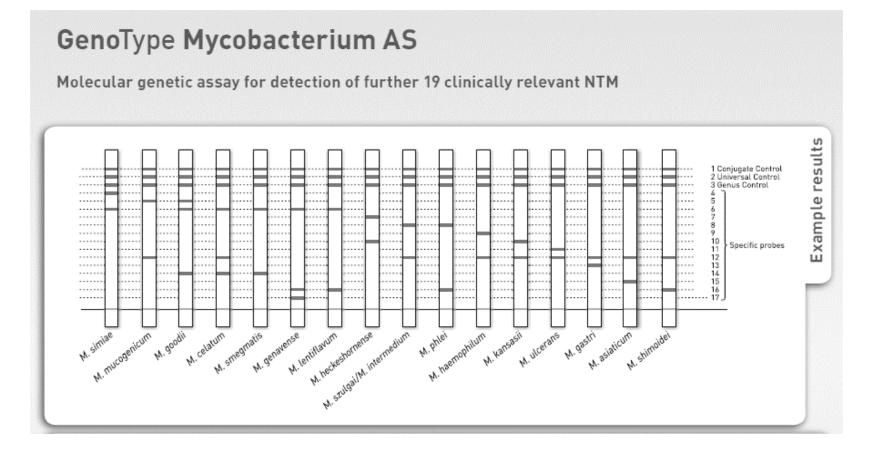


Figure 1-10: GenoType Mycobacterium AS provides probes for a series of additional NTM, namely, *M. simiae*, *M. mucogenicum*, *M. goodie*, *M. cellatum*, *M. smegmatis*, *M. genavense*, *M. lentiflavum*, *M. heckeshornense*, *M. szulgai*, *M. phlei*, *M. hemophilum*, *M. kansasii*, *M. ulcerans*, *M. gastri*, *M. asiaticum*, and *M. shimoidei*

The disadvantage of these kits is that the distinction between MABSC and *M. chelonae* can be questionable and is often a subjective judgement (Portaels *et al.*, 1996; Richter *et al.*, 2006; Arnold *et al.*, 2012). Genotype *Mycobacterium* CM kit has only one variance at position six between these two sub-species where *M. abscessus* has one extra band (as shown by circle on Figure 1-9), which on occasion can be very difficult to visualise, with often very faint and barely detectable bands subsequently giving a false identification of *M. chelonae*. Neither assay, CM or AM can discriminate between the three *M. abscessus* subspecies (Scarparo *et al.*, 2001). This lack of accuracy in identification is a cause for concern as it may influence patient management, in particular in making a judgement of whether to list patients for lung transplantation due to MABSC being linked to poorer clinical outcomes than those witnessed in patients infected with *M. chelonae*.

More accurate identification can be attained by performing PCR and sequencing of house-keeping gene targets such as *hsp65, sodA, rpoB* and *secA*, and whilst most isolates can be identified with the use of two target genes (Adekambi and Drancourt, 2004; Blauwendraat *et al.*, 2012), multilocus sequence analysis (MLSA) is required to differentiate between the three MABSC subspecies as often inconclusive results are attained where isolates have chimeric housekeeping gene sequences, likely as a result of recombination or horizontal gene transfer (Macheras *et al.*, 2011).

Many molecular methods for differentiation of MABSC isolates have been developed, including pulsed-field gel electrophoresis (Jonsson *et al.*, 2007), rep-PCR (Jamal *et al.*, 2014), multilocus/multispacer sequence typing (Macheras *et al.*, 2011) and variable number tandem repeat profiling (Harris *et al.*, 2012; Davidson *et al.*, 2013), however whole genome sequencing permits a much higher degree of resolution and improved typing than any other method (Kreutzfeldt *et al.*, 2013), and

can also provide valuable information about the transmission of MABSC (Bryant *et al.*, 2013). In many of these methods, the techniques used to lyse the mycobacterial cell wall can also fragment the genomic DNA therefore smearing can occur subsequently preventing identification.

To bypass the need for culture and afford a more rapid diagnosis, molecular methods can be used for the detection of NTM directly from clinical samples, however these methods also have limitations which can include difficulty in NTM cell lysis, and often the bacterial burden in NTM infection is of a low level in comparison to other CF pathogens (Caverly *et al.*, 2016).

In a recent study by Scoleri *et al.*, (2106), encouraging results were obtained from a quantitative PCR assay described to detect NTM directly from clinical samples based on the *hsp65* gene. However, restrictions to this are that DNA sequencing is not readily available or practical in many laboratories to identify PCR results and can be very costly and time consuming. The use of a single target can also give ambiguous results where chimeric housekeeping genes occur in some isolates (Harris and Kenna, 2014). In addition recently described NTM species where DNA sequence data is not yet available were unable to be identified (Scoleri *et al.*, 2016).

1.10 Treatment of non-tuberculous mycobacteria in patients with cystic fibrosis

The existence of NTM in the sputum of patients with CF may be indicative of transient contamination, colonisation or infection, which can pose a substantial diagnostic dilemma and not all patients will benefit from treatment for NTM. Although some patients with persistent NTM in their sputum have diminishing radiographic and clinical factors, this is not so for all patients and if treatment is required it should be customised according to the specific species of NTM isolated (Stout *et al.*, 2016).

The main threat posed by mycobacteria is predominantly due to their high resistance to antibiotics with *M. abscessus* subspecies *abscessus* recognised as one of the most resistant organisms to antibiotic therapies (Griffith, 2014). This resistance can be either natural or acquired, and where acquired, it is described as being via spontaneous mutation at targeted genes in the presence of antibiotics rather than through plasmid or transposon transmission (Nessar *et al.*, 2012).

Members of the MABSC are consistently resistant to typical anti-tuberculosis agents and due to varying *in vitro* drug susceptibilities, antibiotic susceptibility testing should be undertaken for all clinically significant isolates. NTM, in particular MABSC are notoriously difficult to treat, requiring a multi-drug regimen often extending up to twelve months and beyond (see Chapter 5) and treatment success is generally defined as having sustained culture conversion for at least twelve months (Griffith *et al.*, 2007).

1.10.1 Significance of a first positive non-tuberculous mycobacteria culture in patients with cystic fibrosis

Many patients will spontaneously clear their sputum after one single isolation of NTM, demonstrating that it is transiently present and has no clinical significance. Other patients may continue to have NTM-positive sputum samples, but require no treatment and do not progress to active NTM disease (Martiniano *et al.*, 2014).

1.11 *Mycobacterium abscessus* complex and lung transplantation

Lung disease caused by MABSC is often considered a relatively strong contraindication to lung transplantation with fatal post-transplant infection often being reported (Gilljam *et al.*, 2010). There are however more recent reports of positive transplantation outcomes for patients infected with MABSC with both positive short and long term success being documented (Qvist *et al.*, 2013)

In a study performed by the University of North Carolina, Chapel Hill, between 1990 and 2003 one hundred and forty patients with CF underwent lung transplantation and thirty-one were listed for transplantation. Of the patients referred, 19.7% were NTM positive. Following transplantation, 3.4% were identified as having NTM infection and those with infection prior to transplant were noted as having a higher risk of reoccurrence post-transplant (Chalermskulrat *et al.*, 2006).

Although severe infections can occur, the isolation of NTM prior to transplantation in patients with CF should not typically be an exclusion criterion for lung transplantation (Chalermskulrat *et al.*, 2006; Zaidi *et al.*, 2009). The most current NTM guidelines also recommend that in the presence of persistent MABSC infection, treatment should commence prior to transplant listing and this should not be an absolute contraindication to transplant approval (Floto *et al.*, 2016).

1.12 What does the future hold regarding *Mycobacterium abscessus* complex?

New treatment regimens are urgently required for the treatment of MABSC comparing and using a combination of longstanding and novel antimicrobials.

Furthermore, due to the complexity of the current techniques required in order to differentiate between the three MABSC species, a prompter and more economical identification method is essential.

1.13 Research aims and objectives

It is apparent from the literature reviewed that there are numerous areas of research that essentially require addressing with respect to mycobacteria, in particular MABSC. A reliable and convenient method of detection is vital in order to promptly diagnose NTM infection and fully understand the true prevalence in CF patients. Identification to the species level is fundamental in providing the correct treatments, as well as investigating new and improved treatment options for patients. Discovering means of possible transmission and whether they can be preventable or if they are entirely unavoidable is vital in preventing the spread of this infection. With all of these in mind, this research will focus on the following issues:

- Development and evaluation of a novel culture medium for rapidly-growing mycobacteria
- Methods of identification
- Environmental studies on transmission methods
- Exploration of potential antimicrobial treatments through *in vitro* susceptibility studies

CHAPTER TWO

Development of a novel culture medium for the isolation of rapidly-growing mycobacteria from the sputum of cystic fibrosis patients

Introduction

2.1 The origins of culture media

The origins of culture media date back to 1860 when Louis Pasteur published the first semi-synthetic medium, a nutrient broth, designed for the growth of bacteria and consisting of ammonium salts, yeast ash and sugar thus providing vitamins and trace elements as well as a nitrogen and carbon source (Pasteur, 1860). Developed further in 1872 by Ferdinand Cohn, a formula for what Cohn named a normal bacterial liquid, was published (Cohn, 1872). In 1881, Robert Koch described a medium containing aqueous meat extract, peptones and sodium chloride, the basic ingredients of many culture media still currently used (Koch, 1881).

The first solid culture medium was also developed by Robert Koch and published in 1881 using the cut surface of a boiled potato as this was a solid surface on which he could inoculate the bacteria (Koch, 1881). In the same year Frederick Loeffler published the formula for his nutrient broth, a meat extract peptone medium (Loeffler, 1881). Although this simple culture medium was used in the discovery of the anthrax pathogen *Bacillus anthracis*, potato slices were not deemed suitable for many microorganisms, as many could not thrive (Koch, 1884). Koch replaced the nutrient broth with silver salts in gelatin, obtaining this idea from photographic plates he made by coating glass plates with a solution of silver salts in gelatin, thus developing a solid culture medium superior to the sliced potato (Koch, 1887; Collard and Collard, 1976). Many bacteria however possessed enzymes that could digest the gelatin, and also on a warm day, the medium would liquefy, as the gelatin did not remain solid at 37°C, the ideal temperature that most human pathogens required for growth. The main aims of Koch's work were that he wanted to be able to isolate

pure cultures of pathogenic bacteria in order to demonstrate a set of postulates that could be used to determine the cause of most infectious diseases (Koch, 1887).

Walter and Fanny Hesse, who were working in Koch's laboratory, suggested the use of agar as a replacement to gelatin, as Fanny had previously used this in the preparation of fruit jellies and puddings. Koch added this agar to the nutrient broths, and it proved to be far superior to the gelatin medium, as it remained solid at higher temperatures, produced a transparent medium, and was not often digested by bacterial enzymes (Koch, 1882).

Agar is a complex mix of polysaccharides acquired from species of the red algae agarophytes and comprising of two dominant polysaccharides. Agarose, which is responsible for the high strength gelling properties and is a (1-4) linked 3,6-anhydro- α -L-galactose alternating with (1-3) linked ß-D-galactose. The charged polymer agaropectin provides the viscous properties, and has the same repeating unit as agarose but with some of the 3,6-anhydro-L-galactose residues replaced with L-galactose sulphate residues, together with partial replacement of the D-galactose (Phillips and Williams, 2000).

Relatively unknown Italian pharmacist, Bartolomea Bizio, preceded Koch's work by many years, when in 1819 he discovered a chromogenic bacterium, which he named *Serratia marcescens*, growing as red spots on polenta. Bizio believed this to be a microorganism and to test his hypothesis placed some polenta in a saturated atmosphere at a constant temperature, and noted that within eight hours, red spots had appeared, and within twenty-four hours, the entire surface was discoloured. His findings were published in the Gazetta Privilegiata, however in the present day both Robert Koch and Louis Pasteur are principally credited for the discovery of culture media (Yu, 1979).

There are many different components used in culture media contributing to a variety of functions. Proteins, peptides and amino acids offer nutrients, energy is provided by carbohydrates, and components such as calcium, magnesium, iron, trace metals, phosphates and sulphates deliver essential metals and minerals that can be used as cofactors for certain enzymatic reactions, inorganic cellular cation and components of cytochromes and non-haem iron proteins (Morgan et al., 1950). Buffering agents such as phosphates and acetates can be added, as well as pH indicators, for example phenol red, neutral red and bromothymol blue (Reznikov, 1972). Antibiotics and chemicals such as bile salts, selenite, tellurite and azide act as selective agents in culture media added at explicit concentrations to supress the growth of undesirable microorganisms in a polymicrobial sample. They must however be added at the correct concentration so as not to inhibit the desired organisms (Perlman, 1979). As bacteria can rapidly adapt it can be very challenging to obtain a completely specific selective medium, and the ultimate formulation is customarily a compromise which will supress most of the unwanted organisms whilst still allowing the growth of the majority of target organisms.

2.1.1 General purpose culture media

General purpose media are extensively used for the growth of a vast range of microorganisms. They do not contain any growth inhibitors and are generally rich in nutrients, therefore providing bacteria with carbohydrates, peptones, essential minerals, trace metals and other vital nutrients. These include nutrient agar, with or without the addition of blood and brain-heart infusion agar. The addition of blood enriches the medium and facilitates the growth of fastidious organisms such as *Haemophilus* spp. and *Neisseria gonorrhoeae*, and also supports the classification of certain microorganisms based upon their haemolytic reactions. When α -haemolysis is present, for example in *Streptococcus pneumoniae*, the agar beneath

the colony shows as a dark green colour. This is triggered by the bacterium's production of hydrogen peroxide subsequently oxidising haemoglobin to methemoglobin (Pericone *et al.*, 2000). β -haemolysis, also referred to as complete haemolysis, displays complete lysis of the red blood cells causing a yellow and transparent appearance beneath and around the colonies. Exotoxins, streptolysin O and streptolysin S produced by the bacteria, can be responsible for this, for example in *Streptococcus pyogenes*, however this species is not the only haemolytic bacteria. Staphylococci species can produce cytolytic toxins that can result in β -haemolysis as can *Enterococcus faecalis* and many more (Chopra *et al.*, 1991).

If an organism does not trigger haemolysis, this is known as γ-haemolysis, an example of this is in *Staphylococcus epidermidis*, and the agar remains unaltered (Pinheiro *et al.*, 2015).

2.1.2 Selective and differential culture media

Antimicrobials and chemicals can be included in culture media in order to inhibit the growth of unwanted microorganisms in a polymicrobial sample, permitting the growth of the desired pathogenic bacteria. There is a vast range of both synthetic and natural selective agents, depending on the selective requirements of the medium, with common selective agents including bile salts, selenite, tellurite, azide and many dyes and antibiotics (Bonev *et al.*, 2008).

Differential media employ biochemical tests in order to distinguish different species with the most frequent test being sugar utilisation. Lactose is metabolised to release gas and acid, and in the presence of a pH indicator dye, the acid released by the bacteria is detected as a colour change as the pH value decreases. Therefore, there is no colour change observed when bacteria are unable to utilise lactose. When an

acid is added to an indicator solution, the acid will donate protons to the water molecules. This increases the concentration of H_3O^+ ions in the solution. The H_3O^+ ions will subsequently donate protons to the indicator molecules causing the indicator to change colour.

Selective media will allow the growth of certain bacteria whilst inhibiting any unwanted bacteria. This can be achieved by adding certain ingredients, which can be utilised by particular species but not others. If certain species of bacteria are resistant to a specific antibiotic, this can be added to the medium to prevent the growth of other species and select only the desired bacteria. Eosin methylene blue (EMB) medium contains methylene blue which is toxic to Gram-positive bacteria, thereby only allowing the growth of Gram-negative species (Delost, 2015).

Sodium desoxycholate is a natural component in bile and used in many culture media. An example of such a medium is xylose lysine desoxycholate (XLD) agar which is both selective and differential and used for the isolation of *Salmonella* and *Shigella* species (Nye *et al.*, 2002). XLD works by utilising sodium desoxycholate as the selective agent thus making it inhibitory to commensal Gram-positive bacteria. Xylose incorporated into the medium as a differential agent is fermented by almost all enteric bacteria except for *Shigella* spp. and lysine enables *Salmonella* spp. to be differentiated from non-pathogenic bacteria. After the *Salmonellae* consume the supply of xylose, they decarboxylate the lysine via the enzyme lysine decarboxylase, thereby altering the pH to alkaline. Lactose and sucrose are added to the medium to produce excess acid by fermentation in order to prevent other lysine positive coliforms reverting the pH to alkaline. Degradation of xylose, lactose and sucrose to acid causes the phenol red indicator in the medium to change its colour from red to yellow. Bacteria that decarboxylate lysine can be identified by the appearance of a red colouration around the colonies due to an increase in the pH.

For further differentiation between *Salmonellae* and *Shigellae*, an H₂S indicator system, consisting of sodium thiosulfate and ferric ammonium citrate, is included in the medium for the identification of the hydrogen sulfide produced, resulting in the formation of black centred colonies. The non-pathogenic H₂S producers do not decarboxylate lysine hence the acid reaction produced by them prevents the blackening of the colonies which occurs only at neutral or alkaline pH (Taylor and Schelhart, 1971; Zajc-Satler and Gragas, 1977).

Other examples of selective media are modified charcoal cefoperazone desoxycholate agar (Chon *et al.*, 2012) for the detection of *Campylobacter* species, and modified buffered charcoal yeast extract agar (Feeley *et al.*, 1979) for the growth of *Legionella* species. Both of these contain charcoal as a key ingredient which absorbs bacterial toxins that would otherwise inhibit bacterial growth.

2.1.3 Chromogenic culture media

Chromogenic culture media employ one of more chromogenic enzyme substrates that are hydrolysed to release coloured dyes. Bacteria may therefore be identified with high specificity based on their possession (or lack of) of certain enzymes.

One of the first chromogenic media to be developed for use in clinical laboratories was Rambach agar (Kuhn *et al.*, 1994). This takes advantage of the fact that most *Salmonella* strains do not produce β -galactosidase. As the medium contains a chromogenic substrate for β -galactosidase, this enables the colonies of the most commonly encountered strains of Enterobacteriaceae, such as *Escherichia coli*, *Citrobacter* spp. and *Klebsiella* spp. to produce a blue coloration. The medium also contains neutral red and propylene glycol to allow differentiation of *Salmonella* from other species such as *Pseudomonas* spp. The propylene glycol is fermented by *Salmonella* to generate red-pink colonies (Heizmann, 1993).

Although these culture media are widely available to clinical microbiology laboratories for a wide range of pathogens, there are still many areas for possible improvement. An evident problem is their inability to detect pathogenic colonies beneath an overgrowth of other more rapidly-growing species, particularly where the pathogenic species is present in low numbers in a sample.

This chapter reports the development and evaluation of a novel agar-based culture medium (RGM medium) designed for the isolation of rapidly-growing mycobacteria from the sputa of patients with CF. RGM medium is based on Middlebrook agar and contains a combination of supplementary growth factors and selective agents. In a preliminary study, the medium was tested with pure cultures of mycobacteria and other bacteria and fungi. RGM medium was then compared to other brands of agar for the isolation of NTM, and then compared with BCSA for the isolation of NTM from 502 sputum samples from patients with CF. Further studies in seven centres were then undertaken, including a comparison of RGM medium to the gold standard automated liquid culture.

2.2 Aims and Objectives

Middlebrook and BCSA are both widely used solid culture media for the detection of NTM in patients with CF. However as demonstrated in the literature both of these methods are fraught with contamination caused by more rapidly-growing species found in CF sputa. Gold standard methods such as the MGIT also have contamination issues, and it may frequently be impossible to issue a result with respect to isolation of NTM. Such automated liquid culture methods are also time consuming and costly. It was therefore the aim of this study to develop a novel and highly selective agar-based medium for NTM based on the following objectives:

- (i) To screen a variety of enrichment ingredients and antimicrobials to identify any which would be potentially useful for the optimal growth of NTM whilst inhibiting any other frequently growing bacterial species common in patients with CF.
- (ii) To evaluate these to determine which would be the most effective in forming a novel agar-based medium for NTM.
- (iii) To formulate a novel solid culture medium that will allow culture for NTM without the requirement for sample decontamination.
- (iv) To evaluate the novel medium in different centres in comparison with standard methods.

2.3.1 Bacterial strains used in medium development and evaluation

A collection of 147 isolates of rapidly-growing mycobacteria previously isolated from CF sputum samples by standard methods was used for evaluation of all media including RGM. These included *M. abscessus* subsp. *abscessus* (n = 79), *M.* chelonae (n = 43), *M.* abscessus subsp. massiliense (n = 12), *M.* abscessus subsp. bolletii (n = 3), M. fortuitum (n = 3), M. salmoniphilum (n = 3), M. llatzerense (n = 2), *M. immunogenum* (n = 1) and *M. mucogenicum* (n = 1). Seventy-three of these isolates were obtained from the Microbiology Department, Freeman Hospital, Newcastle upon Tyne, UK and all were from distinct patients. Seventeen were kindly provided by St. Vincent's University Hospital, Dublin, Ireland and were from distinct patients. The remaining 57 were consecutive clinical isolates kindly supplied by Public Health England, Newcastle upon Tyne, UK. Due to being consecutive samples, (all CF samples sent to Public Health for testing) this does not reflect the number of patients, which is unknown for these isolates. The species and subspecies identity of all strains had been previously confirmed by sequencing of at least two of three housekeeping genes (rpoB, hsp65 and sodA) as described by (Blauwendraat et al., 2012).

A collection of non-mycobacteria were selected to represent a variety of species frequently recovered from the sputa of patients with CF. Non-mycobacterial strains (n = 185) were obtained from national culture collections (n = 23) or from the culture collection of the Microbiology Department, Freeman Hospital, Newcastle upon Tyne (n = 162) and included an international *P. aeruginosa* reference panel (n = 43) (De Soyza *et al.*, 2013) and a *Burkholderia cepacia* complex experimental strain panel (n = 26) (Mahenthiralingam *et al.*, 2000; Coenye *et al.*, 2003; Vermis *et al.*, 2004) as

well as clinical isolates of both species. In total, the collection comprised: *P*. aeruginosa (n = 55), *B. cepacia* complex (n = 43), *S. aureus* (n = 28), Enterobacteriaceae (n = 11), Achromobacter xylosoxidans (n = 8), Ralstonia mannitolilytica (n = 7), Stenotrophomonas maltophilia (n = 4), Streptococcus spp. (n = 4), Aspergillus spp. (n = 3), Bacillus subtilis (n = 1), Candida spp. (n = 3), Pandoraea spp. (n = 3), Acinetobacter spp. (n = 2), Enterococcus spp. (n = 2), Inquilinus limosus (n = 2), Scedosporium spp. (n = 2), Delftia acidovorans (n = 1), Elizabethkingia miricola (n = 1), Geosmithia argillacea (n = 1), Haemophilus influenzae (n = 1), Moraxella catarrhalis (n = 1), Neisseria flavescens (n = 1) and Ochrobactrum sp. (n = 1).

A collection of fourteen isolates of slow-growing mycobacteria previously isolated by standard broth-based culture methods were used for evaluation of broth-based media (see section 2.4.18). These included *M. avium* (n = 6), *M. tuberculosis* complex (n = 6) and *M. intracellulare* (n = 2). All isolates were kindly provided and identified to species level by HAIN Genotyping by Public Health England, Newcastle upon Tyne, UK

All strains, origins and chapter/section referred to are shown in Appendix 1.

2.3.2 Growth media and general chemicals

Yeast extract, ready-prepared BCSA; (product Ref: 33631), bioMérieux cepacia agar (product Ref: 44347), BacT/ALERT MP (product ref 259797), MB/BacT Mycobacteria Antibiotic Supplement Kit including reconstitution fluid (product ref 259760) were purchased from bioMérieux, Basingstoke, UK. Blood agar was prepared from Columbia agar powder (Oxoid CM0331) (and supplemented with 5% defibrinated horse blood supplied by TCS Biosciences, Buckingham, UK), *Burkholderia cepacia* agar (product Ref: PO0938), proteose peptone, sputasol

liquid, Sabouraud dextrose agar (CM0041), Bacteriological agar n^o. 1 (LP0011) and Mueller-Hinton agar (CM0337) were supplied from Oxoid Ltd, Basingstoke, UK. BD Cepacia medium (product Ref: 256180) and BD OFPBL (oxidation-fermentationpolymyxin-bacitracin-lactose) medium (product Ref: 254481) were purchased from BD Diagnostic Systems, Oxford, UK. Middlebrook 7H11 agar (Product Ref: PP4080) was obtained from E&O Laboratories, Bonnybridge, UK. Ammonium sulfate, calcium chloride, Tween-80 and sodium citrate were supplied by BDH, Poole, UK. Unless otherwise stated, all other ingredients were obtained from Sigma-Aldrich, Poole, UK.

2.3.3 Antimicrobials

Amphotericin B was supplied by Duchefa Biochemie BV, Haarlem, The Netherlands, colomycin (at 44.3% purity) was obtained from bioMérieux, Marcy l'Etoile, France, and C390 (9-Chloro-9-(4'-diethylamino)phenyl-9,10-dihydro-10-phenylacridine hydrochloride) was obtained from Biosynth, Staad, Switzerland. Derivatives of C390 were kindly synthesised and supplied by Dr Annette Johnson at Northumbria University, Newcastle upon Tyne, UK. All other antimicrobials were obtained from Sigma-Aldrich, Poole, UK.

2.3.4 Equipment

Sterilisation of media and equipment where appropriate was performed using a LTE Touchclave-R autoclave (LTE Scientific Ltd. Oldham, UK). All chemicals and media components were weighed on an A&D GR200 balance from A and D Weighing, California, USA, which is accurate to 0.1 mg. Sterile, disposable tips were used for the accurate measurement of small volumes of liquid using calibrated Gilson semiautomatic pipettes (P1000, P200 and P10) from Gilson Medical Electronics, Villiersle-Bel, France. Larger volumes were dispensed using sterile disposable 3 ml

graduated pipettes from Alpha Laboratories, Hampshire, UK and sterile disposable 10 ml pipettes from L.I.P Limited, Shipley, UK. Antimicrobials were filter sterilised using 0.2 µm supor membrane filters from VWR International, Leicestershire, UK and Terumo two-part 20 ml syringe purchased from Medisupplies, Dorset, UK. Bacterial suspensions were prepared to known cell densities using a Densimat densitometer obtained from bioMérieux, Marcy l'Etoile, France. Glass beads (3mm) for vortexing rough isolates of mycobacteria were obtained from Sigma-Aldrich, Poole, UK. Sterile Petri dishes were obtained from Sarstedt AG & Co., Leicester, UK. All plates were incubated in a LEEC 30oC incubator obtained from Laboratory and Electrical Engineering Company, Nottingham, UK. The acidity or alkalinity of each medium was measured using a pH meter from Hanna Instruments Limited, Leighton Buzzard, UK to an accuracy of pH 0.1, and adjusted using sodium hydroxide or hydrochloric acid, both of which were purchased from BDH Chemicals Ltd., Poole, UK. Non-mycobacterial strains were inoculated using a Denley multipoint inoculator from Denley Instruments, Billinghurst, UK. Antimicrobials were injected into BacT/ALERT bottles using a Terumo 2 ml syringe and 0.8 x 40 mm needle also purchased from Medisupplies, Dorset, UK after being made sterile using Sterets swabs obtained from Molnlycke Healthcare, Bedfordshire, UK. The BacT/ALERT® 3D instrument used for the detection of mycobacteria was obtained from bioMérieux, Marcy l'Etoile, France. For identification of isolates matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) (Bruker, Coventry, UK) was used.

2.4.1 Evaluation of various ingredients for optimal growth of *Mycobacterium abscessus* complex

Various ingredients including nutrients and antimicrobials were tested initially using twenty isolates of Mycobacteria. The initial isolates were selected as VNTR profiling had been performed and identification could be certain (as shown in Table 2-1). This number was increased to include further isolates of Mycobacteria as well as a selection of non-mycobacterial isolates as shown in Appendix 1.

2.4.2 Mycobacterial Strains

Twenty isolates of MABSC were obtained as pure cultures from the Microbiology Department, Freeman Hospital, Newcastle upon Tyne and were stored at -20°C in glycerol/skimmed milk. Frozen isolates were subcultured twice on Columbia agar with 5% horse blood prior to testing. The origin and species identity of these isolates is detailed in Table 2-1 and Appendix 1. Identity had previously been confirmed to subspecies level by *rpoB* and *hsp65* gene sequencing at Great Ormond Street Hospital, London, UK (Harris *et al.*, 2012).

		VNTR Profile								
- ·		•		- 3 - 2 $3+$ 4 $2+$ $5+$ 3 2 4 $4+$ $2+$ $2+$ $4+$ 3 2 4 $3+$ 2 $2+$ $4+$ 3 $ 4$ $3+$ 2 $2+$ 5 3 2 7 $3+$ 4 $1+$ 5 3 2 7 $3+$ 4 $1+$ 5 3 2 7 $3+$ 4 $2+$ 5 3 4 2 $3+$ 4 $2+$ 5 3 2 4 $4+$ $1+$ $2+$ 5 3 3 2 $3+$ 4 $ 5$ 2 3 2 5 $1+$ $ 2$ 2 1 2 $1+$ $2+$ $ 2$ 2 1 2 $1+$ $1+$ $-$						
Species	Origin	rep	eats	;)						
M. abscessus subsp. abscessus	Adult CF patient	2+	5	-	6	2	5	1+	2+	-
M. abscessus subsp. abscessus	Adult CF patient	1+	-	3	-	2	3+	4	2+	2
M. abscessus subsp. abscessus	Adult CF patient	2+	5+	3	2	4	4+	2+	2+	2
M. abscessus subsp. abscessus	Paediatric CF patient	3+	4+	3	2	4	3+	2	2+	2
M. abscessus subsp. abscessus	Paediatric CF patient	3+	4+	3	-	4	3+	2	2+	-
M. abscessus subsp. abscessus	Adult CF patient	-	5	3	2	7	3+	4	1	2
M. abscessus subsp. abscessus	Paediatric CF patient	1+	5	3	4	2	3+	4	2+	2
M. abscessus subsp. abscessus	Paediatric CF patient	2+	5	3	2	4	4+	1+	2+	3
M. abscessus subsp. abscessus	Adult CF patient	1+	3+	3	3	2	3+	4	-	2
M. abscessus subsp. abscessus	Paediatric CF patient	3+	5	2	3	2	5	1+	-	6
M. abscessus subsp. abscessus	Adult CF patient	1+	5	3	3	4	2	1+	2+	-
M. abscessus subsp. bolletii	Paediatric CF patient	1+	-	1	6	1	1+	1+	-	2
M. abscessus subsp. bolletii	Environmental	-	-	-	-	2	-	-	-	-
M. abscessus subsp. massiliense	Adult CF patient	1+	-	2	2	1	2	1+	1	2
M. abscessus subsp. massiliense	Adult CF patient	1+	5	2	4	2	3+	1+	2+	-
M. abscessus subsp. massiliense	Adult CF patient	2+	-	2	4+	2	2	1+	1	2
M. abscessus subsp. massiliense	Adult CF patient	-	5+	2	2	1	2	2+	2	-
M. abscessus subsp. massiliense	Paediatric CF patient	1+	-	2	3	2	3+	2+	2+	-
M. abscessus subsp. massiliense	Paediatric CF patient	-	-	2	2	1	3+	1+	1	2
<i>M. abscessus</i> complex (chimeric)*	Paediatric CF patient	1+	-	-	-	-	-	-	-	-

Table 2-1: Species, origin and VNTR profile of mycobacteria used in medium testing

*This species was confirmed as *M. abscessus* subspecies *abscessus* by *hsp65* and *sodA* gene sequencing and *M. abscessus* subspecies *massiliense* by *rpoB* gene sequencing, suggesting a chimeric organism. VNTR typing failed as it would only amplify at one locus.

All experiments conducted in the development and evaluation of this medium were performed in duplicate unless otherwise stated.

2.4.3 Evaluation of basal culture media

Double-strength Middlebrook 7H9 broth base was prepared as follows: 1.0 g ammonium sulphate, 5.0 g disodium phosphate, 2.0 g monopotassium phosphate, 0.2 g sodium citrate, 0.1 g magnesium sulphate, 0.001 g calcium chloride, 0.002 g zinc sulphate, 0.002 g copper sulphate, 0.08 g ferric ammonium citrate, 1.0 g L-glutamic acid, 0.002 g pyridoxine, 0.001 g biotin and 8 ml glycerol were dissolved in 992 ml of deionised water and the pH adjusted to pH 6.6 ^{+/-} 0.2 with 10M hydrochloric acid. The broth base was autoclaved at 116°C for 10 minutes.

Each type of medium was prepared as shown in Table 2-2 to make a final volume of 100 ml with the OADC growth supplement omitted until after autoclaving.

OADC growth supplement was prepared using 10 g bovine albumin fraction, 4 g dextrose, 0.008 g catalase, 126 µl oleic acid and 200 ml deionised water. This was, filter sterilised once all components were dissolved.

Media	Middlebrook Broth Base (2x strength) (ml)	Glycerol (ml)	Tween- 80 (g)	Middlebrook OADC* Growth Supplement (ml)	Bacteriological Agar (g)	Columbia Agar (g)	Deionised Water (ml)
Α	50.0	-	-	-	1.0	-	50.0
в	50.0	0.4	-	-	1.0	-	49.6
С	50.0	-	0.1	-	1.0	-	50.0
D	50.0	0.4	-	10.0	1.0	-	39.6
Е	50.0	-	0.1	10.0	1.0	-	40.0
F	-	-	-	-	-	3.9	100.0
G	-	-	-	10.0	-	3.9	90.0

Table 2-2: Ingredients of the various media used in initial basal medium evaluation

*OADC (oleic albumin dextrose catalase)

A further two media labelled H (ready prepared Columbia blood agar) and I (ready prepared bioMérieux cepacia agar) were also evaluated.

The twenty strains of mycobacteria were inoculated onto each of the nine media and time to detection (TTD) and appearance of resulting colonies was recorded after 24, 48, 72, 96 and 168 h.

The sensitivity value of a medium relates to the appearance and growth of target pathogens.

Sensitivity (%) = <u>Number of target strains forming colonies</u> x 100 Total number of target strains

2.4.4 Preparation of inocula and inoculation onto basal media

A series of suspensions containing 2 ml sterile saline (0.85%) and turbidity equivalent to a 0.5 McFarland standard (approx. 1.5×10^8 CFU/ml) were prepared for each isolate. For the rough colony types, where clumping occurred, vortexing with three sterile 3 mm glass beads for 10 minutes effectively dispersed all clumps. Each medium type was inoculated with a 1 µl aliquot of each isolate (i.e. approx. 1.5×10^5 CFU) and incubated at 30°C. For all subsequent experiments (unless stated otherwise) bacterial strains were retrieved from glycerol skimmed milk, subcultured, and suspensions were prepared as above.

2.4.5 Evaluation of various nutrients for the improved growth of mycobacteria

One litre of 10 x strength Middlebrook 7H9 broth base was made up using the same protocol as described previously adjusting the volumes accordingly.

Medium D from section 2.7.3 containing 10 ml aliquots of 10 x strength Middlebook broth base and 1% bacteriological agar had each of the following supplements added to separate 100 ml alliquots; 0.2 g activated charcoal (medium J), 5 ml 5% horse blood* (medium K), 0.4 g yeast extract (medium L), 1.5 g α -ketoglutarate (medium M), 0.1 g casein (medium N), 0.7 g sodium pyruvate (medium O), 1 g proteose peptone (medium P), 0.004 g amaranth (medium Q), 3.3 ml egg yolk emulison* (medium R), 0.005 g ribonucleic acid* (medium S), 0.01 g polyoxyethylene stearate* (medium T), 0.5 ml tyloxapol (medium U).

A further medium containing 0.4 g activated charcoal combined with 3.3 ml egg yolk emulsion* was prepared (medium V). Deionised water was added to each one to make up to 90 ml and autoclaved for 10 minutes at 116°C.

A further 10 ml of OADC was added to each medium to take the total volume of each up to 100 ml.

*Supplements added to media K, R, S, T and the egg yolk emulsion from medium V were added after autoclaving, after the medium was cooled to 50°C.

A series of suspensions were prepared as in section 2.7.4 and each medium type was inoculated with a 1 μ l aliquot of each isolate. Plates were inoculated as described previously using the twenty mycobacterial isolates as shown in Table 2-1, and incubated at 30°C. Evaluation of all media after one week of incubation suggested that medium L supplemented with yeast extract demonstrated a noticeably improved and more rapid growth of mycobacteria in comparison to medium D.

2.4.6 Investigation of various antimicrobials as putative selective agents

Medium L was taken forward, with a selection of antimicrobials added in isolation in order to examine their inhibitory impact on frequently encountered bacteria and fungi isolated from the sputum samples of patients with CF. The effect of the antimicrobials on the growth of mycobacteria was also evaluated. Antimicrobials evaluated were amphotericin B at 5, 10 and 20 mg/L, nalidixic acid at 16, 32 and 64 mg/L, vancomycin at 2.5, 5 and 10 mg/L, colomycin at 32, 64 and 128 mg/L, C390 at 32, 64 and 128 mg/L, fosfomycin at 400, 800 and 1600 mg/L and malachite green at 0.125, 0.25 and 0.5 mg/L.

Medium L was prepared as described previously and antimicrobials for each concentration were dissolved in 20 ml sterile deionised water at 10 x strength, placed in a water bath at 50°C for five minutes to ensure they were fully dissolved then added to the medium, with the exception of amphotericin B. This was dissolved in 400 µl of N-methyl-2-pyrrolidone, a water-miscible organic solvent, placed in a water bath at 50°C for five minutes to fully dissolve then added to 19.6 ml deionised water prior to adding to medium. A control with no antibiotics was included. OADC growth supplement was made up as previously and 20 ml added to each of the twenty two media so that final volume of each medium was 200 ml.

2.4.7 Non-mycobacterial strains and culture onto media containing antimicrobials

A selection of 88 non-mycobacterial species were selected to represent a broad variety of species commonly isolated from the sputum of patients with CF. The origin and species identity of these isolates is detailed in Appendix 1. Frozen bacterial isolates were subcultured on Columbia agar with 5% blood; yeasts and fungi were subcultured on Sabouraud medium prior to testing. Isolates 7037 through to 7079 are from an International *P. aeruginosa* reference panel collated by (De Soyza *et al.*, 2013) and chosen to cover frequently studied clones, transmissible strains,

sequential CF isolates, strains with particular virulence characteristics, and strains that represent serotype, genotype, or geographic diversity.

Isolates of mycobacteria were prepared and inoculated as previously in section 2.7.4. Non-mycobacterial isolates were suspended in 2 ml sterile saline (0.85%) and turbidity equivalent to 0.5 McFarland units (approx. 1.5×10^8 CFU/ml). Each medium type at all antimicrobial concentrations plus a control (medium L) were inoculated with 20 x 1 µl inocula per plate using a multipoint inoculator. Plates were incubated at 30°C. Yeasts and fungi (see Appendix 1) were inoculated onto medium containing amphotericin B at all three concentrations.

2.4.8 Investigation of antimicrobial combinations in agar-based media

Medium W was identical to Medium L except it was supplemented with colomycin at 32 g/L, fosfomycin at 400 mg/L, amphotericin B at 5 mg/L and glucose-6phosphate at 25 g/L. Medium X contained the same as medium W with the addition of C390 at 32 mg/L.

Glucose-6-phosphate was included in both media as research shows that with the addition of glucose-6-phosphate to the medium, fosfomycin MIC's are significantly lower for certain species, therefore susceptibility testing to fosfomycin is recommended with the addition of glucose-6-phosphate in the medium at a concentration of 25 mg/L (Barry and Fuchs, 1991).

2.4.9 Bacterial strains and culture onto media containing combined antimicrobials

Isolates of mycobacteria were used as in Table 2-1 plus an additional selection of 80 isolates of mycobacteria (Appendix 1) were included to examine the effect of the antibiotics on a larger selection of rapidly-growing mycobacteria. A further nine nonmycobacterial species frequently found in the sputum CF patients were also included (see Appendix 1). All isolates were prepared and inoculated as previously in section 2.7.4

2.4.10 Plating efficiency studies performed on RGM medium

Plating efficiencies were undertaken to quantify the growth of mycobacteria on media L, W and X. Initial testing was performed on media W and X (hereafter known as RGM medium) to find the concentration which would yield approximately 100 CFU/ml. A series of suspensions containing 2 ml sterile saline (0.85%) and turbidity equivalent to a 0.5 McFarland standard unit was prepared for each isolate. Any rough colony types were vortexed as described previously in section 2.7.4 Isolates used in this study are shown in Appendix 1.

Each of the three media was inoculated with a 50 µl aliquot of each suspension using 1/1,000, 1/10,000 and 1/50,000 dilutions. Spread plates were prepared and incubated at 30°C for 96 h before colonies were counted and observed to see if the media also had any effect on the size of colonies.

Results showed that a 1/10,000 dilution provided the most countable number of colonies therefore ten isolates of mycobacteria were inoculated onto medium L, W and X (RGM) in triplicate as previously, using 50 μ l of a 1/10,000 dilution. Plates were incubated for 96 h at 30°C

2.4.11 Statistical analysis

Any difference in performance of media was investigated for statistical significance using McNemar's test with the continuity correction applied. Statistical significance was assigned to a probability (P) value of \leq 0.05. Two-sample t-tests were performed to analyse any differences between control medium and RGM.

2.4.12 Evaluation of the stability of RGM medium

Twenty-four plates of RGM medium were prepared and stored at 4°C. These were inoculated as described above on a weekly basis over a period of 12 weeks with four isolates of mycobacteria (*M. abscessus* subsp. *abscessus*, *M. abscessus* subsp. *bolletii*, *M. abscessus* subsp. *massiliense* and *M. chelonae*), seven isolates of fungi and yeast (*A. fumigatus*, *A. terreus*, *C. albicans*, *C. glabrata*, *G. argillacea*, *S. apiospermum* and *S. prolificans*) and six other isolates (*P. aeruginosa* (n = 4), *B. multivorans* and *E. cloacae*) (See Appendix 1). The six non-mycobacteria were carefully selected as indicators of deterioration of each of the selective agents in the medium. Media were incubated at 30°C and examined daily for up to 14 days.

2.4.13 Investigation of various derivatives of C390 as putative selective agents

C390 and the following C390 derivatives as seen in Figure 2-1 to Figure 2-7 below were used in the initial MIC testing using a range of 1 - 128 mg/L.

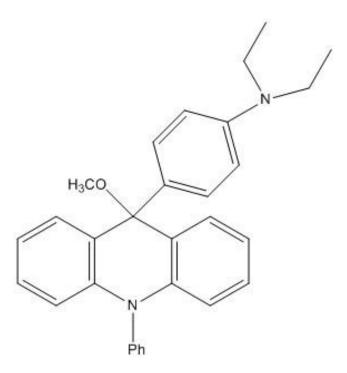


Figure 2-1: A475: 4'-Diethylaminophenyl-9-methoxy-10-phenylacridan

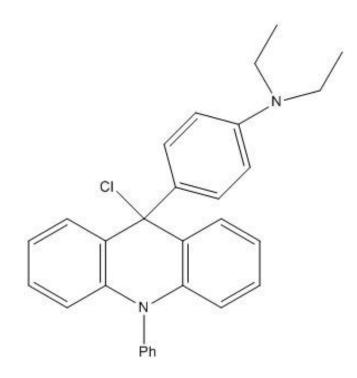


Figure 2-2: A477/A488/C390: 4'-Diethylaminophenyl-9-chloro-10-phenylacridan

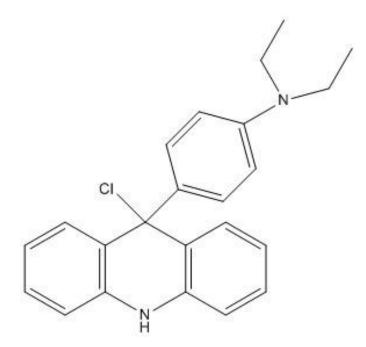


Figure 2-3: A480a: 4'-Diethylaminophenyl-9-chloroacridan

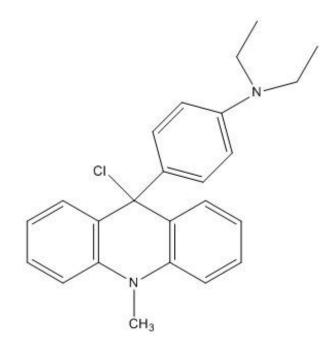


Figure 2-4: A503a: 4'-Diethylaminophenyl-9-chloro-10-methylacridan

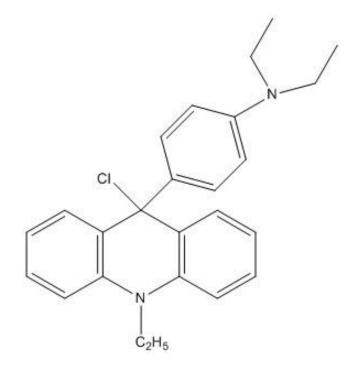


Figure 2-5: A503b: 4'-Diethylaminophenyl-9-chloro-10-ethylacridan

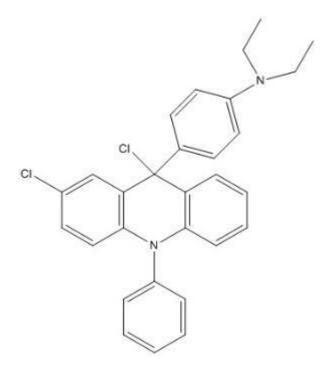


Figure 2-6: A505: 4'-Diethylaminophenyl-2-9-dichloro-10-phenylacridan

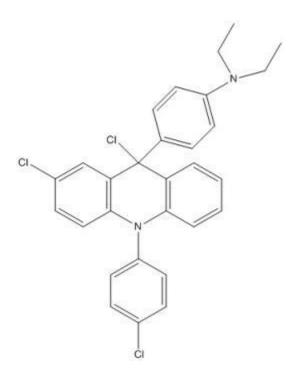


Figure 2-7: A520: 4'-Diethylaminophenyl-9-chloro-10-phenyl-4"-chloroacridan

2.4.14 Preparation of bacterial strains and inoculation of isolates onto media containing C390 and various C390 derivatives to evaluate the effectiveness in RGM medium

Mueller Hinton agar was made up according to manufacturer's instructions and autoclaved at 116°C for 10 minutes and quantities of 5.12 mg were measured out for C390 and each derivative of C390. C390, A477, A488, A503a and A503b were dissolved in 2 ml of sterile distilled water; A475 was dissolved in 200 μ l 1M HCl and added to 1.8 ml sterile distilled water. A480a, A505 and A520 were dissolved in 200 μ l of N-methyl-2-pyrrolidone then added to 1.8 ml sterile distilled water. The dissolved components underwent serial dilutions in sterile distilled water to achieve each desired concentration ranging from 2560 mg/L down to 20 mg/L and 1 ml of each was added to 19 ml agar giving a total volume of 20 ml for each compound at each concentration which ranged from 128 mg/L to 1 mg/L. Plates were poured into sterile Petri dishes and allowed to set and dry.

A series of suspensions containing 2 ml sterile saline (0.85%) and turbidity equivalent to a 0.5 McFarland standard were prepared for each isolate (Appendix 1). Each medium type at each concentration plus Mueller Hinton control plates were inoculated using a multipoint inoculator with a 1 μ l aliquot of each isolate (i.e. approx. 1.5 x 10⁵ CFU/ml), incubated at 30°C and results recorded after 24, 96, 168 and 240 hours

2.4.15 Preparation of bacterial strains and inoculation of isolates onto various media to evaluate the effectiveness of RGM medium against currently available media

Strains, which consisted of 147 mycobacteria and 185 non-mycobacteria (Appendix 1) were prepared as in section 2.7.4 and sub-cultured onto Columbia agar with 5%

horse blood prior to testing. A 1 μ l aliquot of each suspension of mycobacteria was inoculated onto each medium type and the inoculum was spread using a loop. Filamentous fungi were inoculated in the same way. Suspensions of all other isolates were inoculated onto media using a multipoint inoculator to deliver inocula of approximately 1 μ l per spot (i.e. approximately 1.5 × 10⁵ CFU/spot). All plates were incubated at 30 °C and growth was recorded after four, seven days and ten days of incubation. The eleven media types evaluated included RGM medium using C390 at 32 mg/L, 64 mg/L, 128 mg/L, A477 at 32 mg/L in place of C390 (one of the C390 derivatives described in section 2.4.12), RGM medium minus OADC supplement, Middlebrook 7H11 selective (PP4080), Oxoid *B. cepacia* (PO0938), BD cepacia (256180), BD OFPBL (254481), bioMérieux cepacia (44347) and bioMérieux BCSA (33631). To demonstrate the viability of isolates, Columbia blood agar for bacterial isolates and Sabouraud agar for fungal isolates were used as controls.

2.4.16 Inoculation of sputum samples onto RGM medium and bioMérieux cepacia agar

Consecutive sputum samples (n = 502) obtained from 210 adults and children with CF were processed between February and September 2014. The age range of patients was < 1 year to 77 years. All samples were routine samples submitted to the Microbiology Department, Freeman Hospital, UK for culture. No additional samples were taken for the purposes of this study (See Appendix 4 for details of ethical approval). Sputum samples received from patients with CF were digested (1:1) with sputasol and 10 μ L aliquots cultured onto whole plates of both RGM medium and bioMérieux cepacia agar. The inoculum was spread using a loop to obtain isolated colonies. Both media were incubated for 10 days at 30°C and growth was recorded after four, seven and ten days. All isolates recovered were identified

by MALDI-TOF MS. For any suspected mycobacteria, full protein extractions were performed as recommended by Saleeb *et al.* (2011) and species and subspecies identification was further confirmed at a reference laboratory as previously described (Saleeb *et al.*, 2011; Blauwendraat *et al.*, 2012).

2.4.17 Investigation of the use of RGM medium for the isolation of mycobacteria from the sputum of patients with non-cystic fibrosis bronchiectasis

Consecutive sputum samples (n = 400) obtained from 310 adults with bronchiectasis or patients undergoing transplant assessment (n = 67) from 60 patients were processed between May and November 2015. All samples were routine samples submitted to the Microbiology Department, Freeman Hospital, UK for culture. No additional samples were taken for the purposes of this study. Sputum samples received were digested (1:1) with sputasol and 10 µL aliquots cultured onto plates of RGM medium. The inoculum was spread using a loop to obtain isolated colonies. The medium was incubated at 30°C and all growth was recorded after ten days. Identification of colonies was performed as in section 2.4.16.

2.4.18 Adaptation and evaluation of RGM medium for recovery of mycobacteria including *Mycobacterium tuberculosis* complex in a broth-based culture medium

A bottle of 15 ml MB/BacT reconstitution fluid was transferred into a sterile universal and the following antimicrobials were weighed out to give final concentrations of; colomycin at 32 mg/L, fosfomycin at 400 mg/L, amphotericin B at 5 mg/L, C390 at 32 mg/L and glucose-6-phosphate at 25 mg/L. In the following order, colomycin, glucose-6-phosphate and fosfomycin, were added and allowed to dissolve. C390 and amphotericin B were each dissolved in 100 µl N-methyl-2-pyrrolidone then

added to the reconstitution fluid, the bottle briefly vortexed and the solution filter sterilised. The top of each BacT/ALERT bottle was cleaned with a sterile disposable wipe and 0.5 ml of reconstitution fluid containing antimicrobials was injected into each bottle using a 2 ml syringe and 0.8 x 40 mm needle. Bottles (designated Bottle B) were placed in the refrigerator at 4°C until required.

RGM medium was prepared as described in Appendix 2 and an aliquot of 15 ml was poured into sterile universals, tilted and allowed to set.

2.4.18.1 Health and safety

Good laboratory practice was followed at all times. The processing of these samples was carried out inside a Class I Safety Cabinet in a category 3 containment suite. Disposable gloves were worn at all times, and any spillage was mopped up using tristel activated chlorine dioxide.

2.4.18.2 Preparation of clinical samples from cystic fibrosis patients

Each sample was digested and liquefied using an excess of dithiothreitol and vortexed at full speed until completely homogenous. The sample was centrifuged at 3000g for 18 minutes and supernatant poured off to leave a pellet. The pellet was subsequently split into two equal aliquots and two different decontamination procedures were performed.

2.4.18.3 Decontamination procedure for Gram-positive organisms

A volume of 7 ml of sodium hydroxide (NaOH) (4% w/v) was added to one of the aliquots and left for 25 minutes during which the sample was vortexed at full speed every five minutes. At the end of the treatment time the sample was neutralised with 14 ml of neutralising buffer solution (1M anhydrous monopotassium phosphate $(KH_2PO_4) + 0.2\%$ Phenol red; final pH 6.8), and re-concentrated by centrifugation at

3000g for 18 minutes. The sample was then re-constituted to 2 ml and using a safety needle and syringe one BacT/ALERT culture bottle (ref 259797) with the addition of MB/BacT Mycobacteria Antibiotic Supplement Kit including reconstitution fluid (ref 259760), designated Bottle A (see Appendix 3) was inoculated with 0.5 ml of neutralised specimen, one BacT/ALERT culture bottle with prototype antibiotic mix, designated Bottle B (see Appendix 3) was inoculated with 0.5 ml of neutralised specimen and an aliquot also stored at -20° C.

Using sterile disposable graduated pipettes, the surface of a neutral pyruvate Lowenstein Jensen (LJ) slope and an RGM medium slope were each inoculated with 0.2 ml of specimen. These were rotated to allow the specimen to inoculate the entire surface; the caps were tightly fitted and incubated at 30°C for eight weeks. This was repeated with a further neutral pyruvate LJ slope and an RGM medium slope and incubated at 37°C for eight weeks for LJ and three weeks for RGM medium. BacT/ALERT bottles were logged onto the system and incubated for 28 days.

2.4.18.4 Decontamination procedure for Gram-negative organisms

An equal volume of N/2 sulfuric acid (H₂SO₄) was added to the second aliquot (as described in section 2.4.18.2) and treated for 60 minutes. At the end of 60 minutes, the sample was topped up with sterile distilled water to reduce the action of the acid, centrifuged at 3000g for 18 minutes and the supernatant discarded. A volume of 2 ml of neutralising buffer solution at pH 6.8 (as previously) was added and 0.5 ml inoculated into both bottles A and B as previously described, and incubated for 28 days. As in the decontamination procedure for Gram-positive organisms, the surface of two neutral pyruvate LJ slopes and two RGM medium slopes were each

inoculated with 0.2 ml of specimen and incubated for eight weeks for LJ and three weeks for RGM medium at both 30°C and 37°C

In addition to this, two RGM medium slopes were inoculated with a 0.2 ml volume of untreated specimen. One was incubated at 30°C and the other at 37°C for three weeks. Fourteen control strains (Appendix 1) were inoculated into both bottle A and bottle B and incubated for 28 days.

2.4.18.5 Processing of clinical samples from non-cystic fibrosis patients

Non-CF patient samples that were pre-selected due to their AFB-positive status on microscopy were treated with the same procedure as above for Gram-positive organisms and 0.5 ml inoculated into a BacT/ALERT culture bottle with a further 0.5 ml inoculated into one BacT/ALERT culture bottle with prototype antibiotic mix, logged and incubated for 28 days. The surface of two neutral pyruvate LJ slopes were each inoculated with 0.2 ml of specimen and incubated for eight weeks at both 30°C and 37°C. RGM medium slopes were not included in non-CF patient samples as their purpose was solely to investigate the detection of RGM in CF patients.

2.4.19 Multi-centre study to examine the effectiveness and convenience of RGM medium

In order to obtain a more accurate representation of the selectivity and ease of use for RGM medium a multi-centre study performed in eight laboratories in six geographical locations was completed, with 2679 RGM plates being prepared and distributed in total.

RGM plates were prepared as in Appendix 2 and sent to the eight laboratories for analysis using sputum samples of CF patients. These were Aarhus University Hospital, Aarhus, Denmark (100), Centre de Biologie et Pathologie Est, Bron, France (50), Centre Hospitalier Lyon Sud, France (50), Kings College Hospital, London, UK (200), Klinikum der Johann Wolfgang Goethe-Universität, Frankfurt, Germany (280), Papworth Hospital, Cambridge, UK (930), Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands (200) and UNC Healthcare, Chapel Hill, North Carolina, USA (869).

2.5 Results

2.5.1 Evaluation of basal media for optimal growth of *Mycobacterium abscessus* complex

From the data obtained, the sensitivity values of each of the nine media described in section 2.4.3 was calculated (Table 2-3).

Medium Sensitivity % 24 h 48 h 72 h 96 h 168 h Middlebrook 7H9 А 0 0 0 0 0 0 В Middlebrook with glycerol 0 0 25 95 С Middlebrook with Tween-80 0 0 0 10 100 D Middlebrook with glycerol and OADC 0 95 100 100 100 Middlebrook with Tween-80 and OADC 0 100 100 100 Е 95 F 0 0 75 100 Columbia Agar 80 G Columbia with OADC 0 70 100 100 100 Columbia with 5% horse blood 0 25 100 100 100 Н bioMérieux cepacia agar (44347) 20 90 95 95 Т 0

Table 2-3: Sensitivity values of basal media.

One strain of *M. abscessus* subspecies *abscessus*, (isolate 1050) failed to grow on BCSA, and only a trace of isolate 1034, also *M. abscessus* subspecies *abscessus*, was visible on medium B after 168 h.

Figure 2-8 shows left (medium A) Middlebrook 7H9, centre (medium B) with the addition of glycerol, and right (medium D) with the addition of glycerol and Middlebrook OADC growth supplement. Substantially improved growth of mycobacteria on the medium containing glycerol and Middlebrook OADC growth supplement is clearly visible. Although medium D and medium E had identical sensitivity values throughout, growth of mycobacteria on medium D was enhanced

in comparison to medium E. Results also demonstrate the value of the addition of OADC supplement as shown in Figure 2-8.

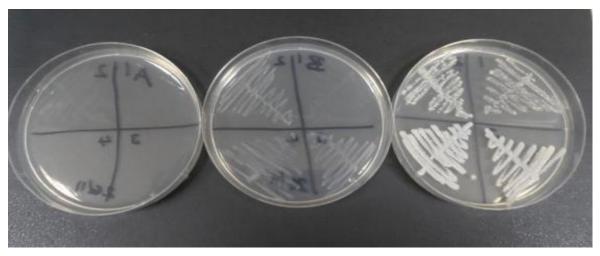


Figure 2-8: Growth of mycobacteria with and without OADC growth supplement after 168 h incubation

2.5.2 Evaluation of enrichment ingredients in basal media

After analysis of growth on all media after 168 h, medium D supported the strongest growth and shortest TTD and was therefore selected as the basal medium to which further supplements were evaluated to promote mycobacterial growth and further enhance the medium. The twenty strains of mycobacteria were inoculated onto each of the thirteen media and TTD in days and appearance of resulting colonies was recorded after 24, 48, 72, 96 and 168 h. Results suggested that medium D, with the addition of yeast extract (medium L), gave noticeably improved and more rapid growth of mycobacteria in comparison to medium D alone. (See Figure 2-9 below). After only 24 h incubation, a trace of growth was visible for 65% of strains (13/20) as opposed to 10% (2/20) on medium D, demonstrating that yeast extract was a useful ingredient for the enhanced growth of mycobacteria.

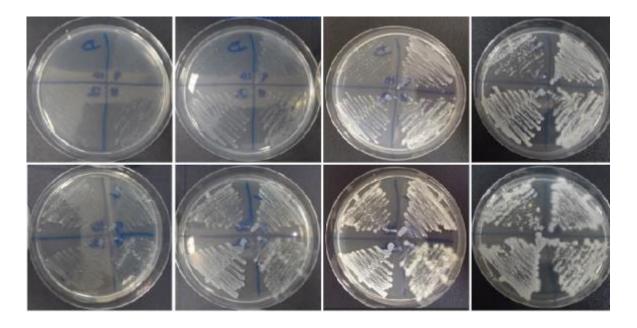


Figure 2-9: Comparison of the growth of mycobacteria on medium D, without yeast extract (top) and medium L (bottom) containing yeast extract at 48, 72, 96 and 168 h

2.5.3 Investigation of various antimicrobials for the inhibition of nonmycobacterial strains frequently encountered in sputum samples from patients with cystic fibrosis

Results as shown in Table 2-4 revealed that all non-mycobacterial isolates tested (excluding fungi) were inhibited by a combination of 32 mg/L colomycin, 400 mg/L fosfomycin, 5 mg/L amphotericin B and 128 mg/L C390 with the exception of *P. apista* and *P. pnomenusa*. However, growth of these two species was substantially reduced. Thirty-five percent of the mycobacteria tested were inhibited by the higher concentration of C390, but no inhibition was observed using C390 at 32 mg/L. At the lower concentration of 32 mg/L C390, *Burkholderia* and *Pandoraea* species were able to grow, although both displayed significantly reduced growth and for the majority of isolates of these species just a trace of growth was visible.

Isolate 1050, *M. abscessus* subspecies *abscessus* was susceptible to C390 and vancomycin at all concentrations. Malachite green was inhibitory to 35% of mycobacteria at the lowest concentration of 0.125 g/L. Vancomycin caused a reduction in the growth of 30% of mycobacteria and only inhibited 2% of *Pseudomonas* spp. and 35% of other species at the highest concentration.

Nalidixic acid had no effect on the growth of mycobacteria, however only inhibited 42% of non-mycobacterial species at the highest concentration (64 mg/L). Amphotericin B had no inhibitory effects on mycobacteria, but did not inhibit *Aspergillis terreus, Scedosporium apiospermum* and *Scedosporium prolificans* at any concentration, and *Geosmithia argillacea* was only inhibited at 20 mg/L. Colomycin inhibited 92% of *Pseudomonas* spp. at the lowest concentration, and 33% of other non-mycobacterial species, with no significant effect upon the growth of mycobacteria. Fosfomycin had no inhibitory effects on the mycobacteria at all concentrations tested, and inhibition of *Pseudomonas* spp was 81%, 86% and 93% and other non-mycobacteria species were inhibited at a rate of 65%, 73% and 73% at concentrations 400 mg/L, 800 mg/L and 1600 mg/L respectively.

Ref No.	MABSC Subspecies	Control	Amph	otericin B	(mg/L)	Nalid	ixic Acid (mg/L)	Vanc	omycin (n	ng/L)
			5	10	20	16	32	64	2.5	5	10
1034	M. abscessus	+++	+++	++	+++	+++	+++	++	++	+	++
1042	M. abscessus	+++	++	+++	+++	+++	+++	++	++	++	+
1044	M. abscessus	+++	+++	+++	+++	+++	+++	+++	+++	+++	++
1045	M. abscessus	++	++	++	++	++	++	++	++	++	++
1047	M. abscessus	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++
1050	M. abscessus	++	++	++	++	++	++	++	NG	NG	NG
1051	M. abscessus	++	++	++	++	++	++	++	++	++	+
1052	M. abscessus	++	++	+++	+++	+++	++	++	++	++	+
1053	M. abscessus	++	++	++	++	++	++	++	+	+	+
1054	M. abscessus	++	++	++	++	++	++	++	+	+	+
1055	M. abscessus	+++	+++	+++	+++	+++	++	+++	+++	++	++
1000	MABSC - (chimeric)	++	++	++	++	++	+++	++	++	+	+
3016	M. bolletii	+++	++	++	++	++	++	++	++	++	+
3017	M. bolletii	+++	++	+	++	++	++	++	+	++	+
3015	M. massiliense	+++	+++	++	++	+++	+++	+++	+++	+++	+++
3010	M. massiliense	+++	+	++	++	++	++	++	+	+	+/-
3011	M. massiliense	+++	++	+++	+++	+++	+++	+++	++	++	++
3012	M. massiliense	++	++	++	++	++	++	++	+	++	+
3013	M. massiliense	++	++	+	++	++	++	++	+	++	++
3014	M. massiliense	++	+++	++	++	++	++	++	++	++	++

Table 2-4: Investigation of the growth of NTM and inhibition of non-NTM isolates after seven days of incubation at 30°C using various antimicrobials in agar-based media

Ref No.	MABSC Subspecies	Col	lomycin (n	ng/L)		C390 (mg/L)			fomycin (I	mg/L)	Malachite Green (mg/L)			
		32	64	128	32	64	128	400	800	1600	0.125	0.25	0.5	
1034	M. abscessus	++	++	+	+++	+++	++	+++	+++	+++	++	+++	+++	
1042	M. abscessus	+++	+++	++	+++	+++	++	+++	+++	+++	++	+++	+++	
1044	M. abscessus	+++	+++	+++	+++	+++	+++	+++	+++	+++	++	+++	+++	
1045	M. abscessus	++	++	+++	++	++	++	+++	++	++	+	++	++	
1047	M. abscessus	+++	++	++	+++	+++	+++	+++	+++	+++	++	+++	+++	
1050	M. abscessus	++	+	+	NG	NG	NG	++	++	++	NG	++	++	
1051	M. abscessus	++	++	++	++	++	++	++	++	++	+	++	++	
1052	M. abscessus	++	++	++	++	+++	+++	++	++	++	NG	++	++	
1053	M. abscessus	++	++	++	++	++	++	++	++	++	+	++	++	
1054	M. abscessus	++	++	++	++	+++	+++	++	++	++	+	++	++	
1055	M. abscessus	+++	++	+++	+++	+++	+++	+++	+++	+++	++	+++	+++	
1000	MABSC - (chimeric)	++	++	++	++	++	+++	++	++	++	+	++	++	
3016	M. bolletii	+++	+++	+++	+++	+++	+++	+++	+++	+++	++	++	++	
3017	M. bolletti	+	++	+++	+++	++	++	+++	++	+++	NG	+	++	
3015	M. massiliense	+++	+++	+++	+++	+++	+++	+++	+++	+++	++	+++	++	
3010	M. massiliense	+	++	++	++	+	++	++	++	+++	NG	+	++	
3011	M. massiliense	++	+++	+++	+++	+++	+++	+++	+++	+++	++	+++	+++	
3012	M. massiliense	++	++	++	+++	+++	+++	+++	++	++	+	++	++	
3013	M. massiliense	++	++	++	++	++	++	++	++	++	+	++	++	
3014	M. massiliense	++	+	+	++	++	+++	+++	+++	++	+	++	++	

Table 2-4 continued: Investigation of the growth of NTM and inhibition of non-NTM isolates after seven days of incubation at 30°C using various antimicrobials in agar-based media

	Non-mycobacteria										
Ref No.	Species	Control	Amphotericin B (mg/L)			Nalid	ixic Acid (mg/L)	Vancomycin (mg/L)		
			5	10	20	16	32	64	2.5	5	10
	Gram-negatives										
8001	A. xylosoxidans	+	+	+	+	+	+	+	+	+	+
8003	Acinetobacter sp.	+	+/-	+/-	+/-	+/-	+/-	+/-	NG	NG	NG
8004	B. multivorans	+++	+++	++	+++	+++	+/-	+	++	++	++-
8006	B. cenocepacia IIIA	+	+	+	+	+	+	+	+	+	+
8007	<i>B. cepacia</i> (G1)	+++	+++	+++	+++	+++	+	+/-	++	++	++-
8008	B. contaminans	+	+	+	+	+	+	+	+	+	+
8032	C. freundii	+	-	-	-	NG	NG	NG	+	+	+
9007	E. aerogenes	+++	-	-	-	+++	NG	NG	+++	+++	++-
8038	E. cloacae	+++	-	-	-	+++	NG	NG	+++	+++	++-
8036	E. coli	+	-	-	-	++	NG	NG	+	+	+
9010	H. influenzae	NG	-	-	-	NG	NG	NG	NG	NG	NG
9009	M. catarrhalis	NG	-	-	-	NG	NG	NG	NG	NG	NG
9008	N. flavescens	+/-	-	-	-	+/-	+/-	NG	+/-	+/-	+/-
8009	P. aeruginosa	+++	+++	++	++	++	+	+/-	++	++	++
8010	P. aeruginosa	+	++	+	+	+	+	NG	+	+/-	+/-
8014	P. aeruginosa	+	+	+	+	+	+/-	NG	+	+/-	+/-
8015	P. aeruginosa	+	+	+	+	+	+	NG	+	+	+
8016	P. aeruginosa	+	+	+	+	+	+	NG	+	+	+
8018	P. aeruginosa	+	+	+	+	+	+	+/-	+	+	+
8019	P. aeruginosa	+	+	+	+	+/-	+	NG	+	+/-	+/-

Table 2-4 continued: Investigation of the growth of NTM and inhibition of non-NTM isolates after seven days of incubation at 30°C using various antimicrobials in agar-based media

Non-mycobacteria										
Species	Control	Amp	hotericin B (r	ng/L)	Nalid	ixic Acid (mg/L)	Vanc	omycin (r	ng/L)
		5	10	20	16	32	64	2.5	5	10
P. aeruginosa	+	+	+	+	+	+	+/-	+	+	+
P. aeruginosa	+/-	+/-	+/-	+/-	+/-	+/-	NG	+	+/-	+/-
P. aeruginosa	+	+	+	+	+	+	+/-	+	+	+
P. aeruginosa	+	+	+	+	+	+	NG	Tr	+	+
P. aeruginosa	++	++	++	+++	+	++	NG	++	+	+
P. aeruginosa	+++	++	++	++	+	++	NG	++	++	++
P. aeruginosa	+++	++	++	++	+	+	NG	+	++	++
P. aeruginosa	++	++	++	++	+	+	+	+	+	+
P. aeruginosa	++	++	++	++	+	NG	NG	+	+	++
P. aeruginosa	+	++	++	++	+	NG	+	+	+	++
P. aeruginosa	+	++	++	++	+	NG	+	++	+	++
P. aeruginosa	++	++	++	++	+	+	+	++	++	+++
P. aeruginosa	+	++	+	+	+/-	+	+	++	+	+
P. aeruginosa	+	++	+	+	+	+	Tr	++	+	+
P. aeruginosa	+	+	+	+	+	+	Tr	++	+	+
P. aeruginosa	++	++	++	++	+	++	Tr	++	++	++
P. aeruginosa	++	++	++	++	+	+	NG	++	++	++
P. aeruginosa	++	++	++	++	+	+	Tr	++	++	+++
P. aeruginosa	++	++	++	++	+	+	Tr	++	++	++
P. aeruginosa	++	++	++	++	+	+	+	++	++	++
	SpeciesP. aeruginosaP. aeruginosa	SpeciesControlP. aeruginosa+P. aeruginosa+/-P. aeruginosa+P. aeruginosa+P. aeruginosa++P. aeruginosa+++P. aeruginosa+++P. aeruginosa+++P. aeruginosa+++P. aeruginosa+++P. aeruginosa++P. aeruginos	Species Control Ample P. aeruginosa + + P. aeruginosa +/- +/- P. aeruginosa + + P. aeruginosa + + P. aeruginosa + + P. aeruginosa + + P. aeruginosa ++ + P. aeruginosa +++ ++ P. aeruginosa +++ ++ P. aeruginosa +++ ++ P. aeruginosa +++ ++ P. aeruginosa ++ +++ P. aeruginosa +++ +++ P. aeruginosa +++ +++ P. aeruginosa +++	SpeciesControlAmphotericin B (normalized from the second fr	SpeciesControlAmphotericin B (mg/L) $P.$ aeruginosa+++ $P.$ aeruginosa+/-+/-+/- $P.$ aeruginosa+++ $P.$ aeruginosa+++ $P.$ aeruginosa+++ $P.$ aeruginosa+++ $P.$ aeruginosa++++++ $P.$ aeruginosa++++++ $P.$ aeruginosa+++++++++ $P.$ aeruginosa+++++++++ $P.$ aeruginosa+++++++++ $P.$ aeruginosa++++++++ $P.$ aeruginosa+++++++++ $P.$ aeruginosa+++++++++ $P.$ aeruginosa+++++++++ $P.$ aer	SpeciesControlAmphotericin B (mg/L)Nalid F aeruginosa++++ P aeruginosa+/-+/-+/-+/- P aeruginosa++++ P aeruginosa++++ P aeruginosa++++ P aeruginosa++++ P aeruginosa++++++ P aeruginosa++++++ P aeruginosa++++++++++ P aeruginosa+++++++++ P aeruginosa++++++++ P	SpeciesControlAmphotericin B (mg/L)Nalidixic Acid (32P. aeruginosa+++++P. aeruginosa+/-+/-+/-+/-P. aeruginosa+++++P. aeruginosa+++++P. aeruginosa+++++P. aeruginosa++++++++P. aeruginosa+++++++++P. aeruginosa++++++++++P. aeruginosa++++++++++P. aeruginosa+++++++++P. aeruginosa+++++++++P. aeruginosa+++++++++P. aeruginosa+++++++++P. aeruginosa+++++++++P. aeruginosa+++++++++P. aeruginosa+++++++++P. aeruginosa++++++++++P. aeruginosa++++++++++P. aeruginosa++++++++++P. aeruginosa++++++++++P. aeruginosa++++++++++P. aeruginosa++++++++++P. aeruginosa++++++++++ <td>SpeciesControlAmphotericin B (mg/L)Nalidix Acid (mg/L)$5$1020163264$P.$ aeruginosa$+$$+$$+$$+$$+$$+$$+$$P.$ aeruginosa$+$$+$$+$$+$$+$$+$$+$$P.$ aeruginosa$+$$+$$+$$+$$+$$+$$+$$P.$ aeruginosa$+$$+$$+$$+$$+$$+$$+$$P.$ aeruginosa$+$$+$$+$$+$$+$$+$$+$$P.$ aeruginosa$+$$+$$+$$+$$+$$+$$+$$P.$ aeruginosa$+$$+$$+$$+$$+$$+$$+$$+$$P.$ aeruginosa$+$$+$$+$$+$$+$$+$$+$$+$$+$$+$$P.$ aeruginosa$+$$+$$+$$+$$+$$+$$+$$+$$+$$+$$P.$ aeruginosa$+$<</td> <td>Species Control Amphotericin B (mg/L) Nalidixic Acid (mg/L) Vance 5 10 20 16 32 64 2.5 $P.$ aeruginosa $+$ <td< td=""><td>SpeciesControlAmphotericin B (mg/L)Nalidixic Acid (mg/L)Vancomycin (mg/L)$5$10201632642.55$P.$ aeruginosa$+$$+$$+$$+$$+$$+$$+$$+$$+$$P.$ aeruginosa$+$$+$$+$$+$$+$$+$$+$$+$$+$$+$$P.$ aeruginosa$+$$+$$+$$+$$+$$+$$+$$+$$+$$+$$P.$ aeruginosa$+$$+$$+$$+$$+$$+$$+$$+$$+$$+$$P.$ aeruginosa$+$$+$$+$$+$$+$$+$$+$$+$$+$$+$$P.$ aeruginosa$+$</td></td<></td>	SpeciesControlAmphotericin B (mg/L)Nalidix Acid (mg/L) 5 1020163264 $P.$ aeruginosa $+$ $+$ $+$ $+$ $+$ $+$ $+$ $P.$ aeruginosa $+$ $+$ $+$ $+$ $+$ $+$ $+$ $P.$ aeruginosa $+$ $+$ $+$ $+$ $+$ $+$ $+$ $P.$ aeruginosa $+$ $+$ $+$ $+$ $+$ $+$ $+$ $P.$ aeruginosa $+$ $+$ $+$ $+$ $+$ $+$ $+$ $P.$ aeruginosa $+$ $+$ $+$ $+$ $+$ $+$ $+$ $P.$ aeruginosa $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $P.$ aeruginosa $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $P.$ aeruginosa $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $P.$ aeruginosa $+$ <	Species Control Amphotericin B (mg/L) Nalidixic Acid (mg/L) Vance 5 10 20 16 32 64 2.5 $P.$ aeruginosa $+$ <td< td=""><td>SpeciesControlAmphotericin B (mg/L)Nalidixic Acid (mg/L)Vancomycin (mg/L)$5$10201632642.55$P.$ aeruginosa$+$$+$$+$$+$$+$$+$$+$$+$$+$$P.$ aeruginosa$+$$+$$+$$+$$+$$+$$+$$+$$+$$+$$P.$ aeruginosa$+$$+$$+$$+$$+$$+$$+$$+$$+$$+$$P.$ aeruginosa$+$$+$$+$$+$$+$$+$$+$$+$$+$$+$$P.$ aeruginosa$+$$+$$+$$+$$+$$+$$+$$+$$+$$+$$P.$ aeruginosa$+$</td></td<>	SpeciesControlAmphotericin B (mg/L)Nalidixic Acid (mg/L)Vancomycin (mg/L) 5 10201632642.55 $P.$ aeruginosa $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $P.$ aeruginosa $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $P.$ aeruginosa $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $P.$ aeruginosa $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $P.$ aeruginosa $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $P.$ aeruginosa $+$

Table 2-4 continued: Investigation of the growth of NTM and inhibition of non-NTM isolates after seven days of)f
incubation at 30°C using various antimicrobials in agar-based media	

	Non-mycobacteria										
Ref No.	Species	Control	Ampl	hotericin B (n	ng/L)	Nalid	lixic Acid (mg/L)	Vanc	omycin (r	ng/L)
			5	10	20	16	32	64	2.5	5	10
7057	P. aeruginosa	+	+	+	+	++	NG	NG	+	++	++
7058	P. aeruginosa	+	+	+	+	+	NG	+	+/-	+/-	+/-
7059	P. aeruginosa	+	+	+	+	+/-	NG	+/-	+	+/-	+/-
7060	P. aeruginosa	+/-	+/-	+/-	+/-	+/-	Tr	NG	+	+/-	Tr
7061	P. aeruginosa	++	++	++	++	+	+	++	+	+	+
7062	P. aeruginosa	++	+++	++	++	++	+	+	++	+	+
7063	P. aeruginosa	++	++	++	+	+	NG	NG	++	+	+
7064	P. aeruginosa	+	+	+	++	+	+	+	+	+	+
7065	P. aeruginosa	+	+	+	++	+	+	+	+	+	+
7066	P. aeruginosa	+	+	+	+	+	+	+/-	+	+	+
7067	P. aeruginosa	+	++	+	+	++	+	+	+	+	+
7068	P. aeruginosa	++	++	+	+	++	+	+	++	+	+
7069	P. aeruginosa	++	++	+	+	++	+	+	+	++	++
7070	P. aeruginosa	++	++	+	+	+	+	+	+	+	+
7071	P. aeruginosa	++	++	+	+	+	+	+	+	+	+
7072	P. aeruginosa	++	++	+	+	+	+	+	++	+	+
7073	P. aeruginosa	++	++	+	+	++	+	+	++	++	++
7074	P. aeruginosa	++	++	++	+	++	+	+	++	+	+
7075	P. aeruginosa	++	+	+	+	+	+	+/-	++	+	+
7076	P. aeruginosa	++	+	+	+	+	+	+/-	++	++	++
7077	P. aeruginosa	+	++	++	++	+	+	+	++	++	++
	-										

Table 2-4 continued: Investigation of the growth of NTM and inhibition of non-NTM isolates after seven days of incubation at 30°C using various antimicrobials in agar-based media

	Non-mycobacteria										
Ref No.	Species	Control	Amp	hotericin B (n	n g/L)	Nalid	ixic Acid (mg/L)	Vanc	omycin (r	ng/L)
			5	10	20	16	32	64	2.5	5	10
7078	P. aeruginosa	+	+	+	+	+	+	+	++	++	++
7079	P. aeruginosa	+	++	++	++	++	++	++	++	++	+++
8020	P. apista	+	+	+	+	+	+	+	+	+	+
8021	P. pnomenusa	+	+	+	+	+	+	+	+	+	+
8031	P. rettgeri	+	-	-	-	NG	NG	NG	+	+/-	+
8037	R. planticola	++	-	-	-	NG	NG	NG	++	++	++
8022	S. maltophilia	+	+	+	+	+	+/-	Tr	+	+	+
8023	S. maltophilia	+	+	+	+	+	+/-	+/-	+	+	+
8039	S. marcescens	++	-	-	-	+	NG	NG	++	++	++
	Gram-positives										
9006	B. subtilis	+	-	-	-	NG	NG	NG	NG	NG	NG
9003	E. faecalis	+/-	-	-	-	+/-	+/-	+/-	NG	NG	NG
9005	E. faecium	+/-	-	-	-	+/-	+/-	+/-	NG	NG	NG
9001	S. aureus	+	-	-	-	+	NG	NG	NG	NG	NG
9002	S. aureus (MRSA)	+	-	-	-	+	+	+	NG	NG	NG
9004	S. epidermidis	+	-	-	-	+	Tr	NG	NG	NG	NG
8035	S. gordinii	Tr	-	-	-	Tr	Tr	+/-	NG	NG	NG
8040	S. pneumoniae	Tr	-	-	-	Tr	Tr	Tr	NG	NG	NG
8033	S. pyogenes	+/-	-	-	-	+/-	+/-	+/-	NG	NG	NG
8034	S. salivarius	+	-	-	-	+	+	+	NG	NG	NG

Table 2-4 continued: Investigation of the growth of NTM and inhibition of non-NTM isolates after seven days of incubation at 30°C using various antimicrobials in agar-based media

	Non-mycobacteria										
Ref No.	Species	Control	Amp	hotericin B (n	ng/L)	Nalid	ixic Acid (mg/L)	Vanc	omycin (r	ng/L)
			5	10	20	16	32	64	2.5	5	10
	Fungi and Yeast										
9013	A. fumigatus*	+++	+/-	NG	NG	-	-	-	-	-	-
9014	A. fumigatus**	+++	+/-	NG	NG	-	-	-	-	-	-
9015	A. terreus	+++	+++	+++	+++	-	-	-	-	-	-
9001	C. albicans	+++	NG	NG	NG	-	-	-	-	-	-
9012	C. glabrata	+++	NG	NG	NG	-	-	-	-	-	-
9018	G. argillacea	+++	Tr	+/-	NG	-	-	-	-	-	-
9016	S. apiospermum	++	+++	+++	+++	-	-	-	-	-	-
9017	S. prolificans	++	+++	+++	+++	-	-	-	-	-	-

*3 colonies on Day 7 at 5mg/L **4 colonies on day 7 at 5mg/L

Ref No.	Non-mycobacteria Species	Co	lomycin (n	ng/L)		C390 (mg/	′L)	Fos	fomycin (mg/L)	Malachi	ite Green ((mg/L)
	•	32	64	128	32	64	128	400	800	1600	0.125	0.25	0.5
	Gram-negatives												
8001	A. xylosoxidans	+	+	+	+/-	NG	NG	+	+	+	+	+	+
8003	Acinetobacter sp.	+	+/-	+/-	NG	NG	NG	NG	NG	NG	+	+/-	+/-
8004	B. multivorans	++	+	+	NG	NG	NG	++	++	++	++	++	+++
8006	B. cenocepacia IIIA	+	+	+/-	Tr	Tr	NG	+	+	+/-	+	+	+
8007	<i>B. cepacia</i> (G1)	+++	++	+	Tr	Tr	NG	+	+	+	++	++	++
8008	B. contaminans	+	+	+	Tr	NG	NG	+	+	+	+	+	+
8032	C. freundii	NG	NG	NG	NG	NG	NG	NG	NG	NG	+	+	+
9007	E. aerogenes	NG	NG	NG	NG	NG	NG	++	NG	NG	++	++	++
8038	E. cloacae	++	++	+	NG	NG	NG	+++	+++	+	+++	+++	+++
8036	E. coli	NG	NG	NG	NG	NG	NG	NG	NG	NG	+	+	+
9010	H. influenzae	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG
9009	M. catarrhalis	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG
9008	N. flavescens	NG	NG	NG	NG	NG	NG	NG	NG	NG	NG	+/-	+/-
8009	P. aeruginosa	NG	NG	NG	+	+	NG	NG	NG	NG	++	++	++
8010	P. aeruginosa	+	+/-	Tr	NG	NG	NG	+/-	NG	NG	+/-	+	+
8014	P. aeruginosa	+/-	+/-	+/-	+/-	NG	NG	NG	NG	NG	+	+	+
8015	P. aeruginosa	Tr	Tr	Tr	NG	NG	NG	+/-	Tr	Tr	+/-	+	+
8016	P. aeruginosa	+/-	+/-	+/-	+	+	NG	NG	NG	NG	+	+	+
8018	P. aeruginosa	NG	NG	NG	+	+/-	NG	+	+	+	+	+	+

Ref No.	Non-mycobacteria Species	Co	lomycin (n	ng/L)		C390 (mg/	L)	Fos	fomycin (mg/L)	Malachi	te Green (mg/L)
		32	64	128	32	64	128	400	800	1600	0.125	0.25	0.5
8019	P. aeruginosa	+/-	Tr+	Tr	+/-	+/-	Tr	NG	NG	NG	+/-	+	+
7037	P. aeruginosa	NG	NG	NG	+	+	NG	+/-	+/-	+/-	+	+	+
7038	P. aeruginosa	NG	NG	NG	+/-	Tr	NG	+/-	+/-	Tr	+/-	+/-	+/-
7039	P. aeruginosa	NG	NG	NG	+	+	+/-	+	+	+/-	+	+	+
7040	P. aeruginosa	NG	NG	NG	+	+	+	+	+/-	NG	+	+	+
7041	P. aeruginosa	NG	NG	NG	+	+	+	+/-	NG	NG	+	+	+
7042	P. aeruginosa	NG	NG	NG	+	++	+	NG	NG	NG	+	+	++
7043	P. aeruginosa	NG	NG	NG	+	+	+	NG	NG	NG	+	+	++
7044	P. aeruginosa	NG	NG	NG	++	+	NG	NG	NG	NG	++	++	++
7045	P. aeruginosa	NG	NG	NG	+	+	+/-	NG	NG	NG	++	++	++
7046	P. aeruginosa	NG	NG	NG	+	+	+/-	NG	NG	NG	++	++	++
7047	P. aeruginosa	NG	NG	NG	+	+	Tr	NG	NG	NG	++	++	++
7048	P. aeruginosa	NG	NG	NG	+	+	+	NG	NG	NG	++	++	+++
7049	P. aeruginosa	NG	NG	NG	+	+/-	NG	Tr	NG	NG	+	+	+
7050	P. aeruginosa	NG	NG	NG	+	+	+	NG	NG	NG	+	+	+
7051	P. aeruginosa	NG	NG	NG	+	+	+	NG	NG	NG	+	+	+
7052	P. aeruginosa	NG	NG	NG	+	+	+	NG	NG	NG	++	++	++
7053	P. aeruginosa	NG	NG	NG	++	+	+	Tr	NG	NG	++	++	++
7054	P. aeruginosa	NG	NG	NG	+	+	+/-	NG	NG	NG	++	++	++
7055	P. aeruginosa	NG	NG	NG	+	+	NG	+	+	+	++	++	++

Table 2-4 continued: Investigation of the growth of NTM and inhibition of non-NTM isolates after seven days of incubation at 30°C using various antimicrobials in agar-based media

Ref No.	Non-mycobacteria Species	Col	lomycin (n	ng/L)		C390 (mg/	L)	Fos	fomycin (mg/L)	Malachi	te Green (mg/L)
		32	64	128	32	64	128	400	800	1600	0.125	0.25	0.5
7056	P. aeruginosa	NG	NG	NG	+	+	+	NG	NG	NG	++	++	++
7057	P. aeruginosa	NG	NG	NG	+	+	NG	Tr	NG	NG	+	+	++
7058	P. aeruginosa	NG	NG	NG	+	+	+/-	NG	NG	NG	+	+	+
7059	P. aeruginosa	NG	NG	NG	NG	NG	NG	NG	NG	NG	+	+	+
7060	P. aeruginosa	NG	NG	NG	NG	NG	NG	Tr	NG	NG	Tr	+/-	+/-
7061	P. aeruginosa	NG	NG	NG	++	+++	+++	NG	NG	NG	+	++	++
7062	P. aeruginosa	NG	NG	NG	+	++	+	NG	NG	NG	++	++	++
7063	P. aeruginosa	NG	NG	NG	+	+	+	+/-	NG	NG	+	+	+
7064	P. aeruginosa	NG	NG	NG	+	+	+	+	+/-	NG	+	+	+
7065	P. aeruginosa	NG	NG	NG	+	+	+	NG	NG	NG	+	+	+
7066	P. aeruginosa	NG	NG	NG	+	+	+/-	NG	NG	NG	+	+	+
7067	P. aeruginosa	NG	NG	NG	+	+	+	NG	NG	NG	+	+	+
7068	P. aeruginosa	NG	NG	NG	+	+	+	NG	NG	NG	+	+	++
7069	P. aeruginosa	NG	NG	NG	+	+	+	NG	NG	NG	++	++	++
7070	P. aeruginosa	NG	NG	NG	+	+	+	NG	NG	NG	+	++	++
7071	P. aeruginosa	NG	NG	NG	+	+	+	NG	NG	NG	+	+	++
7072	P. aeruginosa	NG	NG	NG	+	+	+	NG	NG	NG	+	+	++
7073	P. aeruginosa	NG	NG	NG	+	+	+	NG	NG	NG	++	++	+++
7074	P. aeruginosa	NG	NG	NG	+	+	NG	NG	NG	NG	+	++	++
7075	P. aeruginosa	NG	NG	NG	+	+	+/-	NG	NG	NG	+	++	++

Table 2-4 continued: Investigation of the growth of NTM and inhibition of non-NTM isolates after seven days of incubation at 30°C using various antimicrobials in agar-based media

Ref No.	Non-mycobacteria Species	Co	lomycin (n	ng/L)		C390 (mg/	′L)	Fos	fomycin (mg/L)	Malachi	te Green (mg/L)
	•	32	64	128	32	64	128	400	800	1600	0.125	0.25	0.5
7076	P. aeruginosa	NG	NG	NG	++	+	+/-	NG	NG	NG	+	++	++
7077	P. aeruginosa	NG	NG	NG	++	+	+	NG	NG	NG	++	++	++
7078	P. aeruginosa	NG	NG	NG	+	+	+	NG	NG	NG	++	++	+++
7079	P. aeruginosa	NG	NG	NG	+	+	+/-	NG	NG	NG	++	++	++
8020	P. apista	+	+	+	+	+	Tr	+	+	+/-	+	+	+
8021	P. pnomenusa	+	+	+	+/-	+/-	Tr	+	+	+/-	+	+	+
8031	P. rettgeri	+	+	+	NG	NG	NG	NG	NG	NG	+	+	+
8037	R. planticola	NG	NG	NG	NG	NG	NG	+++	+	+	+	++	++
8022	S. maltophilia	+	+	+	Tr	NG	NG	NG	NG	NG	+	+	+
8023	S. maltophilia	+	+	+	NG	NG	NG	NG	NG	NG	+	+	+
8039	S. marcescens	+	+	+	NG	NG	NG	NG	NG	NG	+	+	+
	Gram-positives												
9006	B. subtilis	NG	NG	NG	NG	NG	NG	NG	NG	NG	+	+	++
9003	E. faecalis	+/-	+	+	NG	NG	NG	NG	NG	NG	+/-	+/-	+/-
9005	E. faecium	+/-	+/-	+/-	NG	NG	NG	NG	NG	NG	+/-	+/-	+/-
9001	S. aureus	NG	NG	NG	NG	NG	NG	NG	NG	NG	+	+	NG
9002	S. aureus (MRSA)	+	+	+	NG	NG	NG	NG	NG	NG	+	+	+
9004	S. epidermidis	+	NG	NG	NG	NG	NG	NG	NG	NG	+	+	+
8035	S. gordinii	+/-	+/-	+/-	NG	NG	NG	NG	NG	NG	Tr	Tr	+/-
8040	S. pneumoniae	NG	NG	NG	NG	NG	NG	NG	NG	NG	Tr	Tr	Tr

Ref No.	Non-mycobacteria Species	Colomycin (mg/L)				C390 (mg/L)			fomycin (mg/L)	Malachi	ite Green (mg/L)
	-	32	64	128	32	64	128	400	800	1600	0.125	0.25	0.5
8033	S. pyogenes	+/-	+/-	NG	NG	NG	NG	NG	NG	NG	+/-	+/-	+/-
8034	S. salivarius	+	+	+	NG	NG	NG	NG	NG	NG	+	+	+
	Fungi and Yeast												
9013	A. fumigatus*	-	-	-	-	-	-	-	-	-	-	-	-
9014	A. fumigatus**	-	-	-	-	-	-	-	-	-	-	-	-
9015	A. terreus	-	-	-	-	-	-	-	-	-	-	-	-
9001	C. albicans	-	-	-	-	-	-	-	-	-	-	-	-
9012	C. glabrata	-	-	-	-	-	-	-	-	-	-	-	-
9018	G. argillacea	-	-	-	-	-	-	-	-	-	-	-	-
9016	S. apiospermum	-	-	-	-	-	-	-	-	-	-	-	-
9017	S. prolificans	-	-	-	-	-	-	-	-	-	-	-	-

2.5.4 Investigation of combined antimicrobials for the inhibition of nonmycobacterial strains present in cystic fibrosis sputum

Out of 100 isolates of mycobacteria, one was excluded due to contamination with *C. albicans.* Another isolate, *M. intracellulare* did not grow on any of the media formulations within seven days, however this was not unexpected as *M. intracellulare* is known to be a slow-growing species, and usually has a TTD of 28 days on LJ medium (Wasilauskas and Morrell, 1994). After 168 h incubation both medium L and medium W had a sensitivity value of 99.0% (98/99), and medium X (RGM), 98.0% (97/99), however these values would rise to 100% and 99.0% if *M. intracellulare* was discounted.

Inhibition of 93.8% and 85.6% of all non-mycobacterial species tested was demonstrated by RGM, and medium W respectively. Six species; *Achromobacter* sp, *B. cepacia, P. apista, P. pnomenusa, B. contaminans* and *B. stabilis*, remained uninhibited on RGM medium although growth was significantly reduced. Fungi that were uninhibited by amphotericin B, and able to grow on media L and W were inhibited on RGM medium when combined with C390 as shown in Figure 2-10 with *A. terreus*. This was also the case for *Scedosporium apiospermum, Scedosporium prolificans*, and *Geosmithia argillacea*. All isolates grew well on control media.

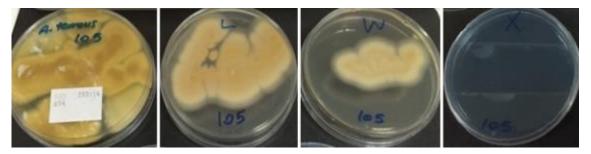


Figure 2-10: Growth of *Aspergillus terreus* on (left to right) Sabouraud control medium, Medium L, Medium W and RGM

Figure 2-10 shows the growth of *Aspergillus terreus* on Sabouraud control medium, medium L, the basal medium containing no antimicrobials showing slightly reduced growth, medium W, with only a small amount of growth and total inhibition on RGM medium, containing C390.

2.5.5 Evaluation of plating efficiency studies on RGM medium

On average, RGM medium was 84.0% as effective for the growth of mycobacteria as medium L. Two-sample t - tests gave a *P* value for medium L (control) and RGM medium as P=0.052. By conventional criteria, this difference is considered to be not statistically significant, indicating that there is no substantial difference between the two media for the growth of mycobacteria. Growth of colonies established that on RGM medium, colonies were marginally smaller than on medium L, but with regard to the numbers of colonies, the difference was minimal (Figure 2-11)

Following the addition of various antimicrobials into the medium, mycobacterial cell counts reduced from 225.3 \pm 33.3 to 189.3 \pm 28.8 (*p* >0.05); a decline of 36.0 \pm 4.6. The probability of obtaining a difference of 36.0 between the mean colony counts, given that the media does not affect the counts, is 0.052, or 5.2%.

Figure 2-11: Plating efficiencies showing colonies on medium L (left) and RGM medium (right)

2.5.6 Evaluation of the stability of RGM medium

There was no reduction in the quality of growth of the four species of *Mycobacterium* after storage of RGM media at 4°C for 12 weeks and the medium maintained complete inhibition of the six non-mycobacteria and seven fungal and yeast isolates tested (See Appendix 1).

2.5.7 Evaluation of various C390 derivatives in RGM medium

Results from the testing of C390 derivatives shown in Table 2-5 and Figure 2-12 to Figure 2-14 showed that the MIC's of A477 were almost equivalent to C390 with the only significant difference being for *I. limosus*. A488 also performed well, but with slightly higher MIC's than A477. However, all other compounds tested were not able to provide sufficient inhibition of the Gram-negative species, displaying increased MICs for all isolates tested.

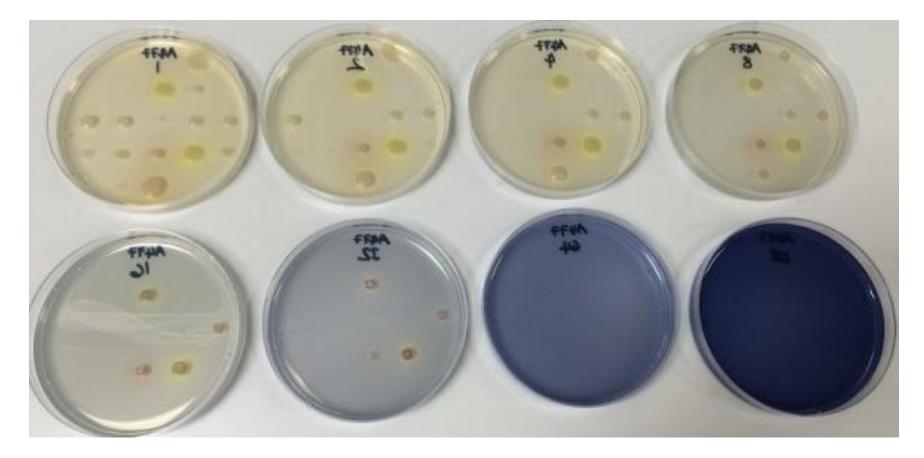


Figure 2-12: A477 at concentrations of 1 – 128 mg/L for twenty selected Gram-negative species after four days of incubation

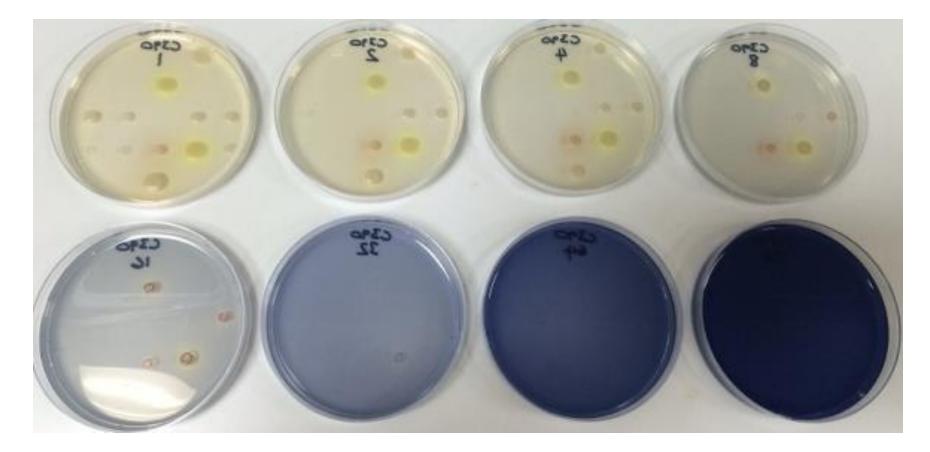


Figure 2-13: C390 at concentrations of 1 – 128 mg/L for twenty selected Gram-negative species after four days of incubation

Species	Ref	C390	A477	A475	A480a	A488	A503a	A503b	A505	A520
A. baumannii	NCTC 12156	4	4	4	128	8	128	>128	>128	>128
A. xylosoxidans	8001	32	64	>128	128	64	>128	>128	>128	>128
B. cepacia	NCTC 1222	8	8	>128	128	4	>128	>128	>128	>128
B. contaminans	8008	8	8	>128	128	8	>128	>128	>128	>128
B. multivorans	8004	8	8	>128	128	16	>128	>128	>128	>128
B. vietnamiensis	7032	4	4	4	128	2	64	>128	64	>128
C. albicans	ATCC 90029	≤1	≤1	≤1	>128	2	64	128	>128	>128
E. cloacae	NCTC 11936	16	16	>128	>128	32	>128	>128	>128	>128
E. coli	NCTC 10418	≤1	≤1	≤1	128	≤1	16	32	64	>128
E. faecalis	NCTC 775	≤1	≤1	2	>128	≤1	64	64	32	>128
I. limosus	7007	2	16	16	128	64	>128	>128	>128	>128
R. planticola	NCTC 9528	≤1	2	≤1	128	2	64	32	>128	>128
P. apista	8020	64	64	>128	128	128	>128	>128	>128	>128
P. aeruginosa	NCTC 10662	64	64	128	128	128	>128	>128	>128	>128
P. aeruginosa	7044	64	64	128	128	128	>128	>128	>128	>128
P. aeruginosa	8009	64	64	128	128	128	>128	>128	>128	>128
P. pnomenusa	8021	32	64	>128	128	64	>128	>128	>128	>128
S. aureus	NCTC 6571	≤1	≤1	≤1	128	≤1	16	32	8	32
S. maltophilia	NCTC 10257	≤1	≤1	≤1	128	≤1	16	32	32	>128
S. marcescens	7020	8	8	>128	>128	16	>128	>128	>128	>128

Table 2-5: MIC's (mg/L) of a selection of Gram-negative bacteria for C390 and derivatives of C390 after ten days at 30°C

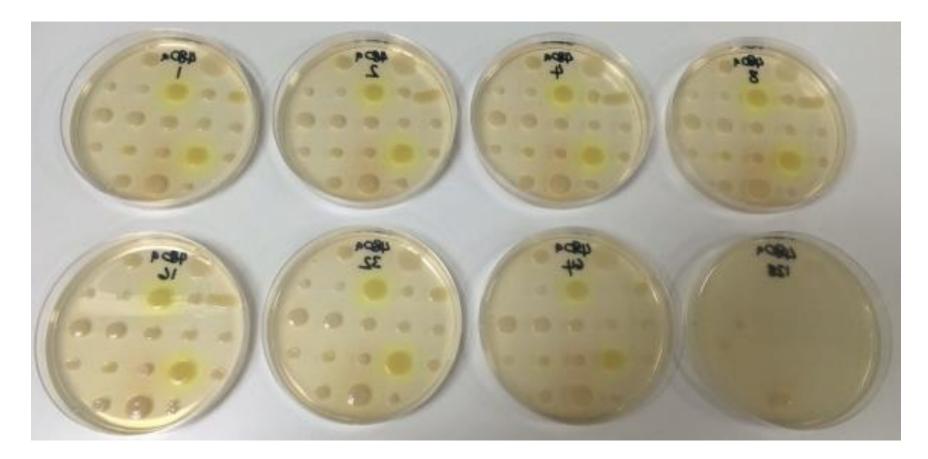


Figure 2-14: 480a at concentrations of 1 – 128 mg/L for twenty selected Gram-negative species after four days of incubation

These results demonstrated that A477, being locally synthesised by Dr Annette Johnson at Northumbria University, could be a more cost effective substitution for C390, working equally as well as a crucial ingredient in RGM medium. This could potentially be prepared in bulk for future large-scale studies.

2.5.8 Evaluation of selective agars in comparison to RGM for the growth of mycobacteria

Clear differences were revealed between the five different brands of BCSA in terms of their ability to support the growth of mycobacteria (Figure 2-15 below). For example, on Cepacia selective agar (bioMérieux) 95.9% of mycobacteria generated growth within four days of incubation compared with only 40.1% of isolates on Oxoid *B. cepacia* agar as shown in Table 2-6.

After ten days of incubation, ten isolates had failed to grow on Oxoid *B. cepacia* agar including MABSC (n = 4), *M. chelonae* (n = 3), *M. llatzerense* (n = 2) and *M. mucogenicum* (n = 1). All isolates were recovered on Cepacia selective agar (bioMérieux) whereas other brands of BCSA failed to support the growth of between four and eight isolates. All isolates were recovered on Middlebrook 7H11 selective agar and RGM medium with C390 at 32 mg/L. Two isolates (*M. abscessus* and *M. mucogenicum*) were inhibited on RGM medium with C390 at 64 mg/L, 128 mg/L and C390 at 32 mg/L with no OADC, and one isolate (*M. abscessus*) failed to grow on RGM medium using A477. Figure 2-15 shows the growth at day four of four isolates of *M. abscessus* subspecies *abscessus*.

Figure 2-15: Growth at day four of four isolates of *M. abscessus* subspecies *abscessus* on various media. Columbia blood agar, RMG with 32 mg/L, C390 and RGM with 64 mg/L C390, (top row). RGM with C390 at 128 mg/L, RGM with A477 at 32 mg/L and RGM with 32 mg/L C390 minus OADC supplement (second row). Middlebrook, Oxoid cepacia, bioMérieux cepacia (third row), and bioMérieux BCSA, BD cepacia and BD OFPBL (bottom row)

		BCSA	Cepacia	В. сер	Cepacia	OFPBL	M'brook	RGM	RGM	RGM	RGM	RGM	Blood/Sab
	n	bioMérieux	bioMérieux	Oxoid	BD	BD	7H11	C390 32mg/L	C390 64mg/L	C390 128mg/L	A477 32mg/L	No OADC*	Controls
		33631	44347	PO0938	256180	254481	PP4080	N/A	N/A	N/A	N/A	N/A	N/A
MABSC	94												
Day 4		92.6	96.8	57.4	96.8	93.6	98.9	98.9	98.9	97.9	97.9	98.9	100
Day 7		98.9	98.9	91.5	98.9	98.9	98.9	98.9	98.9	98.9	98.9	98.9	100
Day 10		98.9	100	95.7	100	98.9	100	100	98.9	98.9	98.9	98.9	100
M. chelonae	43												
Day 4		97.7	100	9.3	95.3	100	100	100	100	100	100	100	100
Day 7		100	100	69.8	95.3	100	100	100	100	100	100	100	100
Day 10		100	100	93	97.7	100	100	100	100	100	100	100	100
Other NTM	10												
Day 4		10	70	10	70	40	70	90	30	30	30	60	100
Day 7		30	80	60	70	40	70	90	90	60	90	70	100
Day 10		30	100	70	70	70	100	100	90	90	100	90	100
Total NTM	147												
Day 4		88.4	95.9	40.1	94.6	91.8	97.3	98.6	94.6	93.9	93.9	96.6	100
Day 7		94.6	98	83	95.9	95.2	97.3	98.6	98.6	96.6	98.6	97.3	100
Day 10		94.6	100	93.2	97.3	97.3	100	100	98.6	98.6	99.3	98.6	100

Table 2-6: Percentage of mycobacteria recovered on various selective agars at 30°C

*OADC: oleic acid, bovine serum albumin, dextrose, catalase

2.5.9 Evaluation of selective agars including RGM for the inhibition of non-mycobacteria

Table 2-7 and Figure 2-16 shown below provide an insight into the selectivity of the eleven selective media with 185 non-mycobacteria. Effective inhibition of *P. aeruginosa*, an essential characteristic of such media, was demonstrated on all five brands of BCSA. Inhibition of other species was more inconsistent however, and of 28 isolates of *S. aureus* (mainly methicillin-resistant strains (27/28)), 21 (75.0%) were able to grow on BD OFPBL medium whereas only three isolates were able to grow on Oxoid *B. cepacia* agar and bioMérieux BCSA. All brands of media for isolation of *B. cepacia* complex showed a poor ability to inhibit the growth of fungi and yeasts, particularly *Aspergillus* spp. Overall, bioMérieux BCSA displayed the greatest selectivity and BD OFPBL exhibited the weakest selectivity among the five brands tested.

Although Middlebrook selective medium is designed specifically for the isolation of mycobacteria from clinical samples, the growth of other non-mycobacterial species occurred frequently with 74 out of 186 (39.8%) isolates able to grow. Overall, it demonstrated inferior selectivity in comparison to the two most selective media for *B. cepacia* complex, although it was able to inhibit the growth of *Aspergillus fumigatus*. The various types of RGM medium were by far the most selective of all of the agars tested, with between 89.9% and 98.4% of non-mycobacteria inhibited including all fungi and Gram-positive bacteria. Species shown in Figure 2-16 include *Achromobacter* spp (n = 2), *Acinetobacter* (n = 1), BCC (n = 2), *P. aeruginosa* (n = 1), *C. freundii* (n = 1), *M. morganii* (n = 1) and *S. maltophilia* (n = 2).

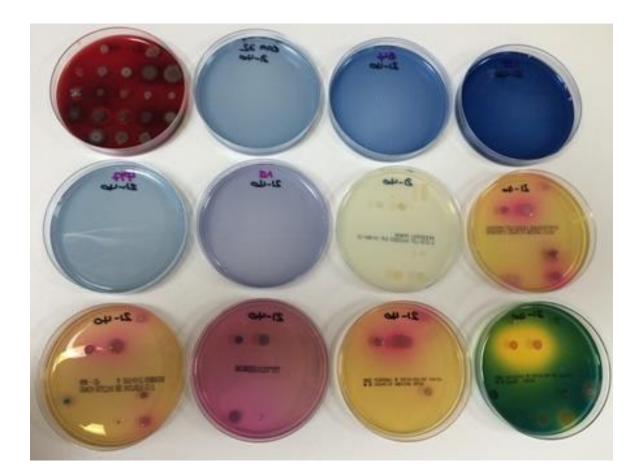


Figure 2-16: Growth of Gram-negative bacteria on various selective agars. Top row Columbia blood agar, RGM 32 mg/L C390, RGM 64 mg/L C390 and RGM 128 mg/L C390. Middle row RGM with A477 at 32 mg/L and RGM with 32 mg/L C390 minus OADC supplement, Middlebrook, Oxoid cepacia and bottom row bioMérieux cepacia and (bottom row) bioMérieux BCSA, BD cepacia and BD OFPBL

	n	BCSA bioMérieux 33631	Cepacia bioMérieux 44347	B. cep Oxoid PO0938	Cepacia BD 256180	OFPBL BD 254481	M'brook 7H11 PP4080	RGM C390 32mg/L N/A	RGM C390 64mg/L N/A	RGM C390 128mg/L N/A	RGM A477 32mg/L N/A	RGM No OADC* N/A
Gram Negatives	141	56	61	56	60	73	64	18	6	3	19	11
Enterobacteriaceae	11	2	0	2	2	6	1	0	0	0	0	0
A. xylosoxidans	8	3	3	3	5	8	3	2	0	0	2	0
Acinetobacter sp.	2	2	0	0	0	0	0	0	0	0	0	0
B. cepacia complex	43	37	40	36	37	41	39	12	4	2	13	8
D. acidovorans	1	1	0	0	0	1	0	0	0	0	0	0
E. miricola	1	1	1	1	0	1	1	0	0	0	0	0
H. influenzae	1	0	0	0	0	0	0	0	0	0	0	0
I. limosus	2	0	2	0	2	0	2	1	0	0	1	1
M. catarrhalis	1	0	0	0	0	0	0	0	0	0	0	0
N. flavescens	1	1	1	1	1	1	1	1	0	0	1	0
Ochrobactrum sp.	1	0	1	1	1	1	1	0	0	0	0	0
P. aeruginosa	55	0	2	1	2	2	2	0	0	0	0	0
Pandoraea spp.	3	3	3	3	3	3	3	2	2	1	2	2
R. mannitolilytica	7	6	6	6	6	5	7	0	0	0	0	0
S. maltophilia	4	0	1	1	0	3	3	0	0	0	0	0
Gram positives	35	3	11	3	14	21	7	0	0	0	0	0
B. subtilis	1	0	0	0	0	0	0	0	0	0	0	0
Enterococcus spp.	2	0	0	0	0	0	0	0	0	0	0	0
S. aureus	28	3	11	3	14	21	7	0	0	0	0	0
Streptococcus spp.	4	0	0	0	0	0	0	0	0	0	0	0
Yeast and Fungi	9	5	8	9	8	8	3	0	0	0	0	0
A. fumigatus	2	2	2	2	2	2	0	0	0	0	0	0
A. terreus	1	1	1	1	1	1	1	0	0	0	0	0
Candida spp.	3	2	3	3	3	3	1	0	0	0	0	0
G. argillacea	1	0	0	1	0	0	0	0	0	0	0	0
S. apiospermum	1	0	1	1	1	1	1	0	0	0	0	0
S. prolificans	1	0	1	1	1	1	0	0	0	0	0	0
Total	185	64	80	68	82	102	74	18	6	3	19	11
Total excluding <i>B. cepacia</i> complex	142	27	40	32	45	61	35	6	2	1	6	3

Table 2-7: Number of non-mycobacterial isolates recovered on various selective agars after 10 days at 30°C

2.5.10 Evaluation of the effectiveness of RGM medium versus bioMérieux cepacia agar using clinical samples

Results with sputum samples showed that out of 502 samples tested from 210 distinct patients, 55 samples from 33 distinct patients yielded NTM giving an overall prevalence of 15.7%. Twenty-one of the 210 patients were colonised with MABSC (prevalence: 10%). The mycobacteria isolated from 55 samples comprised *M. abscessus* subsp. *abscessus* (56.4%), *M. abscessus* subsp. *massiliense* (20%), *M. chelonae* (10.9%) *M. avium* (3.6%), *M. llatzerense* (3.6%), *M. salmoniphilum* (3.6%) and *M. mucogenicum* (1.8%). Table 2-8 shows the numbers of each species recovered by the two media, with the calculation of sensitivity shown for comparative purposes only and assuming that all mycobacteria were recovered by a combination of the two methods. Evidently, this cannot be proven and furthermore might be considered highly improbable for species such as *M. avium* and other slower growing NTM. RGM medium enabled the detection of NTM from 54 of 55 positive samples whereas BCSA recovered NTM from 17 of 55 positive samples (sensitivity: 98% vs. 31%; $P \le 0.0001$).

Species or subspecies	Total (either medium)	BCSA		RGM	
	n	n	Sensitivity (%)	n	Sensitivity (%)
<i>M. abscessus</i> subspecies <i>abscessus</i>	31	13	42	31	100
<i>M. abscessus</i> subspecies <i>massiliense</i>	11	3	33	11	100
M. chelonae	6	1	17	5	83
M. avium	2	0	0	2	100
M. llatzerense	2	0	0	2	100
M. salmoniphilum	2	0	0	2	100
M. mucogenicum	1	0	0	1	100
Total mycobacteria	55	17	31	54	98

 Table 2-8: Mycobacteria recovered from culture of 502 sputum samples on

 Burkholderia cepacia selective agar (BSCA) and RGM medium

For patients who had NTM found in their sputum (n = 33), 23 were detected using RGM medium only, one was detected using BCSA only (*M. chelonae*) and nine were detected using both media ($P \le 0.0001$). After four days of incubation, 59% of mycobacteria were recovered on RGM medium in comparison to 35% of mycobacteria isolated on BCSA. No further isolates of NTM were isolated after seven days of incubation using BCSA.

Figure 2-17: Patient sample at day 4 on BCSA (left) and RGM (right) demonstrating significantly reduced growth of *B. multivorans* on RGM

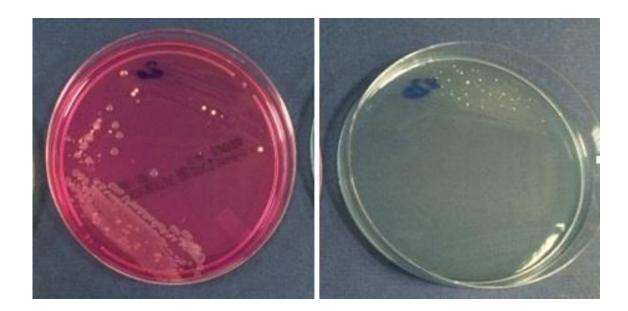


Figure 2-18: Patient sample at day 4 on BCSA (left) and RGM (right) showing growth of *C. parapsilosis* and *S. maltophilia* on BCSA, but only *M. abscessus* subspecies *abscessus* on RGM



Figure 2-19: Patient sample at day 4 on BCSA (left) and RGM (right) showing *A. fumigatus* on BCSA and two rough colonies of *M. abscessus* subspecies *abscessus* on RGM

Figure 2-20: Patient sample at day 4 on BCSA (left) and RGM (right) showing growth of *A. fumigatus, C. albicans* and *C. lusitaniae* on BCSA, and only pure colonies of *M. abscessus* subspecies *massiliense* on RGM

	Number of isolates (<i>n</i>)		
	BCSA	RGM	
Fungi and Yeasts	226	0	
Arthrographis kalrae	2	0	
Aspergillus fumigatus	69	0	
Aspergillus terreus	6	0	
Yeasts (Grams stain)	121	0	
Exophiala dermatitidis	23	0	
Scedosporium apiospermum	5	0	
Gram-negative bacteria	136	46	
Pseudomonas spp.	32	2	
Burkholderia cepacia complex	30	18	
Stenotrophomonas maltophilia	24	0	
Achromobacter spp.	21	18	
Enterobacteriaceae	14	2	
Inquilinus limosus	4	2	
Ochrobactrum spp.	4	0	
Pandoraea spp.	3	3	
Acinetobacter Iwoffii	1	0	
Methylobacterium radiotolerans	1	0	
Rhizobium radiobacter	1	0	
Sphingomonas sp.	1	0	
Delftia acidovorans	0	1	
Gram-positive bacteria	57	0	
Staphylococcus spp.	29	0	
Enterococcus spp.	14	0	
Streptococcus spp.	8	0	
Granulicatella adiacens	2	0	
Lactobacillus paracasei	2	0	
Micrococcus luteus	1	0	
Nocardia cyriacigeorgica	1	0	
Total non-mycobacteria	419	46	

Table 2-9: Other species recovered from culture of 502 sputum samples on Burkholderia cepacia selective agar (BSCA) and RGM medium

A remarkable feature of RGM medium was its ability to inhibit the growth of fungi and Gram-positive bacteria, and during ten days of incubation, no isolates of either of these groups were recovered from 502 sputum samples (Table 2-9). In addition, although both of these selective media are designed to inhibit the growth of *Pseudomonas*, RGM medium was much more effective with only two isolates recovered, compared with 32 isolates isolated on BCSA. Some isolates of Gramnegative bacteria, particularly *B. cepacia* complex and *Achromobacter* spp., could not be wholly inhibited on RGM medium but growth was somewhat restricted. Additionally, mycobacteria produced bright white colonies on RGM medium (Figure 2-21) whereas Gram-negative species that were able to grow generated blue, or occasionally pink, colonies. The high selectivity of RGM (Figure 2-17 to Figure 2-20) medium enabled the recovery of NTM in pure culture from 52 samples whereas BCSA enabled the recovery of a pure culture of NTM from only two samples.

Figure 2-21: RGM medium demonstrating the visual appearance of both smooth and rough colonies of *M. abscessus* subspecies *abscessus*

Figure 2-21 demonstrates the growth on RGM medium of rough *M. abscessus* subspecies *abscessus* colonies (left), smooth *M. abscessus* subspecies *abscessus* colonies (centre), and a combination of both rough and smooth colonies (right), which upon typing have the same VNTR profile.

2.5.11 Investigation of RGM medium for sputum samples of control group patients with non-cystic fibrosis bronchiectasis and cystic fibrosis transplant assessment patients

Out of 310 bronchiectasis patients, NTM was recovered from 4.5% (n = 14) of patients with 1.3% of patients (n = 4) harbouring *M. abscessus* subsp. *abscessus*. Furthermore 6.7% (n = 4) of transplant assessment patients were positive for NTM, with 1.7% (1 patient) having both *M. abscessus* subsp. *abscessus* and *M. neoaurum* (See Table 2-).

Of the 400 bronchiectasis samples, 385 were negative for NTM (96.3%), as were 61/67 (91.0%) transplant assessment samples. As a result of this evaluation, one bronchiectasis patient was reviewed, and after undergoing genetic testing was diagnosed with CF for the first time at the age of 71.

 Table 2-10: Number of NTM-positive samples from bronchiectasis and transplant assessment samples

Species	Positives (<i>n</i>)	Patient (n)
Bronchiectasis		
M. abscessus subsp. abscessus	5	4
M. chelonae	7	7
M. mucogenicum	3	3
Transplant Assessment		
M. abscessus subsp. abscessus	2	1*
M. chelonae	1	1
M. neoaurum	1	1*
M. species	2	2

*Patient co-infected with both *M. abscessus* subsp. abscessus and *M. neoaurum*

2.5.12 Evaluation of RGM medium for optimal growth of *Mycobacterium tuberculosis* complex and other slow-growing mycobacteria in broth-based culture medium

Although results were comparable in terms of isolation of slow-growing mycobacteria, the TTD was not as rapid using broth-based RGM as shown in Table 2-11 below.

	Total positive samples	Bottle A positive samples	Mean Time to Detection (days)	Bottle B positive samples	Mean Time to Detection (days)
M. tuberculosis	17	17	10.8	16	13.9
M. avium	14	11	9.7	12	10.5
M. intracellulare	2	2	6.2	2	7.9
M. malmoense	2	2	15.7	2	18.6

Table 2-11: Results of 44 AFB positive bo	ttles inoculated with non-CF samples
---	--------------------------------------

In treated samples from CF patients, MABSC was detected in more of the RGM (bottle B) based bottles (6/56) than in the traditional (bottle A) MBacT bottles (3/56). A significant improvement was apparent in the rates of contamination of non-mycobacterial species being considerably reduced as well as the TTD of MABSC in these samples (Table 2-12).

	Positive samples		Time to de (days		Contaminated bottles	
	MABSC	M. avium	M. abscessus	M. avium	Number	Rate (%)
Bottle A (soda treated sample)	3	0	9.0	-	20/56	36
Bottle A (acid treated sample)	2	0	5.0	-	13/56	23
Total Bottle A	3	0	-	-	-	29
Bottle B (soda treated sample)	2	1	5.2	21.0	4/56	7
Bottle B (acid treated sample)	6	0	4.2	-	3/56	5
Total Bottle B	6	1	-	-	-	6
TOTAL	6	1				

 Table 2-12: Recovery of mycobacteria from 56 pairs of MBacT bottles

 inoculated with treated samples from patients with CF

This was also evident across the slopes, with LJ slopes (Table 2-13) showing a dramatically higher rate overall of non-NTM contaminating species at both temperatures and after all decontamination treatments. The highest rate of NTM recovered was on the untreated 30°C RGM slopes at 13.9%. Although these also showed a contamination rate of 17.6%, it was very easy to visualise the NTM on the slope in comparison to the non-NTM species due to the colour difference.

	% Contamination	% NTM isolated
Soda Treated Samples 30°C		
RGM	2.8	4.6
LJ	28.7	1.9
Soda Treated Samples 37°C		
RGM	1.9	1.9
LJ	25.9	1.9
Acid Treated Samples 30°C		
RGM	2.8	8.3
LJ	18.5	3.7
Acid Treated Samples 37°C		
RGM	5.6	1.9
LJ	14.8	3.7
Untreated Samples 30°C		
RGM	17.6	13.9
Untreated Samples 37°C		
RGM	4.6	7.4

Table 2-13: Percentage contamination of samples from patients both with CF and non-CF and percentage of NTM isolated using RGM and LJ slopes at 21 days incubation at 30°C and 37°C

It was impractical to perform a direct comparison of RGM medium with standard AFB culture as specimens were submitted for standard AFB culture infrequently. For example, for the 33 patients who were found to harbour mycobacteria in this study (i.e. using RGM plus BCSA as described in section 2.4.10), specimens were only submitted for standard AFB culture for ten of these patients (30%) during the 8-month trial period and only six of these yielded mycobacteria (18%). Equally, for the 177 patients that were found not to harbour mycobacteria, only 22 patients (12%) had specimens referred for standard AFB culture during the 8-month trial period. Of these 22 patients, mycobacteria was only recovered from one patient (*M. abscessus* subsp. *abscessus*).

In a 15-month period where RGM medium was used routinely at the Freeman Hospital, Newcastle upon Tyne, 4408 respiratory samples collected from 625 patients, both adult and paediatric, with CF were cultured onto RGM medium and incubated up to ten days (Table 2-14). AFB culture was continued for those patients who spontaneously produced sputum. Upon analysis of these patients, only 213 (34%) actually had AFB cultures requested, and 73 (15.5%) were contaminated and abandoned therefore no report could be issued with regard to the isolation of mycobacteria. NTM was only detected in 21 patients, in comparison to 56 patients with the routine use of RGM medium.

RGM medium was able to recover NTM from cough swabs as well as sputum samples, and although the yield was lower (1.9%), NTM was detected for the first time by cough swab culture in 15 patients.

	Total		Sputum	Other	Patients tested using RGM medium (10 day incubation)	Patients tested using formal AFB culture ^a
	4408	2443	1557	408	625	213
Total mycobacteria	195	46	133	16	56	21 ^b
<i>M. abscessus</i> complex	168	40	114	14	34	13
M. chelonae	10	2	8	0	9	3
M. fortuitum	2	0	2	0	1	0
M. avium complex	0	0	0	0	0	6
Other mycobacterial species	15	4	9	2	12	0

Table 2-14: Comparison of RGM medium and formal AFB culture for the recovery of NTM from respiratory samples from patients with CF over a 15-month period

^a 469 samples cultured from 213 patients using culture on LJ medium plus automated liquid culture

^b Two different *Mycobacterium* spp. Isolated from one patient sample

Studies have also been completed comparing RGM medium (minus decontamination of samples) against the gold standard MGIT method using decontaminated samples with one study in London, UK showing a ten-day incubation period of RGM was equivalent to MGIT for the recovery of NTM (P = 1.00). Another evaluation performed in Chapel Hill, USA demonstrated that with an incubation period of 28 days, the sensitivity of RGM medium for the isolation of mycobacteria was significantly higher than combined MGIT/LJ with a P value of (P = 0.001) for total mycobacteria including *M. avium*, and (P = 0.046) for MABSC only.

2.5.13 Summary of studies in other centres using RGM medium for the isolation of NTM from patients with cystic fibrosis

An evaluation similar to the one described in section 2.4.16 was performed in Frankfurt, Germany, and showed that RGM was significantly more sensitive than BCSA (P = 0.023) (Preece *et al.*, 2016). A further study in Chapel Hill. USA demonstrated that from 869 samples incubated for up to 28 days also provided a significantly higher sensitivity for RGM medium (P = <0.0001) (Plongla *et al.*, 2016). Both of these studies compared RGM against a brand of *B. cepacia* medium (Table 2-15).

Study Location	No. of specimens / No. of patients	Prevalence of NTM (%)	Method used	Decontamination	Sensitivity (5)	Р
Newcastle upon Tyne, UK	502 / 210	15.7%	RGM	None	98.0	
			10 days incubation			
						≤0.0001
			BCSA			
			10 days incubation	None	32.0	
Frankfurt, Germany	224 / 133	9.0%	RGM	None	100	
			10 days incubation			
			BCSA			0.023
			10 days incubation	None	41	
Chapel Hill, USA	869 / 493		RGM	None	96.9	
			28 days incubation			
			BCSA			<0.0001
			28 days incubation	None	34.7	
London, UK	187 / 187	15%	RGM	None	82	
			10 days incubation			
			MGIT			1.00
			28 days incubation	3% oxalic acid	86	
Chapel Hill, USA	212 / 172	24.1%	RGM	None	93.2	
			28 days incubation			
			MGIT / LJ medium			0.0001
			6 weeks incubation	NALC-NaOH then 5% oxalic acid	47.7	
Aarhus, Denmark	97 / 86	Sample size too small,	RGM	None	Only 1 MABSC	
		only 1 MABSC isolated	14 days incubation		isolated during	
		during test period			test period, on	
			BCSA		both RGM and	N/A
Combridge LUC	564 /		14 days incubation RGM	None None	BCSA	
Cambridge, UK	environmental	-	10 days incubation	inone	100.0	
	samples		TO days incubation			
	Samples		PANTA*			0.04
			10 days incubation	None	14.0	5.01

Table 2-15: Summary of studies using RGM medium for the isolation of NTM from respiratory samples from patients with CF

* PANTA solid agar plates made in house at Papworth Hospital, Cambridge, UK and contains Middlebrook 7H11 Agar (Difco Mycobacteria 7H11 Agar - BD) with PANTA Antimicrobial Supplement (Becton, Dickinson and Company) at final antibiotic concentrations as follows; Polymyin B 30units/ml, Amphotericin 3g/ml, Nalidixic Acid 12µg/ml, Trimethoprim 3µg/ml and Azlocilin 3µg/ml. Studies performed in Nijmegen, The Netherlands; Bron, France and Lyon, France were too small and an insignificant number of MABSC isolates were isolated to validate any substantial results.

2.6 Discussion

Annual screening for NTM is recommended in patients who spontaneously produce sputum, with the suggested methodology from the CF Foundation and the European Cystic Fibrosis Society comprising of decontamination of sputum samples using N-acetyl-L-cysteine (0.5%)-NaOH (2%), or upon a sample remaining contaminated, it should be further treated with either 5% oxalic acid or 1% chlorohexidine (Floto *et al.*, 2016). Staining of sputum smears for acid-fast bacilli and culture on both solid and liquid media for a minimum of six weeks is also recommended. The use of oropharyngeal swabs should be avoided, due to insufficient material for culture (Saiman *et al.*, 2014). Transbronchial biopsies are to be circumvented if possible as although they can reveal NTM in culture or microscopy and exhibit granulomatous inflammation there is a substantial risk of bleeding and pneumothorax occurring. Preference should be given to sputum, induced sputum, bronchial washings or bronchial lavage samples. Updated evidence-based draft guidelines on the Management of Non-tuberculous Mycobacteria in individuals with Cystic Fibrosis have recently been published (Floto *et al.*, 2016).

The limitations of these methods are highlighted in these guidelines and include a significant reduction in the viability of mycobacteria due to the decontamination process, or only limited elimination of non-mycobacteria requiring further rounds of decontamination (De Bel *et al.*, 2013). The method is both costly and labour intensive. It is suggested that the currently used and most sensitive method following decontamination is an automated growth detection system such as MGIT, with simultaneous culture on solid media to possibly increase the diagnostic yield. The potential use of BSCA is highlighted in these guidelines, but not overtly recommended.

119

There is currently no explicit culture medium for the sole isolation of rapidly-growing mycobacteria, as in the case of *B. cepacia* complex despite the fact that the prevalence of rapidly-growing NTM may be considerably higher, as illustrated by this study where 54 isolates of mycobacteria were recovered on RGM medium (Table 2-8) compared with 30 isolates of *B. cepacia* complex recovered using BCSA (Table 2-9). One reason for this may be the lack of a convenient, rapid and effective method for isolation of rapidly-growing NTM. RGM medium provides a simple and convenient technique that can be implemented for the culture of all routinely submitted sputum samples from patients with CF. Such methodical screening will ensure that diagnosis of a significant infection with NTM is not unreasonably hindered. For example, a positive sputum culture for MABSC is more likely to indicate the presence of NTM-mediated lung damage rather than asymptomatic colonization (Seddon et al., 2013; Floto and Haworth, 2015) and multiple positive cultures despite treatment is associated with a poor outcome (Esther et al., 2010; Qvist et al., 2015). Additionally, routine screening of all submitted sputum samples from CF patients may assist in prompt identification of risk factors leading to acquisition, subsequent infection and transmission of NTM (Bryant et al., 2013). Any screening method may lead to the detection of transient colonisation with mycobacteria that may have no clinical significance. This can be problematic, as patients may be assumed to be infected and may be unnecessarily segregated from other patients. This problem can be alleviated largely by prompt species identification of the isolate (Blauwendraat et al., 2012; Harris and Kenna, 2014) to assess likely pathogenicity and, wherever possible, prompt submission of further sputum samples.

As media for isolation of *B. cepacia* complex have been suggested for isolation of mycobacteria, this prompted an investigation of different commercial brands of

Cepacia selective media in order to compare their ability to support the growth of mycobacteria and their selectivity against other bacteria associated with sputum samples from CF patients. Cepacia selective agar (bioMérieux; 44347) was at least as effective for culture of pure strains of mycobacteria as any other Cepacia selective agar (Table 2-7). It was less selective than some other agars and much of this could be attributed to lack of inhibition of methicillin-resistant *S. aureus*. Cepacia selective agar was less selective than bioMérieux BSCA but more selective than BD OFPBL.

In 1985, Gilligan et al. were the first to report the design of a selective culture medium for *B. cepacia*, PC medium, for use with sputum samples from patients with CF (Gilligan et al., 1985). This medium comprised of polymyxin B, ticarcillin, crystal violet and bile salts as selective agents, many of which are frequently used in commercial brands. At around the same time, Welch et al. evaluated the use of OFPBL medium, exploiting the use of polymyxin B and bacitracin as selective agents (Welch et al., 1987). In addition, over a decade later, Henry et al. described *B. cepacia* selective agar (BCSA) that was shown to have superior selectivity when compared to PC medium and OFPBL medium. In this medium, polymyxin B and crystal violet were retained as selective agents with the addition of gentamicin and vancomycin (Henry et al., 1997). In a large trial with 656 clinical samples, Henry et al. concluded that BCSA was superior to both OFPBL and PC medium for supporting the growth of *B. cepacia* and suppressing the growth of other flora (Henry et al., 1999). In this study the high selectivity of BCSA is confirmed, demonstrating much more selectivity than OFPBL, however, six isolates of BCC were inhibited using BCSA.

The growth rate of mycobacteria is slower than most if not all of the other bacterial and fungal isolates frequently recovered from sputum samples from patients with CF. For this reason, high selectivity of media is vital in order to inhibit or at least restrict the growth of non-mycobacteria so that the mycobacteria do not go undetected due to overgrowth by other species. Although BCSA was the most selective of the agars designed for recovery of BCC, it was much less selective than RGM medium. If BCC is excluded (as BCSA is designed to grow this), 24 non-mycobacteria were able to grow on BCSA compared with only six on RGM medium. A particular flaw of selective agars for BCC is their failure to inhibit fungi, particularly *Aspergillus* species. On extended incubation of these media, the growth of *Aspergillus* can consume the entire culture plate, thus compromising the likelihood of isolating mycobacteria. This is particularly problematic with sputum samples from CF patients where concomitant isolation of *Aspergillus* sp. has been frequently associated with mycobacteria infection (Esther *et al.*, 2010; Verregghen *et al.*, 2012)

Middlebrook 7H11 selective agar, designed specifically for the isolation of mycobacteria, was superior at inhibiting fungi due to the inclusion of amphotericin. However, species such as *Aspergillus terreus* and *Scedosporium apiospermum* persisted and largely the selectivity of Middlebrook 7H11 selective agar was inferior to that of bioMérieux BCSA and Oxoid *B. cepacia* agar. In contrast, no yeasts or fungi were able to grow on RGM medium. From this analysis, it can be concluded that RGM medium offers a superior option to any of the other selective agars for isolation of rapidly-growing mycobacteria from the sputum of patients with CF.

Under existing guidelines (Floto *et al.*, 2016) NTM may be undetected for up to a year, and occasionally longer if successive conventional cultures are compromised by frequent contamination.

In conclusion, it is proposed that routine systematic use of RGM medium could expedite a greater understanding of the true prevalence and clinical significance of

rapidly-growing mycobacteria in patients with CF. The superior sensitivity of RGM medium over recognised AFB culture strongly supports the proposal that decontamination of samples will have an adverse effect upon the viability of mycobacteria, as previously described in section 1.9.3. The use of this medium can easily be incorporated into any laboratory alongside routine culture for other CF pathogens without any requirement for the laborious decontamination of samples and potentially facilitate a considerable saving in both labour time and materials cost of replacing formal AFB culture. NTM were detected in over twice as many patients by performing routine investigation with RGM medium and it is probable that this would have been additionally increased with prolonged incubation of up to 28 days.

Burkholderia cepacia complex is routinely screened for in patients with CF, yet the results of the studies completed in Table 2-9 confirm that NTM was isolated at a much greater rate than *B. cepacia* complex so it would seem irrational that screening for NTM is only recommended annually.

This method however will not preclude the need to perform annual screening using conventional mycobacterial culture methods, as slow-growing mycobacteria such as *M. avium* may not be consistently detected. However, the existing evidence validates the significant potential of such a highly selective medium for the isolation of NTM from patients with CF.

CHAPTER THREE

An evaluation of fluorogenic and chromogenic enzyme substrates as prospective identification tests for the *Mycobacterium abscessus* complex and for potential differentiation of subspecies.

Introduction

3.1 Current methods of identification of *Mycobacterium abscessus* complex

MABSC and *M. chelonae* are closely related species that cannot always be differentiated by clinical laboratories, and prior to 1992, they were thought to be the same organism or subspecies within the *M. chelonae-abscessus* group (Kusunoki and Ezaki, 1992). This is particularly problematic as they cause infections requiring diverse treatment regimens, with *M. chelonae* not notably as clinically significant if isolated from a patient sample. MABSC however is increasingly acknowledged as a substantial cause of lung infection in cystic fibrosis (CF) patients (Esther *et al.*, 2005), particularly *M. abscessus* subsp. *abscessus*, with many CF centres rejecting patients colonised with MABSC for lung transplant (Watkins and Lemonovich, 2012).

Accurate identification can be accomplished by PCR and sequencing of housekeeping gene targets, as previously discussed in section 1.9.6, however many reports in the literature describe ambiguous sequencing results from isolates that have chimeric house-keeping gene sequences. This is possibly as a result of horizontal gene transfer and recombination, which further highlights the difficulties in accurate identification and differentiation of these three subspecies (Zelazny *et al.*, 2009; Macheras *et al.*, 2014b).

3.2 Direct observation of non-tuberculous mycobacteria in culture medium

Mycobacteria are grouped according to speed of growth as either rapidly-growing mycobacteria or slow-growing mycobacteria. The formation of visible colonies on culture media in less than seven days constitutes "rapid" growth, (e.g. as shown by

M. abscessus), whilst those necessitating more than seven days are known as slowgrowing, (e.g. *M. avium*). In general mycobacteria form either rough or smooth white/cream coloured colonies, although many species can, like *M. kansasii*, produce pigment generating bright yellow colonies (Lima and Magalhaes, 2014).

Many rapidly-growing species can grow on MacConkey agar without crystal violet, whereas *M. tuberculosis* and *M. bovis* do not have this capability, and *M. abscessus* is noted as having the ability to grow in media with 5% sodium chloride. LJ medium supplemented with a concentration of 250 mg of hydroxylamine can distinguish between NTM and other species of mycobacteria for example *M. bovis* as NTM do not have the capacity to grow in the presence of hydroxylamine. Rapidly-growing mycobacteria excluding *M. chelonae* can grow on Sauton picric medium and Sauton agar with 0.2% picric acid (Garcia-Agudo *et al.*, 2011).

3.3 Biochemical tests used in identification of mycobacteria

Biochemical tests, such as citrate utilisation or tolerance to sodium chloride, are simple to perform, require minimal equipment, and in general are able to correctly differentiate between the more common mycobacterial species. Nonetheless, they are laborious and due to lengthy incubation times present a delay in final identification. Other methods based on mycolic acid analysis, for example high performance liquid chromatography and gas liquid chromatography, are challenging and costly. Experience in interpretation is essential, and can be limited by subjectivity and low specificity. Biochemically unreactive or inert organisms can be difficult to identify and phenotypic misidentification can occur due to species homogeneity, variability, and the increasing recovery of novel species (Springer *et al.*, 1996; Tortoli *et al.*, 2001).

At present, there are almost 200 currently established species, a number that continues to rise, and in general, biochemical algorithms will only differentiate around twenty species. This therefore makes this approach too complex, resulting in a characteristic preference towards the more familiar species (Kent and Kubica, 1985). Despite these challenges, phenotypic methods are still used in some laboratories to identify NTM regardless of their recognised limitations.

3.4 Genotypic methods for the identification of *Mycobacterium abscessus* complex

The use of nucleic acid probes is a prompt and extensively used procedure for identification, however as such a small range of mycobacterial species are covered, there are well documented concerns regarding specificity and sensitivity (Lim *et al.*, 1991; Bull and Shanson, 1992; Viljanen and Olkkonen, 1993).

The earliest commercially available method was the Gen-Probe AccuProbe (Gen-Probe Inc.), and more recently, the INNO-LiPA MYCOBACTERIA v2 (Innogenetics NV, Ghent, Belgium), Geno-Type MTBC and Genotype Mycobacterium (Hain Lifesciences, Nehren, Germany). INNO-LiPA Mycobacteria v2 is still quite antiquated in that it integrates *M. abscessus* and *M. chelonae* into *M. chelonae* complex (Garcia-Agudo *et al.*, 2011), and as discussed in section 1.9.6, none of these kits are not able to identify individual members of the MABSC (Reisner *et al.*, 1994).

3.5 Molecular typing of *Mycobacterium abscessus* complex isolates

Differentiation of MABSC isolates has been performed using various molecular techniques; including variable number tandem repeat (VNTR) analysis, whole genome sequencing, multilocus sequence typing (MLST) and multispacer sequence typing (MST), pulsed field gel electrophoresis and rep-PCR.

3.5.1 Variable number tandem repeat

VNTR is a rapid and convenient PCR-based technique targeting variation in tandem DNA repeats at specified loci, generally between nine and fifteen, with a numerical profile created that is based upon the number of repeats at each locus. This method has been successfully used for the differentiation of *M. tuberculosis* strains for many years (Mazars et al., 2001), but is not as well established for MABSC and there are varying reviews of its success and accuracy in being able to separate *M. abscessus* complex isolates. A two-tandem repeat locus was demonstrated by Choi et al. (2011), which was reported to be able to split the three members of MABSC in eighty-five clinical isolates that were all initially identified as *M. abscessus* subsp. abscessus by PCR-restriction fragment length polymorphism analysis of rpoB. Using this method, if there is one band on the gel an identification of *M. abscessus* subsp. massiliense is given. If two amplification bands are displayed, they were either M. abscessus subsp. abscessus (>393 bp) or M. abscessus subsp. bolletii (393 bp), and if there was a single band of >393 bp in length, the result was interpreted as *M. abscessus* subsp. *abscessus* (Choi *et al.*, 2011). Wong *et al.* described a VNTR assay for *M. abscessus* complex declaring complete reproducibility in 38 clinical isolates (Wong et al., 2012) previously all identified as *M. abscessus* by PCR and HAIN Genotyping (Telenti *et al.*, 1993). A further study in 2012 by Harris et al. however performed a comparison of VNTR with the Diversilab rep-PCR method and demonstrated that the patients were infected with isolates which shared a limited number of VNTR profiles, suggesting the possibility of cross contamination having occurred, or a possible mutual environmental source of infection (Harris et al., 2012).

3.5.2 Rep-PCR for the identification of mycobacteria

Rep-PCR uses PCR primers that will amplify repetitive sequences in the genome in order to give a profile (Healy *et al.*, 2005). A relatively basic commercial kit from Diversilab, (bioMerieux) can be used in routine diagnostics, however reports are unclear as to whether this method provides representation of same strain isolates, or if they are in fact just highly related strains when identical rep-PCR profiles are obtained (Harris *et al.*, 2012).

3.5.3 Multilocus sequence typing and multispacer sequence typing

MLSA is a previously described technique for the identification of *M. abscessus* isolates to subspecies level (Macheras *et al.*, 2011). Multilocus sequence typing (MLST) is an extension of the MLSA method however, a greater number of house-keeping gene targets are sequenced for MLST, usually around eight. Although reproducible and not requiring substantial amounts of DNA, the sequences of the house-keeping targets used are well conserved in *M. abscessus* complex, therefore MLST does not provide discrimination of the three subspecies (Macheras *et al.*, 2014a). Multispacer sequence typing (MST) is a PCR and sequence based technique that targets intergenic spacers, which are more variable than the housekeeping genes in MLST therefore this technique may offer improved discrimination. A recent study described the development of this MST scheme for identification of *M. abscessus* complex and is able to discriminate between the three subspecies when combined with phylogenetic analyses (Sassi *et al.*, 2013).

3.5.4 Whole genome sequencing

Whole genome sequencing (WGS) provides the most comprehensive technique in order to analyse the entire genome. It provides rapid and accurate microbial genome sequence information, which is crucial for detecting mutations, discovering

significant deletions or insertions, and ascertaining other genetic changes among microbial strains. It can also provide an insight into whether cross contamination is an issue as conflicting information has frequently been described (Bryant *et al.*, 2013; Davidson *et al.*, 2013; Harris *et al.*, 2015).The high degree of resolution provided by WGS allows for much finer discrimination of strains than any of the other current or previous methodologies.

3.6 Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS)

As an alternative to chromatographic, biochemical or molecular methods, mass spectral analysis has become progressively more widespread for the identification of microorganisms (Lau *et al.*, 2014). MALDI-TOF MS can be used for accurate and speedy identification of innumerable microorganisms. This technique is based upon the detection of highly abundant proteins in a mass range between 2 and 20 kDa by computing their mass (*m*) to charge (*z*), *m*/*z* values generating a characteristic spectrum for each microorganism. This can then be used for comparison with stored reference spectra and in so doing providing identification of the isolate (Panda *et al.*, 2013).

3.6.1 Principles of MALDI-TOF MS

MALDI-TOF MS measures a unique molecular fingerprint, specifically the proteins found in all microorganisms (Singhal *et al.*, 2015). The distinguishing patterns of these extremely abundant proteins can consistently and accurately identify a particular microorganism by matching its individual pattern with an extensive database to determine the identity to species level. This system is highly accurate with a rapid turnaround time and high throughput (96 samples per run) and is cost effective. Its ease of use and versatility does not require extensive training for

laboratory workers (Marvin et al., 2003). Limitations can however include the need for isolated pure colonies, a fresh culture, and on occasions an inability to differentiate between closely related organisms and repeat analysis may be required (Dhiman et al., 2011). Once the inoculum is dried, the matrix is added. Once this is dried the prepared target plate is placed into the ionization chamber where each sample is irradiated with momentary pulses of energy from an ultraviolet nitrogen laser (337 nm). This process desorbs individual sample and matrix molecules from the target plate into the gas phase, with the majority of energy absorbed by the matrix, which becomes ionized with a single positive charge. This positive charge is consequently transferred from the matrix to native sample proteins through their random collision in the gas phase. The ionized proteins are funnelled through a positively charged, electrostatic field that accelerates the molecules into the time of flight (TOF) mass analyser. The TOF chamber is an empty, pressurized tube that allows ions to travel down a field-free region toward the ion detector. The speed at which individual ions move through the TOF chamber is dependent on their massto-charge ratio and ions are ultimately separated based on their difference in mass. Heavier ions will travel through the mass analyser at a slower velocity than lighter ions and as they emerge, they collide with the ion detector, which measures their charge and time to impact. Based on standards of known mass, the time to impact for each unknown analyte is converted into a mass-to-charge ratio, which is illustrated on a mass spectrum. As each spectral profile is attained, the software automatically generates a MALDI-TOF spectrum that is matched against a reference database in order to provide identification alongside a score value. Using a biostatistical algorithm the peak list is compared to reference peaks of organisms in the reference database and a log (score) value is given between 0.00 and 3.00. The higher the log (score) value, the higher the degree of similarity to a given

organism, with values of \geq 2.00 indicating a high probability of correct identification at the suggested species level (Bruker, 2015).

3.6.2 The use of MALDI-TOF in the identification of *Mycobacterium abscessus* complex

Although MALDI-TOF MS has been shown to be a highly accurate method for identifying mycobacterial isolates to species level, this technique has not been shown to be able to successfully differentiate between the three subspecies of MABSC (Saleeb *et al.*, 2011; Balada-Llasat *et al.*, 2013). A report by Teng *et al.* (2013) suggested that this was achievable, however this report also claimed that *M. abscessus* subsp. *bolletii* was currently the correct taxonomic name for *M. abscessus* subsp. *massiliense* and only a limited number of isolates (n = 58) were tested. Other reports suggest that although *M. abscessus* subsp. *massiliense* can be differentiated from *M. abscessus* subsp. *abscessus* subsp. *massiliense* (Fangous *et al.*, 2014; Suzuki *et al.*, 2015; Luo *et al.*, 2016).

3.7 The use of chromogenic and fluorogenic substrates in culture media

Enzymes are present in all microorganisms in vast numbers with quantities and varieties produced differing between species and often also between strains. All species of bacteria possess a unique enzyme profile comprising of a number of enzymes required for growth, nutrition and replication and this differentiation permits an appropriate means of identification (Bascomb and Manafi, 1998).

The biochemical activity within bacteria is known as metabolism, and the majority of these biochemical reactions do not transpire spontaneously, but are catalyzed by enzymes accelerating the chemical reaction without undergoing any permanent modification themselves (Chubukov *et al.*, 2014). Without enzymes, these reactions would be at a rate that was too slow. Many enzymes necessitate the presence of other compounds, known as cofactors in order to exert their catalytic activity and one property of enzymes that makes them so significant as a diagnostic tool is the specificity they exhibit. Certain enzymes require a particular type of bond (linkage specificity) or functional group (group specificity), whereas others will only catalyze one reaction (absolute specificity), or only act upon a particular steric or optical isomer (stereochemical specificity) (Rago *et al.*, 2015).

Several fluorogenic and chromogenic reactions have been used for detection of bacteria. Fluorogenic methods exploit synthetic substances, such as those based on 4-methylumbelliferone (4-MU) or 7-amino-4-methylcoumarin (7-AMC) that are hydrolysed by bacterial enzymes to release powerful fluorophores. This will produce an increase in fluorescence attributable to enzymatic activity (Dyer, 1970), a fluctuation in fluorescence or absorbance of a pH indicator (Goodwin and Kavanagh, 1950), or a change of intensity of fluorescence as a result of adsorbance of fluorescent dye within the bacterial cell (Ramsey *et al.*, 1980).

Hydrolysis of esculin to glucose and esculetin (6,7 dihydroxycoumarin) and detection of esculetin by its reaction with iron was first described in bacteria by Meulen in 1907 (Ter Meulen 1907, cited in Harrison and van der Leck 1909). This reaction was then incorporated into esculin medium to examine water for the presence of coliforms by Harrison and van der Leck in 1909 (Harrison and Van Der Leck, 1909).

3.8 Enzyme substrates

Enzymatic substrates are fundamental tools in biochemistry and are extensively used in microbiology to study metabolic pathways, observe metabolism and to

detect, count and identify microorganisms. Rapid detection and identification of microorganisms is particularly important in microbiology and both chromogenic and fluorogenic substrates have proved to be a powerful aid, utilising specific enzymatic activities of particular microorganisms, either in conjunction with or as an alternative to traditional methods (Maddocks and Greenan, 1975; Manafi and Kneifel, 1991). By incorporation of these substrates into primary selective media, colony counts and detection can be achieved directly on the isolation plate. The introduction of many of these media and identification tests has led to enhanced accuracy and more rapid detection of target organisms, frequently decreasing the need for isolation of pure cultures and supplementary confirmatory tests (Gee *et al.*, 1999).

Glycosidases catalyse the hydrolysis of glycosidic linkages, and in so doing degrade oligosaccharides and glycoconjugates. These effective and very specific catalysts are crucial in biological processes therefore a comprehensive knowledge of their function is instrumental in regulating disease (Falk *et al.*, 1990). Peptidases are enzymes that catalyse the cleavage of proteins into both shorter fragments, as well as into their component amino acids with two major groups being endopeptidases, targeting sites within the proteins and exopeptidases, cleaving terminal ends of proteins (van Roosmalen *et al.*, 2004). Esterases catalyse the hydrolysis of an ester bond into its acid and alcohol. They catalyse three types of reaction; esterification, interesterification and transesterification (Xiang *et al.*, 2007). As they do not require cofactors, this makes them attractive biocatalysts. Chromogenic substrates allow the rapid and simple identification of microorganisms in clinical samples, and when exploited in a culture medium can decrease the need for time consuming and labour intensive subcultures and biochemical tests (Perry and Freydiere, 2007).

Developed in 1908 by Wohlgemuth, the first enzyme assay for the detection of amylase activity was using starch and iodine (Wohlgemuth, 1908). Maltose

disaccharides are produced when amylase catalyses the hydrolysis of starch and a colour change of the iodine from dark brown to yellow occurs.

Chromogenic substrates are molecules designed to imitate metabolic substrates and are colourless until they are cleaved by the target enzyme (Perry and Freydiere, 2007). Once cleaved the released chromogen is usually insoluble and brightly coloured. Colonies that possess the enzyme can then be simply differentiated from those that do not possess the enzyme. The addition of chromogenic substrates into a selective culture medium can allow differentiation and identification of groups of bacteria.

The first commercially available culture medium that utilised a synthetic chromogenic substrate was Rambach agar, which uses a chromogenic substrate for β -galactosidase known as X-Gal (5-bromo-4-chloro-3-indolyl- β -D-galactopyranoside). Composed of propylene glycol, peptone, yeast extract, sodium deoxycholate, neutral red and Xgal, upon incubation at 37°C for 24 hours, *Salmonella* spp will ferment the propylene glycol to generate acid causing precipitation of the neutral red and consequently producing colonies with a characteristic red colour (Rambach, 1990).

substrate The chromogenic (X-gal) will facilitate the most common Enterobacteriaceae to produce blue or violet colonies whereas most species that fail to produce ß-galactosidase (e.g. Proteus spp.) remain colourless. The inhibition of Gram-positive microorganisms in the sample is attributed to the sodium deoxycholate in the medium. There is a disadvantage to this medium in that it does not detect Salmonella typhi, Salmonella paratyphi or some rare strains such as Salmonella wassenaar and Salmonella moscow. Additionally, some Salmonella strains are able to produce β -galactosidase, for example Salmonella arizonae, therefore show as blue/violet colonies on the medium (Manafi, 1996).

The most widely used chromogenic substrates are those based on indoxyl or its halogenated derivatives such as 5-bromo-6-chloro-indoxyl (forms a magenta dye) or 6-chloro-indoxyl (forms a rose pink dye) (See Figure 3-1 below) and their popularity is due to their heat resistance, water solubility and their predisposition to form strongly coloured indigo-based precipitates upon enzymatic action (Perry and Freydiere, 2007).

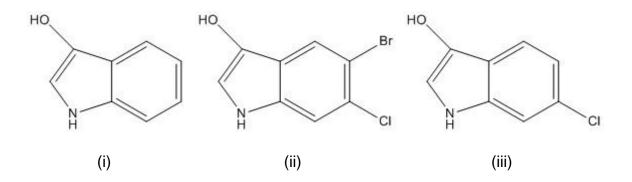
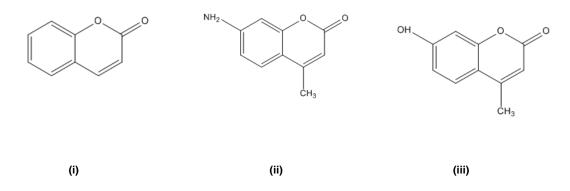



Figure 3-1: Structure of indoxyl (i) and it halogenated derivatives (ii) 5-bromo-6-chloro-indoxyl and (iii) 6-chloro-indoxyl

The fluorogenic enzyme substrates used for bacterial detection largely consist of derivatives of coumarin, such as 4-methylumbelliferone (4-MU or 7-hydroxy-4-methylcoumarin) or 7-amino-4-methylcoumarin (7-AMC), (Chilvers *et al.*, 2001), the structures of which are shown in Figure 3-2. This is due to the accessibility of an extensive range of substrates with diverse metabolic moieties, their non-carcinogenicity, simplicity of visual detection of the products of enzyme activity with UV light sources, and availability of appropriate tools for measurement of fluorescence (Manafi *et al.*, 1991).

The use of fluorogenic substrates for bacterial enzyme detection was first described by Dyer (1970) followed by Dahlen and Linde (1973) who employed an agar plate containing the enzyme substrate, 4-methylumbelliferyl-β-D-glucuronide, in order to detect β-glucuronidase activity in microorganisms (Dahlen and Linde, 1973). Maddocks and Greenan (1975) subsequently described a ten minute spot test using 4-MU derivatives outlining a simplistic and rapid alternative to standard biochemical tests and Fujiwara and Tsuru (1978) were the first to use 7-AMC derivatives for the measurement of bacterial peptidases (Fujiwara and Tsuru, 1978).

Figure 3-2: Structures of fluorescent core molecules (i) coumarin (ii) 7-amino-4-methylcoumarin (iii) 4-methylumbelliferone

Substrates based on such fluorophores are non-fluorescent when conjugated to a metabolically active moiety, for example glucose, and upon hydrolysis the aglycone is cleaved from glucose, freeing up the electrons at the hydroxyl group and altering the molecule so that it yields a bright blue fluorescent light under UV light at an excitation wavelength of 365 nm and emission wavelength of 445 nm (Haughland, 1996).

These substrates are more suitable when used in liquid assays, as when used in solid agar based media, the fluorescent product will diffuse away from the bacteria which expresses the target enzyme making it difficult to differentiate between a negative and positive colony in a mixed culture (Manafi *et al.*, 1991).

As discussed, there are an abundant number of commercially available kits based upon enzyme function, providing a rapid and accurate result within a very short space of time (Bascomb and Manafi, 1998) as well as numerous chromogenic and fluorogenic media readily obtainable (Manafi *et al.*, 1991), but currently there is nothing available for the rapid identification of mycobacteria therefore enzymic activity cannot be accurately or promptly estimated.

3.9 Aims and objectives

To screen a collection of fluorogenic and chromogenic enzyme substrates (structures are shown in Appendix 4) to characterise the enzymatic profiles of mycobacteria and selected Gram-negative strains and to determine whether mycobacteria can be differentiated from Gram-negative bacteria in order to exploit the use of these substrates within RGM medium.

To determine if different species within the *Mycobacterium abscessus* complex (*M. abscessus* subsp. *abscessus, M. abscessus* subsp. *bolletii* and *M. abscessus* subsp. *massiliense*) can be distinguished from each other, and also from lesser pathogenic mycobacterial species such as *M. chelonae*.

3.10 Materials

3.10.1 Bacterial strains used in the evaluation of fluorogenic substrates

A collection of 45 isolates were used; these included two control strains from the National Collection of Type Cultures: *E. coli* NCTC 10418 and *S. aureus* NCTC 6571, 15 Gram-negative isolates; *A. xylosoxidans* (n = 3), *B. multivorans* (n = 3), *B. cenocepacia* (n = 2), *B. stabilis* (n = 1), *B. vietnamiensis* (n = 1), *D. acidovorans* (n = 1), *I. limosus* (n = 1), *P. aeruginosa* (n = 1), *P. norimbergenesis* (n = 1), *S. marcescens* (n = 1), and 28 isolates of mycobacteria (M. *abscessus* subsp. *abscessus* (n = 1), *M. abscessus* subsp. *massiliense* (n = 8), *M. chelonae* (n = 6) and *M. abscessus* subsp. *bolletii* (n = 3). Further details in Appendix 1.

3.10.2 Bacterial strains used in the evaluation of chromogenic substrates

A collection of 20 mycobacteria isolates were used: *M. abscessus* subsp. *abscessus* (n = 12), *M. abscessus* subsp. *massiliense* (n = 5) and *M. abscessus* subsp. *bolletii* (n = 3) and 31 non-mycobacterial isolates for the evaluation of magenta octanoate; Burkholderia cepacia complex (n = 10), *A. xylosoxidans* (n = 4), *P. aeruginosa* (n = 4), *Pandoraea* spp. (n = 3), *S. maltophilia* (n = 2), *S. marcescens* (n = 2), *Acinetobacter* sp. (n = 1), *D. acidovorans* (n = 1), *E. miricola* (n = 1), *I. limosus* (n = 2) and *Ochrobactrum* sp. (n = 1).

For the evaluation of L-ala-ala-ala-4(4'-aminostyryl)-N-methylquinolinium dichloride a collection of 12 mycobacteria isolates were used: *M. abscessus* subsp. *abscessus* (n = 6), *M. abscessus* subsp. *massiliense* (n = 4) and *M. abscessus* subsp. *bolletii* (n = 2). Further details in Appendix 1. A further collection of 11 mycobacteria isolates were used for all other chromogenic substrates: *M. abscessus* subsp. *abscessus* (n = 6), *M. abscessus* subsp. *massiliense* (n = 2), *M. chelonae* (n = 2) and *M. abscessus* subsp. *bolletii* (n = 1).

All isolates used unless stated otherwise were supplied by the Freeman Hospital Microbiology Department and were isolated from the sputa of patients with CF. Further details can be found in Appendix 1.

3.10.3 Growth media and general chemicals

RGM broth was prepared in house using Middlebrook broth base and glycerol as described in Appendix 2 with the addition of yeast extract obtained from bioMérieux, Marcy l'Etoile, France. OADC supplement was prepared as described previously in section 2.4.3. No antimicrobials or agar were added to the broth. Methyl red was purchased from Sigma-Aldrich, Poole, UK.

3.10.4 Fluorogenic enzyme substrates

4-Methylumbelliferyl lignocerate, 4-Methylumbelliferyl nonanoate, 4-Methylumbelliferyl riboside, 4-Methylumbelliferyl α -D-glucopyranoside, 4-Methylumbelliferyl α-D-glucuronide, 4-Methylumbelliferyl α-D-mannopyranoside, 4-Methylumbelliferyl α -L-idopyranoside, 4-Methylumbelliferyl α -L-iduronide, 4-Methylumbelliferyl β -D-glucopyranoside and 4-Methylumbelliferyl β -D-glucuronide, 4-Methylumbelliferyl β-D-ribofuranoside were all obtained from Glycosynth, Warrington, UK. 4-Methylumbelliferyl acetate, 4-Methylumbelliferyl 7-β-D-xyloside, 4-Methylumbelliferyl acetamido-4,6-0-benzylidene-2-deoxy-β-D-glucopyranoside, 4-Methylumbelliferyl butyrate, 4-Methylumbelliferyl heptanoate, 4-D-glucosaminide, 4-Methylumbelliferyl palmitate, 4-Methylumbelliferyl pquanidinobenzoate hydochlorate, 4-Methylumbelliferyl phosphate, 4Methylumbelliferyl propionate, 4-Methylumbelliferyl stearate, 4-Methylumbelliferyl sulfate. 4-Methylumbelliferyl α -D-galactoside, 4-Methylumbelliferyl α-L-fucoside, 4-Methylumbelliferyl β-D-galactoside, 4-Methylumbelliferyl β-D-glucoside, 4-Methylumbelliferyl β-D-mannopyranoside. 4-Methylumbelliferyl β-D-N.N'diacetylchitobioside and 4-Methylumbelliferyl β-D-N,N'-triacetylchitotriose were purchased from Sigma-Aldrich, Poole, UK. 4-Methylumbelliferyl laurate was obtained from Koch-Light Laboratories Limited, Suffolk, UK. Ac-Met-7-amino-4methylcoumarin (AMC), Boc-Leu-Gly-Arg-AMC acetate salt, H-Arg-AMC.2HCl, H-Arg-AMC.2HCI, H-Asn-AMC.TFA, H-Asp(AMC)-OH, H-GIn-AMC, H-GIu-AMC, H-Gly-AMC.Hbr, H-Gly-pro-AMC.HBr, H-His-AMC, H-Ile-AMC.TFA, H-Leu-AMC.HCl, H-Lys-AMC.acetate, H-Met-AMC acetate salt, H-Orn-AMC.2HCl, H-Phe-AMC.TFA, H-Pro-AMC hydrobromide salt (Prolyl), H-Thr-AMC, H-Try-AMC, H-Val-AMC, H-B-Ala-AMC.TFA, Pyr-AMC, L-alanine-AMC trifluoroacetate salt and Z-Arg-AMC.HCI were purchased from Bachem, Saffron Walden, UK. All structures are shown in Appendix 4.

3.10.5 Chromogenic enzyme substrates

5-bromo-6-chloro-3-indolyl-β-D-galactopyranoside, 6-chloro-3-indolyl-β-Dglucuronide, 6-chloro-3-indolyl-β-D-glucopyranoside and magenta octanoate were purchased from Glycosynth, Warrington, UK. Alizarin-2-α-D-galactopyranoside was obtained from Inalco, Italy. Alizarin-2-β-D-galactopyranoside, Alizarin-2-β-Dglucopyranoside, 3,4-cyclohenenoesculetin-β-D-galactopyranoside, 3,4cyclohenenoesculetin-β-D-glucopyranoside and L-ala-ala-ala-4(4'-aminostyryl)-Nmethylquinolinium dichloride were kindly supplied by Professor Arthur James, University of Northumbria, UK.

3.10.6 Equipment

In addition to equipment used in section 2.3.4, a Proline Plus 30-300µl, 8-Channel multi pipette from Alpha laboratories, Hampshire, UK was used for dispensing substrates into the microtitre trays. Flat-bottomed, 96 well microtitre trays used in the evaluation of enzyme substrates were purchased from Sarstedt AG & Co., Numbrecht, Germany. The Synergy HT multi-detection microplate reader, obtained from BioTek Instruments, Bedfordshire, UK (see section 3.10.6.1) was used to measure the change in absorbance in enzyme assays containing chromogenic and fluorogenic substrates.

3.10.6.1 The Synergy HT multi-detection microplate reader

The Synergy HT multi-detection microplate reader is a microplate reader capable of measuring absorbance, fluorescence and luminescence. It utilises a unique dual optics design and has both monochromator/xenon flash systems with a silicone diode detector for absorbance, which allows the selection of any wavelength for endpoint or kinetic measures from 200 nm to 999 nm in 1 nm increments. It also has a tungsten halogen lamp with blocking interference filters, excitation and emission for wavelength selection and photomultiplier detection for fluorescence (BioTek, 2017).

3.11 Methods

3.11.1 Culture medium used in the evaluation of chromogenic and fluorogenic substrates

One litre of Middlebrook 10 x strength broth base described in Appendix 2 containing 40 ml glycerol and 4 g yeast extract was prepared, autoclaved for 10 minutes at 121°C, cooled and stored at 4°C. As the OADC supplement cannot be autoclaved, 100 ml was prepared as previously and described in Appendix 2, filter sterilised and added to the broth as required at a concentration of 10 ml per 100 ml broth base.

3.11.2 Preparation of bacterial strains

All Gram-negative strains were subcultured onto blood agar, and mycobacteria onto previously described RGM medium and incubated at 30°C for 72 hours. A bacterial suspension was prepared by suspending a loopful of fresh culture in 2 ml broth base in a sterile bijou bottle. The cell density of all 45 strains was measured with a densitometer and adjusted to a turbidity equivalent to 1.0 McFarland units (approx. 3.0×10^8 colony forming units (cfu)/ml) using additional broth base where required.

3.11.3 Evaluation of fluorogenic substrates for both mycobacteria and non-mycobacterial isolates

Fluorogenic substrates were prepared at 2.96 mM and initially dissolved in 200 µl N-methyl-2-pyrrolidone and made up to 5.5 ml with broth base. Esterase substrates had an additional 300 µl tween 20 added to prevent them precipitating out of solution and all were made up to a final volume of 5.5 ml with broth base. Substrates which did not go into solution readily at room temperature were heated until fully dissolved and clear in colour.

A 50 µl volume of each isolate suspension was loaded into the wells of a microtitre tray in duplicate, with their position recorded, and an equal volume of the substrate solution added. In addition, three negative control organism-free wells were prepared, and two controls containing *E. coli* (NCTC 10418) and *S. aureus* (NCTC 6571). Each substrate was tested in duplicate. Microtitre trays were read to obtain an initial "time zero" measurement of fluorescence with a fluorescence microtitre plate reader using a 365 nm excitation wavelength and a 440 nm emission wavelength. Trays were incubated at 30°C for 72 hours after which the fluorescence readings were repeated. Average readings after 72 hours incubation are shown in Appendix 5.

3.11.4 Initial evaluation of chromogenic substrates for mycobacterial isolates

Magenta octanoate was evaluated for activity in NTM and L-ala-ala-ala-4(4'aminostyryl)-N-methylquinolinium dichloride was evaluated for activity in both NTM and a selection of non-mycobacteria, which included a number of common Gramnegative CF pathogens. Columbia agar was prepared in 200 ml volumes and magenta octanoate was added at a concentration of 0.45 g/L. This was dissolved in N-methyl-2-pyrrolidone (4.5 ml/L) and tween 20 (7.9 ml/L) then added to the agar once cooled to 50°C. Twenty isolates of NTM were inoculated onto the medium and incubated at 30°C for four days. L-ala-ala-ala-4(4'-aminostyryl)-N-methylquinolinium dichloride was added at a concentration of 0.1 g/L dissolved in N-methyl-2pyrrolidone (1 ml/L) and added to the agar once cooled to 50°C. Twelve isolates of NTM and 28 non-mycobacterial isolates were inoculated onto the medium and incubated at 30°C for four days. Eight further chromogenic substrates were evaluated to consider if there were any benefits to including these in RGM medium. RGM agar was prepared in 100 ml volumes as previously described and the following concentrations of each substrate added; 5-bromo-6-chloro-3-indolyl-β-D-galactopyranoside 0.08g/L, 6-chloro-3-indolyl-β-D-glucopyranoside 0.2g/L, 6-chloro-3-indolyl-β-D-glucuronide 0.2g/L, alizarin-2-α-D-galactopyranoside 0.05g/L, alizarin-2-β-D-galactopyranoside 0.05g/L, alizarin-2-β-D-glucopyranoside 0.05g/L, 3,4-cyclohexenoesculetin-β-D-galactopyranoside 0.3g/L and 3,4-cyclohexenoesculetin-β-D-glucopyranoside 0.3g/L. All substrates were dissolved in N-methyl-2-pyrrolidone (1 ml/L) and added to the agar once cooled to 50°C. Eleven isolates of NTM were used in total, with five inoculated onto each media and incubated at 30°C for four days. Control plates containing no substrates were inoculated for all isolates.

3.12 Results

3.12.1 Activity of fluorogenic substrates in both non-mycobacteria and mycobacterial isolates

The results for the activity detected with fluorogenic substrates are shown in Table 3-1. Mycobacteria were showed most activity with 4-Methylumbelliferyl laurate, 4-Methylumbelliferyl palmitate, 4-Methylumbelliferyl stearate, 4-Methylumbelliferyl β-D-galactoside, 4-Methylumbelliferyl β-D-glucoside, H-Leu-AMC.HCl, H-Met-AMC acetate salt, H-His-AMC, H-Arg-AMC.2HCI, H-Try-AMC, H-B-Ala-Amc.TFA, Lalanine-AMC trifluoroacetate salt, Boc-Leu-Gly-Arg-AMC acetate salt and 4-Methylumbelliferyl phosphate. For all of these however the majority of nonmycobacteria also demonstrated activity, therefore discriminating between NTM and other species would still be problematic. Methyl Red 291 was highly sensitive in 23/26 (88.5%) of NTM, with only three isolates of *M. chelonae* showing no activity. Inactivity for all of the non-mycobacteria tested was observed, except for the two control organisms tested, S. aureus and E. coli. No activity was detected with six of the substrates for any of the species tested; 4-Methylumbelliferyl propionate, 4-Methylumbelliferyl p-guanidinobenzoate hydochlorate hydrate, 4-Methylumbelliferyl 4-Methylumbelliferyl 7-β-D-xyloside, lignocerate. 4-Methylumbelliferyl α-Dglucopyranoside and SR266, and two showed 100% sensitivity for all isolates; H-Leu-AMC.HCI and L-alanine-AMC trifluoroacetate salt. None of the fluorogenic substrates tested was able to successfully differentiate between M. chelonae or between subspecies of the *M. abscessus* complex.

	(<i>n</i>)	4MA	4MPr	4MB	4MH	4MN	4MLa	4MPgh	4MPa	4MSt	4MLi	4Mara	4Mxyl	4Mribs	4Mribf
A. xylosoxidans	3	0	0	0	0	0	100	0	0	0	0	0	0	33.3	33.3
B. cenocepacia	2	0	0	0	50	0	50	0	50	0	0	0	0	100	100
B. multivorans	3	0	0	0	0	0	100	0	66.7	66.7	0	0	0	0	0
B. stabilis	1	0	0	0	100	0	100	0	100	100	0	0	0	100	100
B. vietnamiensis	1	0	0	0	0	0	0	0	0	0	0	0	0	100	0
D. acidovorans	1	0	0	0	0	0	0	0	100	0	0	0	0	0	0
I. limosus	1	0	0	0	0	0	0	0	0	0	0	0	0	100	100
P. norimbergenis	1	0	0	0	0	0	0	0	0	0	0	0	0	100	0
P. aeruginosa	1	100	0	0	0	0	100	0	100	100	0	0	0	100	100
S. marcescens	1	0	0	100	100	0	100	0	100	100	0	100	0	100	100
M. abscessus*	12	0	0	0	8.3	8.3	100	0	100	100	0	33.3	0	75	25
M. bolletii**	2	0	0	0	0	0	100	0	100	100	0	0	0	0	0
M. massiliense***	8	0	0	0	0	0	100	0	100	100	0	33.3	0	66.7	16.7
M. chelonae	6	0	0	0	25	12.5	100	0	100	100	0	62.5	0	87.5	25
S. aureus	1	0	0	0	0	0	0	0	0	0	0	100	0	100	100
E. coli	1	0	0	0	0	0	0	0	100	0	0	0	0	100	100
	(<i>n</i>)	4Mfuc	4Mglupα	4Mglupβ	4Mmanα	4Mgalα	4Mgalβ	4Mgluβ	4MIdo	4Manβ	4Mcurβ	4Mldu	4MNgal	4MNglu	4Mcel
A. xylosoxidans	3	0	0	0	0	0	100	0	0	0	0	0	0	0	0
B. cenocepacia	2	0	0	50	0	0	50	50	0	0	0	0	0	0	50
B. multivorans	3	0	0	0	0	0	33.3	0	0	0	0	0	0	0	0
B. stabilis	1	0	0	0	0	0	100	0	0	0	0	0	0	0	0
B. vietnamiensis	1	0	0	100	0	0	100	0	0	0	0	0	0	0	0
D. acidovorans	1	0	0	0	0	0	100	0	0	0	100	0	0	0	100
I. limosus	1	0	0	100	100	0	100	100	0	0	0	0	0	0	0
P. norimbergenis	1	0	0	0	0	0	100	0	0	0	0	0	0	0	0
P. aeruginosa	1	0	0	0	0	0	100	0	0	0	0	0	0	0	0
S. marcescens	1	0	0	100	100	100	100	100	0	100	100	100	100	0	100
M. abscessus*	12	33.3	0	100	91.7	83.3	100	100	33.3	83.3	83.3	58.3	0	8.3	66.7
M. bolletii**	2	0	0	100	100	50	100	100	0	50	100	50	0	0	0
M. massiliense***	8	0	0	83.3	100	0	100	100	0	66.7	83.3	16.7	0	0	16.7
M. chelonae	6	25	0	100	100	75	100	100	62.5	75	100	62.5	37.5	50	75
0	4	100	0	0	0	0	100	0	0	0	100	0	0	0	0
S. aureus	1	100	0	0	0	0	100	0	0			0	•		
S. aureus E. coli	1	0	0	0	0	0	100	0	0	Ő	0	õ	0 0	Õ	0

Table 3-1: Percentage of isolates possessing enzyme activity with a range of fluorogenic substrates

Key: 4MA: 4-Methylumbelliferyl actate, 4MPr: 4-Methylumbelliferyl propionate, 4MB: 4-Methylumbelliferyl heptanoate, 4MN: 4-Methylumbelliferyl nonanoate, 4MN: 4-Methylumbelliferyl heptanoate, 4-MI: 4-Methylumbelliferyl heptanoate, 4-Methylumbelliferyl heptanoate, 4-MI: 4-Methylumbelliferyl heptanoate, 4-MI: 4-Methylumbelliferyl heptanoate, 4-MI: 4-Methylumbelliferyl heptanoate, 4-MI: 4-Methylumbelliferyl heptanoate, 4-Methylumbelliferyl heptanoate, 4-MI: 4-Methylumbelliferyl hep

	(<i>n</i>)	Pro	Val	Thr	lle	Leu	Orn	Gln	MetH	His	Phe	ArgH	Try	MetA	Ala
A. xylosoxidans	3	100	0.0	0	0.0	100	0	100	100	33.3	100	100	100	0	0
B. cenocepacia	2	50	0.0	0	0.0	100	0	100	100	50	100	50	100	0	100
B. multivorans	3	100	0.0	0	0.0	100	0	33.3	33.3	0	100	33.3	100	0	100
B. stabilis	1	100	0.0	0	100	100	0	100	100	100	100	100	100	0	100
B. vietnamiensis	1	100	100	100	100	100	100	100	100	100	100	100	100	0	0
D. acidovorans	1	0	0.0	0	0	100	0	100	100	0	100	100	100	0	0
I. limosus	1	100	100	100	100	100	0	100	100	100	100	100	100	0	100
P. norimbergenis	1	100	0.0	0	0	100	0	100	100	0	100	100	100	0	0
P. aeruginosa	1	0	0.0	0	0	100	0	100	0	0	100	100	100	0	100
S. marcescens	1	100	100	100	100	100	100	100	100	100	100	100	100	0	100
M. abscessus*	12	91.7	91.7	91.7	91.7	100	100	100	100	100	100	100	100	33.3	100
M. bolletii**	2	50	50	50	100	100	50	50	100	100	100	100	100	0	100
M. massiliense***	8	100	100	83.3	100	100	83.3	100	100	100	10	100	100	0	100
M. chelonae	6	100	100	100	100	100	100	100	100	100	100	100	100	62.5	100
S. aureus	1	0	0	0	0	100	0	100	100	100	100	100	100	0	0
E. coli	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	(<i>n</i>)	AAMC	GlyP	Вос	4MPh	4MSu	SR123	SR124	S521	SR266	MR291	7N3CA			
A. xylosoxidans	3	100	0	0	100	0	0	0	0	0	0	100			
B. cenocepacia	2	100	0	50	100	0	0	0	0	0	0	0			
B. multivorans	3	100	0	0	100	0	0	0	0	0	0	66.7			
B. stabilis															
D. Stabilis	1	100	0	0	100	0	0	0	Ő	0	0	0			
	1 1	100 100	-	0 0	100 100	0 0	0 0	0 0	0 0	0 0	0 0	0 0			
B. vietnamiensis D. acidovorans	1 1 1		0 100 0	-		•	0	0 0 0	0 0 0	0 0 0	0 0 0	-			
B. vietnamiensis D. acidovorans	1 1 1 1	100	100	0	100	0	0 0	0	0 0 0 0	0 0 0 100	0 0 0 0	0			
B. vietnamiensis D. acidovorans I. limosus	1 1 1 1	100 100	100 0	0	100 100	0 100	0 0	0	0 0 0 0 0	0 0 100 0	0 0 0 0 0	0 100			
B. vietnamiensis D. acidovorans I. limosus P. norimbergenis	1 1 1 1 1	100 100 100	100 0 0	0 0 100	100 100 100	0 100 0	0 0 0	0 0 0	0 0 0 0 0 0		0 0 0 0 0	0 100			
B. vietnamiensis D. acidovorans I. limosus P. norimbergenis P. aeruginosa	1 1 1 1 1 1	100 100 100 100	100 0 0 0	0 0 100 0	100 100 100 100	0 100 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0 0 0 0	0	0 0 0 0 0 0 0	0 100 0 0			
B. vietnamiensis D. acidovorans I. limosus P. norimbergenis P. aeruginosa S. marcescens	1 1 1 1 1 1 1 12	100 100 100 100 100	100 0 0 0 0	0 0 100 0 100	100 100 100 100 0	0 100 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 100	-	0 100 0 0 0			
B. vietnamiensis	1 1 1 1 1 1 12 2	100 100 100 100 100 100	100 0 0 0 0 100	0 0 100 0 100 100	100 100 100 100 0 100	0 100 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	•	0 100 100	0	0 100 0 0 0 100			
B. vietnamiensis D. acidovorans I. limosus P. norimbergenis P. aeruginosa S. marcescens M. abscessus* M. bolletii**		100 100 100 100 100 100 100	100 0 0 0 100 0	0 0 100 0 100 100 100	100 100 100 0 100 100 100	0 100 0 0 0 33.3	0 0 0 0 0 0 0 0	0 0 0 0 0 0 8.3	0	0 100 100 91.7	0	0 100 0 0 100 16.7			
B. vietnamiensis D. acidovorans I. limosus P. norimbergenis P. aeruginosa S. marcescens M. abscessus* M. bolletii** M. massiliense***		100 100 100 100 100 100 100 100	100 0 0 0 0 100 0 0	0 0 100 0 100 100 100 100	100 100 100 100 0 100 100 100	0 100 0 0 0 33.3 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 8.3 0	0 0	0 100 100 91.7 100	0 100 100	0 100 0 0 100 16.7 0			
B. vietnamiensis D. acidovorans I. limosus P. norimbergenis P. aeruginosa S. marcescens M. abscessus* M. bolletii** M. massiliense*** M. chelonae		100 100 100 100 100 100 100 100 100	100 0 0 0 0 100 0 0 0 0	0 0 100 0 100 100 100 100 100 100	100 100 100 100 0 100 100 100 100	0 100 0 0 0 33.3 0 66.7	0 0 0 0 0 0 0 0 16.7	0 0 0 0 0 0 8.3 0 16.7 0	0 0 0	0 100 91.7 100 100 62.5	0 100 100 100 50	0 100 0 0 100 16.7 0 0 0			
B. vietnamiensis D. acidovorans I. limosus P. norimbergenis P. aeruginosa S. marcescens M. abscessus* M. bolletii** M. massiliense***		100 100 100 100 100 100 100 100 100 100	100 0 0 0 0 100 0 0 0 0 12.5	0 0 100 0 100 100 100 100 100	100 100 100 0 100 100 100 100 100 100	0 100 0 0 33.3 0 66.7 50	0 0 0 0 0 0 0 16.7 0	0 0 0 0 0 0 8.3 0 16.7	0 0 0 0	0 100 91.7 100 100	0 100 100 100	0 100 0 0 100 16.7 0 0			

Table 3-1 continued: Percentage of isolates possessing enzyme activity with a range of fluorogenic substrates

Key: Pro: H-Pro-AMC hydrobromide salt (Prolyl), Val: H-Val-AMC, Thr: H-Thr-AMC, Ile: H-Ile-AMC.TFA, Leu: H-Leu-AMC.HCI, Orn: H-Om-AMC.2HCI, Gln: H-Gha-Amc.TFA, ArgH: H-Agr-AMC.2HCI, Try: H-Thr-AMC, MetA: Ac-Met-AMC, Ala: H-β-Ala-Amc.TFA, Amc.TFA, AAMC: L-alanine AMC trifluoroacetate salt, GlyP: H-Gly-pro-AMC.HBr, Boc: Boc-Leu-Gly-Arg-AMC.acetate salt, 4MPh: 4-Methylumbelliferyl phosphate, 4MSu: 4-Methylumbelliferyl sulfate, SR123:, SR124:, SS21:, SR266:, MR291: Methyl Red 291, 7N3CA: 7-nitrocoumarin-3-carboxylic acid.

None of the fluorogenic substrates specifically stood out with a profile that would indicate they would be of any benefit if they were included in RGM medium for the differentiation of NTM and other non-NTM species.

3.12.2 Activity of chromogenic substrates in non-tuberculous mycobacteria

All isolates of mycobacteria demonstrated a colour change with magenta octanoate and grew as purple colonies except one isolate of *M. abscessus* subsp. *bolletii*, which failed to grow. No colour change was observed on all control plates (see Table 3-2 and Figure 3-3) below. This indicated that production of a C8-esterase was a consistent feature of the mycobacteria that were tested that were able to grow in the presence of this substrate.

MABSC Subspecies	Isolate Number	Growth After 4 Days	Colour of Colonies
M. abscessus complex (chimeric)	1000	+	purple
M. abscessus subsp. abscessus	1034	+	purple
M. abscessus subsp. abscessus	1042	+	purple
M. abscessus subsp. abscessus	1044	++	purple
M. abscessus subsp. abscessus	1045	+++	purple
M. abscessus subsp. abscessus	1047	+++	purple
M. abscessus subsp. abscessus	1050	+	purple
M. abscessus subsp. abscessus	1051	+++	purple
M. abscessus subsp. abscessus	1052	+	purple
M. abscessus subsp. abscessus	1053	+++	purple
M. abscessus subsp. abscessus	1054	+++	purple
M. abscessus subsp. abscessus	1055	+	purple
M. abscessus subsp. bolletii	3015	+++	purple
M. abscessus subsp. bolletii	3016	No Growth	N/A
M. abscessus subsp. bolletii	3017	+++	purple
M. abscessus subsp. massiliense	3010	+++	purple
M. abscessus subsp. massiliense	3011	++	purple
M. abscessus subsp. massiliense	3012	+++	purple
M. abscessus subsp. massiliense	3014	+++	purple
M. abscessus subsp. massiliense	3015	+	purple

Table 3-2: Appearance and growth of NTM isolates with magenta octanoate

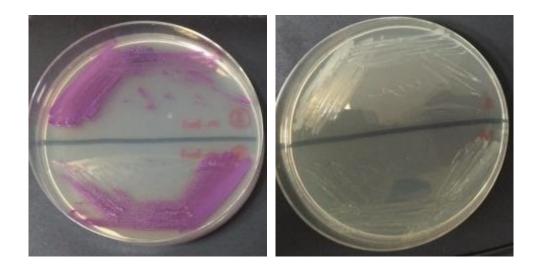


Figure 3-3: Isolates 3017 *M. abscessus* subsp. *bolletii* and 1054 *M. abscessus* subsp. *abscessus* shown with magenta octanoate (left) added and control plate without magenta octanoate (right)

Results for L-ala-ala-ala-4(4'-aminostyryl)-N-methylquinolinium dichloride are shown below in Table 3-3 and Figure 3-4 and Figure 3-5. No colour change was observed on all control plates.

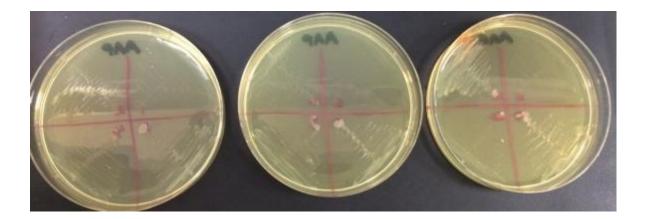


Figure 3-4: Non-tuberculous mycobacteria isolates with L-ala-ala-ala-4(4'- aminostyryl)-N-methylquinolinium dichloride included in the agar

Species	Reference	Growth After 4 Days	Colour of colonies
		2	
Non-tuberculous mycobacteria	1000		
<i>M. abscessus</i> complex	1000	+	white
M. abscessus subsp. abscessus	1034	+/-	white
M. abscessus subsp. abscessus	1042	+/-	white
M. abscessus subsp. abscessus	1044	+/-	white
M. abscessus subsp. abscessus	1054	++	white
M. abscessus subsp. abscessus	1055	++	white
M. abscessus subsp. bolletii	3015	++	white
M. abscessus subsp. bolletii	3016	+	white
M. abscessus subsp. massiliense	3010	+/-	white
<i>M. abscessus</i> subsp <i>. massiliense</i>	3011	+	white
M. abscessus subsp. massiliense	3012	+	white
M. abscessus subsp. massiliense	3013	+	White
Non-mycobacterial isolates			
A. xylosoxidans	7010	++	pink
A. xylosoxidans	7015	++	pink edges
A. xylosoxidans	7027	+++	pale pink
A. xylosoxidans	7037	++	pink
Acinetobacter sp.	8003	++	pink
B. cenocepacia	7009	++	, pink
B. cenocepacia	7012	+	red
B. cepacia	8007	+++	pink
B. contaminans	8008	++	red
B. multivorans	7017	++	red
B. multivorans	7022	++	red
B. multivorans	7024	++	red
B. multivorans	7036	+	pink
B. stabilis	7026	++	red
B. vietnamiensis	7032	+	pink
D. acidovorans	7008	+++	red
E. miricola	8025	+++	red
I. limosus	7007	++	red
I. limosus	7011	++	no colour
Ochrobactrum sp.	7031	++	pale pink
P. aeruginosa	7004	+++	pink
P. aeruginosa	8017	+	pink/red
P. aeruginosa	8011	++	pale pink
P. aeruginosa	8012	+++	pink
P. apista	8020	+	pink
P. norimbergenis	7018	+	pink
P. pnomenusa	8021	+	pink
S. marcesens	7019	+++	red
S. marcesens	7019	+++	red
S. maltophilia	8022	+++	red
S. maltophilia	8022	+++	red

Table 3-3: Appearance and growth of NTM isolates with L-ala-ala-ala-4(4'-aminostyryl)-N-methylquinolinium dichloride

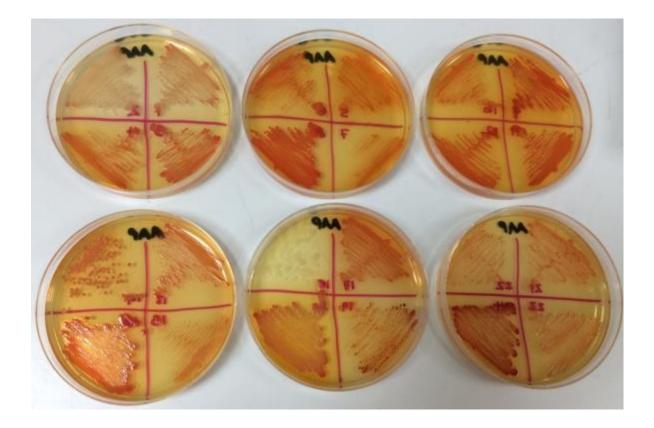


Figure 3-5: Showing growth and colouration of Gram-negative isolates as follows: *A. xylosoxidans* x4 (top left), *Acinetobacter* spp, *B. cenocepacia* x2, *B. cepacia* (top centre), *B. contaminans, B. multivorans* x3 (top right), *B. multivorans*, *B. stabilis, B. vietnamiensis, D. acidovorans* (bottom left), *E. miricola, I. limosus* x2, *P. aeruginosa* (bottom centre) and *P. apista, P. norimbergenis, P. pnomenusa, S. marcescens* (bottom right) with L-ala-ala-ala-4(4'-aminostyryl)-N-methylquinolinium dichloride encompassed in the agar

Five of the eleven NTM strains were inoculated onto each RGM (minus antibiotics) with chromogenic substrates added and results are shown below in Table 3-4 and Figure 3-6. No colour change of NTM was observed on any control plates.

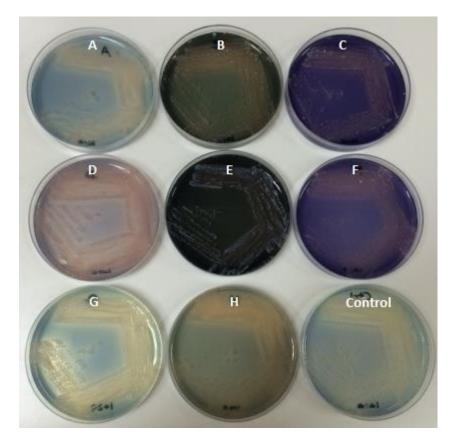


Figure 3-6: The appearance of isolates 1010 *M. abscessus* subsp. *abscessus* and 1029 *M. abscessus* subsp. *abscessus* using the substrates A – H as shown in Table 3-4 and control plate containing no chromogenic substrates

ID	Species	Α	В	С	D	E	F	G	Н
2002	M. chelonae								pale
									orange/white
2014	M. chelonae								pale
									orange/white
1010	M. abscessus subsp. abscessus	white	white	white	pale pink/white	white	white		pale
									orange/white
1013	M. abscessus subsp. abscessus	white	white	white					
1026	M. abscessus subsp. abscessus	white	white	white					
1027	M. abscessus subsp. abscessus								pale
									orange/white
1029	M. abscessus subsp. abscessus				pale pink/white	white	white	white	
1032	M. abscessus subsp. abscessus				pale pink/white	white	white	white	
3002	M. abscessus subsp. massiliense	white	white	white	pale pink/white	white	white	white	
3007	M. abscessus subsp. massiliense				pale pink/white	white/blue	white	white/blue	pale
									orange/white/
									blue
3016	M. abscessus subsp. bolletii	white	white	white				white	

Table 3-4: The appearance of NTM inoculated onto RGM medium with the addition of various chromogenic substrates

Key: A; 5-bromo-6-chloro-3-indolyl-β-D-galactopyranoside, B; 3,4-cyclohenenoesculetin-β-D-galactopyranoside, C; alizarin-2-β-D-galactopyranoside, D; 6-chloro-3-indolyl-β-D-glucopyranoside, E; 3,4-cyclohenenoesculetin-β-D-glucopyranoside, G; 6-chloro-3-indolyl-β-D-glucuronide, H; alizarin-2-α-D-galactopyranoside. Good (++) growth of all species was observed after 4 days incubation at 30°C.

3.13 Discussion

Rapid species-level identification of mycobacteria is of high importance in patients with CF in order for accurate and prompt treatment to be provided in patients deemed to require therapy. Identification of mycobacteria to species level by conventional biochemical tests have lengthy turnaround times subsequently leading to delays in diagnosis, as well as giving ambiguous and unreproducible results. The phenotype of many mycobacterial species can also be exceptionally variable.

The aim of this study was to evaluate a range of chromogenic and fluorogenic substrates containing coumarin derivatives 4-methylumbelliferone (4-MU) or 7amino-4-methylcoumarin (7-AMC) to look at the presence or absence and quantities of a range of mycobacterial glycosidases, peptidases and esterases for their capability to discriminate between *M. abscessus* complex and the less pathogenic *M. chelonae*, as well as the potential to differentiate between the three members of the *M. abscessus* complex, (*M. abscessus*, *M. massiliense* and *M. bolletii*) and additionally to ascertain whether mycobacteria can be differentiated from Gramnegative bacteria recurrently found in the sputum of patients with CF, and occasionally recovered on RGM medium.

If such a substrate was available, incorporation into a primary isolation medium such as RGM could greatly increase the appeal of the medium allowing for easy enumeration and detection directly on the isolation plate, subsequently providing a rapid and effective means of identifying pathogenic NTM in a CF sputum sample, which could potentially harbour a diverse range of bacterial species. This will also eliminate the need for subculture or further biochemical tests.

The use of umbelliferone derivatives were reported to be a sensitive technique in the detection of mycobacterial group-specific hydrolases such as lipases, phosphatases or glucosidases, and it has been advocated they may be appropriate for investigating the glycosidase activity of slow-growing mycobacteria, (Grange and Clark, 1977; Grange, 1978; Slosarek, 1980). *Mycobacterium nonchromogenicum, Mycobacterium szulgai* and *Mycobacterium marinum* exhibited characteristic enzyme activities which distinguished them from the other species, with *M. marinum* being unique amongst mycobacteria for its very obvious α -L-fucosidase activity (Grange and McIntyre, 1979).

The methods employed in this study would not prove to be technically difficult or time consuming, and substrates could be incorporated into the medium, however the results established that the use of these would not provide any additional benefit to RGM.

As mycobacteria appear on RGM as bright white colonies, either smooth or rough, and other species that are able to grow generally appear blue or pink, mycobacteria are already quite distinguishable on the medium, however to differentiate *M. abscessus* complex from less pathogenic *M. chelonae* or *M. mucogenicum* will still require further testing and sequencing.

CHAPTER FOUR

Epidemiology, possible sources, transmission and prevention of rapidlygrowing mycobacteria from the environment

Introduction

4.1 The epidemiology of non-tuberculous mycobacterial infections

Non-tuberculous mycobacteria (NTM) are opportunistic pathogens whose sources include water, dust and soil. They are not contaminants, but somewhat typical inhabitants of these environments. By occupying the same surroundings as humans, this allows frequent exposure to occur on a daily basis from these sources via inhalation and/or ingestion (Cook, 2010; Falkinham *et al.*, 2015).

NTM represent a substantial threat emerging in patients with CF, with until recently, limited reports presenting conflicting results of global prevalence.

Estimates of the prevalence of NTM in the CF population have ranged from 1.3% in 1984 (Smith *et al.*, 1984) to 32.7% in a US study in 2005 (Rodman *et al.*, 2005). The largest published studies to date looked at 986 (Olivier *et al.*, 2003), 1216 (Esther *et al.*, 2010) and 1582 (Roux *et al.*, 2009) individuals with CF, and reported positive NTM cultures of 13.0%, 13.7% and 6.6% respectively.

The predisposing factors for acquisition of NTM are still largely unknown though recently a large US study reported possible risk factors for NTM using CF patient registry data from 2003 to 2011 (Binder *et al.*, 2013). Limitations of this study were that not all incidences of NTM were reported, and it may also include patients that were only transiently colonised and not experiencing true NTM disease. No such study has been completed in Europe. There are a wide range of infections caused by rapidly-growing mycobacteria (RGM), but in recent years, members of the MABSC have emerged as major pathogens in patients suffering from CF.

The most fundamental difference between *M. tuberculosis, M. leprae* and nontuberculous mycobacterial disease is that person-to-person transmission seems to be extremely rare in the latter, with limited reports of this occurring, and disease almost certainly arising due to NTM being extensively dispersed in the environment. Defining the epidemiology of NTM is particularly challenging as unlike *M. tuberculosis*, the documentation of NTM infection is not compulsory or enforced and therefore does not necessitate reporting to Public Health authorities. This is due to the fact it is not considered a major public health concern, as there is very little evidence to substantiate human-to-human transmission. In a recent study, whole-genome sequencing of *M. abscessus* in CF patients indicated human-to-human transmission can occur, however this study has yet to be replicated (Bryant *et al.*, 2013).

An accurate understanding of the true epidemiology of NTM disease is still lacking. It is also arduous to precisely quantify the true prevalence of NTM as a positive culture could indicate transient colonization and does not always indicate genuine clinical infection.

An increase in NTM infection could in part be due to improved diagnostic techniques as well as recognition of the significance of NTM, however current evidence does show a genuine increase globally (Griffith *et al.*, 2007; Weiss and Glassroth, 2012; Wentworth *et al.*, 2013) and in a number of studies an escalation of cases can be witnessed where no variation in intensity of monitoring or modifications in culture techniques have occurred. Other explanations for the increase have been suggested, for example, a rise in environmental exposure due to home water heaters and shower aerosols (Falkinham, 2011; Thomson *et al.*, 2013a; Feazel *et al.*, 2009) and an upsurge in the use of antibiotics, including chronic use of medications impairing host immunity (Renna *et al.*, 2011; Catherinot *et al.*, 2013a).

4.2 The global incidence of non-tuberculous mycobacterial disease

Evidence suggests that the increase in the prevalence of NTM over the past few decades will continue to rise with multifactorial causes. The increasing age of the population, along with an escalation in the occurrence of diseases such as diabetes mellitus or chronic obstructive pulmonary disease, as well as a rise in the use of immunosuppressant medication would seem to play a major role in the increase of NTM (Winthrop *et al.*, 2009). Another factor is NTM being abundant in the environment, in water and water supply systems, aerosols, decaying vegetation, soil and biofilms, swimming pools and hot tubs (Fjallbrant *et al.*, 2013), therefore exposure to NTM would appear to occur on a daily basis (September *et al.*, 2004; Falkinham, 2009). Increased awareness by physicians and enhanced culture techniques may also play a substantial role, leading to increased rates of detection and more prompt and accurate identification.

A vast collaborative study by NTM-NET collected species identification data for 20,182 patients, from 62 laboratories in 30 countries across six continents (Hoefsloot *et al.*, 2013). Each hospital or reference laboratory was invited to provide data from patients where NTM was isolated from pulmonary samples, provided that number exceeded 30, within the year 2008, as well as providing the species and method of identification. One isolate per species per patient qualified for analysis. Results showed that 91.3% (18,418) of all isolates were identified to species or complex level, and the remaining 1,764 could not be identified beyond *Mycobacterium* species (other than *M. tuberculosis*). The six most frequent species recovered, and accounting for 80% of all isolates, were *M. avium* complex (MAC; 47%), *M. gordonae* (11%), *M. xenopi* (8%), *M. fortuitum* complex (7%), *M. kansasii* (4%) and MABSC (3%).

Out of the rapidly-growing mycobacteria, MABSC and *M. fortuitum* were the most frequently isolated, however significant geographical variances were observed with the highest number of rapid growers encountered in East Asia making up 27% of all NTM isolates in comparison to North America (17.9%), South America (16%) and Europe (14%). It was also noted that within Asia, significant differences occurred with 6.6% of all isolates being rapid growers compared to 50% in Taiwan and 28.7% in South Korea.

In Europe *M. avium* was the most frequently isolated NTM, accounting for 44% of all species isolated in Northern Europe and 31% in Southern Europe. This is consistent with other reports (Olivier *et al.*, 2003; Floto *et al.*, 2016), although in many European centres MABSC has overtaken all other species as the most commonly isolated RGM (Sermet-Gaudelus *et al.*, 2003), (Roux *et al.*, 2009; Esther *et al.*, 2010; Qvist *et al.*, 2015).

In individuals with CF, acquisition of NTM is largely associated with age, and prevalence would seem to increase after patients reach adulthood. MABSC however is isolated at all ages, whereas MAC does not seem to be recovered until patients are considerably older (Olivier *et al.*, 2003; Pierre-Audigier *et al.*, 2005; Catherinot *et al.*, 2013b).

4.3 Environments providing favourable conditions for the transmission of non-tuberculous mycobacteria

NTM are reported to be common in all natural environments, and transmission is thought to occur via ingestion, inoculation or inhalation (Gangadharam and Jenkins, 1998). Rapidly growing mycobacteria withstand a much more extensive range of temperature, salinity, oxygen tension and pH than other pathogenic bacteria, with a higher tolerance to standard disinfectants such as chlorine (Le Dantec *et al.*, 2002). Their capacity for biofilm formation and ability to grow at low carbon levels also enables their survival in both natural and manmade environments, including water systems (Falkinham, 1996).

The original emphasis of NTM environmental investigations centred on natural waters and soils (Falkinham *et al.*, 1980; Brooks *et al.*, 1984). However, with the outbreak of AIDS and HIV in the early 1980's reports of NTM infections were increasing and led to the deduction that NTM were widely distributed within the environment (Greene *et al.*, 1982).

NTM are able to colonise drinking water distribution systems due to their cell surface hydrophobicity preventing flushing from the system and their ability to form biofilms (Bendinger *et al.*, 1993; Torvinen *et al.*, 2004). In untreated water systems, NTM are poor competitors for nutrients due to their slow growth rates, however as the typical disinfection process kills off any competitors for nutrients, they are able to thrive (Taylor *et al.*, 2000). NTM are also somewhat heat-resistant and have been recovered from household plumbing where temperatures have been set to up to 55°C, and even higher for some NTM species such as *M. xenopi* (Falkinham, 2011; Schulze-Robbecke and Buchholtz, 1992). Low oxygen concentrations due to reduced or discontinuous water flow does not impede NTM growth, as they are able to acclimatise and endure low concentrations of oxygen (Dick *et al.*, 1998; Lewis and Falkinham, 2015). However, in areas of high levels of oxygen, quantities of NTM were lower (Kirschner *et al.*, 1992).

High numbers of NTM are found in soil, where due to their hydrophobicity they can adhere to soil particles and be aerosolised as dusts (De Groote *et al.*, 2006). In a study by Narang *et al.*, 26 isolates comprising of seven species of NTM, including three *M. abscessus*, were reported to have been isolated from water and soil samples in India where samples were obtained from household and work areas of NTM positive patients (Narang *et al.*, 2009). The methods used for identification of species in this report encompassed phenotypic testing including growth at varying temperatures on different media and several biochemical tests as well as PCR restriction analysis of *hsp65* genes using *Hea*III and *Bst*E2 restriction enzymes (Telenti *et al.*, 1993). However, none of the environmental isolates correlated with any of the patient isolates.

NTM have also been associated with metal removal fluids (Wu *et al.*, 2015), and it has been suggested that hypersensitivity pneumonitis in exposed workers may be connected to NTM present in metal removal fluid aerosols. However as these fluids are diluted with water in order to form an emulsion, it is highly probable that the water is in fact providing the source of the NTM (Kapoor and Yadav, 2012; Wu *et al.*, 2015).

The most commonly reported cause of NTM-associated hypersensitivity pneumonitis is *via* aerosolisation of contaminated hot-tub and swimming pool water, with numerous reports describing patients who developed NTM hypersensitivity pneumonitis from these sources following frequent use (Embil *et al.*, 1997; Rickman *et al.*, 2002; Glazer *et al.*, 2007).

There have been very few accounts of MABSC isolated from any of the above sources, with the majority of rapidly growing NTM documented being *M. chelonae*, *M. fortuitum*, *M. gordonae*, *M. mucogenicum*, and *M. kansasii* (Falkinham, 2009). Due to many taxonomic changes over the years, particularly relating to MABSC and *M. chelonae*, which is frequently isolated from the environment, caution should be applied in interpreting many of these reports describing the isolation of MABSC from the environment, as they were typically reported prior to these being designated as separate species in 1992 when *M. abscessus* was still thought to be a subspecies of *M. chelonae* (Kusunoki and Ezaki, 1992). In more recent publications, the

presence of MABSC is seldom reported, however in a recent case *M. abscessus* was said to be isolated from drinking water in Brisbane (Thomson *et al.*, 2013b), and from skin infections detected after the 2004 tsunami in South-East Asia (Appelgren *et al.*, 2008). In South Africa, *M. abscessus* was reported to have been isolated from drinking water distribution centres (September *et al.*, 2004), and in ready to eat vegetables in Mexico (Cerna-Cortes *et al.*, 2015).

4.4 Reducing exposure to non-tuberculous mycobacteria

Recommendations to avoid NTM exposure for those who are susceptible, for example patients with CF, include disinfection of showerheads by submerging in undiluted bleach for thirty minutes, or by replacing the showerhead with one that produces streams rather than a fine mist as this type generates lower numbers of droplets containing NTM (Aksamit *et al.*, 2014).

Raising the temperature of water heaters to 55°C has been shown to reduce NTM, and as the highest number are recovered in the sediment at the bottom of the heater, periodically draining and refilling can greatly reduce numbers of NTM (Johnson and Odell, 2014).

It is recommended by National Jewish Health (National Jewish Health, 2015) that water is boiled for ten minutes at 100°C for drinking and cooking, as well as avoiding water from built in refrigerator taps. Care should be taken to avoid if possible granular activated carbon water filters, as the pores of these filters are not small enough to prevent the passage of bacteria, and NTM can attach and grow on the carbon bound organics and metals due to their resistance to disinfectants. Filters that have pore sizes less than 0.2 micrometres can prevent NTM; however, these are costly and can congest easily requiring frequent changing. Humidifiers should be avoided as they can generate aerosols with high numbers of NTM, and the

substitution of piped water for well water can be of benefit, as this harbours significantly less NTM. Commercial potting soil containing peat and the dust generated from this is rich in NTM, therefore moistening garden soils can reduce dust inhalation (Huitt, 2015).

4.5 Non-tuberculous mycobacteria biofilm formation and its significance.

The formation of biofilms leads to an increase in resistance to antimicrobials (Hoiby *et al.*, 2010), and there have been several reports of biofilm development by NTM. In one study by El Helou *et al*, *M. abscessus* subsp. *abscessus* was observed to have a more rapid biofilm growth, which could be a factor in the pathogenicity of this species (El Helou *et al.*, 2013). Growth conditions can influence the time for biofilm formation, and tap water was shown to promote biofilm perhaps due to its content of nutrients for mycobacteria (Howard *et al.*, 2006; Esteban *et al.*, 2008).

In a report by Steed and Falkinham, *M. avium* cells grown in biofilms have been reported to be more resistant to chlorine in comparison to those grown in suspension in the same medium (Steed and Falkinham, 2006). Other elements may also contribute to biofilm formation in mycobacteria, such as the long-chain mycolic acids in their cell envelopes. Glycopeptidolipids coat the cell wall and have been suggested to be important for attaching the mycobacterial biofilm to surfaces (Recht and Kolter, 2001). In a study of showerheads in the US, the presence of pink pigmented *Methylobacterium* was associated with the absence of NTM and it was discovered that biofilms of methylobacteria inhibit the adherence of *M. avium* to stainless steel (Feazel *et al.*, 2009).

The major factor of NTM ecology, epidemiology and physiology is the existence of their lipid rich outer membrane with long chain mycolic acids contributing to their

hydrophobicity and impermeablility (see section 1.3 in Chapter 1). These characteristics make possible a high resistance to antimicrobials and disinfectants, and favour attachment to surfaces. Their slow rates of growth can also contribute to their persistence by allowing time for adaptation to any changes in their environment.

4.6 Aims and objectives

In order to further understand potential environmental sources of NTM, in particular *M. abscessus* complex, a large study was performed on sampling taken from areas within the local environment, in homes and from animals and various food items. Samples were also obtained from the local CF adult and paediatric outpatient centres and inpatient wards.

RGM medium (as described in Chapter 2) was used for the culture of all samples as it was thought to be the most relevant and effective for isolating NTM in comparison to other media commercially available where contamination by non-NTM could be anticipated.

4.7 Materials

Water samples were collected in sterile containers purchased from BDH, Poole, UK and filtered using Gelman Sciences vacuum control box model 4205 and filter funnel manifold 3-place polyurethane 629-4205 with GN-6 metricel 0.45 µm 47 mm grid sterile membrane disc filters purchased from Gelman Sciences, Portsmouth, UK. Sterile polywipes MW 729A were purchased from Medical Wire and Equipment, Wiltshire, UK. Sterilisation of media and equipment where appropriate was performed using a LTE Touchclave-R autoclave (LTE Scientific Ltd. Oldham, UK). Ingredients for RGM medium were purchased as described in Chapter 2. All plates were incubated in a LEEC 30°C incubator obtained from Laboratory and Electrical Engineering Company, Nottingham, UK. All isolates were identified using MALDI biotyper (Bruker, Coventry, UK). Stringent wash solution, hybridisation buffer, conjugate, substrate and rinse solutions used in the HAIN hybridisation procedure (Section 4.8.5.3.2) were all purchased from HAIN Lifescience, Nehren, Germany.

4.8.1 Culture medium

RGM medium was used for the processing of all samples and prepared as described in Appendix 2. RGM broth was made up as in section 3.10.3 in Chapter 3 and a 10 ml aliquot added to sterile 20 ml plastic universals.

4.8.2 Environmental samples

Samples were collected from various items and locations (shown in Table 4-1). New sterile disposable gloves were worn for each sample taken, so as not to introduce any contamination. A 10 x 5 cm sterile polywipe premoistened in phosphate buffer was used to thoroughly wipe down each area, and stored in an individual sterile sealed bag to transfer to the laboratory. Polywipes were aseptically placed onto RGM medium and spread over the whole plate to maximise transfer of any material. Plates were incubated at 30°C for ten days.

No.	Environmental area sampled
1	Washing up sponge
2	Floor Dust
3	Kitchen bench
4	House phone
5	Toilet seat
6	Sink draining board
7	Sofa (leather)
8	Hallway (door handles, surfaces, floor)
9	Bathroom (basin, showerhead)
10	Kitchen (basin, shelves, taps)
11	Living room (table, sofa, mantelpiece, handle, light switch)
12	Chicken egg
13	Can of diet coca cola lid
14	Horse manure
15	Countryside soil
16	Bus seats

Table 4-1: Environmental areas tested for non-tuberculous mycobacteria

No.	Environmental area sampled
17	Cash machine
8	Computer desk
9	Window sill dust
20	Laptop keyboard
21	House plant
22	Grass
23	Cigarette ash
24	Lab Coat Microbiology Research Dept.
25	Medical Student Shirt
26	Medical Student ID Badge
27	Cigarette (Lambert and Butler) - Interior
28	Cigarette (Lambert and Butler) - Filter
29	Paediatric Outpatients Green Area Reception Desk (Not cleaned
30	Paediatric Outpatients Red Area Children's Desk (Not cleaned)
31	C1 Consultants Desk
32	C1 Sink
33	C1 Children's Desk & Chair
34	C1 BP Cuff
35	C1 Pillow
36	C1 Couch
37	C1 Couch Blue Roll
38	C2 Consultants Desk
39	C2 Sink
40	C2 Children's Desk & Chair
41	C2 BP Cuff
12	C2 Couch
43	C2 Pillow
14	C2 Stethoscope
45	C3 Consultants Desk
16	C3 Sink
47	C3 Children's Desk & Chair
18	C3 BP Cuff
19	C3 Couch
50	C3 Pillow
51	C3 Children's Toys
52	C4 Consultants Desk
53	C4 Sink
54	C4 Children's Desk & Chair
55	C4 BP Cuff
56	C4 Couch
57	C4 Pillow
58	C4 Couch Blue Roll
59	C4 Stethoscope

Table 4-1 continued: Environmental areas tested for non-tuberculous mycobacteria

mycobad	
No.	Environmental area sampled
61	C5 Sink
62	C5 Children's desk & chair
63	C5 BP Cuff
64	C5 Couch
65	C5 Pillow
66	C5 Children's Toys
67	Treatment Room Desk
68	Treatment Room Couch
69	Treatment Room Sink
70	Treatment Room Pillow
71	Treatment Room Cuff
72	Treatment Room Height Machine
73	Treatment Room Weight Machine
74	Treatment Room Nurse's Trolley
75	Treatment Room Children's Toys
76	Treatment Room Child's Wheelchair
77	Adult C1 Patient chair
78	Adult C1 Bed
79	Adult C1 Desk
80	Adult C1 Sink
81	Adult C2 Patient chair
82	Adult C2 Bed
83	Adult C2 Desk
84	Adult C2 Sink
85	Adult C3 Patient chair
86	Adult C3 Bed
87	Adult C3 Desk
88	Adult C3 Sink
89	Adult C4 Patient chair
90	Adult C4 Bed
91	Adult C4 Desk
92	Adult C4 Sink
93	Adult C5 Patient chair
94	Adult C5 Bed
95	Adult C5 Desk
96	Adult C5 Sink
97	Adult C6 Patient chair
98	Adult C6 Bed
99	Adult C6 Desk
100	Adult C6 Sink
101	Adult C7 Patient chair
102	Adult C7 Bed
103	Adult C7 Desk
104	Adult C7 Sink
105	Adult C8 Patient chair

 Table 4-1 continued: Environmental areas tested for non-tuberculous

 mycobacteria

mycobacte	eria
No.	Environmental area sampled
106	Adult C8 Bed
107	Adult C8 Desk
108	Adult C8 Sink
109	Adult C8 Observation machine
110	Adult C9 Patient chair
111	Adult C9 Bed
112	Adult C9 Desk
113	Adult C9 Sink
114	Lung function room 1 sink
115	Lung function room 1 spirometer tubes
116	Lung function room 1 desk
117	Lung function room 1 chair
118	Lung function room 2 sink
119	Lung function room 2 spirometer 1
120	Lung function room 2 spirometer 2
121	Lung function room 2 spirometer 3
122	Lung function room 2 HD pft chair/glass
123	Ward 52 C6 room sink
124	Ward 52 C6 showerhead
125	Ward 52 C7 room sink
126	Ward 52 C7 WC sink
127	Ward 52 C7 armchair
128	Ward 52 C7 showerhead
129	Ward 52 C8 WC sink
130	Ward 52 C8 room sink
131	Ward 52 C8 room armchair
132	Ward 52 C8 room bathroom door handles
133	Ward 52 C8 room showerhead
134	Ward 52 C10 room sink
135	Ward 52 C10 WC sink
136	Ward 52 C10 showerhead
137	Ward 52 C10 O ₂ wall mounts
138	Ward 52 C10 armchair
139	Ward 52 C10 window sill
140	Ward 52 C10 patient table
141	Ward 52 C10 bed
142	Ward 52 C11 WC sink
143	Ward 52 C11 room sink
144	Ward 52 C11 showerhead
145	Ward 52 C11 armchair
146	Ward 52 Corridor observation machine
147	Ward 52 Corridor patient chair
148	Flower Petal

Table 4-1 continued: Environmental areas tested for non-tuberculous	
mycobacteria	

Table 4-1 continued: Environmental areas tested for non-tuberculous mycobacteria		
No.	Environmental area sampled	
149	Flower Stem	
150	Flower Soil	
151	Flower Root	

4.8.3 Water Samples

Sampling was completed on hospital water from showers, sink units and drinking fountains from around the CF wards, waiting areas, consultant and patient treatment rooms at the Royal Victoria Infirmary, Newcastle upon Tyne, UK. Samples were also taken from local homes, local rivers and ponds and various bottled waters, juices and carbonated fruit drinks (as shown in Table 4-2). From each area, 500 ml volumes were collected and stored in sterile bottles. GN-6 metricel membrane disc filters, diameter 47 mm, pore size 0.45 µm were used and 250 ml was filtered using the membrane filtration apparatus. Membrane filters were then aseptically placed onto RGM medium and plates were incubated at 30°C for ten days.

No.	Water sampling area
1	House 1 bathroom hot
2	House 1 bathroom cold
3	House 1 Kitchen hot
4	House 1 kitchen cold
5	House 1 toilet
6	House 1 outdoor tap
7	House 2 bathroom hot
8	House 3 bathroom cold
9	House 2 kitchen cold
10	House 2 outdoor tap
11	House 2 shower hot
12	Pathology Dept. Freeman Hospital Male Bathroom Hot
13	Pathology Dept. Freeman Hospital Male Bathroom Cold
14	Pathology Dept. Freeman Hospital Female Bathroom Hot
15	Pathology Dept. Freeman Hospital Female Bathroom Cold

Table 4-2: Water samples tested for non-tuberculous mycobacteria

No	
No.	Water sampling area
16 17	Freeman Hospital Outpatient Drinking Water
17 19	Pathology Dept. Freeman Hospital Kitchen Hot
18	Pathology Dept. Freeman Hospital Kitchen Cold
19	Ward 52 CF Unit C6 Shower
20	Ward 52 CF Unit C6 WC Sink
21	Ward 52 CF Unit C6 Room Sink
22	Ward 52 CF Unit C8 Shower
23	Ward 52 CF Unit C8 WC Sink
24	Ward 52 CF Unit C8 Room Sink
25	Ward 52 CF Unit C10 Shower
26	Ward 52 CF Unit C10 WC Sink
27	Ward 52 CF Unit C10 Room Sink
28	Ward 52 CF Unit C7 Shower
29	Ward 52 CF Unit C11 Shower
30	Adult CF Clinic Waiting Rm Drinking Fountain
31	Adult CF Clinic C1 sink
32	Adult CF Clinic C5 sink
33	Adult CF Clinic C6 sink
34	Adult CF Clinic C7 sink
35	Adult CF Clinic C8 sink
36	Adult CF Clinic C9 sink
37	Paediatric C1 sink
38	Paediatric C2 sink
39	Paediatric C3 sink
40	Paediatric C4 sink
41	Paediatric C5 sink
42	Paediatric treatment room sink
43	Paediatric drinking water outpatients main waiting area
44	Paediatric drinking water green (area 1)
45	Paediatric drinking water red (area 2)
46	Evian bottled water
47	Eden Falls bottled water
48	Asda Smart Price bottled water
49	Highland Spring bottled water
50	Buxton bottled water
51	Ouseburn River
52	Paddy Freeman Pond, High Heaton
53	Coca-Cola
54	Fanta Zero
55	Tango
56	Sun Magic Orange Juice
57	Sun Magic Pineapple Juice
58	Sun Magic Apple Juice
59	Volvic Touch of Fruit Cherry
	volvio rodon or rait onony

Table4-2continued:Watersamplestestedfornon-tuberculousmycobacteria

No.	Water sampling area
60	Volvic Touch of Fruit Lemon/Lime
61	Ribena
62	Robinsons Fruit Shoot Orange
63	Robinsons Fruit Shoot Apple/Blackcurrant
64	Pepsi cola

ble 4.0 continued. Water complex tested for new tuberculous

4.8.4 **Food Samples**

Various unsystematic food items from local supermarkets and outdoor markets, both pre-packed and loose (see Table 4-3) were collected. Each sample was aseptically diced, mashed and transferred into 10 ml sterile RGM broth and incubated at 30°C. After ten days' incubation, 10 µl aliquots were taken from each broth and inoculated onto RGM medium and incubated for a further ten days at 30°C.

No	Food samples tested
1	Brussel Sprouts
2	Salad Cress
3	Salad Cress Soil
4	Cheese
5	Spring Onion - White
6	Spring Onion - Green
7	Strawberry
8	Raspberry
9	Sweet and Crunchy prepacked salad
10	Coleslaw prepacked mix
11	Iceberg Lettuce
12	Blackberry
13	Sliced Red Onions
14	Grape - Red
15	Grape - Green
16	Mushrooms
17	Savoy Cabbage
18	Grower's Selection - Red Onion
19	Grower's Selection - Courgette
20	Grower's Selection - Red Pepper

 Table 4-3: All foods tested for non-tuberculous mycobacteria

Table 4-3 c	ontinued: All foods tested for non-tuberculous mycobacteria
Νο	Food samples tested
21	Grower's Selection - Yellow Pepper
22	Celery
23	Cucumber
24	Smoked Haddock
25	Salad Tomato
26	Casserole Vegetables - Carrot
27	Casserole Vegetables - Potato
28	Casserole Vegetables - Swede
29	Casserole Vegetables - Leek
30	Casserole Vegetables - White Onion
31	Swede
32	Mix Veg - Carrot
33	Mix Veg - Broccoli
34	Mix Veg - Cauliflower
35	Twin Pack - Baby Corn
36	Twin Pack - Fine Beans
37	Beansprouts
38	Plum
39	Potato
40	Radish
41	Red Apple
42	Orange Pulp
43	Orange Zest
44	Lemon Pulp
45	Lemon Zest
46	Banana
47	Green Apple
48	Red Pepper
49	Large Potato
50	New Potato
51	Parsnip
52	Sweet Potato
53	Pear
54	Onion
55	Whole Milk
56	Cottage Cheese
57	Single Cream
58	Organic Yogurt
59	Soil – Onion from allotment
60	Flat Cap Mushrooms
61	Shallot
62	Jersey Royal Potato
63	Beansprouts
64	Almonds
65	Dried Papaya
66	Dried Cranberry

Table 4-3 continued: All foods tested for non-tuberculous mycobacteria			
No	Food samples tested		
67	Pick and mix sweets (loose)		
68	Bread (uncut from bakery)		
69	Ham (loose)		
70	Flat Leaf Parsley		
71	Cherry		
72	Ginger		
73	Butter (Lurpak)		
74	Cheese (Hard)		
75	Stir Fry Chicken (from butcher)		
76	Stir Fry Onion (from butcher)		
77	Stir Fry Carrot (from butcher)		
78	Stir Fry Marinade (from butcher)		
79	Mixed Grill Beef Burger (from butcher)		
80	Mixed Grill Herb Burger (from butcher)		
81	Mixed Grill Herb Sausage (from butcher)		
82	Mixed Grill Beef Sausage (from butcher)		
83	Mixed Grill Pork Sausage (from butcher)		

Uninoculated control plates, broth and equipment from all sample sets were incubated at both 30°C and 37°C for ten days. Unused swabs were also placed onto RGM plates, spread over the whole plate, and incubated at both 30°C and 37°C for ten days as shown in Table 4-4.

No.	Controls
1	Control Broth 30°C
2	Control Broth 37°C
3	Control Plate 30°C
4	Control Plate 30°C
5	Water Filter
6	Scalpel
7	Methylated Spirit
8	Control Sponge (not used) 30°C
9	Control Sponge (not used) 37°C
10	Control Broth 30°C
11	Control Broth 37°C
12	Control Plate 30°C
13	Control Plate 30°C
14	Water Filter

Table 4-4: Negative controls used in all sampling

No.	Controls
15	Scalpel
16	Methylated Spirit
17	Control Sponge (not used) 30°C
18	Control Sponge (not used) 37°C
19	Control Broth 37°C
20	Control Broth 30°C
21	Control Plate 37°C
22	Control Plate 30°C
23	Water Filter
24	Scalpel
25	Methylated Spirit
26	Sponge (unused)
27	Sponge (unused)

Table 4-4 continued: Negative controls used in all sampling

4.8.5 Methods of identification of all isolates recovered

4.8.5.1 Matrix-assisted laser/desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS)

All bacterial growth from all types of sample were sub-cultured onto Columbia blood agar to obtain pure cultures and identified using MALDI-TOF MS. For those isolates that were not able to be identified full extractions were performed and identification was attempted a second time using MALDI-TOF MS.

4.8.5.1.1 Preparation of sample for MALDI-TOF MS

A single colony was isolated and applied as a thin but visible film onto the MALDI target plate using a sterile wooden stick. This was overlaid with 2 µl of matrix (alpha-cyano-4-hydroxycinnamic acid in 50% acetonitrile and 2.5% trifluoroacetic acid) and allowed to air dry. This is the suggested method as recommended by Bruker (Bruker, 2017).

For difficult to identify isolates or suspected mycobacteria, an extraction process had to be adhered to in order to disrupt cell wall structures. After numerous protocols were evaluated, the method adopted was one recommended by Saleeb *et al.* Using a 1 μ l loop, a visible amount of cells were suspended in 70% ethanol and briefly centrifuged. The supernatant was discarded and the pellet re-suspended in 50 μ l formic acid, vortexed for five minutes and 50 μ l 100% acetonitrile added and vortexed for a further five minutes. The sample was then centrifuged at maximum speed for two minutes and 2 μ l placed onto the MALDI target plate, air-dried and overlaid with matrix as previously described (Saleeb *et al.*, 2011).

4.8.5.2 Gram-staining and staining for acid-fast bacilli

Gram-staining was performed on all isolates that could not be identified by MALDI-TOF MS. An auramine and/or Zeihl Neelsen stain was also performed in order to assess the likelihood of mycobacteria and eliminate any non-mycobacteria.

4.8.5.2.1 Staining of heat fixed films by auramine phenol for the detection by fluorescence of acid and alcohol-fast organisms

A 1 μ I sterile plastic loopful of each isolate was spread over an individual slide, keeping away from the slide edges and avoiding making the smear too thick. The slides were then heat fixed by placing on a hot plate for two minutes. Auramine phenol stain was poured onto the heat fixed slide and left for 15 minutes then washed off with water. Acid-alcohol (1% v/v) was poured on and left for one minute, washed off and then the process was repeated for a further two minutes. This staged approach to decolourising the slides takes account of the fact that the first minute will elute the auramine phenol from the slide, consequently diluting the effect of the acid-alcohol. The second phase (two minutes) will therefore be at full strength. Acid-alcohol was washed off and the slide was counter stained with (0.02% w/v) aqueous solution of thiazine red for 30 seconds before being rinsed with water and allowed

to dry. Slides were examined using U.V microscopy using a x40 non-cover glass lens.

4.8.5.2.2 Staining of heat fixed films by Ziehl-Neelson for the detection of acid and alcohol-fast organisms

Slides were prepared and heat fixed as for auramine staining then flooded with strong carbol fuchsin. Using a lighted metal rod consisting of cotton wool soaked in industrial methylated spirit the slides were gently heated until just steaming and then allowed to stand for five minutes. Slides were heated again until steaming and left for a further five minutes before being rinsed well with water. Slides were then decolourised several times for 2-5 minutes with a 3% v/v acid-alcohol solution, rinsing with tap water between each application. To counter-stain, 1% methylene blue was added for 30 seconds before slides were rinsed with water and allowed to dry. Immersion oil was added to each slide and examined using a light microscope and x40 and x100 lenses.

4.8.5.2.3 Gram-staining of unidentified isolates to eliminate any nonmycobacteria

Slides were prepared and heat fixed as for auramine and ZN staining. Once the slides were cooled down crystal violet was added, left for 60 seconds, and then washed briefly with water. Gram's iodine was added and left for 60 seconds before being washed off with water. Slides were then flooded with 95% acetone for three seconds and washed off. Safranin was then added to slides as a counter-stain and left for 30 seconds before being washed off. Slides were then examined under the oil immersion lens (100x objective).

4.8.5.3 HAIN Genotyping protocol for the identification of clinically relevant mycobacterial species using BEEBlot G45 Automated Platform

All AFB positive isolates were sub-cultured onto Columbia blood agar and prepared for identification using HAIN Genotyping (HAIN Lifescience, 2015). Five commonly encountered control species previously typed by VNTR profiing at Public Health Colindale, UK and listed in Appendix 1, were also tested to validate the HAIN Genotyping results. These included *M. abscessus* subsp. *abscessus* (n = 1), *M. chelonae* (n = 1), *M. immunogenum* (n = 1), *M. abscessus* subsp. *massiliense* (n = 1) and *M. mucogenicum* (n = 1).

4.8.5.3.1 Sample preparation for extraction of DNA

A 10 µl loopful of pure bacteria was suspended in 1 ml of PCR grade water and centrifuged at 10,000g for 15 minutes. The supernatant was poured off and the pellet re-suspended in 300µl of PCR grade water. Tubes were then incubated for 20 minutes in a 90°C heating block. At the end of the heating process, tubes were removed and placed directly into a sonicating water bath. After 15 minutes the tubes were centrifuged at 21,000g for five minutes and 200µl of the supernatant was transferred to a new, labelled 1.5 ml screw capped pointed tube for PCR.

4.8.5.3.2 Amplification of extracted mycobacterial DNA

Mastermix was made up using the following amounts per sample; $3.5 \ \mu$ l sterile water, $5.0 \ \mu$ l 10 x buffer, $1.0 \ \mu$ l MgCl₂, $35.0 \ \mu$ l primer nucleotide mix and $0.5 \ \mu$ l Taq DNA polymerase and gently vortexed. Capped $0.2 \ m$ l PCR tubes were labelled for each sample and $45 \ \mu$ l of mastermix was added to each one along with 5 μ l of extracted DNA and briefly vortexed. Specific primer information is proprietary and not in the public domain (K. Geber 2017, personal communication, 31 July).

4.8.5.3.3 Running the Amplification Cycler.

Tubes were loaded into the block along with a contamination control sample containing 5 µl water in place of DNA, and the amplification profile was set as shown in Table 4-5. Once completed, the amplified samples were ready for the Hain genotyping.

Number of cycles	Temperature	Time
1	95°C	15 minutes
10	95°C 58°C	30 seconds 2 minutes
20	95°C 53°C 70°C	25 seconds 40 seconds 40 seconds
1	70°C	8 minutes

Table 4-5: Amplification profile for DNA

4.8.5.3.4 Hybridisation Test Procedure

Common Mycobacteria (CM) or Additional Species (AS) test strips were removed from storage at 4°C and allowed to come to room temperature whilst the BEEBlot G45 automated platform was pre-warmed to 45°C. A volume of 20 µl of denaturation solution was added to each of the wells followed by 20 µl of amplified sample, carefully mixed by pipetting up and down and incubated at room temperature for five minutes. Stringent wash solution, hybridisation buffer, conjugate, substrate and rinse solutions were placed in the appropriate sections in the BBBlot and when prompted one strip was placed into each well, ensuring they were completely covered by the solution and the coated side facing upwards. Once the cycle was completed strips were removed and pasted onto a kit evaluation sheet by aligning the bands CC and UC with respective lines on the sheet. This procedure was repeated for any samples requiring further identification with the Additional Species (AS) kit.

From all of the testing performed, a total of 298 separate samples (Table 4-1 to 4.3) were taken from various locations comprising 83 food items, 64 water samples and 151 environmental areas. From these, 272 individual isolates were recovered (see Table 4-6 and Table 4-7) and 196 showed no growth. This included 92 from environmental samples, 161 from water sampling and 19 from foods. All control plates (n = 27) were negative after ten days' incubation.

Area	Growth	Identification
Environmental areas		
Washing up sponge	+	M. peregrinum x 2
	+	Gram-negative
Floor Dust	+	Gram-negative
Kitchen bench	+	Gram-negative
House phone	NG	
Toilet seat	NG	
Sink draining board	+	Streptococcus oralis x 2
	+	Gram-negative
Sofa (leather)	NG	
Hallway (door handles, surfaces, floor)	+	Chryseobacterium sp.
Bathroom (basin, showerhead)	+	Gram-negative
	+	D. acidovorans x 5
	+	M. fortuitum
	+	Mycobacterium species
Kitchen (basin, shelves, taps)	+	Gram-negative
Living room (table, sofa, mantelpiece, handle, light switch)	NG	
Chicken egg	NG	
Can of diet coca cola lid	NG	
Horse manure	+	Gram-negative
	+	Chryseobacterium sp.x 2
	+	Gram-negative
	+	Myroides odoratus
	+	A. fumigatus x 2
Countryside soil	+	Chyrseobacterium oranimense
	+	Gram-negative
	+	Arthrobacer sp.
	+	M. peregrinum
	+	A. fumigatus
	100	

Table 4-6: Description of all areas tested for NTM

Area	Growth	Identification
	+	Achromobacter sp.
	+	Chryseobacterium sp.
Bus seats	+	Gram-negative
Cash machine	NG	
Computer desk	+	M. peregrinum
Window sill dust	+	M. peregrinum x 2
	+	Fusarium sp.
Laptop keyboard	NG	
House plant	+	Achromobacter sp.
	+	M. peregrinum
	+	<i>Mycobacterium</i> species
	+	Fusarium sp. X 2
	+	Fusarium oxysporum
Grass	NG	<i>,</i> ,,
Cigarette ash	NG	
Lab Coat Microbiology Research Dept.	+	Gram-negative
	+	M. chelonae
Medical Student Shirt	NG	
Medical Student ID Badge	NG	
Cigarette (Lambert and Butler) -	+	Bacillus sp. X 2
Interior	•	
Cigarette (Lambert and Butler) - Filter	NG	
Paediatric Outpatients Green Area	NG	
Reception Desk (Not cleaned)		
Paediatric Outpatients Red Area	NG	
Children's Desk (Not cleaned)		Crom pogotivo
C1 Consultants Desk	+	Gram-negative
C1 Sink	+	Gram-negative x 2
C1 Children's Desk & Chair	NG	
C1 BP Cuff	NG	
C1 Pillow	NG	
C1 Couch	NG	
C1 Couch Blue Roll	NG	
C2 Consultants Desk	NG	5 11
C2 Sink	+	D. acidovorans x 2
C2 Children's Desk & Chair	NG	
C2 BP Cuff	NG	
C2 Couch	NG	
C2 Pillow	NG	
C2 Stethoscope	NG	
C3 Consultants Desk	NG	
C3 Sink	+ +	Gram-negative x 2 <i>M. chelonae</i>
C3 Children's Desk & Chair	NG	
C3 BP Cuff	NG	
C3 Couch	NG	

Table 4-6 continued: Description of all areas tested for NTM

Area	Growth	Identification
C3 Pillow	NG	
C3 Children's Toys	NG	
C4 Consultants Desk	NG	
C4 Sink	+	D. acidovorans
C4 Children's Desk & Chair	NG	
C4 BP Cuff	NG	
C4 Couch	NG	
C4 Pillow	NG	
C4 Couch Blue Roll	NG	
C4 Stethoscope	NG	
C5 Consultants Desk	NG	
C5 Sink	+	D. acidovorans
	+	M. chelonae
C5 Children's desk & chair	NG	
C5 BP Cuff	NG	
C5 Couch	NG	
C5 Pillow	NG	
C5 Children's Toys	NG	
2		
Treatment Room Desk	NG	
Treatment Room Couch	NG	
Treatment Room Sink	+	M. chelonae
	+	Gram-negative
	+	M. chelonae
	+	D. acidovorans x 2
Treatment Room Pillow	NG	
Treatment Room Cuff	NG	
Treatment Room Height Machine	NG	
Treatment Room Weight Machine	NG	
Treatment Room Nurse's Trolley	NG	
Treatment Room Children's Toys	+	Gram-negative
Treatment Room Child's Wheelchair	NG	
Adult C1 Patient chair	NG	
Adult C1 Bed	NG	
Adult C1 Desk	NG	
Adult C1 Sink	+	Mycobacterium species x 2
Adult C2 Patient chair	NG	
Adult C2 Bed	NG	
Adult C2 Desk	NG	
Adult C2 Sink	+	Mycobacterium species
Adult C3 Patient chair	NG	
Adult C3 Bed	NG	
Adult C3 Desk	NG	
Adult C3 Sink	+	Mycobacterium species
Adult C4 Patient chair	NG	
Adult C4 Bed	NG	
Adult C4 Desk	NG	
	NG	

Area	Growth	
Adult C4 Sink	+	D. acidovorans
Adult C5 Patient chair	NG	
Adult C5 Bed	NG	
Adult C5 Desk	NG	
Adult C5 Sink	+	M. chelonae
Adult C6 Patient chair	NG	
Adult C6 Bed	NG	
Adult C6 Desk	NG	
Adult C6 Sink	+	Mycobacterium species x 2
Adult C7 Patient chair	NG	, ,
Adult C7 Bed	NG	
Adult C7 Desk	NG	
Adult C7 Sink	NG	
Adult C8 Patient chair	NG	
Adult C8 Bed	NG	
	_	
Adult C8 Desk	NG	
Adult C8 Sink	NG	
Adult C8 Observation machine	NG	
Adult C9 Patient chair	NG	
Adult C9 Bed	NG	
Adult C9 Desk	NG	
Adult C9 Sink	+	Mycobacterium species x 2
_ung function room 1 sink	NG	
_ung function room 1 spirometer tubes	NG	
Lung function room 1 desk	NG	
Lung function room 1 chair	NG	
Lung function room 2 sink	+	Mycobacterium species
Lung function room 2 spirometer 1	NG	
Lung function room 2 spirometer 2	NG	
ung function room 2 spirometer 3	NG	
_ung function room 2 HD pft	NG	
chair/glass		
Ward 52 C6 room sink	+	Mycobacterium species x 2
Ward 52 C6 showerhead	+	D. acidovorans
Ward 52 C7 room sink	NG	
Ward 52 C7 WC sink	+	Mycobacterium species
Ward 52 C7 armchair	NG	
Ward 52 C7 showerhead	+	Mycobacterium species x 2
Ward 52 C8 WC sink	+	M. mucogenicum
Ward 52 C8 room sink	+	Mycobacterium species
Ward 52 C8 room armchair	NG	
Ward 52 C8 room bathroom door handles	NG	
Ward 52 C8 room showerhead	+	M. mucogenicum
		-
	+	Mycobacterium species

Table 4-6 continued: Description of all areas tested for NTM

Area	Growth	Identification
	+	Mycobacterium species
Nard 52 C10 WC sink	NG	
Nard 52 C10 showerhead	NG	
Nard 52 C10 O_2 wall mounts	NG	
Ward 52 C10 armchair	NG	
Ward 52 C10 window sill	NG	
Ward 52 C10 patient table	NG	
Ward 52 C10 bed	+	M. peregrinum
Ward 52 C11 WC sink	+	D. acidovorans
Ward 52 C11 room sink	+	M. mucogenicum x 2
Ward 52 C11 showerhead	+	M. mucogenicum
Ward 52 C11 armchair	NG	
Ward 52 Corridor observation machine	NG	
Ward 52 Corridor patient chair	NG	
Flower Petal	NG	
Flower Stem	NG	
Flower Soil	NG	
Flower Root	NG	
Waters		
House 1 bathroom hot	+	Curtobacterium flaccumfaciens
	+	M. chelonae
House 1 bathroom cold	+	M. mucogenicum x 2
House 1 Kitchen hot	NG	C
House 1 kitchen cold	+	M. mucogenicum
	+	M. chelonae x 2
House 1 toilet	+	Microbacterium sp.
	+	Gram-negative
	+	M. chelonae x 4
House 1 outdoor tap	+	Curtobacterium flaccumfaciens
	+	Gram-negative
	+	Arthrobacter sp.
House 2 bathroom hot	+	<i>Mycobacterium</i> species x 3
	+	Gram-negative
House 3 bathroom cold	+	<i>Mycobacterium</i> species
House 2 kitchen cold	+	<i>Mycobacterium</i> species
	+	<i>Mycobacterium</i> species
House 2 outdoor tap	NG	- '
House 2 shower hot	+	Gram-negative x 3
	+	Chryseobacterium indologenes
	+	<i>Mycobacterium</i> species
	+	Gram-negative
Pathology Dept. Freeman Hospital Male Bathroom Hot	+	Gram-negative
Pathology Dept. Freeman Hospital Male Bathroom Cold	+	M. chelonae

Table 4-6 continued: Description of all areas tested for NTM

Area	Growth	Identification
	+	Gram-negative
Pathology Dept. Freeman Hospital Female Bathroom Hot	+	Gram-negative
	+	Chryseobacterium sp.
Pathology Dept. Freeman Hospital Female Bathroom Cold	+	Gram-negative
	+	M. mucogenicum
	+	Mycobacterium species
Freeman Hospital Outpatient Drinking Water	+	Mycobacterium species
Pathology Dept. Freeman Hospital Kitchen Hot	NG	
Pathology Dept. Freeman Hospital Kitchen Cold	+	Gram-negative
Ward 52 CF Unit C6 Shower	+	Mycobacterium species x 2
Ward 52 CF Unit C6 WC Sink	+	Mycobacterium species x 5
Ward 52 CF Unit C6 Room Sink	+	Mycobacterium species x 2
Ward 52 CF Unit C8 Shower	+	Mycobacterium species x 3
Ward 52 CF Unit C8 WC Sink	+	Mycobacterium species
	+	Gram-negative
	+	D. acidovorans x 4
Ward 52 CF Unit C8 Room Sink	+	D. acidovorans x 4
Ward 52 CF Unit C10 Shower	+	Mycobacterium species x 2
	+	D. acidovorans
Ward 52 CF Unit C10 WC Sink	+	Gram-negative
	+	Mycobacterium species
Ward 52 CF Unit C10 Room Sink	+	<i>M. chelonae</i> x 3
	+	Mycobacterium species
Ward 52 CF Unit C7 Shower	+	M. chelonae x 2
Ward 52 CF Unit C11 Shower	+	<i>M. chelonae</i> x 4
	+	Mycobacterium species
Adult CF Clinic Waiting Rm Drinking Fountain	+	<i>M. chelonae</i> x 4
	+	Mycobacterium species
Adult CF Clinic C1 sink	+	M. chelonae
	+	Mycobacterium species
	+	Lactobacillus sp.
Adult CF Clinic C5 sink	+	Mycobacterium species x 5
Adult CF Clinic C6 sink	+	D. acidovorans x 4
	+	Mycobacterium species
	+	Flavobactrium lindanitolerans
	+	<i>Fusarium</i> sp.
Adult CF Clinic C7 sink	+	Mycobacterium species x 2
Adult CF Clinic C8 sink	+	Mycobacterium species
	+	D. acidovorans
	+	D. acidovorans
Adult CF Clinic C9 sink	+	Chryseobacterium indologenes
	+	D. acidovorans

Table 4-6 continued: Description of all areas tested for NTM Area Growth Identification

Area	Growth	Identification		
	+	Chryseobacterium indologenes		
	+	Gram-negative		
Paediatric C1 sink	+	D. acidovorans x 2		
	+	M. chelonae		
	+	Mycobacterium species		
Paediatric C2 sink	+	D. acidovorans x 3		
	+	M. chelonae x 2		
Paediatric C3 sink	+	D. acidovorans x 2		
	+	M. chelonae x 2		
Paediatric C4 sink	+	M. chelonae x 2		
	+	Mycobacterium species		
Paediatric C5 sink	+	<i>Mycobacterium</i> species		
	+	D. acidovorans		
	+	M. chelonae x 2		
Paediatric treatment room sink	+	D. acidovorans x 2		
Paediatric drinking water outpatients	+	D. acidovorans x 2		
main waiting area	·			
-	+	Mycobacterium species		
	+	M. chelonae		
	+	Mycobacterium species		
Paediatric drinking water green	+	M. chelonae x 3		
(area 1)				
	+	<i>Mycobacterium</i> species		
Paediatric drinking water red (area 2)	+	<i>M. chelonae</i> x 4		
	+	Mycobacterium species		
Evian bottled water	NG			
Eden Falls bottled water	+	Gram-negative		
	+	UNKNOWN		
Asda Smart Price bottled water	+	Gram-negative		
	+	Gram-negative		
	+	Gram-negative		
Highland Spring bottled water	NG			
Buxton bottled water	NG			
Ouseburn River	+	Morganella morganii x 2		
	+	Delftia acidovorans x 2		
	+	Serratia liquefaciens		
	+	Klebsiella oxytoca		
Paddy Freeman Pond, High Heaton	+	Delftia acidovorans x 2		
	+	Gram-negative x 2		
	+	A. flavus x 2		
	+	Serratia fonticola x 2		
Coca-Cola	NG			
Fanta Zero	NG			
Tango	NG			
Sun Magic Orange Juice	NG			
Sun Magic Pineapple Juice	NG			
5 11 1 1 1	-			

Table 4-6 continued: Description of all areas tested for NTM Area Growth Identification

Table 4-6 continued: Description of	of all areas	tested for NTM
Area	Growth	Identification
Sun Magic Apple Juice	NG	
Volvic Touch of Fruit Cherry	NG	
Volvic Touch of Fruit Lemon/Lime	NG	
Ribena	NG	
Robinsons Fruit Shoot Orange	NG	
Robinsons Fruit Shoot	NG	
Apple/Blackcurrant		
Pepsi cola	NG	
Foods		
Brussel Sprouts	NG	
Salad Cress	+	D. acidovorans
Salad Cress Soil	NG	
Cheese	+	Gram-negative
Spring Onion - White	+	D. acidovorans
Spring Onion - Green	+	D. acidovorans
Strawberry	NG	
Raspberry	NG	
Sweet and Crunchy prepacked salad	+	Serratia sp.
Coleslaw prepacked mix	NG	Ochalla Sp.
Iceberg Lettuce	NG	
•	NG	
Blackberry	-	
Sliced Red Onions	NG	
Grape - Red	NG	
Grape - Green	NG	
Mushrooms	NG	
Savoy Cabbage	NG	
Grower's Selection - Red Onion	NG	
Grower's Selection - Courgette	NG	
Grower's Selection - Red Pepper	NG	
Grower's Selection - Yellow Pepper	NG	
Celery	+	D. acidovorans
Cucumber	NG	
Smoked Haddock	NG	
Salad Tomato	NG	
Casserole Vegetables - Carrot	NG	
Casserole Vegetables - Potato	NG	
Casserole Vegetables - Swede	+	Burkholderia gladioli
Casserole Vegetables - Leek	NG	-
Casserole Vegetables - White Onion	+	D. acidovorans
Swede	NG	
Mix Veg - Carrot	NG	
Mix Veg - Broccoli	+	Lactobacillus sp.
Mix Veg - Cauliflower	NG	p
Twin Pack - Baby Corn	NG	
Twin Pack - Fine Beans	NG	
	NG	

Area	Growth	Identification
Beansprouts	NG	
Plum	+	Gram-negative
Potato	NG	
Radish	+	Pandoraea sp.
Red Apple	NG	
Orange Pulp	NG	
Orange Zest	NG	
Lemon Pulp	NG	
Lemon Zest	NG	
Banana	NG	
Green Apple	NG	
Red Pepper	NG	
Large Potato	NG	
New Potato	+	Gram-negative
Parsnip	+	Gram-negative
Sweet Potato	+	Gram-negative
Pear	NG	5
Onion	+	Mycobacterium species
Whole Milk	NG	
Cottage Cheese	NG	
Single Cream	NG	
Organic Yogurt	NG	
Soil – Onion from allotment	+	M. mucogenicum
Flat Cap Mushrooms	NG	3
Shallot	NG	
Jersey Royal Potato	+	Gram-negative
Beansprouts	NG	5
Almonds	+	UNKNOWN
Dried Papaya	NG	
Dried Cranberry	NG	
Hard Candy (pick and mix)	NG	
Brazil Nut Toffee (pick and mix)	NG	
Milk Bottle (pick and mix)	NG	
Fizzy Cola (pick and mix)	NG	
Gummy Bear (pick and mix)	NG	
Cherry Lips (pick and mix)	NG	
Bread (uncut from bakery)	NG	
Ham (loose)	NG	
Flat Leaf Parsley	NG	
Cherry	NG	
Ginger	+	UNKNOWN
Butter (Lurpak)	NG	
Cheese (Hard)	NG	
Stir Fry Chicken (from butcher)	NG	
· · · · · ·		
Stir Fry Onion (from butcher)	NG	

Table 4-6 continued: Description of all areas tested for NTM Area Growth Identification

Table 4-6 continued: Description c		
Area	Growth	Identification
Stir Fry Carrot (from butcher)	NG	
Stir Fry Marinade (from butcher)	NG	
Mixed Grill Beef Burger (from butcher)	NG	
Mixed Grill Herb Burger (from butcher)	NG	
Mixed Grill Herb Sausage (from	NG	
butcher)	NC	
Mixed Grill Beef Sausage (from butcher)	NG	
Mixed Grill Pork Sausage (from	NG	
butcher)	-	
Controls		
Control Broth 30°C	NG	
Control Broth 37°C	NG	
Control Plate 30°C	NG	
Control Plate 30°C	NG	
Water Filter	NG	
Scalpel	NG	
Methylated Spirit	NG	
Control Sponge (not used) 30°C	NG	
Control Sponge (not used) 37°C	NG	
Control Broth 30°C	NG	
Control Broth 37°C	NG	
Control Plate 30°C	NG	
Control Plate 30°C	NG	
Water Filter	NG	
Scalpel	NG	
Methylated Spirit	NG	
Control Sponge (not used) 30°C	NG	
Control Sponge (not used) 37°C	NG	
Control Broth 37°C	NG	
Control Broth 30°C	NG	
Control Plate 37°C	NG	
Control Plate 30°C	NG	
Water Filter	NG	
Scalpel	NG	
Methylated Spirit	NG	
Sponge (unused)	NG	
Sponge (unused)	NG	
-		

Table 4-6 continued: Description of all areas tested for NTM

Those areas/isolates highlighted in bold were sent to Public Health, Colindale, UK to verify identities.

Out of 272 individual isolates recovered, 130 were identified as mycobacteria (65 unknown mycobacterial species), 118 were Gram-negative, 11 Gram-positive and 10 fungi. Three isolates were unable to be identified by any methods used, however although these were all AFB positive, they were not identified as mycobacteria by HAIN (see Table 4-7).

Using the GenoType Mycobacterium CM, a species-specific probe shows if members of the genus Mycobacterium are present, and in this case, further differentiation with GenoType Mycobacterium AS is recommended. Due to this, presumptuous identifications of *M. mucogenicum* could be given for some if not all of the 65 mycobacterial isolates that were not identified to species level. This is due to all but one of these being recovered from water samples/sinks where the majority of Mycobacterial isolates were either *M. chelonae* or *M. mucogenicum*. It could also be possible that had the HAINS CM test been repeated, many of these could be identified as *M. chelonae*. However, time and cost was a big factor in this, and the main aim was to try to isolate MABSC.

The most frequently isolated Gram negative species in this study (43.2% of all Gram-negatives identified), was *D. acidovorans*, commonly found in water or soil, rarely a cause of infection, and usually only in immunocompromised individuals (Chun *et al.*, 2009). All isolates in this study were found in either water, sinks or food (onions, celery, and cress). This species is not often reported in CF patients (Marchandin *et al.*, 2012).

Species	n	Species	n
Gram-negative isolates	118	Gram-positive isolates	11
Achromobacter sp.	2	Arthrobacter spp.	2
B. gladioli	1	Bacillus spp.	2
D. acidovorans	51	Curtobacterium	2
		flaccumfaciens	
Chryseobacterium sp.	9	Lactobacillus spp.	2
Flavobacterium lindanitolerans	1	Microbacterium sp.	1
Other Gram-negative (by Gram-	45	Streptococcus oralis	2
stain)			
Klebsiella oxytoca	1		
Morganella morganii	2	Non-tuberculous	130
		mycobacteria	
Myroides odoratus	1	M. chelonae	46
<i>Pandoraea</i> sp.	1	M. fortuitum	1
Serratia spp.	4	M. mucogenicum	10
		M. peregrinum	8
Fungal isolates	10	Mycobacterium spp.	65
A. flavus	2		
A. fumigatus	3		
Fusarium spp.	5		
Unidentified	3	TOTAL ISOLATES	272
(non-mycobacterial) isolates			

Table 4-7: Species identification of recovered isolates in all areas tested

4.9.1 Identification of all recovered isolates

All 272 isolates underwent analysis by MALDI-TOF MS, and 94 were given a score value of >2.0 or higher indicating secure Genus identification and probable species identification (Saffert *et al.*, 2011). A further 45 isolates were identified as non-mycobacteria by Gram stain, auramine and/or ZN stain.

4.9.1.1 HAIN Genotyping for the Identification of clinically relevant mycobacterial species using BEEBlot G45 Automated Platform

A total of 133 isolates (plus an additional five as controls) underwent HAIN Genotyping for common mycobacteria. Out of these 130 were positively identified as mycobacteria. Three isolates remained unidentified, although they were not identified as mycobacteria by HAIN.

4.9.1.2 Evaluation and interpretation of HAIN results

Positive bands were noted and species determined using the HAIN CM and AS evaluation charts as shown in Figure 1-9 and Figure 1-10.

4.10 Discussion

For many years, it has become apparent that due to the lack of evidence of personto-person transmission of NTM, it was generally accepted that the source of NTM infection in humans is the environment. It is well documented that NTM are said to be ubiquitous inhabitants within the environment, sharing a variety of ecological habitats with humans, including water, household plumbing, hot tubs, spas, peat and soil (Embil *et al.*, 1997; De Groote *et al.*, 2006; Falkinham, 2009; Feazel *et al.*, 2009; Thomson *et al.*, 2013b; Thomson *et al.*, 2013a).

Discounting MABSC, other species of mycobacteria, e.g. *M. chelonae*, were found in abundance in many samples in this study. It cannot therefore be disregarded that the possibility of MABSC in the environment may possibly be overgrown in culture by other more plentiful mycobacterial species and thereby remain undetected. It could therefore be a challenge to detect MABSC if present in very small amounts (Ripoll *et al.*, 2009). Out of all the mycobacteria isolated in this study, 35.4% were identified as *M. chelonae*; all were isolated either from sinks within the CF units or from waterborne sources. However, despite the wide array of areas tested in this study, there were no MABSC isolated from any of the samples. This would imply that *M. chelonae* can easily be isolated in copious amounts within the environment, particularly in water sources.

Regardless of progress in understanding the ecology and epidemiology of NTM, there are still many unanswered questions. Although MABSC is understood to be acquired from the environment, reports of this are particularly lacking, and for those that do exist, their true credentials are questionable due to the identification of *M. chelonae* and MABSC still very much being confused. At the time of their writing, reports prior to 1992 identifying *M. abscessus* from the environment cannot be certain to be accurate, as *M. abscessus* and *M. chelonae* were not then designated

as separate species. Even some current reports cannot be taken at face value due to the identification methods used, for example, issues with HAIN Genotyping as described in Section 1.9.6. Although HAIN was used to identify a number of mycobacterial isolates in this study, control organisms, which had previously been identified by VNTR provided accurate results. A selection of *M. chelonae* from isolated species in this study (as shown by bold text in Table 4-6) were also sent to Public Health England, Colindale, UK to be verified by VNTR in order to confirm that the HAIN results were accurate.

Recent developments in HAIN Genotyping mean that there is now an updated technique on the market; however, at the time of this study this was not available. This method, known as HAIN Genotype NTM-DR VER 10, and shown in Figure 4-1, is said to provide reliable results and is able to differentiate between the three members of the MABSC complex (HAIN Lifescience, 2017). The banding patterns significantly differ to that of previous HAIN Genotype Mycobacterium CM for *M. abscessus* and *M. chelonae* as shown in Section 1.9.6 Figure 1-9.

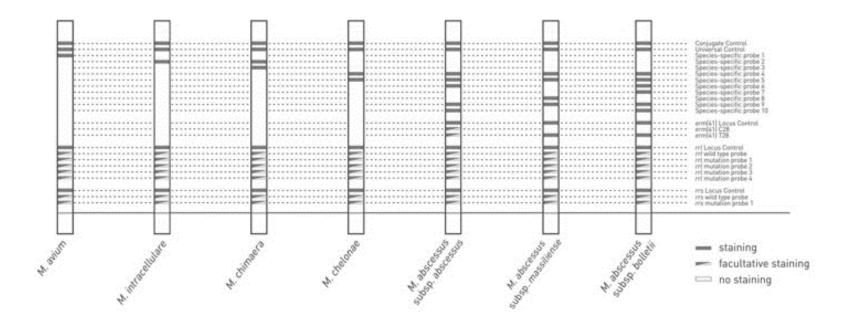


Figure 4-1: HAIN Genotype NTM-DR showing a difference in banding patterns between *M. abscessus complex* and *M. chelonae*

Recent evidence also now exists to confirm that there is widespread transmission of MABSC within the global CF community in a study performed by Bryant *et al.*, 2016. Previously, the majority of reports published indicated that patients with CF were infected with strains thought to be acquired environmentally that were genetically dissimilar, however upon carrying out whole genome sequencing in a single CF centre in the UK, two clusters of patients were infected with identical or virtually identical MABSC isolates. Social network analysis suggested that these were likely to have been acquired from within the hospital setting via fomite transmission (Bryant *et al.*, 2013).

Whole genome sequencing from several CF centres globally was carried out on 1080 isolates from 517 individual patients in order to see if cross contamination could be the most plausible source of infection rather than independent acquisition from the environment. Although there were large genetic dissimilarities found between many isolates, multiple clades of almost undistinguishable isolates, mainly *M. abscessus* subsp. *abscessus* and *M. abscessus* subsp. *massiliense*, from areas that were very diverse geographically were identified. This suggests that the spread of circulating clones of MABSC is prevalent within the global CF patient community. The majority of patients were infected with clustered rather than unclustered isolates, and predominantly with *M. abscessus* subsp. *abscessus* clusters 1 and 2 and *M. abscessus* subsp. *massiliense* cluster 1. Individual transmission events were also able to be determined, as well as likely mechanisms of transmission between patients, and it was concluded that fomite spread and airborne transmission were feasible explanations (Bryant *et al.*, 2016).

Despite this new evidence, no isolates of MABSC were isolated in this study from any hospital surfaces or equipment, and neither from rooms that were at the time

occupied by patients with CF, one known to be infected with *M. abscessus* subsp. *massilense.*

The presence of a vast number of genes and operons within the genome of MABSC that are involved in resistance to arsenic and encoding cysteine desulferases is undoubtedly a trademark of a soil or aquatic dwelling environmental organism (Ripoll et al., 2009). However MABSC also contains many genes known to be involved in intracellular survival and is furnished with lipase encoding genes in order to obtain energy from eukaryotic host-derived lipids. It has far fewer ABC transporters or two-component sensor histidine kinases than *M. smegmatis*, signifying that MABSC may specialise in intracellular parasitism. An acceptable assumption is that MABSC have advanced to evade predators such as free living amoebas that share the same environment (Adekambi et al., 2004). Soil dwelling amoebas are plentiful at soil-plant boundaries supporting the growth of plant parasites, including bacteria, which amoebas feed upon. As the MABSC genome encodes a large number of salicylate hydroxylases it enables MABSC to resist the salicylic acid mediated protection mechanisms of plants suggesting that MABSC resides in close contact with plants and so consequently also amoebas (Ripoll et al., 2009).

Many reports predict a continuous rise in the incidence of interactions between NTM and humans, likely resulting in more clinical cases of environmentally-derived NTM (Prevots and Marras, 2015). This can be attributed to several factors, including the use of chlorine for the disinfection of drinking water, medical devices, and in industrial settings used to sterilise habitats, thereby selecting for NTM by reducing or eliminating competitors (Marras and Daley, 2002; Johnson and Odell, 2014). Another factor is the growing proportion of the population predisposed to environmental NTM infection, such as those individuals with immunosuppressive

disorders, for example increasing incidences of transplantations, AIDS, and simply age. Novel environmental mycobacteria will also continue to be identified as more rapid and sophisticated identification methods are developed (Primm *et al.*, 2004).

CHAPTER FIVE

Antibiotic susceptibility testing of rapidly-growing Mycobacteria with a focus on *Mycobacterium abscessus* complex

Introduction

5.1 Current treatment approaches to non-tuberculous mycobacterial infection

Treatment of NTM infections is either by drug therapy, surgery, or a combination of both of these, however treatments can be lengthy, complex, very costly and are recurrently accompanied by drug related toxicities and side effects. These are frequently somewhat severe and consequently signify a substantial healthcare concern (van Ingen *et al.*, 2010). Standard *M. tuberculosis* treatments are typically ineffective against NTM (Raju *et al.*, 2016), therefore for rapidly-growing mycobacteria, treatment regimens are predominantly based upon *in vitro* drug susceptibility testing. Results of the susceptibility testing can differ considerably between species due to huge variabilities in growth rates between species, as well as innate resistance to antibacterial drugs. Although there remains a lack of correlation between *in vitro* drug susceptibility results and *in vivo* treatment outcomes, susceptibility testing can still be beneficial to those patients who have failed to respond to first line treatments, or have suffered from reoccurrence of a prior NTM infection (Griffith *et al.*, 2007) and treatments should still be guided by drug susceptibility results (Floto *et al.*, 2016).

5.2 Recommended antibiotic treatments for pulmonary infection due to *Mycobacteria abscessus* complex in patients with cystic fibrosis

There can be a huge variation of treatments between patients with infection caused by MABSC. This is due to a lack of clinical trial data to support any particular treatment approach, but will largely consist of a preliminary intensive phase with an oral macrolide, usually azithromycin plus intravenous amikacin with one or more additional intravenous antibiotics. This is usually cefoxitin, tigecycline or imipenem

for between three to twelve weeks dependent on the patients' response to treatment and severity of infection, as well as their tolerance to particular drugs. This is followed by a continuation phase of an oral macrolide, clarithromycin or preferably azithromycin, and inhaled amikacin with the addition of two to three other antibiotics such as minocycline, linezolid, clofazimine or moxifloxacin (See Figure 5-1 and Table 5-1 below).

Clarithromycin has a slightly enhanced *in vitro* activity in comparison to azithromycin, however it would appear that clarithromycin also induces greater erm^{41} gene expression therefore may be less effective than azithromycin against *M. abscessus* subsp. *abscessus*. Conversely, this is not the case for *M. abscessus* subsp. *massiliense* where both macrolides appear to be equally effective (Choi *et al.*, 2012). There is however conflicting published data regarding the impact of the erm^{41} gene expression with each of these drugs, with Maurer *et al* reporting no significant differences in clarithromycin and azithromycin resistance in *M. abscessus* subsp. *abscessus* therefore suggesting that no preference should be given to either of these drugs in order to limit macrolide resistance (Maurer *et al.*, 2014b).

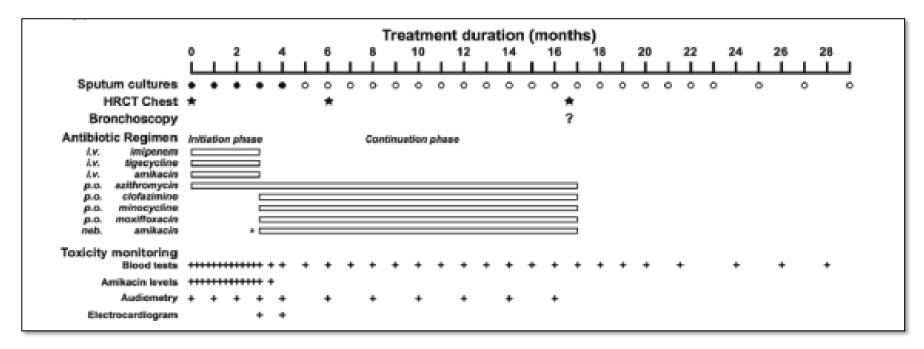


Figure 5-1: Typical MABSC treatment schedule as recommended by the US Cystic Fibrosis Foundation and European Cystic Fibrosis Society (Floto et al., 2016)

Table 5-1: Current guidelines for recommended antibiotic dosing regimens in the treatment of MABSC pulmonary disease in patients with cystic fibrosis (Floto *et al.*, 2016)

Antibiotic Route		Dose suitable for children and adolescents	Dose suitable for adults		
Amikacin	Intravenous*	Children: 15-30 mg/kg/dose once daily	10-30 mg/kg once daily OR		
		Adolescents: 10-15 mg/kg/dose	15 mg/kg/day in 2 doses		
		once daily	Daily to 3 x weekly dosing		
		Maximum dose 1500 mg daily			
	Nebulised*I+	250-500 mg/dose once or twice	250-500 mg once or twice daily		
		daily			
Azithromycin	Oral	Children: 10-12 mg/kg/dose once daily	250-500 mg once daily		
		Adolescents : As adult dose			
		Maximum dose 500 mg			
Cefoxitin	Intravenous	50 mg/kg/dose three times daily	200 mg/kg/dose in three divided		
		Maximum dose 12 g a day	doses daily		
			Maximum dose 12 g a day		
Clarithromycin	Oral	7.5 mg/kg/dose three times daily	500 mg twice daily		
		Maximum dose 500 mg			
	Intravenous	Not recommended			
Clofazimine	Oral I ¥	1-2 mg/kg/dose once daily	50-100 mg once a day		
		Maximum dose 100 mg			
Imipenem	Intravenous	15-20 mg/kg/dose twice daily Maximum dose 1000 mg	1 g twice daily		
Linezolid	Oral **	< 12 years old: 10 mg/kg/dose	600 mg once or twice daily		
		three times daily			
		≥12 years old: 10 mg/kg/dose			
		once or twice daily			
		Maximum dose 600 mg			
	Intravenous **	< 12 years old: 10 mg/kg/dose	600 mg once or twice daily		
		three times daily			
		≥12 years old: 10 mg/kg/dose			
		once or twice daily			
		Maximum dose 600 mg			
Moxifloxacin	Oral	7.5-10 mg/kg/dose once daily	400 mg once daily		
Main a	0	Maximum dose 400 mg daily	400 6 1 1 1		
Minocycline	Oral	2 mg/kg/dose once daily	100 mg twice daily		
		Maximum dose 200 mg daily	400 1 1 1 1		
Tigecycline	Intravenous Iπ	8-11 years old: 1.2 mg/kg/dose	100 mg loading dose then 50 mg		
		three times daily	once or twice daily		
		Maximum dose 500 mg			
		≥12 years old: 100 mg loading			
		dose then 50 mg once or twice			
		daily			

*Adjust dose according to levels. The usual starting dose is 15 mg/kg aiming for peak level of 20-30 μ g/ml and trough levels of <5-10 μ g/ml

** Usually given with high dose (100 mg daily) pyridoxine (vitamin B₆) to reduce the risk of cytopaenias

+ As tolerated

+ Mixed with saline

¥ Only available in the USA via an Investigational New Drug Application (IND) application to the Food and Drug Administration (FDA)

 π Many practitioners recommend pre dosing with one or more anti-emetics before dosing and/or gradual dose escalation from 25 mg daily to minimise nausea and vomiting

Clinical improvement in patients suffering from infection with MABSC would appear to be frequently unsuccessful (Maurer *et al.*, 2014a), and culture conversion is not attainable for a great many patients, although data on treatment outcomes is still very limited. MABSC exist in the lungs in many forms, including within macrophages and in biofilms posing vast difficulties to access, therefore creating a great challenge to systemically administered antibiotics (Cipolla *et al.*, 2015).

5.3 Liposomal amikacin for inhalation in patients with non-tuberculous mycobacterial pulmonary disease

Increasing attention is now being paid to the possible use of Arikace, liposomal amikacin for inhalation (LAI), for the treatment of NTM infection in patients with cystic fibrosis (CF) *via* delivery of the antibiotic in higher concentrations (Olivier *et al.*, 2016). Liposomes are microscopic membranous vesicles with an aqueous centre that can be used as a transporter for pharmaceutical drugs (Rose *et al.*, 2014). These vesicles can incorporate lipid-soluble drugs into the membrane and water-soluble drugs into their aqueous spaces and release their contents by interacting with cells by adsorption, endocytosis, lipid exchange, or fusion. The drugs are then dispersed into the body at a close proximity to the site of the lung infection.

5.3.1 Arikace clinical trials completed and in progress for use against non-tuberculous mycobacterial infection

In a randomised placebo controlled phase 2 clinical trial (clinical trial identifier NCT01315236), patients received a daily dose of 590 mg of LAI (or placebo) in addition to their ongoing treatments. Results indicated that LAI was effective in attaining negative sputum culture for NTM caused by MAC, however this was not observed for those patients with MABSC (Biller *et al.*, 2015; Olivier *et al.*, 2016).

Other clinical trials involving arikace ongoing at present are "Open-label Safety Extension Study Assessing Safety and Tolerability of LAI in Patients Who Participated in Study INS-212" (NCT02628600) and Phase 3 "Study to Evaluate Efficacy of LAI When Added to Multi-drug Regimen Compared to Multi-drug Regimen Alone" (NCT02344004) which is due for completion in October 2016 (ClinicalTrails.gov., 2016).

5.4 Antibiotic resistance mechanisms in *Mycobacteria abscessus* complex

MABSC has multiple innate antibiotic resistance mechanisms (Figure 5-2), but the most important development has been the discovery of an inducible erythromycin methylase resistance gene (erm^{41}) (Nash *et al.*, 2009). The erm^{41} gene marginally differs between *M. abscessus* complex subspecies with *M. abscessus* subsp. *abscessus* having a complete erm^{41} gene with ten sequevars (Brown-Elliott *et al.*, 2015). Sequevars with nucleotide T28 are associated with a complete fully functional gene and inducible clarithromycin resistance, and sequevars with nucleotide C28 are associated with a non-functional gene and linked to clarithromycin susceptibility. In *M. abscessus* subsp. *bolletii*, the erm^{41} gene is similar to T28 in *M. abscessus* subsp. *abscessus*; however, the erm^{41} gene of *M. abscessus* subsp. *massiliense* is known to have two deletions, rendering it non-functional. Sequence analysis of the erm^{41} gene has been used to classify *M. abscessus* complex subspecies (Rubio *et al.*, 2015).

M. abscessus subsp. *abscessus* may initially appear susceptible to macrolides, however upon exposure to these drugs resistance can develop. Until inducible resistance due to *erm*⁴¹ was defined, clarithromycin was effectively the drug of choice for *M. abscessus* subsp. *abscessus*. It was then revealed that although a

strain may seem to be susceptible after three days *in vitro* incubation, due to induction of the synthesis of a methyltransferase, clarithromycin resistance occurred if incubation was extended to fourteen days, (Nash *et al.*, 2009). Similarly, this could also occur if the isolate was pre-incubated with clarithromycin (Maurer *et al.*, 2014b).

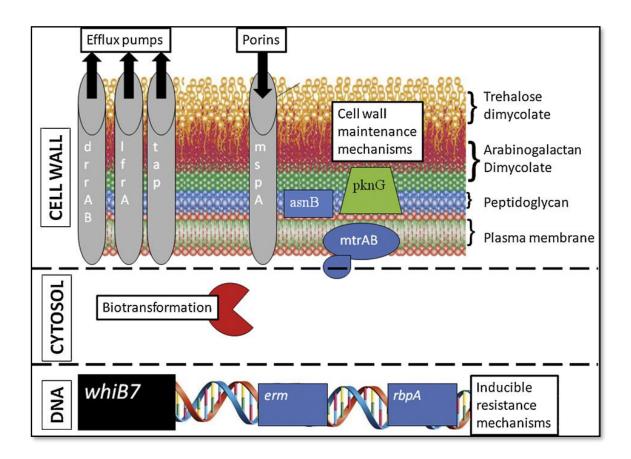


Figure 5-2: Mycobacterial cell wall and mechanisms of drug resistance (van Ingen *et al.*, 2012)

As shown in Figure 5-2, the mechanisms of drug resistance can derive from the high content of lipids, as well as many mechanisms that control cell wall content including low porin count, efflux pumps, active biotransformation by cytosolic enzymes and inducible resistance mechanisms (van Ingen *et al.*, 2012).

5.4.1 Macrolide resistance

Resistance to macrolides occurs by post transcriptional methylation of the 23S rRNA, a component of the large 50S subunit which prevents the drug from attaching (Nessar *et al.*, 2012). Macrolides such as azithromycin, clarithromycin, erythromycin and telithromycin are a class of bacteriostatic antibiotics that target the rRNA, preventing ribosomal translocation by binding reversibly to the P site of the 50S subunit of the ribosome and preventing peptidyltransferase from adding the peptidyl group attached to the tRNA to the next amino acid consequently inhibiting protein synthesis. Changes or modifications to the 50S ribosomal subunit, the target binding site for macrolides, will confer resistance to macrolides (Menninger, 1995).

M. abscessus subsp. *abscessus* and *M. abscessus* subsp. *bolletii* are both known to carry the inducible full length *erm*⁴¹ gene, while *M. abscessus* subsp. *massiliense* has a truncated *erm*⁴¹ gene that is dysfunctional due to two distinctive deletions at bases 64-64 and 159-432 resulting in macrolide susceptibility (Kim *et al.*, 2010a). Conflicting reports however have claimed that strains of *M. abscessus* subsp. *massiliense* do exist harbouring a full length functional *erm*⁴¹ gene said to have possibly emerged by means of horizontal gene transfer from either *M. abscessus* subsp. *abscessus* or *M. abscessus* subsp. *bolletii* (Choi et al., 2012; Shallom et al., 2013)

While having a full length *erm*⁴¹ gene typically results in macrolide resistance, some strains of *M. abscessus* subsp. *abscessus* with a full length *erm*⁴¹ are non-functional due to a T to C modification at position 28 (T28C) that likely results in an altered conformation of *erm*⁴¹. This results in a failure to bind adequately to domain V, the region where macrolides bind to the ribosome (Bastian *et al.*, 2011).

5.4.2 Aminoglycoside resistance

Aminoglycosides, such as kanamycin, amikacin or tobramycin are key bactericidal drugs in the treatment of MABSC, targeting the 16S rRNA in the ribosome, and inhibiting protein synthesis by interfering with the proof reading process and causing errors in synthesis with premature termination (Shakil *et al.*, 2008). A spontaneous single A to G mutation at position 1408 (A1048G) affecting the 16S rRNA of *M. abscessus* subsp. *abscessus* isolates was reported to be associated with resistance to aminoglycosides (Prammananan *et al.*, 1998). As *M. abscessus* subsp. *abscessus* only has one copy of the rRNA operon, this makes the occurrence of a single mutation more probable (Sassi and Drancourt, 2014). Many other single mutations affecting the 16S rRNA instigating resistance to aminoglycosides (T1406A, C1409T and G1491T) have been reported (Nessar *et al.*, 2012).

5.4.3 The role of the mycobacterial cell wall in antibiotic resistance

The role of the complex hydrophobic mycobacterial cell wall shown in Chapter 1, Figure 1-1 has been widely observed, and many of its properties play a large part in the poor diffusion of antibiotics as discussed in Chapter 1 (Jarlier and Nikaido, 1990). Genomic analysis has also revealed the presence of other prospective drug resistance elements such as putative β -lactamases, aminoglycoside phosphotransferases and aminoglycoside acetyltransferases (Ripoll *et al.*, 2009).

5.4.4 Efflux pumps conferring antibiotic resistance in mycobacteria

The use of efflux pumps as a means of eradicating antimicrobial compounds was first defined in 1978 (Levy and McMurry, 1978) followed by active membrane-bound antimicrobial transport proteins conferring antibiotic resistance to tetracycline's being described in *Escherichia coli* by means of expulsion from the cell (Ball *et al.*,

1980). Prior to this they were known only for upholding a role of protecting against toxicities by maintaining cell homeostasis by pumping toxic agents out of the cell (Alvarez-Ortega *et al.*, 2013). They are now known to be involved in antibiotic resistance in mycobacteria with numerous being discovered (Szumowski *et al.*, 2013) contributing to resistance of drugs such as isoniazid, rifampicin, clofazimine, ciprofloxacin, linezolid, tetracycline and streptomycin (Nessar *et al.*, 2012; Rodrigues *et al.*, 2013; Pal *et al.*, 2014; Fonseca *et al.*, 2015). The genome of MABSC encodes for several proteins involved in antimicrobial efflux systems including members of the major facilitator superfamily (MFS), ATP binding cassette (ABC) transporters, mycobacterial membrane protein large (MmpL) family of transporters and a multidrug resistance Stp protein comparable to that defined in the resistance to spectinomycin and tetracycline in *M. tuberculosis* (Ramon-Garcia *et al.*, 2007).

5.4.5 Other mechanisms known to contribute to mycobacterial drug resistance

MABSC contains a 23319 base pair mercury resistance plasmid identical to the pMM23 mercury resistance plasmid of *M. marinum* (Stinear *et al.*, 2008) which carries a mercury resistance operon flanked by two genes MAB_p04c and MAB_p10, encoding site-specific recombinases (Ripoll *et al.*, 2009). However, although mercury resistance has been studied comprehensively in other species, additional research is needed to elucidate mercury resistance in mycobacteria.

Mycobacterial resistance to ethambutol is thought to occur due to mutations in the embCAB operon that encodes arabinosyl transferases, recognised targets of ethambutol (Palomino and Martin, 2014). Mutations conferring nucleotide

substitutions at amino acid residue 306 in embB is reported to cause ethambutol resistance (Sreevatsan *et al.*, 1997).

In sequences of conserved regions known as quinolone resistance-determining regions (QRDR) in the DNA gyrase subunits GyrA and GyrB it was revealed that the presence of alanine at position 83 within GyrA QRDR and arginine and asparagine at positions 447 and 464 respectively, within GyrB QRDR confer resistance to fluoroquinolones in MABSC, *M. avium*, *M. intracellulare*, *M. marinum* and *M. chelonae* (Guillemin *et al.*, 1998)

MABSC is known to produce numerous enzymes that can potentially damage or modify antibiotics, causing their inactivation. These include an Ambler class A ßlactamase, a rifampin ADP-ribosyl transferase, an aminoglycoside 2'-Nacetyltransferase and at least twelve homologs of aminoglycoside phosphotransferases, four homologs of monooxygenases potentially involved in resistance to rifampin and tetracyclines, two FoIP homologs conferring resistance cotrimoxazole, homolog of UDP-N-acetylglucosamine 1to one carboxyvinyltransferase MurA conferring resistance to fosfomycin, and two homologs of 23S rRNA methylases conferring resistance to macrolides (Vester and Douthwaite, 2001). MABSC also produce enzymes that could modify aminoglycoside drugs by transferring acetyl or phosphate residues on crucial positions within the antibiotic, causing their inactivation (Ripoll et al., 2009).

5.5 Challenges of diagnosis and treatment of *Mycobacteria abscessus*

As it is difficult to distinguish between colonisation and true infection, the decision of whether to treat MABSC infection or not embraces many challenges. Antibiotic susceptibilities can greatly differ between MABSC subspecies, particularly members of the MABSC, and monotherapy will often fail to produce a cure.

Current multidrug therapy recommendations remain contentious, with success for very few patients and failure for the majority (Griffith *et al.*, 2007) as well as high rates of resistance being reported for many of these antibiotics (Wallace *et al.*, 2001; Yang *et al.*, 2003; Chihara *et al.*, 2010; Bastian *et al.*, 2011).

5.6 Aims and objectives

Standard therapies for both MABSC and *M. tuberculosis* as well as additional antimicrobials that are not generally used for treatment of mycobacterial infection were evaluated in order to establish the minimum inhibitory concentrations and establish whether any may be used for the successful treatment of MABSC.

5.7.1 Bacterial strains used in antimicrobial testing of non-tuberculous mycobacteria

A collection of 100 NTM isolates from 94 adult and paediatric patients were tested, with the exception of one isolate of *M. abscessus* subsp. *bolletii* that was derived from an environmental sample. Clinical isolates were derived from CF sputum samples by standard methods and previously stored at -20°C in glycerol/skimmed milk. These included *M. abscessus* subsp. *abscessus* (n = 56), *M. chelonae* (n = 23), *M. abscessus* subsp. *massiliense* (n = 7), *M. abscessus* subsp. *bolletii* (n = 3), *M. fortuitum* (n = 3), *M. llatzerense* (n = 2), *M. salmoniphilum* (n = 2), M. immunogenum (n = 1), *M. intracellualare* (n = 1), *M. mucogenicum* (n = 1), and *M. septicum* (n = 1). Further details can be found in Appendix 1.

The species and subspecies identity of all strains had been previously confirmed by sequencing of at least two of three housekeeping genes (*rpoB, hsp*65 and *sodA*) using previously described methods (Blauwendraat *et al.*, 2012). NCTC control strains were also used; *S. aureus* NCTC 6571, *C. perfringens* NCTC 8797 and *E. coli* NCTC 10418. All frozen isolates were subcultured on Columbia agar with 5% horse blood prior to testing.

5.7.2 Growth media

Mueller-Hinton agar (CM0337) and Mueller-Hinton broth (CM0405) were supplied from Oxoid Ltd, Basingstoke, UK and prepared according to manufacturer's instructions. Blood agar was prepared from Columbia agar powder (CM0331) (Oxoid) and 5% defibrinated horse blood supplied by TSC Biosciences, Buckingham, UK.

5.7.3 Antimicrobials

Rifampicin was supplied by Duchefa Biochemie BV, Haarlem, The Netherlands, moxifloxacin was obtained from Bayer HealthCare Pharmaceuticals, Berlin, Germany, azithromycin from Aspire Pharma Ltd, Petersfield, UK, meropenem from Fresenius Kabi Ltd, Cheshire, UK, tobramycin from Medimpex UK Ltd, London, UK, ciprofloxacin was obtained from Fannin, Northamptonshire, UK, doripenem from Janssen-Cilag, Buckinghamshire, UK and tigecycline was obtained from Pfizer, Hampshire, UK. All other antimicrobials were all purchased from Sigma-Aldrich, Poole, UK

5.7.4 Equipment

All equipment as described in previous sections 2.3.4 and 3.10.6.

5.8.1 Preparation of the medium for agar dilutions for a range of single antimicrobials against rapidly-growing mycobacteria

Mueller Hinton agar was made up according to manufacturer's instructions where 90 ml of sterile deionised water was added to 3.8 g agar. These were autoclaved at 116°C for 10 minutes. Each antimicrobial was dissolved in 20 ml of sterile distilled water, with the exception of clarithromycin, clofazimine and rifampicin, which were first dissolved in 200 μ l of N-Methyl-2-pyrrolidone then added to 19.8 ml sterile distilled water. The dissolved antimicrobials were filter sterilised and diluted down to 10 x the strength of each target concentration with sterile distilled water and 10 ml was added to 90 ml Mueller-Hinton agar giving a total volume of 100 ml. For each target concentration, five plates were prepared in sterile Petri dishes and allowed to set.

5.8.2 Investigation of various antimicrobials using agar-based dilutions against rapidly-growing mycobacteria isolates from patients with cystic fibrosis

The following ranges of antimicrobials were used in the initial MIC agar dilution testing, and were selected based on known breakpoints published by the European Committee on Antimicrobial Susceptibility Testing Guidelines (EUCAST, 2014) and a review of the current literature; amikacin 4 – 128 mg/L, azithromycin 0.125 – 4 mg/L, cefoxitin 2 – 64 mg/L, chloramphenicol 2 – 64 mg/L, ciprofloxacin 0.25 – 8 mg/L, clarithromycin 0.5 – 16 mg/L, clindamycin 0.125 – 4 mg/L, clofazimine 0.125 – 4 mg/L, doripenem 0.5 – 16 mg/L, doxycycline 0.25 – 8 mg/L, erthyromycin 0.25 – 8 mg/L, fusidic acid 0.125 – 4 mg/L, gentamicin 2 – 64 mg/L, imipenem 1 – 32 mg/L, isoniazid 0.125 – 4 mg/L, kanamycin 0.125 – 4 mg/L, linezolid 0.5 – 16 mg/L,

meropenem 0.5 - 16 mg/L, metronidazole 0.5 - 16 mg/L, minocycline 8 - 256 mg/L, moxifloxacin 1 - 32 mg/L, rifampicin 4 - 128 mg/L, streptomycin 0.5 - 16 mg/L, teicoplanin 0.25 - 8 mg/L, tigecycline 0.125 - 4 mg/L, tobramycin 0.125 - 4 mg/L, trimethoprim-sulfamethoxazole 0.125 - 4 mg/L, spectinomycin 0.125 - 4 mg/L and resorcinol 0.0625 - 2 mg/L. All tests were performed in duplicate on separate occasions.

5.8.3 Bacterial strains and culture onto medium containing single antimicrobial agents

A suspension containing 2 ml sterile saline (0.85%) and turbidity equivalent to a 0.5 McFarland standard (approx. 1.5×10^8 CFU/ml) was prepared for each isolate. For the rough colony types, where clumping occurred, vortexing with three sterile 3 mm glass beads for 10 minutes effectively dispersed all clumps. Each medium type was inoculated using a multipoint inoculator with a 1 µl aliquot of each isolate (i.e. approx. 1.5×10^5 CFU). Results were recorded after five days incubation at 30°C with the exception of metronidazole, which was incubated for five days anaerobically at 37°C. Mueller-Hinton control plates were set up and each one inoculated with 20 of the 100 mycobacterial isolates. *S. aureus* and *E. coli* were included to serve as control organisms and *C. perfringens* as an anaerobic control.

The data for all of the mycobacterial isolates tested and antimicrobial agents are shown in Table 5-2 below with the MIC₅₀ and MIC₉₀ of *M. abscessus* subsp. *abscessus, M. chelonae and M. abscessus* subsp. *massiliense* shown in Table 5-3. The agar dilution method used follows the principle of establishing the lowest concentration of the serially diluted antibiotic concentration that completely inhibits bacterial growth.

Results show that the majority of antimicrobials were ineffective against *M. abscessus* subsp. *abscessus*, at the ranges tested.

From the recommended treatment regimes, the results for *M. abscessus* subsp. *abscessus* show that cefoxitin had a range of MIC 8->64 mg/L. All but two isolates had a MIC of 8-64 mg/L with a MIC₅₀ 32 mg/L and MIC₉₀ 64 mg/L. Clarithromycin had a range of MIC <0.5->16 mg/L, with 24 (42.9%) isolates having a MIC <0.5 mg/L, MIC₅₀ 2 mg/L and MIC₉₀ 16 mg/L. Tigecycline had a range of MIC <0.125->4 mg/L with 24 (42.9%) isolates having a MIC <2 mg/L and both the MIC₅₀ and MIC₉₀ 4 mg/L. Although minocycline had a range of <8 - >256, both MIC₅₀ and MIC₉₀ were >256 mg/L with only 15 (26.8%) isolates having a MIC of 256 mg/L or less, and only one with a MIC of <8 mg/L. Results for moxifloxacin showed that 53 isolates (94.6%) had a MIC >4 mg/L, and for linezolid 46 (82.1%) isolates had a MIC ≥16 mg/L. All isolates had a MIC >128 mg for amikacin, >4 mg/L for clofazimine and 49 (87.5%) isolates had a MIC >16 mg/L for imipenem. Azithromycin had a range of 0.5->4 mg/L, with 43 isolates (76.8%) >4 mg/L and MIC₅₀ and MIC₉₀ both >4 mg/L.

Results for *M. abscessus* subsp. *massiliense* show for all recommended guideline treatments clarithromycin was the only one antibiotic that seemed to show any activity with a MIC range of <0.5->16 mg/L with 6/7 (85.7%) isolates having a MIC

<0.5 mg/L and only one isolate had a MIC >16 mg/L. Tigecycline had a range of 0.5-4 mg/L with 5/7 isolates MIC 4 mg/L.

M. abscessus subsp. *massiliense* isolates showed greater susceptibility than *M. abscessus* subsp. *abscessus* for azithromycin with both MIC₅₀ and MIC₉₀ of 4 mg/L (MIC range 1->4 mg/L) with only one isolate having a higher MIC than 4 mg/L whereas only 23.2% (13/56) of *M. abscessus* subsp. *abscessus* had a MIC 4 mg/L or lower for azithromycin.

The three isolates of *M. abscessus* subspecies *bolletii* tested showed resistance to all antimicrobials tested except clarithromycin with two isolates having a MIC <0.5 mg/L and one isolate MIC 4mg/L. All other antimicrobials appear to be ineffective demonstrating resistance.

Clarithromycin also demonstrated superior results to all other antimicrobials tested for *M. chelonae* with a range of <0.5-8 mg/L, 19/23 (82.6%) isolates having a MIC <0.5 mg/L, and MIC₅₀ <0.5 mg/L and MIC₉₀ 2 mg/L.

Mycobacteria fortuitum showed susceptibility to tigecycline with two isolates having a MIC <0.125 mg/L and one MIC 0.5 mg/L. However, ciprofloxacin demonstrated three differing MIC's, <0.125 mg/L, 0.5 mg/L and >4 mg/L and moxifloxacin ranged from <0.125 mg/L to >4 mg/L.

For species where there were only one or two isolates tested, for example *M. salmoniphilum* and *M. llatzerense*, it is not possible to determine accurate susceptibility profiles, for example for the two isolates of *M. salmoniphilum* conflicting MIC's were shown for streptomycin, 4 mg/L and <0.5 mg/L. As with *M. llatzerense*, MIC's of 1 mg/L and <0.5 mg/L were shown for meropenem.

The three control strains shown in Table 5-4 demonstrated MIC's within the acceptable range for each antimicrobial tested according the EUCAST guidelines (EUCAST, 2014).

Antimicrobial	I Mycobacterial species										
	M. abscessus	M. massiliense	M. bolletii	M. chelonae	M. fortuitum	M llatzerense	M.salmoniphilum	M. mucogenicum	M.immunogenum	M. septicum	M intracellulare
	<i>n</i> = 56	<i>n</i> = 7	<i>n</i> = 3	<i>n</i> = 23	<i>n</i> = 3	<i>n</i> = 2	<i>n</i> = 1	<i>n</i> = 1	<i>n</i> = 2	<i>n</i> = 1	<i>n</i> = 1
Amikacin	>128	>128	64 - >128	>128	64 - >128	64	<4	>128	>128	128	>128
Azithromycin	0.5->4	1->4	2 - >4	1->4	>4	1 - 2	0.25	>4	1	>4	1
Cefoxitin Clarithromycin Clofazimine Imipenem Linezolid Minocycline	8 - >64	16 - 64	64 - >64	>64	16 - 64	4	<2 - 4	64	16	>64	>64
Clarithromycin Clofazimine Imipenem Linezolid	<0.5 - >16	<0.5 - >16	<0.5 - 4	<0.5 - 8	<0.5 - >16	<0.5	>16	<0.5	<0.5	>16	>16
Clofazimine	>4	>4	>4	>4	>4	>4	<0.125	>4	>4	2	>4
	1->16	2->16	>16	>16	16 - >16	1	>16	2	16	16	>16
	<0.5 - >16	8 - >16	4 - >16	16 - >16	>16 <8 - 32	<0.5	<0.5	>16	>16	>16	16
	<8 - >256 1 - >4	<8 - >256	64 - >256 1 - >4	<8 - >256 <0.125 - >4	<8 - 32 <0.125 - >4	<8 >4	<8	>256	<8 2	128	32 >4
Moxifloxacin Tigecycline	1 - >4 <0.125 - >4	>4 0.5 - 4	0.125 - 4	<0.125 - >4 <0.125 - 1	<0.125 - >4 0.5 - <0.125	>4 <0.125	0.5 <0.125	>4 2	2 1	0.25 <0.125	>4 0.25
пдесусппе	<0.125 - 24	0.5 - 4	0.125 - 4	<0.125 - 1	0.5 - <0.125	<0.125	<0.125	2	I	<0.125	0.25
Chloramphenicol	32 - >64	>64	>64	64 - >64	>64	8	>64	>64	>64	>64	>64
Ciprofloxacin	4 - >4	>4	<0.125 - >4	<0.125 - >4	<0.125 - >4	0.5	4	>4	1	1	>4
Clindomycin	>4	>4	>4	>4	>4	>4	0.25 - 0.5	>4	>4	>4	>4
Doripenem	8 - >16	>16	16 - >16	>16	16 - >16	16	2	>16	>16	16	>16
Doxycycline	2 - >8	>8	>8	<0.25 - >8	8 - >8	1 - 2.	<0.5	>8	1	>8	>8
Erythromycin	1 - >8	>8	8 - >8	1 - >8	>8	8	1	>8	8	>8	4
Fusidic Acid	1 - >4	>4	<0.125 - >4	4 - >4	>4	1 - 2.	1	2	>4	>4	>4
Gentamicin	16 - >64	64 - >64	4 - >64	32 - 64	16 - 32	4 - 8.	32	>64	32	8	16
Isoniazid	>4	>4	>4	2 - >4	>4	>4	<0.125	>4	>4	>4	>4
Kanamycin	2 - >4	>4	<0.125 - >4	4 - >4	>4	0.5	4	2	>4	>4	>4
Meropenem	2 - >16	>16	<0.5 - >16	8 - >16	8 - >16	<0.5 - 1	<0.5	2	8	8	>16
Metronidazole	>16	>16	>16	>16	>16	>16	>16	>16	>16	>16	>16
Resorcinol	>2	>2	>2	>2	>2	>2	>2	>2	>2	>2	>2
Rifampicin	<2 - >128	64 - >128	>128	>128	32 - >128	64 - 128	<2 - 4	>128	>128	>128	>128
Teicoplanin	4 - >8	>8	<0.25 - >8	>8	>8	8 - >8	4	>8	>8	>8	>8
Tobramycin	16 - >16	>16	<0.5 - >16	~0 8 - >16	>16	16	<0.5	>16	20 16	-0 16	-0
Trim-Sulf*	<0.125->4	2->4	2 - >4	4->4	>4	<0.125	<0.5 4	0.25	10	0.5	>4
			2 - >4 >8	4->4 >8	>4 >8			0.25 >8	>8	0.5 >8	>4 >8
Spectinomycin	>8	>8	-	-	-	>8	>8	-	-	-	-
Streptomycin	16 - >16	>16	>16	>16	>16	8	<0.5 - 4	>16	>16	>16	>16

Table 5-2: Range of MIC's of NTM species using a selection of twenty-nine single antimicrobials (mg/L)

* Trimethoprim/Sulfamethoxazole

Antimicrobial	M. abscessus subspecies abscessus				M. chelonae		M. abscessus subspecies massiliense				
		<i>n</i> = 56			n = 23			<i>n</i> = 7			
	RANGE	MIC ₅₀	MIC ₉₀	RANGE	MIC ₅₀	MIC ₉₀	RANGE	MIC ₅₀	MIC ₉₀		
Amikacin	>128	>128	>128	>128	>128	>128	>128	>128	>128		
Azithromycin	0.5->4	>4	>4	1->4	2	>4	1->4	4	4		
Cefoxitin Clarithromycin Clofazimine Imipenem Linezolid Minocvcline	8 - >64	32	64	>64	>64	>64	16 - 64	64	64		
Clarithromycin Clofazimine Imipenem Linezolid	<0.5 - >16	2	16	<0.5 - 8	<0.5	2	<0.5 - >16	<0.5	<0.5		
ළ Clofazimine	>4	>4	>4	>4	>4	>4	>4	>4	>4		
të Imipenem	1->16	>16	>16	>16	>16	>16	2->16	>16	>16		
£ Linezolid	<0.5 - >16	>16	>16	16 - >16	16	>16	8 - >16	>16	>16		
	<8 - >256	>256	>256	<8 - >256	128	>256	<8 - >256	>256	>256		
Moxifloxacin	1 - >4	>4	>4	<0.125 - >4	>4	>4	>4	>4	>4		
Tigecycline	<0.125 - >4	4	4	<0.125 - 1	1	1	0.5 - 4	4	4		
Chloramphenicol	32 - >64	>64	>64	64 - >64	>64	>64	>64	>64	>64		
Ciprofloxacin	4 - >4	>4	>4	<0.125 - >4	>4	>4	>4	>4	>4		
Clindamycin	>4	>4	>4	>4	>4	>4	>4	>4	>4		
Doripenem	8 - >16	>16	>16	>16	>16	>16	>16	>16	>16		
Doxycycline	2 - >8	>8	>8	<0.25 - >8	>8	>8	>8	>8	>8		
Erythromycin	1 - >8	>8	>8	1 - >8	>8	>8	>8	>8	>8		
Fusidic Acid	1 - >4	>4	>4	4 - >4	>4	>4	>4	>4	>4		
Gentamicin	16 - >64	>4 >64	>4 >64	32 - 64	32	64	64 - >64	> - >64	>64		
Isoniazid	>4	>4	>4	2 - >4	4	>4	>4	>4	>04 >4		
					-						
Kanamycin	2 - >4	>4	>4	4 - >4	>4	>4	>4	>4	>4		
Meropenem	2 - >16	>16	>16	8 - >16	>16	>16	>16	>16	>16		
Metronidazole	>16	>16	>16	>16	>16	>16	>16	>16	>16		
Resorcinol	>2	>2	>2	>2	>2	>2	>2	>2	>2		
Rifampicin	<2 - >128	>128	>128	>128	>128	>128	64 - >128	>128	>128		
Teicoplanin	4 - >8	>8	>8	>8	>8	>8	>8	>8	>8		
Tobramycin	16 - >16	>16	>16	8 - >16	8	16	>16	>16	>16		
Trim-Sulf*	<0.125->4	>4	>4	4->4	>4	>4	2->4	>4	>4		
Spectinomycin	>8	>8	>8	>8	>8	>8	>8	>8	>8		
Streptomycin	16 - >16	>16	>16	>16	>16	>16	>16	>16	>16		

Table 5-3: MIC's, MIC₅₀ and MIC₉₀ of *M. abscessus* subsp. *abscessus, M. abscessus* subsp. *massiliense and M. chelonae* using a selection of twenty-nine single antimicrobials (mg/L)

* Trimethoprim/Sulfamethoxazole

Table 5-4: Control Organisms, range of antimicrobial tested and EUCAST MIC ranges (mg/L)

Recommended Treatment	Range Tested	MIC of Control	S. aureus NCTC 6571	C. perfringens NCTC 8797	<i>E. coli</i> NCTC 10418
Amikacin	4-128	16			8-16
Azithromycin	0.125-4	1	0.5-2		
Cefoxitin	2-64	4	1-4		
Clarithromycin	0.5-16	0.5	0.125-0.5		
Clofazimine*	0.125-4	>4			
Imipenem	1-32	2			2-8
Linezolid	0.5-16	4	1-4		
Minocycline	8-256	<8	0.06-0.5		
Moxifloxacin	0.125-4	0.125	0.016-0.125		
Tigecycline	0.125-4	1			1-2
Other					
Antimicrobials					
Chloramphenicol	2-64	8	2-16		
Ciprofloxacin	0.125-4	1			0.5-1
Clindamycin	0.125-4	0.25	0.06-0.25		
Doripenem	0.5-16	2			1-2
Doxycycline	0.25-8	0.5	0.125-0.5		
Erythromycin	0.25-8	0.5	0.25-1		
Fusidic Acid	0.125-4	0.25	0.06-0.25		
Gentamicin	2-64	4			2-4
Isoniazid*	0.125-4	>4			
Kanamycin	0.125-4	2			0.25-8
Meropenem	0.5-16	2			2-8
Metronidazole**	0.5-16	4		0.125-0.5	
Resorcinol**	0.0625-2	>2			
Rifampicin*	4-128	4			
Teicoplanin	0.25-8	0.5	0.25-1		
Tobramycin	0.125-4	1	0.125-1		
Trim-Sulf*	0.125-4	0.125	≤0.5		
Spectinomycin	0.125-4	>8			8-64
Streptomycin*	0.5-16	16			2-16

* M. tuberculosis treatments

** Reported as effective against *M. ascessus* in paper by Chopra et al, 2007

Where range tested was higher/lower than control MIC, this was due to the range for that antimicrobial being specifically chosen due to journal reports of a MIC using MABSC.

5.10 Discussion

It is well documented that a reliable and successful antimicrobial regimen for MABSC infection, in particular *M. abscessus* subsp. *abscessus*, which is the most pathogenic and chemotherapy resistant of all rapidly growing NTM, still remains to be identified (Jeon *et al.*, 2009; Nessar *et al.*, 2012; Pang *et al.*, 2013). Effective treatments are particularly challenging as there are no definitive guidelines as to which antimicrobial(s) should be given and it is widely held that they are resistant to all first line anti-tuberculosis agents such as streptomycin, isoniazid, ethambutol, rifampicin and pyrazinamide, resulting in very limited therapeutic choices and a high treatment failure rate (Oh *et al.*, 2014; Talati *et al.*, 2008).

It has been suggested that any treatment regimen containing clarithromycin is more effective in patients with *M. abscessus* subsp. *massiliense* pulmonary disease than in those with *M. abscessus* subsp. *abscessus*. Clarithromycin inducible resistance shown in *M. abscessus* subsp. *abscessus* clinical strains is partly accountable for the lack of success of antibiotic therapies containing clarithromycin (Koh *et al.*, 2011). Based on this, the CLSI guidelines recommended that the incubation period of MABSC strains, in cases where results at day 3 may indicate susceptibility, should ideally be extended up to 14 days (Clinical and Laboratory Standards Institute, 2011). It is evident from the results in Table 5-2 and Table 5-3 that the MIC of *M. abscessus* subsp. *massiliense* (both MIC₅₀ and MIC₉₀ <0.5 mg/L) is notably lower than those shown for *M. abscessus* subsp. *abscessus* subsp. *abscessus* (MIC₅₀ 2 mg/L and MIC₉₀ 16 mg/L) inferring that inducible resistance may be occurring.

There is no current reliable evidence that antibiotic treatment is always beneficial, however the UK CF Trust Antibiotic Working Group specify that ATS criteria for diagnosis should be followed (Floto *et al.*, 2016). This specifies that minimum evaluation is to include a high-resolution computed tomography (HRCT) scan, three

or more sputum samples positive for acid-fast bacilli, and exclusion of other disorders. In those with CF who have suspected NTM infection, it is essential to first treat their typical pathogens and then evaluate whether anti-mycobacterial therapy is justified (Griffith *et al.*, 2007). There is no consensus on standardised NTM treatments, and these can vary depending on many factors such as the extent of the infection, the type of NMT isolated, underlying conditions, differing *in-vitro* and *in-vivo* effectiveness, and the toxicity of many NTM therapies, particularly with long-term use.

From the MICs obtained, the majority of NTMs tested in this study could be successfully treated, however, *M. abscessus* subspecies *abscessus* remains elusive to almost all antibiotics tested. Clarithromycin (MIC₅₀ 2 mg/L and MIC₉₀ 16 mg/L) and tigeclycline (MIC₅₀ and MIC₉₀ both 4 mg/L) were the most promising, however for infections involving *M. abscessus* subsp. *abscessus*, antibiotic regimens based on *in vitro* susceptibilities are not shown to be active *in vivo* (Oh *et al.*, 2014). Encouraging synergistic *in vitro* activity for tigecycline with clarithromycin has been shown in a study by Huang *et al* (2013), supporting the results obtained in this study (Huang *et al.*, 2013). None of the other antibiotics tested were effective against *M. abscessus* subsp. *abscessus*.

Antibiotic sensitivities would not appear to be routinely performed upon first isolation of MABSC, and from the results obtained in this study none of the recommended treatments are effective for every strain, and can range from very low to extremely high MIC's, for example minocycline with a range of <8 - >256 mg/L which would not be suitable for patient treatments. For species where only a small number of isolates were tested, for example *M. fortuitum*, the MIC was different for each of the three isolates, this would indicate that it is huge challenge to obtain a typical and

reliable strategy when considering treatments, and each isolate should be looked at individually as MIC's can vary dramatically within the same species or subspecies.

This study would appear to verify that it is only the most commonly routinely used antimicrobials which have any effect on MABSC, for example clarithromycin, in particular against *M. abscessus* subsp. *abscessus*. None of the frontline *M. tuberculosis* antimicrobials tested have shown to have effects on MABSC likely to be clinically relevant, however many of these did seem to exhibit activity against *M. salmoniphilum*, for example clofazimine and isoniazid, again reinforcing that species must be correctly identified as successful treatments can be so varied between species.

Amikacin, а semi-synthetic aminoglycoside derivative of kanamycin, is acknowledged as one of the fundamental antimicrobials in the treatment of MABSC and it is typically reported that MABSC exhibit in vitro susceptibility to this antimicrobial (Novosad et al., 2016). However the results in this study contradict this and all isolates tested were shown to be resistant. The Mab_3168c gene involved in cell wall synthesis could feasibly be making the MABSC cells less penetrable to amikacin as well as acetylating the antimicrobial, rendering it inactive, and this could conceivably explain the results in this study. In a report by Tsai et al (2013), it is claimed that to further confirm that the Mab_3168c gene conferred resistance to amikacin, it was introduced into another mycobacteria species; *M. smegmatis*. This established that the amikacin MIC value was two-fold higher. It was also suggested that the inactivation of *Mab_3168c* may change the structure of the MABSC cell wall, resulting in a change in colony morphotype, reduced cellular aggregation and the ability to survive inside macrophages as well as increased susceptibility to amikacin (Tsai et al., 2013).

Chopra *et al*, (2011), showed both metronidazole, a nitroimidazole class antibiotic mainly used for the treatment of anaerobic bacteria, and the antiseptic resorcinol were effective against *M. abscessus* subsp. *abscessus*, reporting MIC's of <0.015 mg/L and 0.09 mg/L respectively. However these results were based on only one type strain of *M. abscessus* subsp. *abscessus* (ATCC 19977) and no clinical isolates were tested (Chopra *et al.*, 2011). Results from this study do not support these findings, and using a range taken either side of the MIC reported by Chopra *et al* (2011), resorcinol has an MIC of >2 mg/L for all isolates tested, using a concentration range between 0.0625-2 mg/L, and metronidazole has a MIC of >16 mg/L for all isolates tested, using a range between 0.5-16 mg/L. A similar study was conducted by Mukherjee *et al* (2012), but even at the highest concentration tested (2mM), metronidazole was ineffective against *M. abscessus* subsp. *abscessus* subsp. *abscessus* subsp. *abscessus* subsp. *abscessus* as reported by Chopra *et al* (2011) (Mukherjee *et al.*, 2012).

Incomplete information can be very misleading to clinicians who are looking at trying novel treatments for any patient. An example of how testing of only one isolate cannot be reliably used for patient treatment plans is in this study where only three isolates of *M. fortuitum* were tested. Results for ciprofloxacin showed three varying MIC's of <0.125 mg/L, 0.5 mg/L and >4 mg/L. For the same antibiotic, the three isolates of *M. abscessus* subsp. *bolletii* had MIC's of between <0.125->4 mg/L.

MABSC, in particular *M. abscessus* subsp. *abscessus*, exhibit resistance to almost all known Food and Drug administration (FDA) approved antimicrobials, and this combined with the lack of novel antibiotics being discovered is hampering efforts to improve current treatment plans.

A suggestion could be to perform antimicrobial synergy testing, for example using checkerboard assays, time kill curves or multiple-combination bactericidal testing of currently recommended antimicrobial treatments alongside others that are not

ordinarily used for MABSC treatments, but could possibly display synergy when combined. This however may still not provide a standard treatment regime as many isolates of MABSC have such varying antimicrobial susceptibility profiles.

New anti-tuberculosis drugs such as the diarylquinoline Bedaquiline, formerly TMC207 and R207910, and the first drug in a novel class appropriate for the treatment of multi-drug resistant tuberculosis since Rifampin in 1971, was FDA approved in December 2012 with very promising results (Philley *et al.*, 2015). This drug has a novel mechanism of action and structurally differs from all other available *M. tuberculosis* front line agents by interfering with the bacterial energy metabolism. It works by inhibiting mycobacterial adenosine 5'-triphosphate (ATP) synthase, by binding to subunit c of the enzyme that is vital for the generation of energy in *M. tuberculosis* (Mahajan, 2013).

In a report by Philey *et al* (2015), Bedaquiline appears to be effective for the treatment of not only multi-drug resistant tuberculosis, but also against MABSC and MAC, however larger studies are required in order to substantiate results as this report only consisted of ten patients, six with MAC and four with MABSC (Philley *et al.*, 2015). Pang *et al* (2017) also more recently reported that Bedaquiline had moderate *in vitro* activity against NTM with MIC₅₀ and MIC₉₀ of 0.03 m/L and 16 mg/L for MAC and MIC₅₀ and MIC₉₀ of 0.13 mg/L and >16 mg/L for MABSC (Pang *et al.*, 2017).

Further studies on resistant strains are urgently required and it should also be noted that the treatment of MABSC cannot reliably be guided by *in vitro* susceptibility testing. The ATS guidelines state that "At present, there is no reliable or dependable antibiotic regimen, even based on *in vitro* susceptibilities, including parenteral agents, to produce a cure for *M. abscessus* lung disease" (Floto *et al.*, 2016), and this was also noted in a report by Jeon et al, where it was indicated "The optimal

therapeutic regimen and duration of treatment for *M. abscessus* lung disease has not been established" (Jeon *et al.*, 2009). It is vital that clinicians distinguish the MABSC subspecies of any patient isolate, and if *M. abscessus* subsp. *abscessus* is identified, is the *erm*⁴¹ gene active.

The accessibility of MABSC genomes and the development of genetic methods in order to study MABSC represent major advancements in this field, particularly for *M. abscessus* subsp. *abscessus*, the most virulent and antibiotic resistant of the MABSC subspecies however it is evident from this study and all published literature that more effective antimicrobials are urgently needed.

CHAPTER SIX

Final discussion and future research

Final discussion and future research

6.1 Review and final discussion

This thesis is centred on MABSC, the development of a novel culture medium for the isolation of MABSC in patients with CF, methods of identification, the acquisition of MABSC and *in vitro* susceptibility studies. Current culture methods are fraught with difficulties, particularly for the polymicrobial samples often presented from patients with CF where the overgrowth of more rapidly-growing bacterial species can prevent MABSC from being detected in any given sample. Improvements in the isolation of MABSC are urgently required in order to offer the possibility of a more rapid and accurate diagnosis.

MABSC is an important pathogen responsible for an extensive array of infections and is now thought to be the most prominent Mycobacterium alongside MAC in patients with CF. The major threat of MABSC is its intrinsic resistance to almost all known antimicrobials, particularly *M. abscessus* subsp. *abscessus* which is said to be one of the most resistant microorganisms known (Nessar *et al.*, 2012).

Many changes in the nomenclature and taxonomic classification of MABSC over the years have made diagnosis and identification problematic. Many current journal articles still refer to *M. chelonae-abscessus* complex (Simmon *et al.*, 2011), and many dispute the existence of *M. abscessus* subsp. *Massiliense* (Leao *et al.*, 2011).

In Chapter Two a novel culture medium (RGM) was developed for the isolation of MABSC in patients with CF. Various enrichment and selective agents were evaluated against isolates of MABSC and frequently encountered Gram-negative species seen in patients with CF and a combination of the most effective agents resulted in the formulation of RGM medium. This was evaluated and compared against currently used culture methods both liquid and solid, using samples from

patients with CF in many centres across the UK, Europe and the United States with very promising results. From the analysis, it can be concluded that RGM medium offers a superior option compared with any of the other selective agars for isolation of rapidly-growing mycobacteria from the sputum of patients with CF. It is also anticipated that RGM medium will be made commercially available in due course.

Chapter three looks at the possibility of incorporating chromogenic or fluorogenic substrates into RGM medium in order to improve it further, and a variety of these were investigated. Unfortunately, none of these substrates provided any improved specificity or sensitivity for the detection of MABSC or were able to differentiate between MABSC and Gram-negative bacteria found commonly in the sputum of patients with CF, therefore were not suitable for inclusion into the medium. Also investigated was the possibility of differentiating between MABSC and less pathogenic *M. chelonae*; however, none of the substrates investigated were able to provide such a distinction.

Chapter four discussed the acquisition of MABSC in patients with CF, and investigated whether this is undeniably an environmentally acquired pathogen, or is it transferred via person-to-person transmission. Although numerous areas and sources were investigated, no isolates of MABSC were isolated from the environment. *M. chelonae* was frequently isolated, particularly in water samples, however this is not now commonly viewed as a pathogenic species and it may well be that due to the many taxonomic changes, any *M. chelonae* that were considered pathogenic previously were in fact MABSC isolates. There are still very few reports substantiating person-to-person transmission of MABSC and the majority of articles will still maintain that MABSC is acquired only from the environment.

Chapter five is centered on the current treatment approaches to MABSC. Progress in this area of research has been inadequate and slow, and it is believed that once

MABSC is acquired it can still not be referred to as a curable disease. It is very much unknown why some patients can be seen to improve with therapy and some cannot, however the correct identification is imperative, *as M. abscessus* subsp. *massiliense* would appear to be more straightforwardly treatable than *M. abscessus* subsp. *abscessus* or more the rarely isolated *M. abscessus* subsp. *bolletii*.

More effective treatments are urgently required as presently there is no optimum therapeutic regimen or ideal time period of treatment in order to produce a cure for MABSC infection.

6.2 Future Research

The field of research associated with MABSC is large, offering many opportunities that could be explored for future research:

- One line of interest would be in the continued investigation of RGM medium in order to establish whether it could be of benefit in the isolation of slowgrowing mycobacteria affecting patients with CF such as MAC. This was briefly investigated by Plongla *et al.* (University of North Carolina, School of Medicine in Chapel Hill, USA). They demonstrated that extended incubation of RGM for 28 days afforded the isolation of slow-growing species including MAC, *M. gordonae*, *M. arupense/nonchromogenicum* and *M. nebraskense* (Plongla *et al.*, 2017).
- In addition, a liquid version of RGM could be developed for use in the MGIT system to replace what is currently used, as regular contamination of more rapidly-growing species still remains a problem in this area with many cultures of patient samples having to be abandoned.
- There is a large amount of further antibiotic work that could be undertaken, including Multiple Combination Bactericidal Testing of both currently administered and previously untested antimicrobials as well as novel compounds and antimicrobials in combinations of two, three and even four with the anticipation that previously untested combinations may demonstrate synergy against multi-resistant MABSC isolates, in particular *M. abscessus* subsp. *abscessus*. As the techniques currently employed to differentiate between the subspecies of MABSC are complex, not all laboratories are able to do this therefore a more rapid, cost effective method is required.

 More research is needed into how MABSC is acquired by patients with CF.
 Whole genome sequencing has provided limited evidence of person-toperson transmission where it was identified to be indirect rather than direct, however there are still currently very few reports of this and the majority of publications maintain MABSC is acquired environmentally.

In conclusion, the amount of exploration that is still required with regards to MABSC is significant, and there is scope for a large amount of research that could still be undertaken.

CHAPTER SEVEN

Appendices

Appendix 1: All isolates used in the development and evaluation of RGM medium, chromogenic and fluorogenic substrate testing and antimicrobial susceptibility testing throughout this thesis

Isolate			Chapter	Chapter	Chapter	Chapter
Reference	Species	Isolate Origin	2	3	4	5
	M. abscessus complex		2.4.2			
1000	(chimeric)	Paediatric CF patient, UK	2.4.15	3.10.2		5.7.1
	M. abscessus subsp.					
1001	abscessus	CF patient, UK	2.4.15			5.7.1
	M. abscessus subsp.					
1002	abscessus	CF patient, UK	2.4.15			
	M. abscessus subsp.					
1003	abscessus	CF patient, UK	2.4.15			
	M. abscessus subsp.					
1004	abscessus	CF patient, UK				5.7.1
	M. abscessus subsp.					
1005	abscessus	CF patient, UK	2.4.15			
	M. abscessus subsp.					
1007	abscessus	CF patient, UK				5.7.1
	M. abscessus subsp.					
1008	abscessus	CF patient, UK		3.10.1		5.7.1
	M. abscessus subsp.					
1009	abscessus	CF patient, UK		3.10.1		5.7.1
	<i>M. abscessus</i> subsp.			3.10.1		
1010	abscessus	CF patient, UK		3.10.2		
				3.10.1		
4040	<i>M. abscessus</i> subsp.		0445			
1013	abscessus	CF patient, UK	2.4.15	3.10.2		
1011	<i>M. abscessus</i> subsp.					F 7 4
1014	abscessus	CF patient, UK				5.7.1
4045	<i>M. abscessus</i> subsp.					F 7 4
1015	abscessus	CF patient, UK				5.7.1
4040	<i>M. abscessus</i> subsp.					57 4
1016	abscessus	CF patient, UK				5.7.1
4040	<i>M. abscessus</i> subsp.					F 7 4
1019	abscessus	CF patient, UK				5.7.1
1020	<i>M. abscessus</i> subsp.					E 7 4
1020	abscessus	CF patient, UK				5.7.1
1001	<i>M. abscessus</i> subsp.					E 7 4
1021	abscessus	CF patient, UK				5.7.1
1000	<i>M. abscessus</i> subsp.			2 10 1		
1023	abscessus	CF patient, UK		3.10.1		
1004	<i>M. abscessus</i> subsp.		0 4 4 5			E 7 4
1024	abscessus	CF patient, UK	2.4.15			5.7.1
4005	<i>M. abscessus</i> subsp.		0445			
1025	abscessus	CF patient, UK	2.4.15			
	M. abscessus subsp.			3.10.1		
1026	abscessus	CF patient, UK		3.10.2		5.7.1
	M. abscessus subsp.			3.10.1		
1027	abscessus	CF patient, UK		3.10.2		

Isolate Reference	Spacios	Isolate Origin	Chapter 2	Chapter 3	Chapter 4	Chapte 5
Reference	Species	Isolate Origin	2		4	3
4000	M. abscessus subsp.		0 4 4 5	3.10.1	4050	F 7 4
1029	abscessus	CF patient, UK	2.4.15	3.10.2	4.8.5.3	5.7.1
1030	<i>M. abscessus</i> subsp.	OF notiont LIV	2.4.15	3.10.1		
1050	abscessus	CF patient, UK	2.4.15	3.10.1		
1022	<i>M. abscessus</i> subsp.					E 7 4
1032	abscessus	CF patient, UK		3.10.2		5.7.1
1033	<i>M. abscessus</i> subsp. <i>abscessus</i>	CF patient, UK	2.4.15			
			2.4.2			
1034	M. abscessus subsp.	Adult CE nationt		3 10 2		5.7.1
1004		Adult OF patient, OK		0.10.2		0.7.1
1025	•		-			574
1035	abscessus	CF patient, UK				5.7.1
	M. abscessus subsp.					
1036	abscessus	CF patient, UK				5.7.1
			-			
			-			
	M. abscessus subsp.		2.4.12			
1037	abscessus	CF patient, UK	2.4.15			5.7.1
	M. abscessus subsp.		2.4.9			
1038	abscessus	CF patient, UK	2.4.15			5.7.1
	M. abscessus subsp.		2.4.9			
1039	abscessus	CF patient, UK	2.4.15			5.7.
	M. abscessus subsp.		2.4.9			
1040	abscessus	CF patient, UK	2.4.15			5.7.
	M abscassus subsp	· · ·	2.4.9			
1041	•	CE natient LIK				5.7.1
						0.11
1042		Adult CE patient LIK		3 10 2		5.7.1
1042	abscessus	Addit Of patient, OK		0.10.2		0.7.
	M. abscessus subsp.					
1043	abscessus	CF patient, UK				5.7.1
	M. abscessus subsp.					
1044	M. abscessus Adult CF patient, UK 2.4.15 3.10.2 M. abscessus State CF patient, UK 2.4.9 35 abscessus CF patient, UK 2.4.9 36 abscessus CF patient, UK 2.4.15 M. abscessus CF patient, UK 2.4.19 2.4.10 2.4.12 2.4.10 M. abscessus CF patient, UK 2.4.12 37 abscessus CF patient, UK 2.4.15 M. abscessus subsp. 2.4.9 2.4.9 38 abscessus CF patient, UK 2.4.15 M. abscessus subsp. 2.4.9 2.4.9 39 abscessus subsp. 2.4.9 40 abscessus CF patient, UK 2.4.15 M. abscessus subsp. 2.4.9 2.4.9 41 abscessus CF patient, UK 2.4.15 M. abscessus subsp. 2.4.16 3.10.2 42 abscessus Adult CF patient, UK 2.4.15 M. abscessus subsp. 2.4.12 2.4.12	5.7.1				
			2.4.2			
			2.4.10			
	M. abscessus subsp.		2.4.12			
1045	abscessus	Paediatric CF patient, UK	2.4.15	3.10.2		5.7.1
	M. abscessus subsp.		2.4.9			
1046		CF patient, UK	2.4.15			5.7.1
	M. abscessus subsp.		2.4.2			
1047		Paediatric CF patient, UK	2.4.15	3.10.2		5.7.1
			2.4.9			
1048		CF patient. UK				5.7.1
		- F				
1049	abscessus	CF patient, UK	2.4.15			5.7.1
	<i>M. abscessus</i> subsp.		2.4.2			
1050	abscessus	Adult CF patient, UK	2.4.15	3.10.2		5.7.1
			2.4.2			
	M. abscessus subsp.					

Isolate Reference	Species	Isolate Origin	Chapter 2	Chapter 3	Chapter 4	Chapte 5
			2.4.2			
			2.4.10			
	M. abscessus subsp.		2.4.12			
1052	abscessus	Paediatric CF patient, UK	2.4.15	3.10.2		5.7.1
			2.4.2			
			2.4.10			
	M. abscessus subsp.		2.4.12			
1053	abscessus	Adult CF patient, UK	2.4.15	3.10.2		5.7.1
	<i>M. abscessus</i> subsp.		2.4.2			
1054	abscessus	Paediatric CF patient, UK	2.4.15	3.10.2		5.7.1
	400000000		2.4.2	00.2		0
			2.4.10			
			2.4.12			
	M. abscessus subsp.		2.4.15			
1055	abscessus	Adult CF patient, UK	2.5.6	3.10.2		5.7.1
	M. abscessus subsp.					
1056	abscessus	CF patient, UK	2.4.9			5.7.1
	M. abscessus subsp.					
1058	abscessus	CF patient, Ireland	2.4.15			5.7.1
	M. abscessus subsp.					
1061	abscessus	CF patient, Ireland	2.4.15			5.7.1
	M. abscessus subsp.					
1062	abscessus	CF patient, Ireland	2.4.15			5.7.1
	M. abscessus subsp.					
1063	abscessus	CF patient, Ireland	2.4.15			5.7.1
	M. absessus complex					
1064	(chimeric)	CF patient, Ireland	2.4.15			5.7.1
	M. abscessus subsp.					
1065	abscessus	CF patient, Ireland	2.4.15			5.71
	M. abscessus subsp.					
1066	abscessus	CF patient, Ireland	2.4.15			5.7.1
	M. abscessus subsp.					
1067	abscessus	CF patient, Ireland	2.4.15			5.7.1
	M. abscessus subsp.	· · · · · · · · · · · · · · · · · · ·				
1068	abscessus	CF patient, Ireland	2.4.15			5.7.1
	M. abscessus subsp.	· · · · · · · · · · · · · · · · · · ·				
1069	abscessus	CF patient, Ireland	2.4.15			5.7.1
	M. abscessus subsp.	• •				
1070	abscessus	CF patient, Ireland	2.4.15			5.7.1
	M. abscessus subsp.					
1071	abscessus	CF patient, Ireland	2.4.15			5.7.1
	M. abscessus subsp.					
1072	abscessus	CF patient, Ireland	2.4.15			5.7.1
	M. abscessus subsp.	· · · · · · · · · · · · · · · · · · ·				
1073	abscessus	CF patient, UK		3.10.1		5.7.1
	M. abscessus subsp.	•				
1074	abscessus	CF patient, Ireland	2.4.15			5.7.1
	M. abscessus subsp.					
1075	abscessus	CF patient, UK	2.4.15			5.7.1
-	M. abscessus subsp.					
1076	abscessus	CF patient, UK	2.4.15			5.7.1
	M. abscessus subsp.					0.111
1078	abscessus	CF patient, UK	2.4.15			
2000	M. chelonae	CF patient, UK	2.4.15			

Isolate Reference	Species	Isolate Origin	Chapter 2	Chapter 3	Chapter 4	Chapte 5
2001	M. chelonae	CF patient, UK	2.4.15	-		5.7.1
				3.10.1		
2002	M. chelonae	CF patient, UK	2.4.15	3.10.2		5.7.1
2003	M. chelonae	CF patient, UK	2.4.15			5.7.1
2004	M. chelonae	CF patient, UK	2.4.15	3.10.1	4.8.5.3	
2005	M. chelonae	CF patient, UK	2.4.15	3.10.1		5.7.1
			2.4.9			-
2007	M. chelonae	CF patient, UK	2.4.15			5.7.1
		·	2.4.9			
2008	M. chelonae	CF patient, UK	2.4.15			5.7.1
			2.4.9			
2009	M. chelonae	CF patient, UK	2.4.15			
			2.4.9			
2010	M. chelonae	CF patient, UK	2.4.15			5.7.1
			2.4.9			
2011	M. chelonae	CF patient, UK	2.4.15			5.7.1
			2.4.9			
2012	M. chelonae	CF patient, UK	2.4.15	3.10.1		5.7.1
0040			2.4.9	0.40.4		
2013	M. chelonae	CF patient, UK	2.4.15	3.10.1		
2014			2.4.9	3.10.1 3.10.2		
2014	M. chelonae	CF patient, UK	2.4.15	3.10.2		
2015	M. chelonae	CF patient, UK	2.4.9			
2016	M. chelonae	CF patient, Ireland				5.7.1
2017	M. chelonae	CF patient, Ireland				5.7.1
2018	M. chelonae	CF patient, Ireland				5.7.1
2019	M. chelonae	CF patient, Ireland				5.7.1
2020	M. chelonae	CF patient, Ireland				5.7.1
2021	M. chelonae	CF patient, Ireland				5.7.1
2022	M. chelonae	CF patient, Ireland				5.7.1
2023		• •				5.7.1
	M. chelonae	CF patient, Ireland				
2024	M. chelonae	CF patient, Ireland				5.7.1
	M. chelonae	CF patient, Ireland				
2026	M. chelonae	CF patient, Ireland				5.7.1
2027	M. chelonae	CF patient, Ireland				5.7.1
2028	M. chelonae	CF patient, Ireland				5.7.1
2029	M. chelonae	CF patient, Ireland				5.7.1
2047	M. chelonae	CF patient, UK	2.4.15			
2048	M. chelonae	CF patient, UK	2.4.15			
2049	M. chelonae	CF patient, Ireland	2.4.15			
3000	M. abscessus subsp. massiliense	CF patient, UK	2.4.15			
0000	M. abscessus subsp.		2.7.13			
3001	massiliense	CF patient, UK	2.4.15	3.10.1		
	M. abscessus subsp.					
3002	massiliense	CF patient, UK	2.4.15	3.10.2		

Isolate Reference	Species	Isolate Origin	Chapter 2	Chapter 3	Chapter 4	Chapter 5
	M. abscessus subsp.	-				
3003	massiliense	CF patient, UK		3.10.1		
	M. abscessus subsp.					
3004	massiliense	CF patient, UK	2.4.15			5.7.1
3005	<i>M. abscessus</i> subsp.	OF notions LW		3.10.1		
3003	massiliense M. abscessus subsp.	CF patient, UK		5.10.1		
3006	massiliense	CF patient, UK		3.10.1		
	<i>M. abscessus</i> subsp.	• •		3.10.1		
3007	massiliense	CF patient, UK		3.10.2		
	M. abscessus subsp.		2.4.9			
3009	massiliense	CF patient, UK	2.4.15	3.10.1	4.8.5.3	5.7.1
	<i>M. abscessus</i> subsp.	•	2.4.2			
3010	massiliense	Adult CF patient, UK	2.4.15	3.10.2		5.7.1
			2.4.2			
	M. abscessus subsp.		2.4.15			
3011	massiliense	Adult CF patient, UK	2.5.6	3.10.2		5.7.1
			2.4.2			
			2.4.10			
	M. abscessus subsp.		2.4.12	3.10.1		
3012	massiliense	Adult CF patient, UK	2.4.15	3.10.2		5.7.1
			2.4.2			
			2.4.10			
	M. abscessus subsp.		2.4.12	3.10.1		
3013	massiliense	Adult CF patient, UK	2.4.15	3.10.2		5.7.1
	M. abscessus subsp.		2.4.2			
3014	massiliense	Paediatric CF patient, UK	2.4.15	3.10.2		5.7.1
	M. abscessus subsp.		2.4.2	3.10.1		
3015	massiliense	Paediatric CF patient, UK	2.4.15	3.10.2		
			2.4.2			
			2.4.10			
			2.4.12	3.10.1		
3016	M. abscessus subsp. bolletii	Paediatric CF patient, UK	2.4.15	3.10.2		5.7.1
			2.4.2			
			2.4.10			
		Environmental isolate from	2.4.12			
		sink. CF unit, RVI, Newcastle	2.4.15	3.10.1		
3017	M. abscessus subsp. bolletii	upon Tyne, UK	2.5.6	3.10.2		5.7.1
3019	M. abscessus subsp. bolletii	CF patient, Ireland	2.4.15			5.7.1
3020	M. abscessus subsp. massiliense	CF patient, Ireland	2.4.15			
4008	M. llatzerense	CF patient, UK	2.4.15			5.7.1
4009	M. llatzerense	CF patient, UK	2.4.15			5.7.1
4010		-	2.4.15		4.8.5.3	5.7.1
	M. mucogenicum	CF patient, UK			т.0.3.3	5.7.1
4011	M. salmoniphilum	CF patient, UK	2.4.15			
1012			2.4.9			E 7 1
4013	M. salmoniphilum	CF patient, UK	2.4.15			5.7.1
1014	M. aclmonia hili	OF notions 111/	2.4.9 2.4.15			574
4014	M. salmoniphilum	CF patient, UK	2.4.15			5.7.1

Isolate Reference	Species	Isolate Origin	Chapter 2	Chapter 3	Chapter 4	Chapter 5
4015	M. immunogenum	CF patient, UK	2.4.9 2.4.15		4.8.5.3	5.7.1
4016	M. intracellulare	CF patient, UK	2.4.9			5.7.1
4017	M. fortuitum	CF patient, UK. PHE, UK	2.4.15			5.7.1
4018	M. fortuitum	CF patient, UK. PHE, UK	2.4.15			5.7.1
4019	M. fortuitum	CF patient, UK. PHE, UK	2.4.15			5.7.1
4048	M. septicum	CF patient, UK				5.7.1
462213	Morganella morganii	CF patient, UK	2.4.15			
7000	Achromobacter xylosoxidans	CF patient, UK	2.4.15			
7001	Burkholderia cenocepacia	CF patient, UK	2.4.15	3.10.1		
7002	Achromobacter xylosoxidans	CF patient, UK	2.4.15	3.10.1		
7003	Achromobacter xylosoxidans	CF patient, UK	2.4.15			
	,			3.10.1		
7004	Pseudomonas aeruginosa	CF patient, UK	2.4.15	3.10.2		
7005	Achromobacter xylosoxidans	CF patient, UK	2.4.15			
7006	Burkholderia multivorans	CF patient, UK	2.4.15	3.10.1		
			2.4.14	3.10.1		
7007	Inquilinus limosus	CF patient, UK	2.4.15	3.10.2		
				3.10.1		
7008	Delftia acidovorans	CF patient, UK	2.4.15	3.10.2		
7009	Burkholderia cenocepacia	CF patient, UK		3.10.2		
7010	Achromobacter xylosoxidans	CF patient, UK		3.10.2		
7011	Inquilinus limosus	CF patient, UK	2.4.15	3.10.2		
7012	Burkholderia cenocepacia	CF patient, UK	2.4.15	3.10.2		
7013	Burkholderia multivorans	CF patient, UK	2.4.15			
7014	Achromobacter xylosoxidans	CF patient, UK	2.4.15			
7015	Achromobacter xylosoxidans	CF patient, UK		3.10.2		
7016	Burkholderia multivorans	CF patient, UK	2.4.15			
7017	Burkholderia multivorans	CF patient, UK	2.4.15	3.10.2		
7040			0.4.45	3.10.1		
7018	Pandoraea norimbergenis	CF patient, UK	2.4.15	3.10.2		
7019	Serratia marcescens	CF patient, UK	2.4.15	3.10.1		
7013	Serralia marcescens		2.4.13	0.10.2		
7020	Serratia marcescens	CF patient, UK	2.4.15	3.10.2		
7021	Achromobacter xylosoxidans	CF patient, UK	2.4.15			
				3.10.1		
7022	Burkholderia multivorans	CF patient, UK	2.4.15	3.10.2		
7023	Achromobacter xylosoxidans	CF patient, UK		3.10.1		
7024	Burkholderia multivorans	CF patient, UK		3.10.2		
				3.10.1		
7026	Burkholderia stabilis	CF patient, UK	2.4.15	3.10.2		
7027	Achromobacter xylosoxidans	CF patient, UK		3.10.2		
7029	Burkholderia multivorans	CF patient, UK	2.4.15			
7031	Ochrobactrum sp.	CF patient, UK	2.4.15	3.10.2		

Isolate Reference	Species	Isolate Origin	Chapter 2	Chapter 3	Chapter 4	Chapter 5
			2.4.14	3.10.1		
7032	Burkholderia vietnamiensis	CF patient, UK	2.4.15	3.10.2		
7034	Burkholderia cenocepacia	CF patient, UK	2.4.15	3.10.1		
				3.10.1		
7036	Burkholderia cenocepacia	CF patient, UK	2.4.15	3.10.2		
			2.4.7			
			2.4.15	3.10.1		
7037	Pseudomonas aeruginosa	CF patient, UK	2.5.6	3.10.2		
			2.4.7			
7038	Pseudomonas aeruginosa	CF patient, UK	2.4.15			
			2.4.7			
		Non-CF parent of CF patient,	2.4.15			
7039	Pseudomonas aeruginosa	UK	2.5.6			
			2.4.7			
7040	Pseudomonas aeruginosa	CF patient, UK	2.4.15			
	5	· · ·	2.4.7			
7041	Pseudomonas aeruginosa	CF patient, Denmark	2.4.15			
		Paediatric CF patient,	2.4.7			
7042	Pseudomonas aeruginosa	Melbourne, Australia	2.4.15			
-	, coulonnaid aoragineed		2.4.7			
7043	Pseudomonas aeruginosa	Adult CF patient, Brisbane, Australia	2.4.15			
	, coulonnaid acrugineed		2.4.7			
			2.4.14			
7044	Pseudomonas aeruginosa	Adult CF patient, Hobart, Australia	2.4.15			
		Australia	2.4.7			
7045	Pseudomonas aeruginosa	CF patient, Germany	2.4.15			
1010	r seudomonas aeruginosa		2.4.7			
7046	Pseudomonas aeruginosa	CF patient, Germany	2.4.15			
1010	r seudomonas aeruginosa		2.4.7			
7047	Docudomonoo coruginooo	CF patient, Germany	2.4.15			
1041	Pseudomonas aeruginosa		2.4.7			
7048	Decudementes convinces	Paediatric CF patient,	2.4.15			
7040	Pseudomonas aeruginosa	Seattle, USA	2.4.13			
7049		Paediatric CF patient,	2.4.7			
7049	Pseudomonas aeruginosa	Seattle, USA	2.4.13			
7050		Paediatric CF patient,				
7050	Pseudomonas aeruginosa	Seattle, USA	2.4.15			
7054		Paediatric CF patient,	2.4.7			
7051	Pseudomonas aeruginosa	Seattle, USA	2.4.15			
		Paediatric CF patient,	2.4.7			
7052	Pseudomonas aeruginosa	Seattle, USA	2.4.15			
			2.4.7			
7053	Pseudomonas aeruginosa	ATCC 15692 Infected wound	2.4.15			
			2.4.7			
7054	Pseudomonas aeruginosa	Human burn isolate, UK	2.4.15			
			2.4.7			
7055	Pseudomonas aeruginosa	Clinical non-CF patient, UK	2.4.15			
			2.4.7			
7056	Pseudomonas aeruginosa	CF patient, UK	2.4.15			

Isolate Reference	Species	Isolate Origin	Chapter 2	Chapter 3	Chapter 4	Chapter 5
			2.4.7			
7057	Pseudomonas aeruginosa	CF patient, Germany	2.4.15			
			2.4.7			
7058	Pseudomonas aeruginosa	CF patient, Lisbon, Portugal	2.4.15			
			2.4.7			
7059	Pseudomonas aeruginosa	CF patient, Lisbon, Portugal	2.4.15			
		Non-CF bronchiectasis	2.4.7			
7060	Pseudomonas aeruginosa	patient, UK	2.4.15			
		Non-CF urine sample,	2.4.7			
7061	Pseudomonas aeruginosa	Poland	2.4.15			
			2.4.7			
7062	Pseudomonas aeruginosa	Keratitis eye isolate, UK	2.4.15			
		Chronic CF patient, Boston,	2.4.7			
7063	Pseudomonas aeruginosa	USA	2.4.15			
			2.4.7			
7064	Pseudomonas aeruginosa	CF patient, Denmark	2.4.15			
		• •	2.4.7			
7065	Pseudomonas aeruginosa	Non-CF clinical patient, Leuven, Belgium	2.4.15			
		Leaven, Deigian	2.4.7			
7066	Paquedamanaa aaruginaaa	Non CE hurn Michigan USA	2.4.15			
7000	Pseudomonas aeruginosa	Non-CF burn, Michigan, USA	2.4.13			
7067		Lake water, Lake Tamaco,				
7067	Pseudomonas aeruginosa	Japan	2.4.15			
7000		LMG 14084: Water,	2.4.7			
7068	Pseudomonas aeruginosa	Bucharest, Romania	2.4.15			
		Hospital environment,	2.4.7			
7069	Pseudomonas aeruginosa	Prague, Czech Republic	2.4.15			
			2.4.7			
7070	Pseudomonas aeruginosa	CF patient, Hobart, Australia	2.4.15			
			2.4.7			
7071	Pseudomonas aeruginosa	Tobacco plant, Philippines	2.4.15			
			2.4.7			
7072	Pseudomonas aeruginosa	CF patient, Germany	2.4.15			
			2.4.7			
7073	Pseudomonas aeruginosa	ICU acute infection, Spain	2.4.15			
			2.4.7			
7074	Pseudomonas aeruginosa	COPD patient, USA	2.4.15			
			2.4.7			
7075	Pseudomonas aeruginosa	ICU acute infection, France	2.4.15			
	5	,	2.4.7			
7076	Pseudomonas aeruginosa	Keratitis, Manchester, UK	2.4.15			
	, coulonnair aoraighteea		2.4.7			
7077	Pseudomonas aeruginosa	CF patient, Germany	2.4.15			
	i soudomonas actuyinosa		2.4.7			
7078	Proudomonan comunication	Community acquired	2.4.7			
1010	Pseudomonas aeruginosa	pneumonia, UK				
7070			2.4.7			
7079	Pseudomonas aeruginosa	CF patient, Germany	2.4.15			
7080	Ralstonia mannitolilytica	CF patient, UK	2.4.15			
7081	Ralstonia mannitolilytica	CF patient, UK	2.4.15			
7082	Ralstonia mannitolilytica	CF patient, UK	2.4.15			

Isolate			Chapter	Chapter	Chapter	Chapter
Reference	Species	Isolate Origin	2	3	4	5
7083	Ralstonia mannitolilytica	CF patient, UK	2.4.15			
7084	Ralstonia mannitolilytica	CF patient, UK	2.4.15			
7085	Ralstonia mannitolilytica	CF patient, UK	2.4.15			
7086	Ralstonia mannitolilytica	CF patient, UK	2.4.15			
76024	M. avium	CF patient, UK. PHE, UK	2.4.18			
76150	M. avium	CF patient, UK. PHE, UK	2.4.18			
76525	M. avium	CF patient, UK. PHE, UK	2.4.18			
76773	M. avium	CF patient, UK. PHE, UK	2.4.18			
76831		• • •	2.4.18			
	M. avium	CF patient, UK. PHE, UK				
76832	M. avium	CF patient, UK. PHE, UK Non-CF patient, UK. PHE,	2.4.18			
76147	M. intracellulare	UK	2.4.18			
-		Non-CF patient, UK. PHE,				
76223	M. intracellulare	UK	2.4.18			
		Non-CF patient, UK. PHE,				
76017	M. tuberculosis complex	UK	2.4.18			
76089	M. tuberculosis complex	Non-CF patient, UK. PHE, UK	2.4.18			
10000		Non-CF patient, UK. PHE,	20			
76463	M. tuberculosis complex	UK	2.4.18			
		Non-CF patient, UK. PHE,				
77041	M. tuberculosis complex	UK	2.4.18			
77042		Non-CF patient, UK. PHE,	2.4.18			
77042	<i>M. tuberculosis</i> complex	UK Non-CF patient, UK. PHE,	2.4.10			
77043	M. tuberculosis complex	UK	2.4.18			
			2.4.7			
			2.4.14			
8001	Achromobacter xylosoxidans	CF patient, UK	2.4.15			
			2.4.9			
8002	Achromobacter sp.	CF patient, UK	2.4.15			
			2.4.7			
8003	Acinetobacter sp.	CF patient, UK	2.4.15	3.10.2		
			2.4.7			
			2.4.14			
0004			2.4.15			
8004	Burkholderia multivorans	CF patient, UK	2.5.6			
0005	Durdehaldar' (11"		2.4.9			
8005	Burkholderia stabilis	CF patient, UK	2.4.15			
8006	Burkholderia conoconocia IIIA	CE patient LIK	2.4.7 2.4.15			
0000	Burkholderia cenocepacia IIIA	CF patient, UK	2.4.13			
			2.4.7			
8007	Burkholderia cepacia (G1)	CF patient, UK	2.4.15	3.10.2		
·			2.4.7			
			2.4.14			
8008	Burkholderia contaminans	CF patient, UK	2.4.15	3.10.2		
			2.4.7			
			2.4.14			
8009	Pseudomonas aeruginosa	NCTC 10662	2.4.15			

24.7 24.14 8010 Pseudomonas aeruginosa CF patient, UK 24.15 8011 Pseudomonas aeruginosa CF patient, UK 24.15 3.10.2 8012 Pseudomonas aeruginosa CF patient, UK 24.15 3.10.2 8013 Pseudomonas aeruginosa CF patient, UK 24.15 3.10.2 8013 Pseudomonas aeruginosa CF patient, UK 24.15 3.10.2 8014 Pseudomonas aeruginosa CF patient, UK 24.15 3.10.2 8015 Pseudomonas aeruginosa CF patient, UK 24.15 24.7 8016 Pseudomonas aeruginosa CF patient, UK 24.15 24.7 8016 Pseudomonas aeruginosa CF patient, UK 24.15 24.7 8017 Pseudomonas aeruginosa CF patient, UK 24.15 24.7 8018 Pseudomonas aeruginosa CF patient, UK 24.15 3.10.2 24.11 24.15 3.10.2 24.17 24.14 8020 Pandoraea ajoista CF patient, UK 24.15 </th <th>Isolate Reference</th> <th>Species</th> <th>Isolate Origin</th> <th>Chapter 2</th> <th>Chapter 3</th> <th>Chapter 4</th> <th>Chapter 5</th>	Isolate Reference	Species	Isolate Origin	Chapter 2	Chapter 3	Chapter 4	Chapter 5
8010 Pseudomonas aeruginosa CF patient, UK 2.4.15 8011 Pseudomonas aeruginosa CF patient, UK 2.4.15 3.10.2 2.4.9 8012 Pseudomonas aeruginosa CF patient, UK 2.4.15 3.10.2 2.4.9 8013 Pseudomonas aeruginosa CF patient, UK 2.4.15 3.10.2 2.4.7 2.4.9 2.4.7 2.4.7 2.4.7 8014 Pseudomonas aeruginosa CF patient, UK 2.4.15 2.4.7 8015 Pseudomonas aeruginosa CF patient, UK 2.4.15 2.4.7 8016 Pseudomonas aeruginosa CF patient, UK 2.4.15 2.4.7 8016 Pseudomonas aeruginosa CF patient, UK 2.4.15 2.4.7 8017 Pseudomonas aeruginosa CF patient, UK 2.4.15 2.4.7 8018 Pseudomonas aeruginosa CF patient, UK 2.4.15 2.4.7 8019 Pseudomonas aeruginosa CF patient, UK 2.4.15 3.10.2 2.4.7 2.4.14 2.4.7 2.4.7 2.4.7 <td></td> <td></td> <td></td> <td>2.4.7</td> <td></td> <td></td> <td></td>				2.4.7			
24.9 2.4.9 8011 Pseudomonas aeruginosa CF patient, UK 2.4.15 3.10.2 24.9 2.4.9 2.4.9 2.4.9 8013 Pseudomonas aeruginosa CF patient, UK 2.4.15 3.10.2 24.7 2.4.15 3.10.2 2.4.7 8014 Pseudomonas aeruginosa CF patient, UK 2.4.15 3.10.2 24.7 2.4.15 3.10.2 2.4.7 8015 Pseudomonas aeruginosa CF patient, UK 2.4.15 2.4.15 2.4.7 2.4.15 2.4.7 8016 Pseudomonas aeruginosa CF patient, UK 2.4.15 2.4.15 2.4.7 2.4.15 2.4.7 8018 Pseudomonas aeruginosa CF patient, UK 2.4.15 2.4.15 2.4.15 3.10.2 2.4.7 2.4.15 2.4.15 3.10.2 2.4.7 2.4.14 2.4.15 3.10.2 2.4.7 2.4.14 2.4.15 3.10.2 2.4.7 2.4.14 2.4.15 3				2.4.14			
8011 Pseudomonas aeruginosa CF patient, UK 2.4.15 3.10.2 8012 Pseudomonas aeruginosa CF patient, UK 2.4.15 3.10.2 2.4.9	8010	Pseudomonas aeruginosa	CF patient, UK	2.4.15			
24.9 24.9 8012 Pseudomonas enruginosa CF patient, UK 24.15 3.10.2 2013 Pseudomonas enruginosa CF patient, UK 24.15 3.10.2 8014 Pseudomonas enruginosa CF patient, UK 24.15 3.10.2 8015 Pseudomonas enruginosa CF patient, UK 24.15 24.7 8016 Pseudomonas enruginosa CF patient, UK 24.15 24.15 8017 Pseudomonas enruginosa CF patient, UK 24.15 24.7 8018 Pseudomonas enruginosa CF patient, UK 24.15 24.7 8018 Pseudomonas enruginosa CF patient, UK 24.15 24.7 24.15 24.7 24.15 24.7 24.15 8019 Pseudomonas enruginosa CF patient, UK 24.16 3.10.2 24.7 24.16 3.10.2 24.7 24.11 8020 Pandoraea plota CF patient, UK 24.15 3.10.2 9222 Stenotrophomonas matophilia CF patient, UK 24.15				2.4.9			
8012 Pseudomonas aeruginosa CF patient, UK 2.4.15 3.10.2 8013 Pseudomonas aeruginosa CF patient, UK 2.4.17 3.10.2 8014 Pseudomonas aeruginosa CF patient, UK 2.4.17 8015 Pseudomonas aeruginosa CF patient, UK 2.4.17 8016 Pseudomonas aeruginosa CF patient, UK 2.4.17 8017 Pseudomonas aeruginosa CF patient, UK 2.4.15 8018 Pseudomonas aeruginosa CF patient, UK 2.4.15 8019 Pseudomonas aeruginosa CF patient, UK 2.4.15 8019 Pseudomonas aeruginosa CF patient, UK 2.4.15 8018 Pseudomonas aeruginosa CF patient, UK 2.4.15 8019 Pseudomonas aeruginosa CF patient, UK 2.4.14 8020 Pandoraea apista CF patient, UK 2.4.15 8021 Pandoraea pnomenusa CF patient, UK 2.4.15 8022 Stenotrophomonas maltophilia CF patient, UK 2.4.15 8023 Stenotrophomonas maltophilia	8011	Pseudomonas aeruginosa	CF patient, UK	2.4.15	3.10.2		
24.9 24.9 8013 Pseudomonas aeruginosa CF patient, UK 24.15 3.10.2 24.7 8014 Pseudomonas aeruginosa CF patient, UK 24.15 8015 Pseudomonas aeruginosa CF patient, UK 24.15 8016 Pseudomonas aeruginosa CF patient, UK 24.15 8017 Pseudomonas aeruginosa CF patient, UK 24.15 8018 Pseudomonas aeruginosa CF patient, UK 24.15 8017 Pseudomonas aeruginosa CF patient, UK 24.15 8018 Pseudomonas aeruginosa CF patient, UK 24.15 8019 Pseudomonas aeruginosa CF patient, UK 24.15 8019 Pseudomonas aeruginosa CF patient, UK 24.15 8019 Pseudomonas aeruginosa CF patient, UK 24.15 8010 Pandoraee apista CF patient, UK 24.15 8020 Pandoraee apomerusa CF patient, UK 24.15 8021 Pandoraee pnomerusa CF patient, UK 24.15 8022				2.4.9			
8013 Pseudomonas aeruginosa CF patient, UK 2.4.15 3.10.2 8014 Pseudomonas aeruginosa CF patient, UK 2.4.7 2.4.7 8015 Pseudomonas aeruginosa CF patient, UK 2.4.15 2.4.7 8016 Pseudomonas aeruginosa CF patient, UK 2.4.15 2.4.7 8017 Pseudomonas aeruginosa CF patient, UK 2.4.15 2.4.7 8018 Pseudomonas aeruginosa CF patient, UK 2.4.15 2.4.7 8019 Pseudomonas aeruginosa CF patient, UK 2.4.15 2.4.7 8019 Pseudomonas aeruginosa CF patient, UK 2.4.15 3.10.2 2.4.7 2.4.14 3.10.2 2.4.7 2.4.14 8020 Pandoraea apista CF patient, UK 2.4.15 3.10.2 2.4.7 2.4.14 3.10.2 2.4.7 2.4.14 8021 Pandoraea promenusa CF patient, UK 2.4.15 3.10.2 2.4.7 2.4.15 3.10.2 2.4.7 2.4.7 8022 <	8012	Pseudomonas aeruginosa	CF patient, UK	2.4.15	3.10.2		
B014 Pseudomonas aeruginosa CF patient, UK 2.4.7 8015 Pseudomonas aeruginosa CF patient, UK 2.4.15 2.4.7 2.4.7 2.4.7 8016 Pseudomonas aeruginosa CF patient, UK 2.4.15 2.4.15 2.4.7 2.4.15 8016 Pseudomonas aeruginosa CF patient, UK 2.5.6 2.4.9 2.4.9 2.4.7 8018 Pseudomonas aeruginosa CF patient, UK 2.4.15 2.4.7 2.4.15 2.4.7 8019 Pseudomonas aeruginosa CF patient, UK 2.4.7 2.4.14 8020 Pandoraea apista CF patient, UK 2.4.15 8012 Pandoraea apista CF patient, UK 2.4.15 3.10.2 2.4.7 2.4.15 3.10.2 2.4.7 2.4.14 8020 Pandoraea pnomenusa CF patient, UK 2.4.15 3.10.2 2.4.7 2.4.14 2.4.7 2.4.7 2.4.7 8022 Stenotrophomonas maltophilia CF patient, UK 2.4.15 <td></td> <td></td> <td></td> <td>2.4.9</td> <td></td> <td></td> <td></td>				2.4.9			
8014 Pseudomonas aeruginosa CF patient, UK 2.4.7 8015 Pseudomonas aeruginosa CF patient, UK 2.4.15 8016 Pseudomonas aeruginosa CF patient, UK 2.4.15 8017 Pseudomonas aeruginosa CF patient, UK 2.4.9 8017 Pseudomonas aeruginosa CF patient, UK 2.4.15 8018 Pseudomonas aeruginosa CF patient, UK 2.4.15 8019 Pseudomonas aeruginosa CF patient, UK 2.4.15 8019 Pseudomonas aeruginosa CF patient, UK 2.4.15 8019 Pseudomonas aeruginosa CF patient, UK 2.4.15 8020 Pandoraea apista CF patient, UK 2.4.15 8021 Pandoraea pomenusa CF patient, UK 2.4.15 8022 Stenotrophomonas maltophilla CF patient, UK 2.4.15 8023 Stenotrophomonas maltophilla CF patient, UK 2.4.15 8024 Stenotrophomonas maltophilla CF patient, UK 2.4.15 8025 Elizabethkingia minicola CF patient, UK 2.4	8013	Pseudomonas aeruginosa	CF patient, UK	2.4.15	3.10.2		
2.4.7 2.4.7 8015 Pseudomonas aeruginosa CF patient, UK 2.4.15 2.4.7 2.4.15 2.4.7 8016 Pseudomonas aeruginosa CF patient, UK 2.4.9 8017 Pseudomonas aeruginosa CF patient, UK 2.4.15 8018 Pseudomonas aeruginosa CF patient, UK 2.4.15 8019 Pseudomonas aeruginosa CF patient, UK 2.4.15 8019 Pseudomonas aeruginosa CF patient, UK 2.4.15 8020 Pandoraea aeruginosa CF patient, UK 2.4.17 8021 Pandoraea apoista CF patient, UK 2.4.15 8021 Pandoraea pnomenusa CF patient, UK 2.4.15 8022 Stenotrophomonas maltophilla CF patient, UK 2.4.15 8023 Stenotrophomonas maltophilla CF patient, UK 2.4.15 8024 Stenotrophomonas maltophilla CF patient, UK 2.4.15 8025 Elizabethkingia miricola CF patient, UK 2.4.15 8026 Stenotrophomonas maltophilla CF patient,				2.4.7			
8015 Pseudomonas aeruginosa CF patient, UK 2.4.15 8016 Pseudomonas aeruginosa CF patient, UK 2.5.6 8017 Pseudomonas aeruginosa CF patient, UK 2.4.9 8018 Pseudomonas aeruginosa CF patient, UK 2.4.15 8018 Pseudomonas aeruginosa CF patient, UK 2.4.15 8019 Pseudomonas aeruginosa CF patient, UK 2.4.7 2.4.14 8020 Pandoraea apista CF patient, UK 2.4.15 8021 Pandoraea apista CF patient, UK 2.4.15 3.10.2 8022 Stenotrophormonas maltophilia CF patient, UK 2.4.15 3.10.2 8022 Stenotrophormonas maltophilia CF patient, UK 2.4.15 3.10.2 8024 Stenotrophormonas maltophilia CF patient, UK 2.4.15 3.10.2	8014	Pseudomonas aeruginosa	CF patient, UK	2.4.15			
24.7 24.15 8016 Pseudomonas aeruginosa CF patient, UK 2.5.6 8017 Pseudomonas aeruginosa CF patient, UK 2.4.15 8018 Pseudomonas aeruginosa CF patient, UK 2.4.15 8019 Pseudomonas aeruginosa CF patient, UK 2.4.15 8019 Pseudomonas aeruginosa CF patient, UK 2.4.15 8020 Pandoraea apista CF patient, UK 2.4.15 8021 Pandoraea apista CF patient, UK 2.4.15 8022 Stenotrophomonas maltophilia CF patient, UK 2.4.15 8023 Stenotrophomonas maltophilia CF patient, UK 2.4.15 8024 Stenotrophomonas maltophilia CF patient, UK 2.4.15 8023 Stenotrophomonas maltophilia CF patient, UK 2.4.15 8024 Stenotrophomonas maltophilia CF patient, UK 2.4.15 8025 Elizabethkingia miricola CF patient, UK 2.4.15 8026 CH patient, UK 2.4.15 3.10.2 2.4.9 2.4.14				2.4.7			
24.15 8016 Pseudomonas aeruginosa CF patient, UK 25.6 24.9 24.9 8017 Pseudomonas aeruginosa CF patient, UK 24.15 8018 Pseudomonas aeruginosa CF patient, UK 24.17 8018 Pseudomonas aeruginosa CF patient, UK 24.17 24.15 24.15 24.17 8019 Pseudomonas aeruginosa CF patient, UK 25.6 24.14 24.15 3.10.2 24.17 24.14 8020 Pandoraea apista CF patient, UK 24.15 3.10.2 24.14 8021 Pandoraea pnomenusa CF patient, UK 24.15 3.10.2 202 Stenotrophomonas maltophilia CF patient, UK 24.15 3.10.2 8023 Stenotrophomonas maltophilia CF patient, UK 24.15 3.10.2 8024 Stenotrophomonas maltophilia CF patient, UK 24.15 3.10.2 8024 Stenotrophomonas maltophilia CF patient, UK 24.15 3.10.2 24.9 <t< td=""><td>8015</td><td>Pseudomonas aeruginosa</td><td>CF patient, UK</td><td>2.4.15</td><td></td><td></td><td></td></t<>	8015	Pseudomonas aeruginosa	CF patient, UK	2.4.15			
8016 Pseudomonas aeruginosa CF patient, UK 2.5.6 8017 Pseudomonas aeruginosa CF patient, UK 2.4.15 8018 Pseudomonas aeruginosa CF patient, UK 2.4.15 8019 Pseudomonas aeruginosa CF patient, UK 2.4.15 8019 Pseudomonas aeruginosa CF patient, UK 2.4.15 8019 Pseudomonas aeruginosa CF patient, UK 2.5.6 2.4.17 2.4.15 3.10.2 2.4.14 8020 Pandoraea apista CF patient, UK 2.4.15 8012 Pandoraea pnomenusa CF patient, UK 2.4.15 3.10.2 2.4.7 2.4.15 3.10.2 2.4.7 8021 Pandoraea pnomenusa CF patient, UK 2.4.15 3.10.2 8023 Stenotrophomonas maltophilia CF patient, UK 2.4.15 3.10.2 8024 Stenotrophomonas maltophilia CF patient, UK 2.4.15 3.10.2 8024 Stenotrophomonas maltophilia CF patient, UK 2.4.15 3.10.2 8025 Eliza				2.4.7			
24.9 2.4.9 8017 Pseudomonas aeruginosa CF patient, UK 2.4.15 8018 Pseudomonas aeruginosa CF patient, UK 2.4.15 8019 Pseudomonas aeruginosa CF patient, UK 2.4.15 8019 Pseudomonas aeruginosa CF patient, UK 2.4.15 8019 Pseudomonas aeruginosa CF patient, UK 2.4.7 2.4.14 2.4.7 2.4.14 8020 Pandoraea apista CF patient, UK 2.4.15 8021 Pandoraea pnomenusa CF patient, UK 2.4.15 8022 Stenotrophomonas maltophilia CF patient, UK 2.4.15 8023 Stenotrophomonas maltophilia CF patient, UK 2.4.15 8024 Stenotrophomonas maltophilia CF patient, UK 2.4.15 8025 Elizabethkingia miricola CF patient, UK 2.4.15 8025 Elizabethkingia miricola CF patient, UK 2.4.15 8030 Acinetobacter baumannii NCTC 10257 2.4.16 8031 Providencia rettgeri NCTC 7475				2.4.15			
8017 Pseudomonas aeruginosa CF patient, UK 2.4.15 8018 Pseudomonas aeruginosa CF patient, UK 2.4.15 8019 Pseudomonas aeruginosa CF patient, UK 2.4.15 8019 Pseudomonas aeruginosa CF patient, UK 2.4.15 8019 Pseudomonas aeruginosa CF patient, UK 2.4.16 8020 Pandoraea apista CF patient, UK 2.4.15 3.10.2 2.4.14 8020 Pandoraea apista CF patient, UK 2.4.15 3.10.2 2.4.7 2.4.14 8021 Pandoraea pnomenusa CF patient, UK 2.4.15 3.10.2 8022 Stenotrophomonas maltophilia CF patient, UK 2.4.15 3.10.2 8023 Stenotrophomonas maltophilia CF patient, UK 2.4.15 3.10.2 8024 Stenotrophomonas maltophilia CF patient, UK 2.4.15 3.10.2 8025 Elizabethkingia miricola CF patient, UK 2.4.15 3.10.2 2.4.9 2.4.14 2.4.9 2.4.14 2.4.9 <td< td=""><td>8016</td><td>Pseudomonas aeruginosa</td><td>CF patient, UK</td><td>2.5.6</td><td></td><td></td><td></td></td<>	8016	Pseudomonas aeruginosa	CF patient, UK	2.5.6			
2.4.7 8018 Pseudomonas aeruginosa CF patient, UK 2.4.15 2.4.7 2.4.15 2.4.7 2.4.15 2.4.7 2.4.15 8019 Pseudomonas aeruginosa CF patient, UK 2.5.6 2.4.7 2.4.14 2.4.7 8020 Pandoraea apista CF patient, UK 2.4.15 8021 Pandoraea pnomenusa CF patient, UK 2.4.17 2.4.14 8021 Pandoraea pnomenusa CF patient, UK 2.4.17 8022 Stenotrophomonas maltophilia CF patient, UK 2.4.15 3.10.2 8023 Stenotrophomonas maltophilia CF patient, UK 2.4.15 3.10.2 8024 Stenotrophomonas maltophilia CF patient, UK 2.4.15 3.10.2 8025 Elizabethkingia miricola CF patient, UK 2.4.15 3.10.2 8025 Elizabethkingia miricola CF patient, UK 2.4.15 3.10.2 8024 Stenotrophomonas maltophilia NCTC 10257 2.4.15 3.10.2 2.4.14 803				2.4.9			
8018 Pseudomonas aeruginosa CF patient, UK 2.4.15 8019 Pseudomonas aeruginosa CF patient, UK 2.5.6 8019 Pseudomonas aeruginosa CF patient, UK 2.5.6 2.4.15 3.10.2 2.4.7 2.4.14 2.4.7 2.4.14 8020 Pandoraea apista CF patient, UK 2.4.15 8021 Pandoraea pnomenusa CF patient, UK 2.4.17 8022 Stenotrophomonas maltophilia CF patient, UK 2.4.15 8023 Stenotrophomonas maltophilia CF patient, UK 2.4.15 8024 Stenotrophomonas maltophilia CF patient, UK 2.4.15 8023 Stenotrophomonas maltophilia CF patient, UK 2.4.15 8024 Stenotrophomonas maltophilia CF patient, UK 2.4.15 8025 Elizabethkingia miricola CF patient, UK 2.4.15 2.4.9 2.4.14 2.4.9 2.4.14 8029 Stenotrophomonas maltophilia NCTC 10257 2.4.15 8030 Acinetobacter baumannii	8017	Pseudomonas aeruginosa	CF patient, UK	2.4.15			
2.4.7 2.4.15 8019 Pseudomonas aeruginosa CF patient, UK 2.5.6 2.4.14 2.4.7 2.4.14 8020 Pandoraea apista CF patient, UK 2.4.15 2.4.7 2.4.14 3.10.2 2.4.7 2.4.14 3.10.2 2.4.7 2.4.14 3.10.2 2.4.7 2.4.15 3.10.2 2.4.7 2.4.14 3.10.2 8021 Pandoraea pnomenusa CF patient, UK 2.4.15 8022 Stenotrophomonas maltophilla CF patient, UK 2.4.15 8023 Stenotrophomonas maltophilla CF patient, UK 2.4.15 8024 Stenotrophomonas maltophilla CF patient, UK 2.4.15 8025 Elizabethkingia miricola CF patient, UK 2.4.15 2.4.14 8029 Stenotrophomonas maltophilla NCTC 10257 2.4.14 8030 Acinetobacter baumannii ATCC 19606 2.4.15 2.4.7 8031 Providencia rettgeri NCTC 7475 2.4.15 2.4.7 </td <td></td> <td></td> <td></td> <td>2.4.7</td> <td></td> <td></td> <td></td>				2.4.7			
24.15 8019 Pseudomonas aeruginosa CF patient, UK 2.5.6 2.4.7 2.4.14 8020 Pandoraea apista CF patient, UK 2.4.15 8021 Pandoraea apista CF patient, UK 2.4.15 8021 Pandoraea pnomenusa CF patient, UK 2.4.15 8022 Stenotrophomonas maltophilia CF patient, UK 2.4.15 8023 Stenotrophomonas maltophilia CF patient, UK 2.4.15 8024 Stenotrophomonas maltophilia CF patient, UK 2.4.15 8025 Elizabethkingia miricola CF patient, UK 2.4.15 8025 Elizabethkingia miricola CF patient, UK 2.4.15 8029 Stenotrophomonas maltophilia NCTC 10257 2.4.15 8030 Acinetobacter baumannii ATCC 19606 2.4.15 8031 Providencia rettgeri NCTC 7475 2.4.15 8032 Citrobacter freundii NCTC 9750 2.4.15	8018	Pseudomonas aeruginosa	CF patient, UK	2.4.15			
8019 Pseudomonas aeruginosa CF patient, UK 2.5.6 2.4.7 2.4.14 8020 Pandoraea apista CF patient, UK 2.4.15 3.10.2 2.4.14 2.4.15 3.10.2 2.4.14 8020 Pandoraea apista CF patient, UK 2.4.15 3.10.2 2.4.14 8021 Pandoraea pnomenusa CF patient, UK 2.4.15 3.10.2 8022 Stenotrophomonas maltophilia CF patient, UK 2.4.15 3.10.2 8023 Stenotrophomonas maltophilia CF patient, UK 2.4.15 3.10.2 8024 Stenotrophomonas maltophilia CF patient, UK 2.4.15 3.10.2 8025 Elizabethkingia miricola CF patient, UK 2.4.15 3.10.2 2.4.9 2.4.14 3.10.2 2.4.14 8029 Stenotrophomonas maltophilia NCTC 10257 2.4.15 2.4.9 2.4.14 2.4.9 2.4.14 8030 Acinetobacter baumannii ATCC 19606 2.4.15 8031 Providencia rettgeri				2.4.7			
2.4.7 2.4.14 8020 Pandoraea apista CF patient, UK 2.4.15 3.10.2 2.4.14 2.4.15 3.10.2 2.4.7 2.4.14 2.4.15 3.10.2 2.4.17 8021 Pandoraea pnomenusa CF patient, UK 2.4.15 3.10.2 8022 Stenotrophomonas maltophilia CF patient, UK 2.4.15 3.10.2 8023 Stenotrophomonas maltophilia CF patient, UK 2.4.15 3.10.2 8023 Stenotrophomonas maltophilia CF patient, UK 2.4.15 3.10.2 8024 Stenotrophomonas maltophilia CF patient, UK 2.4.15 3.10.2 8025 Elizabethkingia miricola CF patient, UK 2.4.15 3.10.2 2.4.9 2.4.14 2.4.9 2.4.14 2.4.9 8029 Stenotrophomonas maltophilia NCTC 10257 2.4.15 2.4.15 8030 Acinetobacter baumannii ATCC 19606 2.4.15 2.4.7 8031 Providencia rettgeri NCTC 7475 2.4.15 <t< td=""><td></td><td></td><td></td><td>2.4.15</td><td></td><td></td><td></td></t<>				2.4.15			
8020 Pandoraea apista CF patient, UK 2.4.14 8021 Pandoraea pista CF patient, UK 2.4.15 3.10.2 24.14 24.15 3.10.2 2.4.14 8021 Pandoraea pnomenusa CF patient, UK 2.4.15 3.10.2 8022 Stenotrophomonas maltophilia CF patient, UK 2.4.15 3.10.2 8023 Stenotrophomonas maltophilia CF patient, UK 2.4.15 3.10.2 8024 Stenotrophomonas maltophilia CF patient, UK 2.4.15 3.10.2 8025 Elizabethkingia miricola CF patient, UK 2.4.15 3.10.2 8025 Elizabethkingia miricola CF patient, UK 2.4.15 3.10.2 8026 Elizabethkingia miricola CF patient, UK 2.4.15 3.10.2 8029 Stenotrophomonas maltophilia NCTC 10257 2.4.15 2.4.9 2.4.14 2.4.9 2.4.14 2.4.9 2.4.14 8030 Acinetobacter baumannii ATCC 19606 2.4.15 2.4.7 8031 <td< td=""><td>8019</td><td>Pseudomonas aeruginosa</td><td>CF patient, UK</td><td>2.5.6</td><td></td><td></td><td></td></td<>	8019	Pseudomonas aeruginosa	CF patient, UK	2.5.6			
8020 Pandoraea apista CF patient, UK 2.4.15 3.10.2 2.4.7 2.4.14 2.4.14 2.4.14 2.4.14 2.4.14 2.4.14 2.4.14 2.4.15 3.10.2 2.4.14 2.4.15 3.10.2 2.4.14 2.4.15 3.10.2 2.4.14 2.4.15 3.10.2 2.4.7 2.4.7 2.4.7 3.10.2 2.4.7 3.10.2 2.4.7 3.10.2 2.4.7 3.10.2 2.4.7 3.10.2 2.4.7 3.10.2 2.4.7 3.10.2 2.4.7 3.10.2 2.4.7 3.10.2 2.4.9 2.4.15 3.10.2 2.4.9 2.4.9 2.4.9 2.4.9 2.4.9 2.4.9 2.4.14 3.10.2 2.4.9 2.4.14 3.10.2 2.4.9 2.4.14 3.10.2 2.4.9 2.4.14 3.10.2 2.4.9 2.4.14 3.10.2 2.4.9 2.4.14 3.10.2 2.4.9 2.4.14 3.10.2 2.4.14 3.10.2 2.4.14 3.10.2 2.4.14 3.10.2 2.4.14 3.10.2 2.4.15 2.4.15 3.10.2 <				2.4.7			
2.4.7 2.4.14 8021 Pandoraea pnomenusa CF patient, UK 2.4.15 3.10.2 8022 Stenotrophomonas maltophilla CF patient, UK 2.4.15 3.10.2 8023 Stenotrophomonas maltophilla CF patient, UK 2.4.15 3.10.2 8024 Stenotrophomonas maltophilla CF patient, UK 2.4.15 3.10.2 8024 Stenotrophomonas maltophilla CF patient, UK 2.4.15 3.10.2 8025 Elizabethkingia miricola CF patient, UK 2.4.15 3.10.2 8025 Elizabethkingia miricola CF patient, UK 2.4.15 3.10.2 8029 Stenotrophomonas maltophilla NCTC 10257 2.4.16 8030 Acinetobacter baumannii ATCC 19606 2.4.15 2.4.7 8031 Providencia rettgeri NCTC 7475 2.4.15 8032 Citrobacter treundii NCTC 9750 2.4.15							
2.4.14 8021 Pandoraea pnomenusa CF patient, UK 2.4.15 3.10.2 2.4.7 2.4.7 2.4.7 2.4.7 8023 Stenotrophomonas maltophilia CF patient, UK 2.4.15 3.10.2 8024 Stenotrophomonas maltophilia CF patient, UK 2.4.15 3.10.2 8024 Stenotrophomonas maltophilia CF patient, UK 2.4.15 3.10.2 8025 Elizabethkingia miricola CF patient, UK 2.4.15 3.10.2 8025 Elizabethkingia miricola CF patient, UK 2.4.15 3.10.2 8026 Elizabethkingia miricola CF patient, UK 2.4.15 3.10.2 2.4.9 2.4.14 2.4.9 2.4.14 2.4.9 2.4.14 8030 Acinetobacter baumannii ATCC 10257 2.4.15 8031 Providencia rettgeri NCTC 7475 2.4.15 2.4.7 2.4.7 2.4.7 8032 Citrobacter freundii NCTC 9750 2.4.15	8020	Pandoraea apista	CF patient, UK		3.10.2		
8021 Pandoraea pnomenusa CF patient, UK 2.4.15 3.10.2 8022 Stenotrophomonas maltophilia CF patient, UK 2.4.7 8023 Stenotrophomonas maltophilia CF patient, UK 2.4.15 3.10.2 8024 Stenotrophomonas maltophilia CF patient, UK 2.4.15 3.10.2 8024 Stenotrophomonas maltophilia CF patient, UK 2.4.15 3.10.2 8025 Elizabethkingia miricola CF patient, UK 2.4.15 3.10.2 8025 Elizabethkingia miricola CF patient, UK 2.4.15 3.10.2 8026 Elizabethkingia miricola CF patient, UK 2.4.15 3.10.2 2.4.9 2.4.9 2.4.14 2.4.9 2.4.14 8029 Stenotrophomonas maltophilia NCTC 10257 2.4.15 2.4.14 8030 Acinetobacter baumannii ATCC 19606 2.4.15 2.4.7 2.4.7 2.4.7 2.4.7 8031 Providencia rettgeri NCTC 7475 2.4.15 2.4.7 2.4.7 2.4.7							
2.4.7 2.4.7 8022 Stenotrophomonas maltophilia CF patient, UK 2.4.15 3.10.2 2.4.7 2.4.7 2.4.7 2.4.7 8023 Stenotrophomonas maltophilia CF patient, UK 2.4.15 3.10.2 8024 Stenotrophomonas maltophilia CF patient, UK 2.4.15 3.10.2 8025 Elizabethkingia miricola CF patient, UK 2.4.9 2.4.14 8029 Stenotrophomonas maltophilia NCTC 10257 2.4.15 3.10.2 2.4.9 2.4.14 2.4.9 2.4.14 2.4.9 8029 Stenotrophomonas maltophilia NCTC 10257 2.4.15 2.4.9 2.4.14 2.4.9 2.4.14 8030 Acinetobacter baumannii NCTC 10257 2.4.15 2.4.7 2.4.7 2.4.7 2.4.7 8031 Providencia rettgeri NCTC 7475 2.4.15 2.4.7 2.4.7 2.4.7 2.4.7 8032 Citrobacter freundii NCTC 9750 2.4.15							
8022 Stenotrophomonas maltophilia CF patient, UK 2.4.15 3.10.2 8023 Stenotrophomonas maltophilia CF patient, UK 2.4.15 3.10.2 8024 Stenotrophomonas maltophilia CF patient, UK 2.4.15 3.10.2 8024 Stenotrophomonas maltophilia CF patient, UK 2.4.15 3.10.2 8025 Elizabethkingia miricola CF patient, UK 2.4.15 3.10.2 8029 Stenotrophomonas maltophilia NCTC 10257 2.4.15 2.4.9 2.4.14 8030 Acinetobacter baumannii NCTC 10257 2.4.15 8031 Providencia rettgeri NCTC 7475 2.4.15 8032 Citrobacter freundii NCTC 9750 2.4.15	8021	Pandoraea pnomenusa	CF patient, UK		3.10.2		
2.4.7 8023 Stenotrophomonas maltophilia CF patient, UK 2.4.7 8024 Stenotrophomonas maltophilia CF patient, UK 2.4.15 8025 Elizabethkingia miricola CF patient, UK 2.4.15 8029 Stenotrophomonas maltophilia NCTC 10257 2.4.15 8030 Acinetobacter baumannii ATCC 19606 2.4.15 8031 Providencia rettgeri NCTC 7475 2.4.15 8032 Citrobacter freundii NCTC 9750 2.4.15							
8023 Stenotrophomonas maltophilia CF patient, UK 2.4.15 3.10.2 8024 Stenotrophomonas maltophilia CF patient, UK 2.4.9 2.4.9 8025 Elizabethkingia miricola CF patient, UK 2.4.15 3.10.2 8029 Stenotrophomonas maltophilia NCTC 10257 2.4.15 3.10.2 8029 Stenotrophomonas maltophilia NCTC 10257 2.4.15 3.10.2 2.4.14 8030 Acinetobacter baumannii NCTC 10257 2.4.15 8031 Providencia rettgeri NCTC 7475 2.4.7 8032 Citrobacter freundii NCTC 9750 2.4.15	8022	Stenotrophomonas maltophilia	CF patient, UK		3.10.2		
8024 Stenotrophomonas maltophilia CF patient, UK 2.4.15 8025 Elizabethkingia miricola CF patient, UK 2.4.15 3.10.2 8029 Stenotrophomonas maltophilia NCTC 10257 2.4.14 8029 Stenotrophomonas maltophilia NCTC 10257 2.4.15 2.4.14 2.4.9 2.4.14 8030 Acinetobacter baumannii ATCC 19606 2.4.15 2.4.7 8031 Providencia rettgeri NCTC 7475 2.4.15 2.4.7 8032 Citrobacter freundii NCTC 9750 2.4.15							
8025 Elizabethkingia miricola CF patient, UK 2.4.9 8025 Elizabethkingia miricola CF patient, UK 2.4.15 3.10.2 2.4.9 2.4.9 2.4.9 2.4.9 8029 Stenotrophomonas maltophilia NCTC 10257 2.4.15 2.4.9 2.4.14 2.4.9 2.4.9 2.4.14 8030 Acinetobacter baumannii ATCC 19606 2.4.15 2.4.7 2.4.7 2.4.7 8031 Providencia rettgeri NCTC 7475 2.4.15 2.4.7 2.4.7 2.4.7 8032 Citrobacter freundii NCTC 9750 2.4.15	8023	Stenotrophomonas maltophilia	CF patient, UK	2.4.15	3.10.2		
8025 Elizabethkingia miricola CF patient, UK 2.4.15 3.10.2 2.4.9 2.4.9 2.4.14 2.4.9 8029 Stenotrophomonas maltophilia NCTC 10257 2.4.15 2.4.9 2.4.14 2.4.9 2.4.9 2.4.15 2.4.9 2.4.14 8030 Acinetobacter baumannii ATCC 19606 2.4.15 2.4.7 2.4.7 2.4.7 2.4.7 8031 Providencia rettgeri NCTC 7475 2.4.7 8032 Citrobacter freundli NCTC 9750 2.4.15	8024	Stenotrophomonas maltophilia	CF patient, UK	2.4.15			
2.4.9 2.4.14 8029 Stenotrophomonas maltophilia NCTC 10257 2.4.14 2.4.9 2.4.9 2.4.9 2.4.9 2.4.14 2.4.9 2.4.14 2.4.9 2.4.14 2.4.9 2.4.14 2.4.15 2.4.14 2.4.15 2.4.15 2.4.15 2.4.7 2.4.7 8031 Providencia rettgeri NCTC 7475 2.4.7 2.4.7 8032 Citrobacter freundli NCTC 9750				2.4.9			
8029 Stenotrophomonas maltophilia NCTC 10257 2.4.14 8029 Stenotrophomonas maltophilia NCTC 10257 2.4.15 2.4.9 2.4.14 8030 Acinetobacter baumannii ATCC 19606 2.4.15 2.4.7 2.4.7 8031 Providencia rettgeri NCTC 7475 2.4.15 2.4.7 2.4.7 8032 Citrobacter freundii NCTC 9750 2.4.15	8025	Elizabethkingia miricola	CF patient, UK	2.4.15	3.10.2		
8029 Stenotrophomonas maltophilia NCTC 10257 2.4.15 2.4.9 2.4.14 8030 Acinetobacter baumannii ATCC 19606 2.4.15 2.4.7 2.4.7 8031 Providencia rettgeri NCTC 7475 2.4.15 2.4.7 2.4.7 8032 Citrobacter freundii NCTC 9750 2.4.15							
2.4.9 2.4.14 8030 Acinetobacter baumannii ATCC 19606 2.4.15 2.4.7 8031 Providencia rettgeri NCTC 7475 2.4.15 2.4.7 8032 Citrobacter freundii							
8030 Acinetobacter baumannii ATCC 19606 2.4.14 8031 Providencia rettgeri NCTC 7475 2.4.7 8032 Citrobacter freundii NCTC 9750 2.4.15	8029	Stenotrophomonas maltophilia	NCTC 10257	2.4.15			
8030 Acinetobacter baumannii ATCC 19606 2.4.15 8031 Providencia rettgeri NCTC 7475 2.4.15 8032 Citrobacter freundii NCTC 9750 2.4.15							
8031 Providencia rettgeri NCTC 7475 2.4.7 8032 Citrobacter freundii NCTC 9750 2.4.15							
8031 Providencia rettgeri NCTC 7475 2.4.15 2.4.7 2.4.7 8032 Citrobacter freundii NCTC 9750 2.4.15	8030	Acinetobacter baumannii	ATCC 19606				
8032 Citrobacter freundii NCTC 9750 2.4.15							
8032Citrobacter freundiiNCTC 97502.4.15	8031	Providencia rettgeri	NCTC 7475				
	8032	Citrobacter freundii	NCTC 9750				
2.4.7							
8033 Streptococcus pyogenes NCTC 8309 2.4.15	8033	Streptococcus pyogenes	NCTC 8309	2.4.15			

Isolate Reference	Species	Isolate Origin	Chapter 2	Chapter 3	Chapter 4	Chapter 5
			2.4.7			
8034	Streptococcus salivarius	NCTC 8618	2.4.15			
			2.4.7			
8035	Streptococcus gordonii	NCTC 7865	2.4.15			
			2.4.7			
8036	Escherichia coli	NCTC 10418	2.4.14 2.4.15	3.10.1		
0000	Escherichia coli	NCTC 10418	2.4.13	5.10.1		
			2.4.14			
8037	Raoultella planticola	NCTC 9528	2.4.15			
			2.4.7			
			2.4.14			
			2.4.15			
8038	Enterobacter cloacae	NCTC 11936	2.5.6			
			2.4.7			
8039	Serratia marcescens	NCTC 10211	2.4.15			
			2.4.7			
8040	Streptococcus pneumoniae	NCTC 12977	2.4.15			
8064	Burkholderia ambifaria	LMG 19467	2.4.15			
8065	Burkholderia ambifaria	LMG 19182	2.4.15			
8066	Burkholderia anthina	LMG 20980	2.4.15			
8067	Burkholderia anthina	LMG 20983	2.4.15			
8068	Burkholderia cenocepacia	LMG 18832	2.4.15			
8069	Burkholderia cenocepacia	LMG 18830	2.4.15			
8070	Burkholderia cenocepacia	LMG 18828	2.4.15			
8071	Burkholderia cenocepacia	LMG 18829	2.4.15			
8072	Burkholderia cenocepacia	LMG 18863	2.4.15			
8073	Burkholderia cenocepacia	LMG 16656	2.4.15			
8074	Burkholderia cepacia	LMG 18821	2.4.15			
8075	Burkholderia cepacia	LMG 1222	2.4.15			
8076	Burkholderia dolosa	LMG 21820	2.4.15			
8077	Burkholderia dolosa	LMG 18943	2.4.15			
8078	Burkholderia multivorans	LMG 18824	2.4.15			
8079	Burkholderia multivorans	LMG 18822	2.4.15			
8080	Burkholderia multivorans	LMG 16660	2.4.15			
8081	Burkholderia multivorans	LMG 17588	2.4.15			
8082	Burkholderia multivorans	LMG 13010	2.4.15			
8083	Burkholderia pyrrocinia	LMG 21824	2.4.15			
8084	Burkholderia pyrrocinia	LMG 14191	2.4.15			
8085	Burkholderia stabilis	LMG 14294	2.4.15			
8086	Burkholderia stabilis	LMG 18870	2.4.15			
8087	Burkholderia vietnamiensis	LMG 18835	2.4.15			
8088			2.4.15			
0000	Burkholderia vietnamiensis	LMG 10929	2.4.15			

Isolate Reference	Species	Isolate Origin	Chapter 2	Chapter 3	Chapter 4	Chapter 5
		-	2.4.7			
			2.4.14			
9001	Staphylococcus aureus	ATCC 6571	2.4.15	3.10.1		
			2.4.7			
9002	Staphylococcus aureus MRSA	NCTC 11939	2.4.15			
			2.4.7			
			2.4.14			
9003	Enterococcus faecalis	NCTC 775	2.4.15			
			2.4.7			
9004	Staphylococcus epidermidis	NCTC 11047	2.4.15			
			2.4.7			
9005	Enterococcus faecium	NCTC 7171	2.4.15			
			2.4.7			
9006	Bacillus subtilis	NCTC 9372	2.4.15			
			2.4.7			
9007	Enterobacter aerogenes	CF patient, UK	2.4.15			
			2.4.7			
9008	Neisseria flavescens	CF patient, UK	2.4.15			
			2.4.7			
9009	Moraxella catarrhalis	CF patient, UK	2.4.15			
			2.4.7			
9010	Haemophilus influenzae	NCTC 11931	2.4.15			
			2.4.7			
			2.4.14			
			2.4.15			
9011	Candida albicans	ATCC 90028	2.5.6			
			2.4.7			
			2.4.15			
9012	Candida glabrata	NCPF 3943	2.5.6			
			2.4.7			
			2.4.15			
9013	Aspergillus fumigatus	CF patient, UK	2.5.6			
			2.4.7			
9014	Aspergillus fumigatus	CF patient, UK	2.4.15			
			2.4.7			
			2.4.15			
9015	Aspergillus terreus	CF patient, UK	2.5.6			
			2.4.7			
			2.4.15			
9016	Scedosporium apiospermum	CF patient, UK	2.5.6			
			2.4.7			
			2.4.15			
9017	Scedosporium prolificans	CF patient, UK	2.5.6			
			2.4.7			
			2.4.15			
9018	Geosmithia argillacea	CF patient, UK	2.5.6			
9059	Candida albicans	CF patient, UK	2.4.15			
9110	Staphylococcus aureus MRSA	14 EMRSA15 1758/98 MRSA European Collection	2.4.15			

Reference Special 9111 Staphy	es lococcus aureus MRSA	Isolate Origin 15 EMRSA15 14956	2	3	4	5
9111 Staphy	lococcus aureus MRSA	15 EMRSA15 14956				5
9111 Staphy	lococcus aureus MRSA					
		MRSA European Collection	2.4.15			
		3 FIN 7481 (E14)				
9112 Staphy	lococcus aureus MRSA	MRSA European Collection	2.4.15			
		4 FIN 54511 (E6)				
9113 Staphy	lococcus aureus MRSA	MRSA European Collection	2.4.15			
0111		5FIN 54518 (E7)	0 4 4 5			
9114 Staphy	lococcus aureus MRSA	MRSA European Collection	2.4.15			
9115 Staphy		6FRA 462	2.4.15			
STIS Staphy	lococcus aureus MRSA	MRSA European Collection 7 FRA 920	2.4.15			
9116 Staphy	lococcus aureus MRSA	MRSA European Collection	2.4.15			
	Incoccus aureus MINSA	8 FRA 95034 (4b)	2.4.10			
9117 Staphy	lococcus aureus MRSA	MRSA European Collection	2.4.15			
		9 GER 131/98				
9118 Staphy	lococcus aureus MRSA	MRSA European Collection	2.4.15			
		10 GER 1966/97				
9119 Staphy	lococcus aureus MRSA	MRSA European Collection	2.4.15			
		11 GER 2594 1/97				
9120 Staphy	lococcus aureus MRSA	MRSA European Collection	2.4.15			
		12 GER 2594 2/97				
9121 Staphy	lococcus aureus MRSA	MRSA European Collection	2.4.15			
		13 EMRSA15 1729/98				
9122 Staphy	lococcus aureus MRSA	MRSA European Collection	2.4.15			
		14 EMRSA15 1758/98				
9123 Staphy	lococcus aureus MRSA	MRSA European Collection	2.4.15			
		15 EMRSA15 14956	- <i></i> -			
9124 Staphy	lococcus aureus MRSA	MRSA European Collection	2.4.15			
0125		16 EMRSA15 12484/98	2.4.15			
9125 Staphy	lococcus aureus MRSA	MRSA European Collection 17 EMRSA15 14185/98	2.4.15			
9126 Staphy			2.4.15			
	lococcus aureus MRSA	MRSA European Collection 18 EMRSA15 16822/98	2.4.15			
9127 Staphy	lococcus aureus MRSA	MRSA European Collection	2.4.15			
		19 EMRSA 19972/98				
9128 Staphy	lococcus aureus MRSA	MRSA European Collection	2.4.15			
		20 EMRSA 20460/98				
		MRSA European Collection				
9129 Staphy	lococcus aureus MRSA		2.4.15			
		21 EMRSA15 21268/98				
9130 Staphy	lococcus aureus MRSA	MRSA European Collection	2.4.15			
		22 EMRSA15 21698/98				
9131 Staphy	lococcus aureus MRSA	MRSA European Collection	2.4.15			
		23 EMRSA15 2501/98				
9132 Staphy	lococcus aureus MRSA	MRSA European Collection	2.4.15			
		24 EMRSA15 6323/98				
9133 Staphy	lococcus aureus MRSA	MRSA European Collection	2.4.15			
0404		25 EMRSA16 00036/98	0.4.45			
9134 Staphy	lococcus aureus MRSA	MRSA European Collection	2.4.15			
9750 Citroba	acter freundii	NCTC 9750	2.4.15			
			2.4.9			
			2.5.6			
PHE1 M. che	lonae	CF patient, UK. PHE, UK	2.4.15			
M aba	cessus subsp.		2.4.9			
PHE10 absces	•	CF patient, UK. PHE, UK	2.4.15			
		· · · · · · · · · · · · · · · · · · ·				

Isolate Reference	Species	Isolate Origin	Chapter 2	Chapter 3	Chapter 4	Chapter 5
PHE11	M. chelonae	CF patient, UK. PHE, UK	2.4.9 2.4.15			
			2.4.9			
PHE12	<i>M. abscessus</i> subsp. <i>abscessus</i>	CF patient, UK. PHE, UK	2.4.15			
			2.4.9			
PHE13	<i>M. abscessus</i> subsp. abscessus	CEnstiant LIK DHE LIK	2.4.5			
		CF patient, UK. PHE, UK	2.4.13			
PHE14	<i>M. abscessus</i> subsp. <i>abscessus</i>	CF patient, UK. PHE, UK	2.4.15			
111214		CF patient, UK. PHE, UK	2.4.13			
PHE15	<i>M. abscessus</i> subsp.		2.4.9			
FHEIS	abscessus	CF patient, UK. PHE, UK	2.4.15			
PHE16						
	M. chelonae	CF patient, UK. PHE, UK	2.4.15			
	M. abscessus subsp.		2.4.9			
PHE17	abscessus	CF patient, UK. PHE, UK	2.4.15			
DUE			2.4.9			
PHE18	M. chelonae	CF patient, UK. PHE, UK	2.4.15			
			2.4.9			
PHE19	M. chelonae	CF patient, UK. PHE, UK	2.4.15			
	M. abscessus subsp.		2.4.9			
PHE2	abscessus	CF patient, UK. PHE, UK	2.4.15			
			2.4.9			
PHE20	M. chelonae	CF patient, UK. PHE, UK	2.4.15			
	M. abscessus subsp.		2.4.9			
PHE21	abscessus	CF patient, UK. PHE, UK	2.4.15			
	M. abscessus subsp.		2.4.9			
PHE25	abscessus	CF patient, UK. PHE, UK	2.4.15			
			2.4.9			
PHE27	M. chelonae	CF patient, UK. PHE, UK	2.4.15			
	M. abscessus subsp.		2.4.9			
PHE29	abscessus	CF patient, UK. PHE, UK	2.4.15			
			2.4.9			
PHE3	M. chelonae	CF patient, UK. PHE, UK	2.4.15			
	M. abscessus subsp.		2.4.9			
PHE30	abscessus	CF patient, UK. PHE, UK	2.4.15			
			2.4.9			
PHE31	M. chelonae	CF patient, UK. PHE, UK	2.4.15			
		·	2.4.9			
PHE33	M. chelonae	CF patient, UK. PHE, UK	2.4.15			
	<i>M. abscessus</i> subsp.	· · · ·	2.4.9			
PHE34	abscessus	CF patient, UK. PHE, UK	2.4.15			
			2.4.9			
PHE35	M. chelonae	CF patient, UK. PHE, UK	2.4.15			
			2.4.9			
PHE36	<i>M. abscessus</i> subsp. <i>abscessus</i>	CF patient, UK. PHE, UK	2.4.15			
			2.4.9			
PHE37	M. chelonae	CF patient, UK. PHE, UK	2.4.15			
			2.4.9			
PHE38	<i>M. abscessus</i> subsp. abscessus	CF patient, UK. PHE, UK	2.4.9			
	ansocssas		2.7.10			

Isolate Reference	Species	Isolate Origin	Chapter 2	Chapter 3	Chapter 4	Chapter 5
			2.4.9			
PHE39	M. chelonae	CF patient, UK. PHE, UK	2.4.15			
	M. abscessus subsp.		2.4.9			
PHE4	abscessus	CF patient, UK. PHE, UK	2.4.15			
			2.4.9			
PHE40	M. chelonae	CF patient, UK. PHE, UK	2.4.15			
	M. abscessus subsp.		2.4.9			
PHE41	abscessus	CF patient, UK. PHE, UK	2.4.15			
	M. abscessus subsp.		2.4.9			
PHE42	abscessus	CF patient, UK. PHE, UK	2.4.15			
	M. abscessus subsp.		2.4.9			
PHE43	abscessus	CF patient, UK. PHE, UK	2.4.15			
	M. abscessus subsp.		2.4.9			
PHE44	abscessus	CF patient, UK. PHE, UK	2.4.15			
			2.4.9			
PHE45	M. chelonae	CF patient, UK. PHE, UK	2.4.15			
			2.4.9			
PHE46	M. chelonae	CF patient, UK. PHE, UK	2.4.15			
			2.4.9			
PHE47	M. chelonae	CF patient, UK. PHE, UK	2.4.15			
			2.4.9			
PHE48	M. chelonae	CF patient, UK. PHE, UK	2.4.15			
111210			2.4.9			
PHE5	<i>M. abscessus</i> subsp. <i>abscessus</i>	CF patient, UK. PHE, UK	2.4.15			
THE			2.4.9			
PHE50	<i>M. abscessus</i> subsp.		2.4.5			
FHEOU	abscessus	CF patient, UK. PHE, UK	2.4.15			
PHE53	M. chelonae	CF patient, UK. PHE, UK	2.4.15			
DUESE			2.4.9			
PHE55	M. chelonae	CF patient, UK. PHE, UK	2.4.15			
			2.4.9			
PHE59	M. chelonae	CF patient, UK. PHE, UK	2.4.15			
	M. abscessus subsp.		2.4.9			
PHE61	abscessus	CF patient, UK. PHE, UK	2.4.15			
	M. abscessus subsp.		2.4.9			
PHE62	abscessus	CF patient, UK. PHE, UK	2.4.15			
	M. abscessus subsp.		2.4.9			
PHE63	abscessus	CF patient, UK. PHE, UK	2.4.15			
	M. abscessus subsp.		2.4.9			
PHE66	abscessus	CF patient, UK. PHE, UK	2.4.15			
	M. abscessus subsp.		2.4.9			
PHE74	abscessus	CF patient, UK. PHE, UK	2.4.15			
			2.4.9			
PHE78	M. chelonae	CF patient, UK. PHE, UK	2.4.15			
	M. abscessus subsp.					
PHE8	abscessus	CF patient, UK. PHE, UK	2.4.15			
			2.4.9			
PHE80	M. chelonae	CF patient, UK. PHE, UK	2.4.15			

Isolate			Chapter	Chapter	Chapter	Chapter
Reference	Species	Isolate Origin	2	3	4	5
			2.4.9			
PHE81	M. chelonae	CF patient, UK. PHE, UK	2.4.15			
PHE9	M. chelonae	CF patient, UK. PHE, UK	2.4.15			
	M. abscessus subsp.		2.4.9			
PHE90	abscessus	CF patient, UK. PHE, UK	2.4.15			
	M. abscessus subsp.		2.4.9			
PHE99	abscessus	CF patient, UK. PHE, UK	2.4.15			

Pseudomonas aeruginosa International Reference Panel: Gram-negative isolate reference numbers **7039 – 7079** *Pseudomonas aeruginosa* International Reference Panel (De Soyza *et al.*, 2013)

NCTC: National Collection of Type Cultures, Colindale, UK.

ATCC: American Type Culture Collection, Manassas, United Sates.

CF Patient, UK: Isolates from Microbiology Department, Freeman Hospital, Newcastle upon Tyne, UK from patients with CF

CF Patient, Ireland: Isolates from St Vincent's University Hospital, Dublin, Ireland from patients with CF

NCPF: National Collection of Pathogenic Fungi, Colindale, UK.

PHE Isolates: Public Health England Laboratory, Freeman Hospital, Newcastle upon Tyne UK from patients with CF

LMG: LM-UGent hosts the BCCM/LMG Bacteria Collection, which maintains over 20000 strains, representing some 700 genera and 4.500 species. Available at http://bccm.belspo.be/about-us/bccm-Img

MRSA European Collection: A collection of 25 strains representing the most frequently encountered MRSA types isolated in Europe were provided by Public Health England, Colindale, London, United Kingdom, as freeze-dried cultures. The collection included strains isolated in Belgium, Finland, France, Germany, and the United Kingdom. Available at http://jcm.asm.org/content/42/10/4519.long

Appendix 2: Ingredients and how to prepare 500 ml RGM medium

QUANTITY	PRODUCT	SUPPLIER	PRODUCT CODE
5 g	Bacteriological Agar nº. 1 (LP0011)	Oxoid	LP0011B
2 g	Yeast Extract	bioMérieux	03904110
50 ml	10 x Strength Middlebrook Broth Base	(see below)	
375 ml	Deionised H ₂ O		

Autoclave (while in autoclave, prepare the OADC supplement and Antimicrobials)

Make up 50 ml OADC Supplement using 50 ml previously sterilised and cooled deionised H₂O (prepared as required)

Add in:

QUANTITY	PRODUCT	SUPPLIER	PRODUCT CODE
2.5 g	Bovine Serum Albumin	Sigma-Aldrich	A2153
1 g _	Dextrose	Sigma-Aldrich	G7528
0.002 g	Catalase	Sigma-Aldrich	C9322
31.5 µl	Oleic Acid	Sigma-Aldrich	O1008

Filter sterilise

Dissolve the following each in 5 ml deionised H₂O except the Amp B which is first dissolved in 200 μI NM2P and then added to 4.8 ml deionised H₂O

QUANTITY	PRODUCT	SUPPLIER	PRODUCT CODE
0.036 g	Colistin methanesulfonate	bioMérieux	N/A 45% pure
0.2 g	Fosfomycin	Sigma-Aldrich	P5396
0.0125 g	Glucose-6-Phosphate	Sigma-Aldrich	G7879
0.0025 g	Amphotericin B	Duchefa Biochemie BV	A0103.0005
0.016 g	C390	Biosynth	16100/3

Once agar is cooled to 50° C, add 50 ml of OADC supplement and the 5 x 5 ml of the above antimicrobials and G-6-P (Total volume 500 ml). Pour plates.

1 Litre Middlebook Broth Base (10 x strength)

5 gAmmonium SulphateBDH100333B5 gL-Glutamic AcidSigma-AldrichG212825 gDisodium PhosphateSigma-AldrichS790710 gMonopotassium PhosphateSigma-AldrichP56551 gSodium CitrateBDH102425M0.5 gMagnesium SulphateSigma-AldrichM18800.005 gCalcium ChlorideBDH22311.2970.005 gBiotin*Sigma-AldrichB45010.01 gCopper Sulphate**Sigma-AldrichC12970.01 gZinc SulphateSigma-AldrichZ47500.01 gPyridoxineSigma-AldrichP97550.4 gFerric Ammonium CitrateSigma-AldrichF5879	QUANTITY	PRODUCT	SUPPLIER	PRODUCT CODE
25 gDisodium PhosphateSigma-AldrichS790710 gMonopotassium PhosphateSigma-AldrichP56551 gSodium CitrateBDH102425M0.5 gMagnesium SulphateSigma-AldrichM18800.005 gCalcium ChlorideBDH22311.2970.005 gBiotin*Sigma-AldrichB45010.01 gCopper Sulphate**Sigma-AldrichC12970.01 gZinc SulphateSigma-AldrichZ47500.01 gPyridoxineSigma-AldrichP9755	5 g	Ammonium Sulphate	BDH	100333B
10 gMonopotassium PhosphateSigma-AldrichP56551 gSodium CitrateBDH102425M0.5 gMagnesium SulphateSigma-AldrichM18800.005 gCalcium ChlorideBDH22311.2970.005 gBiotin*Sigma-AldrichB45010.01 gCopper Sulphate**Sigma-AldrichC12970.01 gZinc SulphateSigma-AldrichZ47500.01 gPyridoxineSigma-AldrichP9755	5 g	L-Glutamic Acid	Sigma-Aldrich	G2128
1 gSodium CitrateBDH102425M0.5 gMagnesium SulphateSigma-AldrichM18800.005 gCalcium ChlorideBDH22311.2970.005 gBiotin*Sigma-AldrichB45010.01 gCopper Sulphate**Sigma-AldrichC12970.01 gZinc SulphateSigma-Aldrich247500.01 gPyridoxineSigma-AldrichP9755	25 g	Disodium Phosphate	Sigma-Aldrich	S7907
0.5 gMagnesium SulphateSigma-AldrichM18800.005 gCalcium ChlorideBDH22311.2970.005 gBiotin*Sigma-AldrichB45010.01 gCopper Sulphate**Sigma-AldrichC12970.01 gZinc SulphateSigma-AldrichZ47500.01 gPyridoxineSigma-AldrichP9755	10 g	Monopotassium Phosphate	Sigma-Aldrich	P5655
0.005 gCalcium ChlorideBDH22311.2970.005 gBiotin*Sigma-AldrichB45010.01 gCopper Sulphate**Sigma-AldrichC12970.01 gZinc SulphateSigma-AldrichZ47500.01 gPyridoxineSigma-AldrichP9755	1 g	Sodium Citrate	BDH	102425M
0.005 gBiotin*Sigma-AldrichB45010.01 gCopper Sulphate**Sigma-AldrichC12970.01 gZinc SulphateSigma-AldrichZ47500.01 gPyridoxineSigma-AldrichP9755	0.5 g	Magnesium Sulphate	Sigma-Aldrich	M1880
0.01 gCopper Sulphate**Sigma-AldrichC12970.01 gZinc SulphateSigma-AldrichZ47500.01 gPyridoxineSigma-AldrichP9755	0.005 g	Calcium Chloride	BDH	22311.297
0.01 gZinc SulphateSigma-AldrichZ47500.01 gPyridoxineSigma-AldrichP9755	0.005 g	Biotin*	Sigma-Aldrich	B4501
0.01 g Pyridoxine Sigma-Aldrich P9755	0.01 g	Copper Sulphate**	Sigma-Aldrich	C1297
6 ,	0.01 g	Zinc Sulphate	Sigma-Aldrich	Z4750
0.4 g Ferric Ammonium Citrate Sigma-Aldrich F5879	0.01 g	Pyridoxine	Sigma-Aldrich	P9755
	0.4 g	Ferric Ammonium Citrate	Sigma-Aldrich	F5879
40 ml Glycerol Sigma-Aldrich G7757	40 ml	Glycerol	Sigma-Aldrich	G7757

Dissolve the following in 960 ml deionised H₂O

Check pH is 6.6 +/-0.2 and adjust accordingly Split into 100 ml volumes and autoclave. Store in fridge until required.

* 0.01g (10mg) Biotin dissolved in 1ml water and 500µl used (0.005g)
 ** 0.01g (10mg) Copper Sulphate dissolved in 1ml water and 500µl used (0.005g)

Appendix 3: Antimicrobial supplement for use in MB/BacT bottles

Bottle A: 10 mL Middlebrook 7H9 broth (bioMérieux ref: 259797) supplemented with selective supplement (bioMérieux reference: 259760 containing: Reconstitution Fluid: oleic acid, glycerol, bovine serum albumin, and amaranth in water. MB/BacT® Antibiotic Supplement Lyophilized supplement with: amphotericin B, azlocillin, nalidixic acid, polymyxin B, trimethoprim, and vancomycin).

Bottle B: 10 mL Middlebrook 7H9 broth (bioMérieux ref: 259797) supplemented with Reconstitution Fluid: oleic acid, glycerol, bovine serum albumin, and amaranth in water containing in-house selective formulation comprising fosfomycin, C390, colomycin, glucose-6-phosphate and amphotericin.

Appendix 4: Ethical approval for clinical samples used in the evaluation of RGM

This PhD form is part of an ongoing research project into the development of improved diagnostic methods for the detection of pathogenic bacteria. The project has formal approval from the Research and Development Department of the Newcastle Upon Tyne Hospitals NHS Trust (Project registration number: 02999). The project does not require specific approval from the research ethics committee and this has previously been endorsed by the head of the Research and Development Office (Newcastle Upon Tyne Hospitals NHS Trust By the head of the Research and Development Office (Newcastle Upon Tyne Hospitals NHS Trust) and the Chair of the local research ethics committee, subject to a number of conditions that must be strictly adhered to. These conditions are:

- Clinical samples used in this study will only be those that are sent to the laboratory for routine investigation i.e. no additional samples will be requested specifically for the study.
- All samples will be anonymised by Biomedical Scientists who have legitimate access to patient identifiable information and who are processing the samples as part of their routine workload before they are passed to the student.
- Any additional test(s) performed on the sample would always be within the scope of the test that has been requested by the clinician. Test that require specific informed consent e.g. HIV testing would not be performed.

- The fact that extra tests may be performed on patient samples would in no way impact on the routine processing of the samples using the standard operating procedures of the laboratory or the reporting of results.
- Any data obtained from additional tests would not be reported and would not be allowed to impact on patient management in any way. Data would be used solely for the evaluation of methods within the project.
- On occasion, evaluations may be sponsored by commercial companies interested in the performance of new diagnostic products. On such occasions, no patient identifiable data will be released to such companies.

These agreed criteria allow the routine assessment of new laboratory methods (such as a new culture medium or a new piece of instrumentation) without the requirement of applying for formal ethical approval. Such evaluations are frequent and are part of normal laboratory development. The laboratory is positively discouraged from sending trivial requests to the ethics committee for projects for which we already have clear guidance as they have a high workload of genuine requests to consider.

In the later stages of the project, it is possible that:

- Additional samples may not be requested specifically for the purposes of this project.
- Clinical information may be required from patient's notes to assess the clinical significance of pathogens that are isolated.

No such work will be carried out unless formal approval is provided by the local research ethics committee following the standard application process. It is highly likely that informed written patient consent will be required in such instances.

Prof. John Perry Clinical Scientist Head of Clinical Microbiology Research Newcastle Upon Tyne Hospitals NHS Trust

Appendix 5: Structures of substrates used for fluorogenic testing in Chapter 3

Name	Chemical Structure	Molecular Weight	Molecular Formula
4-Methylumbelliferyl lignocerate		526.79	C34H54O4
4-Methylumbelliferyl β-D-glucopyranoside		338.31	C16H18O8
4-Methylumbelliferyl sulfate	K ⁺ O,	294.32	C10H7KO6S

Name	Chemical Structure	Molecular Weight	Molecular Formula
4-Methylumbelliferyl β-D-N,N'- diacetylchitobioside hydrate	HOCH ₂ HOCH ₂ HOCH ₂ HOCH ₂ HOCH ₂ HOCH ₂ HO HOCH ₂ HO HOCH ₂ HO HOCH ₂ HO HOCH ₃ HO HOCH ₃ HO HO HO HO HO HO HO HO HO HO HO HO HO	582.55	C26H34N2O13•xH2O
4-Methylumbelliferyl β-D-N,N'- triacetylchitotriose	$HO \qquad HO \qquad$	785.75	C34H47N3O15

Name	Chemical Structure	Molecular Weight	Molecular Formula
4-Methylumbelliferyl α-L-iduronide		352.30	C ₁₆ H ₁₆ O ₉
4-Methylumbelliferyl α-D-glucuronide	HO O CH ₃ HO O O O O O O O O O O O O O O O O O O	352.30	C16H16O9
: 4-Methylumbelliferyl β-D-mannopyranoside		338.31	C16H18O8

Name	Chemical Structure	Molecular Weight	Molecular Formula
4-Methylumbelliferyl α-L-idopyranoside		338.31	C16H18O8
4-Methylumbelliferyl β-D-glucoside		338.31	C ₁₆ H ₁₈ O ₈
4-Methylumbelliferyl β-D-galactoside		338.31	C ₁₆ H ₁₈ O ₈

Name	Chemical Structure	Molecular Weight	Molecular Formula
4-Methylumbelliferyl α-D-galactoside		338.31	C16H18O8
4-Methylumbelliferyl α-D-mannopyranoside		338.30	C16H18O8

Name	Chemical Structure	Molecular Weight	Molecular Formula
4-Methylumbelliferyl β-D-fucoside		322.31	C ₁₆ H ₁₈ O7
4-Methylumbelliferyl β-D-cellobioside		500.45	C ₂₂ H ₂₈ O ₁₃
4-Methylumbelliferyl stearate	СH ₃ СH ₃ (CH ₂) ₁₅ CH ₂ -С-О ОООО	442.63	C ₂₈ H ₄₂ O ₄

Name	Chemical Structure	Molecular Weight	Molecular Formula
4-Methylumbelliferyl α-L-arabinopyranoside		308.28	C15H16O7
4-Methylumbelliferyl propionate		232.23	C13H12O4
4-Methylumbelliferyl laurate		358.50	C ₂₂ H ₃₀ O ₄

Name	Chemical Structure	Molecular Weight	Molecular Formula
4-Methylumbelliferyl nonanoate		316.40	C19H24O4
4-Methylumbelliferyl riboside/4- Methylumbelliferyl β-D-ribofuranoside	HO HOW HOH	308.30	C15H16O7
4-Methylumbelliferyl α-D-glucopyranoside		338.30	C ₁₆ H ₁₈ O ₈

Name	Chemical Structure	Molecular Weight	Molecular Formula
4-Methylumbelliferyl β-D-glucuronide		352.30	C16H16O9
4-Methylumbelliferyl acetate	H ₃ C O O O	218.21	C ₁₂ H ₁₀ O ₄
4-Methylumbelliferyl 7-β-D-xyloside	HOIL CH3 HOIL CH3 HO OH	308.28	C ₁₅ H ₁₆ O ₇

Name	Chemical Structure	Molecular Weight	Molecular Formula
4-Methylumbelliferyl acetamido-4,6-0- benzylidene-2-deoxy-β-D-glucopyranoside		467.47	C25H25NO8
4-Methylumbelliferyl butyrate	H ₃ C O O O O	246.26	C14H14O4
4-Methylumbelliferyl heptanoate	$H_3C(H_2C)_5 O O O O O O O O O O O O O O O O O O O$	288.34	C ₁₇ H ₂₀ O ₄

Name	Chemical Structure	Molecular Weight	Molecular Formula
4-Methylumbelliferyl N-acetyl-β-D- galactosaminide	$HOCH_2 OHOCH_2 OH$	379.36	C18H21NO8
4-Methylumbelliferyl N-acetyl-β-D- glucosaminide	HO OH OH HN CH ₃ O CH ₃ O	379.36	C ₁₈ H ₂₁ NO ₈
4-Methylumbelliferyl palmitate	$H_3C(H_2C)_{14}$ O CH_3 O	414.58	C ₂₆ H ₃₈ N ₃ O ₄

Name	Chemical Structure	Molecular Weight	Molecular Formula
4-Methylumbelliferyl p-guanidinobenzoate	CH3	373.79	$C_{18}H_{15}N_3O_4{\boldsymbol{\cdot}}HCI{\boldsymbol{\cdot}}xH_2O$
hydrochlorate hydrate			
4-Methylumbelliferyl phosphate	CH ₃ O HO-P-OH O	256.15	C10H9O6P

Name	Chemical Structure	Molecular Weight	Molecular Formula
H-Gly-AMC.Hbr	H ₂ N H	232.24	C ₁₂ H ₁₂ N ₂ O ₃
H-Pro-AMC hydrobromide salt (Prolyl)	HN H	272.30	$C_{15}H_{16}N_2O_3$
H-Val-AMC	H_2N H_3C CH_3 H_3C CH_3	274.32	C15H18N2O3

Name	Chemical Structure	Molecular Weight	ht Molecular Formula C14H16N2O4 C15H14N2O4
H-Thr-AMC		276.29	C14H16N2O4
Pyr-AMC	O H O H O O O	286.29	C ₁₅ H ₁₄ N ₂ O ₄
H-IIe-AMC.TFA	H_2N H_3C H_3C H_3 H	288.35	C ₁₆ H ₂₀ N ₂ O ₃

Name	Chemical Structure	Molecular Weight	Molecular Formula
H-Leu-AMC.HCI	H_2N H_3C CH_3 CH_3 CH_3	288.35	C ₁₆ H ₂₀ N ₂ O ₃
H-Asn-AMC.TFA	H_2N H_2N H_2N H	286.29	C14H15N3O4
H-Orn-AMC.2HCI	H ₂ N H ₂ N NH ₂	289.33	C ₁₅ H ₁₉ N ₃ O ₃

Name	Chemical Structure	Molecular Weight	Molecular Formula
H-Asp(AMC)-OH	H ₂ N, OH H N CH ₃	290.28	C14H14N2O5
H-GIn-AMC	H ₂ N H ₂ N HBr NH ₂	303.32	C15H17N3O4
H-Lys-AMC.acetate	H ₂ N NH ₂	303.36	C ₁₆ H ₂₁ N ₃ O ₃

Name	Chemical Structure	Molecular Weight	Molecular Formula
H-Glu-AMC		304.30	C15H16N2O5
H-Met-AMC acetate salt	H ₂ N S CH ₃ CH ₃	306.39	C ₁₅ H ₁₈ N ₂ O ₃ S
H-His-AMC	H ₂ N H ₂ N H NH	312.33	C ₁₆ H ₁₆ N ₄ O ₃

Name	Chemical Structure	Molecular Weight	Molecular Formula
H-Phe-AMC.TFA	H ₂ N H	322.36	C ₁₉ H ₁₈ N ₂ O ₃
H-Arg-AMC.2HCI	H_2N H	331.38	C ₁₆ H ₂₁ N ₅ O ₃

Name	Chemical Structure	Molecular Weight	Molecular Formula
H-Try-AMC	H ₂ N, H ₁ N, H ₁ CH ₃	338.36	C19H18N2O4
Ac-Met-AMC	H ₃ C	348.42	C17H20N2O4S
H-β-Ala-AMC.TFA	H_2N	360.29	C13H14N2O3.C2HF3O2

Name	Chemical Structure	Molecular Weight	Molecular Formula
Boc-Leu-Gly-Arg-AMC acetate salt	$ \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & $	601.70	C29H43N7O7
H-Gly-pro-AMC.HBr	H ₂ N N N N N N N N N N N N N N N N N N N	410.27	C17H19N3O4.HBr

Name	Chemical Structure	Molecular Weight	Molecular Formula
Z-Arg-AMC.HCI		465.51	C24H27N5O5
L-alanine-AMC trifluoroacetate salt	$H_2N_{/.}$	360.29	C13H14N2O3•C2HF3O2

Species	4MA	4MPr	4MB	4MH	4MN	4MLa	4MPgh	4MPa	4MSt	4MLi	4Mara	4Mxyl	4Mribs
A. xylosoxidans	-263	76	97	-10	325	1316	-4	4	-20	-72	-61	-30	-14
A. xylosoxidans	-112	-40	-23	123	80	319	-112	1	-17	-64	-246	-18	-14
A. xylosoxidans	-113	-64	48	95	-16	977	-1	-4	-21	-81	-222	-12	251
B. cenocepacia	-473	-738	-1102	434	-1089	1156	-247	291	41	-85	-177	-59	400
B. cenocepacia	-844	-872	-895	-1193	-94	248	-488	-108	-120	-127	-317	6	231
B. multivorans	-689	-600	-481	-547	-48	672	-417	-57	-69	-88	-1286	-57	-15
B. multivorans	-959	-763	-532	327	-689	2817	-474	1060	484	-14	-1220	-62	-9
B. multivorans	-500	-568	-698	-283	-262	2002	-207	994	143	-40	-348	-6	-6
B. stabilis	144	298	394	1028	435	2017	-261	3828	2428	48	20	113	143
B. vietnamiensis	-212	-165	-320	77	-17	-52	-120	8	-23	-75	-75	26	773
D. acidovorans	-44	-19	-94	118	83	-120	94	133	7	15	-141	90	-19
I. limosus	-344	-126	7	-18	-288	26	-79	21	-8	-43	159	53	272
P. norimbergenis	48	-39	100	323	56	179	31	32	5	-63	79	16	57
P. aeruginosa	703	534	331	-52	594	2222	-169	3897	2592	-51	-20	36	167
S. marcesens	-951	-696	2184	1769	115	2894	-314	4515	2998	134	2278	-28	402
M. abscessus	-480	-289	-165	62	380	1566	-21	970	277	-67	90	158	537
M. abscessus	-342	-293	-224	-34	-354	1315	11	313	94	-117	99	32	217
M. abscessus	-331	-245	-174	-6	521	1455	-21	500	191	6	370	-1	179
M. abscessus	-467	-220	-202	-20	-379	1449	-3	672	151	6	78	16	30
M. abscessus	-402	-172	-264	-3	-200	1453	15	1076	330	100	346	11	260
M. abscessus	-211	-236	-249	75	111	1147	22	940	207	-87	448	41	148
M. abscessus	-264	-216	-246	-49	149	967	-5	740	168	1	245	69	8
M. abscessus	-310	-112	-462	58	-74	1188	-23	474	288	-91	-62	-1	-8
M. abscessus	-70	-2	57	367	516	1651	-104	1196	377	30	37	30	83
M. abscessus	-211	-247	-14	276	1030	1731	1	859	193	-72	372	43	17
M. abscessus	-425	-340	-147	55	490	1453	-89	382	183	-93	309	63	32
M. abscessus	-337	-359	-78	24	471	1523	-83	671	156	-104	137	53	87

Appendix 6: Average spectrophotometer readings for fluorogenic substrates after 72 hours incubation

Species	4MA	4MPr	4MB	4MH	4MN	4MLa	4MPgh	4MPa	4MSt	4MLi	4Mara	4Mxyl	4Mribs
M. bolletii	-366	-275	-179	21	399	1468	0	780	184	-101	63	5	16
<i>M. bolletii</i> (ENV)	-334	-256	-99	79	-2004	1374	-23	738	226	-87	152	25	17
M. chelonae	-257	-254	-268	-27	386	1465	-42	986	292	-93	351	113	81
M. chelonae	-467	-144	-159	38	-286	1306	-9	313	124	-100	-59	-17	-3
M. chelonae	-793	-416	-536	-53	1	1376	-95	681	194	-91	393	-12	42
M. chelonae	-412	-203	-360	-89	-10	1197	5	204	119	-44	161	4	14
M. chelonae	-579	-244	-248	-126	80	1573	-78	995	243	0	283	84	195
M. chelonae	-819	-318	-351	-209	102	895	-120	1344	347	14	326	54	150
M. massiliense	-119	21	-90	352	449	1457	68	585	219	27	261	51	31
M. massiliense	-238	-153	18	188	289	1817	69	609	216	-82	617	100	151
M. massiliense	-53	-206	205	313	251	1613	-2	745	250	-105	475	52	250
M. massiliense	0	30	42	262	-1661	1647	54	1454	332	-94	594	43	68
M. massiliense	72	12	120	333	-1611	1709	16	526	157	-113	370	47	80
M. massiliense	82	57	158	329	-1332	1761	58	695	376	-114	232	16	20
M. massiliense	-20	-10	104	225	1003	1580	104	605	146	-75	368	12	143
M. massiliense	-321	-337	100	261	84	1630	86	1632	261	-53	337	49	220
S. aureus + Ctrl	122	63	-298	-120	-246	-65	86	12	-14	-118	5069	-33	169
<i>E. coli</i> + Ctrl	42	-151	8	-661	-154	18	44	77	24	-84	18	-11	168
Neg Ctrl	-112	85	-52	-143	24	44	-78	14	7	-103	-33	-27	-2
Neg Ctrl	-141	92	-87	-36	-75	10	3	-17	-3	-1	14	-4	-12
Neg Ctrl	251	-177	139	179	51	-54	75	2	-4	105	18	30	12
Neg Ctrl Totals	-2	0	1	-1	1	0	-1	-2	0	1	-2	-1	-2

Average spectrophotometer readings for fluorogenic substrates after 72 hours incubation continued

Species	4Mribf	4Mfuc	4Mglupα	4Mglupβ	4Mmanα	4Mgalα	4Mgalβ	4Mgluβ	4MIdo	4Manβ	4Mcurβ	4MIdu	4MNgal
A. xylosoxidans	-54	-3	168	32	-21	6	851	9	-4	-28	6	4	-839
A. xylosoxidans	-53	-7	-49	4	-18	3	871	-33	-7	-23	-7	1	-725
A. xylosoxidans	2715	-10	56	75	-20	2	955	-8	-7	-20	-7	1	-761
B. cenocepacia	356	-8	-543	-4	-8	-8	-55	-54	-24	-56	-42	-8	-105
B. cenocepacia	510	-10	-1353	156	-8	-2	896	142	-7	0	-26	-5	-112
B. multivorans	-67	-11	-1483	-120	2	-4	-173	-57	-37	-62	-34	-10	-203
B. multivorans	-69	-15	-1369	-115	-2	-7	-197	-74	-26	-78	-31	-13	-210
B. multivorans	-63	-13	-630	-38	-11	-6	567	-73	-29	-82	-47	-23	-173
B. stabilis	1207	-1	318	33	-15	4	1206	-11	1	-26	-5	3	-195
B. vietnamiensis	-31	-5	-308	176	-15	-2	608	-5	-15	-23	-2	0	-191
D. acidovorans	-42	-3	-505	50	-23	-3	1342	69	-6	-8	144	-13	-313
I. limosus	1566	10	163	670	57	3	1062	1099	-1	-37	2	2	192
P. norimbergenis	185	2	478	43	-6	7	1232	18	6	-6	13	10	-112
P. aeruginosa	6393	3	-242	33	-13	-1	1173	-2	-3	-16	-9	-2	-220
S. marcesens	6296	1	-1400	3735	313	218	1395	7186	-4	41	258	279	2201
M. abscessus	39	408	239	1657	511	20	1701	2267	30	187	137	23	38
M. abscessus	108	56	388	1256	803	80	2083	1612	44	185	120	25	125
M. abscessus	216	355	488	1690	709	53	1485	1287	79	243	145	27	130
M. abscessus	48	3	126	1047	853	11	1669	293	15	35	23	7	-93
M. abscessus	545	8	573	2885	1250	94	2482	3181	42	300	179	142	115
M. abscessus	221	94	678	3930	1630	120	2336	3774	46	319	108	26	196
M. abscessus	581	160	579	1499	381	13	2191	3030	38	171	2	30	123
M. abscessus	6	27	-139	450	637	11	1880	1156	16	40	57	9	83
M. abscessus	586	37	787	307	275	35	1683	248	24	35	55	15	185
M. abscessus	31	81	815	977	999	29	2160	4600	60	409	192	40	247
M. abscessus	143	2	406	294	245	8	1682	845	30	89	110	32	94
M. abscessus	101	156	419	860	11	10	2391	1234	29	138	71	19	241
M. bolletii	35	-1	431	673	378	38	2644	2049	41	242	161	27	182
<i>M. bolletii</i> (ENV)	28	-1	180	132	247	7	1665	207	27	35	55	18	164

Average spectrophotometer readings for fluorogenic substrates after 72 hours incubation continued

Species	4Mribf	4Mfuc	4Mglupα	4Mglupβ	4Mmanα	4Mgalα	4Mgalβ	4Mgluβ	4MIdo	4Manβ	4Mcurβ	4MIdu	4MNgal
M. chelonae	289	14	93	794	600	8	1692	838	23	78	89	25	103
M. chelonae	-49	-6	-122	256	705	3	1445	1243	24	107	66	14	22
M. chelonae	240	-6	506	703	447	7	1806	357	12	33	65	15	54
M. chelonae	-23	-5	90	94	524	7	1558	277	12	19	47	11	17
M. chelonae	177	59	422	1902	665	7	2072	897	16	53	-56	10	-25
M. chelonae	278	26	-228	1284	1877	9	1870	1453	20	54	57	20	25
M. massiliense	63	148	603	286	186	4	1923	341	13	30	46	13	191
M. massiliense	445	90	940	546	431	54	1766	1371	53	234	157	42	193
M. massiliense	126	88	920	905	376	25	3239	3539	56	373	205	43	279
M. massiliense	358	36	1236	1289	932	36	2673	2525	68	353	193	42	409
M. massiliense	104	86	718	592	821	13	2253	717	36	75	88	24	272
M. massiliense	-29	84	413	542	339	7	1814	1174	36	-74	85	19	305
M. massiliense	158	51	1194	1677	732	66	2900	1793	46	256	174	37	404
M. massiliense	229	169	899	3043	1009	59	3265	4899	58	346	208	39	349
S. aureus + Ctrl	4659	273	56	85	-3	4	4418	37	9	-16	295	22	18
<i>E. coli</i> + Ctrl	3292	6	214	51	-8	3	1211	-2	-1	-26	-3	-6	-50
Neg Ctrl	-53	3	74	30	-4	2	38	-4	-14	-11	-2	-14	45
Neg Ctrl	-54	-3	-541	16	3	3	-1	-8	9	7	1	5	-45
Neg Ctrl	108	1	468	-46	1	-5	-37	12	6	4	1	8	-1
Neg Ctrl Totals	1	1	1	-1	0	1	1	0	1	0	1	-1	0

Average spectrophotometer readings for fluorogenic substrates after 72 hours incubation continued

Species	4MNglu	4Mcel	Pro	Val	Thr	lle	Leu	Orn	Gln	MetH	His	Phe	ArgH
A. xylosoxidans	-2552	-1	501	34	33	17	140	85	180	118	-10	137	69
A. xylosoxidans	-2490	-7	678	37	17	14	315	-26	441	81	-2	211	235
A. xylosoxidans	-2876	-8	827	33	53	2	309	-46	2432	117	898	247	181
B. cenocepacia	-1312	-20	-166	10	3	-26	2584	-432	2615	429	56	2620	1873
B. cenocepacia	-1030	13	677	18	3	5	275	-199	2786	79	-18	661	-39
B. multivorans	-1478	-16	1107	-5	-44	-19	269	-474	45	50	-55	213	-35
B. multivorans	-1677	-18	199	3	-33	-11	140	-462	-137	83	-55	112	-28
B. multivorans	-875	-14	676	8	-19	-7	199	-297	-54	32	-53	155	89
B. stabilis	-113	3	5361	89	27	46	1449	13	521	323	73	1199	657
B. vietnamiensis	-526	-2	8241	350	372	3933	9014	1800	918	3257	122	527	7279
D. acidovorans	-2906	22	19	-54	24	20	415	-226	362	3029	-40	282	166
I. limosus	-344	5	6920	1571	453	2130	10040	101	1772	735	214	9669	1189
P. norimbergenis	-79	3	1482	70	40	38	1151	108	1313	260	7	392	560
P. aeruginosa	-690	-9	14	40	7	2	357	-68	902	4	-45	180	2566
S. marcesens	-1764	568	8106	2409	7816	3954	3774	1336	7833	8388	2634	6456	1562
M. abscessus	-25	11	1912	1053	1693	742	7800	2081	1742	3513	2391	8235	6669
M. abscessus	4	19	3960	1905	1182	1659	7824	2694	1191	3799	4715	6870	6055
M. abscessus	443	16	1055	851	2954	504	7221	1522	1963	4452	1378	7995	7088
M. abscessus	-293	6	903	425	729	380	5480	1458	572	931	975	6159	4791
M. abscessus	-1544	8	2025	1086	1920	516	7371	2312	1558	4413	2238	7459	6680
M. abscessus	-1028	30	3812	1975	2519	1321	8144	3532	2688	4110	3848	8522	7451
M. abscessus	-2442	14	3229	1010	1865	1315	7554	2156	2101	4633	4916	8670	7414
M. abscessus	-184	11	1261	2414	781	1189	7694	2087	666	1629	853	7031	4900
M. abscessus	296	9	1448	747	784	855	7442	2514	2113	4010	2739	8652	7874
M. abscessus	430	18	1351	1124	1216	594	7932	1752	1431	4489	3477	7887	6230
M. abscessus	62	-3	43	56	37	22	2157	421	161	2623	4123	2106	7672
M. abscessus	773	23	2771	1630	1956	1110	8390	2858	2718	5403	2655	8422	7237
M. bolletii	434	7	1048	726	1352	395	6843	2675	1803	2497	2950	7573	6873
<i>M. bolletii</i> (ENV)	395	4	46	93	20	149	1907	142	-13	1459	1598	1703	670
M. chelonae	216	2	305	215	211	158	5149	1612	770	2622	3550	5838	7399
M. chelonae	160	1	1618	743	561	736	5781	215	1203	683	1346	5153	5034

Average spectrophotometer readings for fluorogenic substrates after 72 hours incubation continued

Species	4MNglu	4Mcel	Pro	Val	Thr	lle	Leu	Orn	Gln	MetH	His	Phe	ArgH
M. chelonae	149	0	151	742	105	231	2335	717	951	1838	932	4829	6504
M. chelonae	-41	5	454	550	65	302	4535	840	136	310	658	1328	5771
M. chelonae	-1850	3	451	288	363	179	4705	1696	1190	4828	4585	6968	7430
M. chelonae	242	12	1555	830	1199	821	7769	2950	2433	2169	3118	8523	8559
M. massiliense	497	6	695	481	466	414	4904	805	1120	4485	2678	7033	4991
M. massiliense	541	34	3224	3238	2242	1696	8548	4182	2260	2144	3283	8972	8106
M. massiliense	820	25	2945	1494	3310	904	8144	3096	2978	5381	4652	8947	8793
M. massiliense	1173	20	1774	800	1061	413	5820	1792	1952	3468	1903	7875	7413
M. massiliense	522	3	584	370	791	210	5014	691	702	4917	4331	7636	7006
M. massiliense	851	15	3047	2310	2632	1308	9453	2916	2053	2665	2498	8185	6412
M. massiliense	764	36	3361	1719	2476	1343	8952	4050	3248	3495	3660	9337	8488
M. massiliense	996	36	3912	3344	3880	2140	9366	4222	3516	5689	4634	9463	8472
S. aureus + Ctrl	-371	-3	28	10	28	22	346	46	31	78	60	398	615
<i>E. coli</i> + Ctrl	-228	-3	3	34	14	12	48	-23	-39	9	18	27	36
Neg Ctrl	-95	-1	-1	26	-20	-3	18	-3	-21	-4	-2	3	-5
Neg Ctrl	-32	-3	-20	-66	-2	-12	-3	-99	17	3	0	-14	-8
Neg Ctrl	127	4	19	39	21	14	-15	102	3	1	1	11	14
Neg Ctrl Totals	0	1	-2	-1	-2	0	0	1	-1	0	-1	0	1

Average spectrophotometer readings for fluorogenic substrates after 72 hours incubation continued

Species	Try	MetA	Ala	AAMC	GlyP	Вос	4MPh	4MSu	123	124	521	266	MR291	7N3CA
A. xylosoxidans	87	20	-13	1470	-484	19	170	-730	-1	-0.5	4	-1.5	-0.5	1951
A. xylosoxidans	151	18	-4	2083	-302	18	267	-991	-0.5	-0.5	-4.5	0.5	0.5	1422
A. xylosoxidans	274	16	30	1476	-272	19	2346	152	-1.5	1	-2.5	0.5	1	3119
B. cenocepacia	2239	5	639	1884	-474	354	4276	-1464	-1	0.5	-1.5	1.5	0	-31
B. cenocepacia	519	11	826	3302	-310	10	4283	-1568	0	0	-0.5	1.5	0.5	456
B. multivorans	145	0	1776	1334	-1425	3	2900	945	0	0.5	-4.5	1	0.5	3015
B. multivorans	79	-4	1646	2417	-1590	16	4856	580	-1.5	0.5	-6	1	0.5	506
B. multivorans	105	-4	1250	2206	-1136	18	5545	-227	-1	0	-2.5	2.5	0	1551
B. stabilis	489	6	938	4254	-108	18	6010	-643	-0.5	0	-5	-1.5	0.5	240
B. vietnamiensis	425	3	44	4082	1282	13	3024	606	0.5	0	-1.5	-1	-0.5	-594
D. acidovorans	410	-9	44	2847	-143	15	109	5787	0	1.5	-5	-2.5	1	2266
I. limosus	10049	1	280	4763	-82	310	61	-1137	-2.5	-0.5	1.5	9	1	-1082
P. norimbergenis	299	31	23	3378	-59	3	298	-930	0	0.5	1.5	2	0	-2077
P. aeruginosa	121	9	1530	483	-330	82	-7	278	1	0	-9.5	5.5	0.5	-3469
S. marcesens	8601	11	7935	8628	2683	4273	4412	-1302	1	0	-3	8	2	2229
M. abscessus	6793	12	1321	4949	-17	412	106	2415	0	1.5	1	7	2.5	-2113
M. abscessus	6495	51	1413	7074	297	610	117	1327	0.5	2.5	-1.5	9	17.5	-418
M. abscessus	6874	36	2334	4362	197	553	102	826	0.5	1	0	10	13.5	-1977
M. abscessus	3972	14	1186	7027	-106	111	120	740	-0.5	1	-0.5	8	9.5	-120
M. abscessus	6776	8	2510	7037	-44	388	174	3452	0	0.5	-3	29	14.5	-1012
M. abscessus	7510	20	3662	7862	337	843	84	1889	-1	2	-1	12	9	-42
M. abscessus	6534	21	3303	5955	437	1173	113	2562	0.5	0.5	0	21	5.5	-214
M. abscessus	6416	4	332	2410	-147	102	97	-302	0	1	-7.5	-4	3	3052
M. abscessus	6354	17	2195	3457	462	431	62	-278	0.5	0.5	-0.5	80.5	2.5	3778
M. abscessus	5928	60	2968	4968	651	927	170	2544	-0.5	1	4	15	8	-2798
M. abscessus	2570	19	1796	4609	-175	147	70	-124	0	0.5	-1	7.5	6.5	-3376
M. abscessus	7553	51	3096	3670	360	1329	233	1718	0.5	1.5	-0.5	10.5	5.5	-3561
M. bolletii	5848	8	1427	2931	-137	391	171	1923	-0.5	0.5	-1	51	3.5	-3288
M. bolletii (ENV)	3053	12	1795	4540	186	227	108	802	0	1	-4	14	8.5	-521
M. chelonae	4645	1	2477	4779	-2	362	102	2021	0.5	1	-6.5	16.5	6.5	-3266
M. chelonae	791	6	1109	3080	-249	58	67	-768	0.5	0	-3.5	7	3	-1873
M. chelonae	4318	1	1849	4014	-430	56	224	3067	1.5	1.5	-2	7	3.5	-578

Average spectrophotometer readings for fluorogenic substrates after 72 hours incubation continued

Species	Try	MetA	Ala	AAMC	GlyP	Вос	4MPh	4MSu	123	124	521	266	MR291	7N3CA
M. chelonae	695	3	1155	5710	-103	102	111	-741	0.5	2	0.5	13.5	5	-371
M. chelonae	7174	5	4458	5629	365	528	207	2929	0.5	0	-2	15.5	6.5	-789
M. chelonae	7961	17	2993	5928	104	395	134	3800	0	2	-4.5	27	4.5	-885
M. massiliense	5088	13	1424	1789	108	467	91	1928	-0.5	1.5	-4.5	1.5	7.5	-970
M. massiliense	7288	59	1941	4033	483	646	95	1315	-0.5	0.5	6.5	20.5	2.5	-3831
M. massiliense	8544	37	2526	6277	596	970	266	1918	0	1	5	18	2	-3647
M. massiliense	3297	24	2017	5596	616	589	191	4392	0	1.5	5.5	20.5	2	-3574
M. massiliense	8300	42	2052	4718	527	605	175	2337	0.5	1.5	1	3.5	2	-1842
M. massiliense	6832	28	954	1566	369	381	76	3445	1	0.5	3	5	1.5	-3671
M. massiliense	8555	33	1804	7052	125	460	213	1491	0.5	1.5	2	28.5	5	-2222
M. massiliense	8514	42	3318	6362	800	1111	228	3180	0.5	2.5	4.5	13.5	5.5	-573
S. aureus + Ctrl	293	15	15	8	70	173	6158	-1504	0	0	-2	3.5	0.5	6359
<i>E. coli</i> + Ctrl	17	11	2	1964	85	-11	6368	-1566	-1	-0.5	2	2.5	1	6545
Neg Ctrl	15	2	18	33	114	-3	7	-281	-0.5	0.5	0.5	0	0.5	191
Neg Ctrl	-14	-4	-22	-24	-171	1	-4	58	0	0.5	-2.5	-2	-1	203
Neg Ctrl	-2	1	3	-9	56	2	-4	222	0	-0.5	1	3	-0.5	-394
Neg Ctrl Totals	0	-1	-2	1	-1	0	-1	-1	-1	1	-1	1	-1	1

Average spectrophotometer readings for fluorogenic substrates after 72 hours incubation continued

M. abscessus: M. abscessus subsp. abscessus

M. bolletii : M. abscessus subsp. bolletii

M. massiliense : M. abscessus subsp. massiliense

Key : 4MA : 4-Methylumbelliferyl acetate, 4MPr : 4-Methylumbelliferyl propionate, 4MB: 4-Methylumbelliferyl butyrate, 4MH: 4-Methylumbelliferyl heptanoate, 4MN : 4-Methylumbelliferyl nonanoate, 4MLa : 4-Methylumbelliferyl laurate, 4MPgh : 4-Methylumbelliferyl p-guanidinobenzoate hydochlorate hydrate, 4MPa : 4-Methylumbelliferyl palmitate, 4MSt : 4-Methylumbelliferyl stearate, 4MLi : 4-Methylumbelliferyl lignocerate, 4Mara : 4-Methylumbelliferyl α-L-arabinopyranoside, 4Mxyl : 4-Methylumbelliferyl 7-β-D-xyloside, 4Mribs : 4-Methylumbelliferyl riboside, 4Mribf : 4-Methylumbelliferyl β-D-ribofuranoside, 4Mfuc : 4-Methylumbelliferyl β-D-fucoside, 4Mglupα : 4-Methylumbelliferyl α-D-glucopyranoside, 4Mglupβ : 4-Methylumbelliferyl β-D-glucopyranoside, 4Mglupβ : 4-Methylumbelliferyl β-D-glucopyranoside, 4Mgluβ : 4-Methylumbelliferyl β-D-glucopyranoside, 4Mgluβ : 4-Methylumbelliferyl α-D-galactoside, 4Mgluβ : 4-Methylumbelliferyl β-D-glucoside, 4Mgluβ : 4-Methylumbelliferyl β-D-glucoside, 4Mgluβ : 4-Methylumbelliferyl β-D-glacoside, 4Mcluβ : 4-Met

CHAPTER EIGHT

References

Adekambi T, Berger P, Raoult D, Drancourt M. 2006. *rpoB gene* sequence-based characterization of emerging non-tuberculous mycobacteria with descriptions of *Mycobacterium bolletii* sp. nov., *Mycobacterium phocaicum* sp. nov. and *Mycobacterium aubagnense* sp. Int. J. Syst. Evol. Microbiol. **56**:133-143.

Adekambi T, Drancourt M. 2004. Dissection of phylogenetic relationships among 19 rapidly growing mycobacterium species by 16S rRNA, *hsp65, sodA, recA* and *rpoB* gene sequencing. Int. J. Syst. Evol. Microbiol. **54**:2095-2105.

Adekambi T, Reynaud-Gaubert M, Greub G, Gevaudan MJ, La Scola B, Raoult D, Drancourt M. 2004. Amoebal coculture of "*Mycobacterium massiliense*" sp. nov. from the sputum of a patient with hemoptoic pneumonia. J. Clin. Microbiol. **42:**5493-5501.

Aksamit TR, Philley JV, Griffith DE. 2014. Nontuberculous mycobacterial (NTM) lung disease: the top ten essentials. Respir. Med. **108:**417-425.

Al-Anazi KA, Al-Jasser AM, Al-Anazi WK. 2014. Infections caused by nontuberculous mycobacteria in recipients of hematopoietic stem cell transplantation. Front Oncol. **4**:311.

Alderwick LJ, Lloyd GS, Lloyd AJ, Lovering AL, Eggeling L, Besra GS. 2011. Biochemical characterization of the *Mycobacterium tuberculosis* phosphoribosyl-1pyrophosphate synthetase. Glycobiology. **21**:410-425.

Alvarez-Ortega C, Olivares J, Martinez JL. 2013. RND multidrug efflux pumps: what are they good for? Front Microbiol. **4:**7.

Andersen DH. 1938. Cystic fibrosis of the pancreas and its relation to celiac disease: A clinical and pathological study. The American Journal of Diseases in Children. **56:**344-399.

Angeby KA, Werngren J, Toro JC, Hedstrom G, Petrini B, Hoffner SE. 2003. Evaluation of the BacT/ALERT 3D system for recovery and drug susceptibility testing of *Mycobacterium tuberculosis*. Clin. Microbiol. Infect. **9**:1148-1152.

Annam V, Kulkarni MH, Puranik RB. 2009. Comparison of the modified fluorescent method and conventional Ziehl-Neelsen method in the detection of acidfast bacilli in lymphnode aspirates. Cytojournal. **6:**13.

Appelgren P, Farnebo F, Dotevall L, Studahl M, Jonsson B, Petrini B. 2008. Late-onset posttraumatic skin and soft-tissue infections caused by rapid-growing mycobacteria in tsunami survivors. Clin. Infect. Dis. **47**:e11-16.

Arnold C, Barrett A, Cross L, Magee J. 2012. The use of rpoB sequence analysis in the differentiation of *Mycobacterium abscessus* and *Mycobacterium chelonae*: a critical judgement in cystic fibrosis? Clin. Microbiol. Infect. **18:**E131–E133.

Assawy TS, Saeed AM, Fouad NA. 2014. Comparative study between using Lowenstein Jensen, Bio-FM media and mycobacteria growth indicator tube (MGIT) system in identification of *Mycobacterium tuberculosis* Egyptian Journal of Chest Diseases and Tuberculosis. **63**:377-384.

Balada-Llasat JM, Kamboj K, Pancholi P. 2013. Identification of mycobacteria from solid and liquid media by matrix-assisted laser desorption ionization-time of flight mass spectrometry in the clinical laboratory. J. Clin. Microbiol. **51**:2875-2879.

Ball PR, Shales SW, Chopra I. 1980. Plasmid-mediated tetracycline resistance in *Escherichia coli* involves increased efflux of the antibiotic. Biochem. Biophys. Res. Commun. **93:**74-81.

Bange FC, Kirschner P, Bottger EC. 1999. Recovery of mycobacteria from patients with cystic fibrosis. J. Clin. Microbiol. **37**:3761-3763.

Barry AL, Fuchs PC. 1991. In vitro susceptibility testing procedures for fosfomycin tromethamine. Antimicrob. Agents Chemother. **35:**1235-1238.

Bascomb S, Manafi M. 1998. Use of enzyme tests in characterization and identification of aerobic and facultatively anaerobic gram-positive cocci. Clin. Microbiol. Rev. **11**:318-340.

Bastian S, Veziris N, Roux AL, Brossier F, Gaillard JL, Jarlier V, Cambau E. 2011. Assessment of clarithromycin susceptibility in strains belonging to the *Mycobacterium abscessus* group by *erm*(41) and *rrl* sequencing. Antimicrob. Agents Chemother. **55**:775-781.

Bendinger B, Rijnaarts HH, Altendorf K, Zehnder AJ. 1993. Physicochemical cell surface and adhesive properties of coryneform bacteria related to the presence and chain length of mycolic acids. Appl. Environ. Microbiol. **59**:3973-3977.

Bernut A, Herrmann JL, Kissa K, Dubremetz JF, Gaillard JL, Lutfalla G, Kremer
L. 2014. *Mycobacterium abscessus* cording prevents phagocytosis and promotes abscess formation. Proc. Natl. Acad. Sci. U. S. A. 111:E943-952.

Biller JA, Eagle G, McGinnis II JP, Micioni L, Daley CL, Winthrop KL, Ruoss S, Addrizzo-Harris DJ, Flume P, Dorgan D, Salathe M, Brown-Elliott BA, Wallace J, R J, Griffith DE, Olivier KN 2015. Efficacy of liposomal amikacin for inhalation (LAI) in achieving negative sputum cultures for nontuberculous mycobacteria (NTM) in patients whose lung infection is refractory to guideline-based therapy. *ATS 2015 International Conference*. Denver, CO, USA.

Binder AM, Adjemian J, Olivier KN, Prevots DR. 2013. Epidemiology of nontuberculous mycobacterial infections and associated chronic macrolide use among persons with cystic fibrosis. Am. J. Respir. Crit. Care Med. **188**:807-812.

BioTek. 2017. Synergy Multi-Mode Reader [Online]. Available: https://www.biotek.com/products/detection-multi-mode-microplatereaders/synergy-htx-multi-mode-reader/ [Accessed 12th April 2017].

Blauwendraat C, Dixon GLJ, Hartley JC, Foweraker J, Harris KA. 2012. The use of a two-gene sequencing approach to accurately distinguish between the species within the *Mycobacterium abscessus* complex and *Mycobacterium chelonae*. Eur. J. Clin. Microbiol. Infect. Dis. **31**:1847-1853.

Bonev B, Hooper J, Parisot J. 2008. Principles of assessing bacterial susceptibility to antibiotics using the agar diffusion method. J. Antimicrob. Chemother. **61:**1295-1301.

Boyle MP, De Boeck K. 2013. A new era in the treatment of cystic fibrosis: correction of the underlying CFTR defect. The Lancet Respiratory Medicine. **1:**158-163.

Brooks RW, Parker BC, Gruft H, Falkinham JO, 3rd. 1984. Epidemiology of infection by nontuberculous mycobacteria. V. Numbers in eastern United States soils and correlation with soil characteristics. Am. Rev. Respir. Dis. **130**:630-633.

Brown-Elliott BA, Vasireddy S, Vasireddy R, Iakhiaeva E, Howard ST, Nash K, Parodi N, Strong A, Gee M, Smith T, Wallace RJ, Jr. 2015. Utility of sequencing the erm(41) gene in isolates of *Mycobacterium abscessus* subsp. *abscessus* with low and intermediate clarithromycin MICs. J. Clin. Microbiol. **53**:1211-1215.

Brown L, Wolf JM, Prados-Rosales R, A C. 2015. Through the wall: extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi. Nature Reviews Microbiology. **13:**620-630.

Brown SM. 2010. Multiple strains of non-tuberculous mycobacteria in a patient with cystic fibrosis. J. R. Soc. Med. **103 Suppl 1:**S34-43.

Bruker. 2015. Identifying microorganisms by their molecular fingerprint [Online]. Available: https://www.bruker.com/products/mass-spectrometry-andseparations/maldi-biotyper/overview.html [Accessed 19th August 2015].

Bruker. 2017. Bruker Guide to MALDI Sample Preparation [Online]. Available: https://www.bruker.com/fileadmin/user_upload/8-PDF-Docs/Separations_MassSpectrometry/InstructionForUse/8702557_IFU_Bruker_G uide_MALDI_Sample_Preparation_Revision_E.pdf [Accessed 23rd April 2017].

Bryant JM, Grogono DM, Greaves D, Foweraker J, Roddick I, Inns T, Reacher M, Haworth CS, Curran MD, Harris SR, Peacock SJ, Parkhill J, Floto RA. 2013. Whole-genome sequencing to identify transmission of *Mycobacterium abscessus*

between patients with cystic fibrosis: a retrospective cohort study. The Lancet. **381:**1551-1560.

Buhler VB, Pollak A. 1953. Human infection with atypical acid-fast organisms; report of two cases with pathologic findings. Am. J. Clin. Pathol. **23**:363-374.

Bull TJ, Shanson DC. 1992. Rapid misdiagnosis by *Mycobacterium avium-intracellulare* masquerading as tuberculosis in PCR/DNA probe tests. Lancet. **340**:1360.

Burns JL, Rolain JM. 2013. Culture-based diagnostic microbiology in cystic fibrosis: Can we simplify the complexity? J. Cyst. Fibros. **13:**1-9.

Cambau E, Drancourt M. 2014. Steps towards the discovery of *Mycobacterium tuberculosis* by Robert Koch, 1882. Clin. Microbiol. Infect. **20:**196-201.

Catherinot E, Roux AL, Vibet MA, Bellis G, Lemonnier L, Le Roux E, Bernede-Bauduin C, Le Bourgeois M, Herrmann JL, Guillemot D, Gaillard JL, group OMA. 2013a. Inhaled therapies, azithromycin and *Mycobacterium abscessus* in cystic fibrosis patients. Eur. Respir. J. **41**:1101-1106.

Catherinot E, Roux AL, Vibet MA, Bellis G, Ravilly S, Lemonnier L, Le Roux E, Bernede-Bauduin C, Le Bourgeois M, Herrmann JL, Guillemot D, Gaillard JL, group OMA. 2013b. *Mycobacterium avium* and *Mycobacterium abscessus* complex target distinct cystic fibrosis patient subpopulations. J. Cyst. Fibros. **12:**74-80.

Caverly LJ, Carmody LA, Haig SJ, Kotlarz N, Kalikin LM, Raskin L, LiPuma JJ. 2016. Culture-independent identification of nontuberculous mycobacteria in cystic fibrosis respiratory samples. PLoS ONE. **11:**e0153876.

Cerna-Cortes JF, Leon-Montes N, Cortes-Cueto AL, Salas-Rangel LP, Helguera-Repetto AC, Lopez-Hernandez D, Rivera-Gutierrez S, Fernandez-Rendon E, Gonzalez-y-Merchand JA. 2015. Microbiological quality of ready-to-eat vegetables collected in Mexico City: Occurrence of aerobic-mesophilic bacteria, fecal coliforms, and potentially pathogenic nontuberculous mycobacteria. Biomed Res Int. 2015:789508.

298

Chalermskulrat W, Sood N, Neuringer IP, Hecker TM, Chang L, Rivera MP, Paradowski LJ, Aris RM. 2006. Non-tuberculous mycobacteria in end stage cystic fibrosis: implications for lung transplantation. Thorax. **61**:507-513.

Chan ED, Bai X, Kartalija M, Orme IM, Ordway DJ. 2010. Host immune response to rapidly growing mycobacteria, an emerging cause of chronic lung disease. Am. J. Respir. Cell Mol. Biol. **43:**387-393.

Chan ED, Iseman MD. 2010. Slender, older women appear to be more susceptible to nontuberculous mycobacterial lung disease. Gend. Med. **7:**5-18.

Chan HC, Shi QX, Zhou CX, Wang XF, Xu WM, Chen WY, Chen AJ, Ni Y, Yuan YY. 2006. Critical role of CFTR in uterine bicarbonate secretion and the fertilizing capacity of sperm. Mol. Cell. Endocrinol. **6:**106-113.

Chihara S, Smith G, Petti CA. 2010. Carbapenem susceptibility patterns for clinical isolates of *Mycobacterium abscessus* determined by the Etest method. J. Clin. Microbiol. **48:**579-580.

Chihota VN, Grant AD, Fielding K, Ndibongo B, van Zyl A, Muirhead D, Churchyard GJ. 2010. Liquid vs. solid culture for tuberculosis: performance and cost in a resource-constrained setting. Int. J. Tuberc. Lung Dis. **14**:1024-1031.

Chilvers KF, Perry JD, James AL, Reed RH. 2001. Synthesis and evaluation of novel fluorogenic substrates for the detection of bacterial beta-galactosidase. J. Appl. Microbiol. **91:**1118-1130.

Chmiel JF, Davis PB. 2003. State of the art: why do the lungs of patients with cystic fibrosis become infected and why can't they clear the infection? Respir. Res. **4**:8.

Choi GE, Chang CL, Whang J, Kim HJ, Kwon OJ, Koh WJ, Shin SJ. 2011. Efficient differentiation of *Mycobacterium abscessus* complex isolates to the species level by a novel PCR-based variable-number tandem-repeat assay. J. Clin. Microbiol. **49:**1107-1109. Choi GE, Shin SJ, Won CJ, Min KN, Oh T, Hahn MY, Lee K, Lee SH, Daley CL, Kim S, Jeong BH, Jeon K, Koh WJ. 2012. Macrolide treatment for *Mycobacterium abscessus* and *Mycobacterium massiliense* infection and inducible resistance. Am. J. Respir. Crit. Care Med. **186**:917-925.

Chon JW, Hyeon JY, Yim JH, Kim JH, Song KY, Seo KH. 2012. Improvement of modified charcoal-cefoperazone-deoxycholate agar by supplementation with a high concentration of polymyxin B for detection of *Campylobacter jejuni* and *C. coli* in chicken carcass rinses. Appl. Environ. Microbiol. **78**:1624-1626.

Chopra A, Houston CW, Kurosky A. 1991. Genetic variation in related cytolytic toxins produced by different species of Aeromonas. FEMS Microbiol. Lett. **62:**231-237.

Chopra S, Matsuyama K, Hutson C, Madrid P. 2011. Identification of antimicrobial activity among FDA-approved drugs for combating *Mycobacterium abscessus* and *Mycobacterium chelonae*. J. Antimicrob. Chemother. **66:**1533-1536.

Chubukov V, Gerosa L, Kochanowski K, Sauer U. 2014. Coordination of microbial metabolism. Nat. Rev. Microbiol. **12**:327-340.

Chun J, Lee J, Bae J, Kim M, Shin S, Lee JG, Lee KH, Kim YR. 2009. *Delftia acidovorans* isolated from the drainage in an immunocompetent patient with empyema. Tuberc Respir Dis. **67:**239-243.

Cipolla D, Froehlich J, Gonda I. 2015. Emerging opportunities for inhaled antibiotic therapy. Journal of Antimicrobial Agents. **1:**1000104.

Clinical and Laboratory Standards Institute 2011. Susceptibility testing of mycobacteria, nocardia, and other aerobic actinomycetes; approved Standard. Wayne, PA.

ClinicalTrails.gov. 2016. Study to evaluate efficacy of LAI when added to multidrug regimen compared to multi-drug regimen alone [Online]. Available: https://clinicaltrials.gov/ct2/show/NCT02628600?term=NCT02628600&rank=1 [Accessed 26th April 2016]. **Coenye T, Vandamme P, LiPuma JJ, Govan JR, Mahenthiralingam E**. 2003. Updated version of the *Burkholderia cepacia* complex experimental strain panel. J. Clin. Microbiol. **41:**2797-2798.

Cohn F. 1872. Untersuchungen über Bakterien. Beitrage zur Biologie der Pflanzen. **1:**127-224.

Collard PJ, Collard P 1976. The development of microbiology, Cambridge University Press.

Cook JL. 2010. Nontuberculous mycobacteria: opportunistic environmental pathogens for predisposed hosts. Br. Med. Bull. **96:**45-59.

Corti M, Palmero D. 2008. *Mycobacterium avium* complex infection in HIV/AIDS patients. Expert Rev. Anti Infect. Ther. **6:**351-363.

Coutinho HD, Falcao-Silva VS, Goncalves GF. 2008. Pulmonary bacterial pathogens in cystic fibrosis patients and antibiotic therapy: a tool for the health workers. Int. Arch. Med. **1**:24.

Cutting GR. 2015. Cystic fibrosis genetics: from molecular understanding to clinical application. Nat. Rev. Genet. **16:**45-56.

Cystic Fibrosis Foundation. 2015. Carrier testing for CF [Online]. Available: https://www.cff.org/What-is-CF/Testing/Carrier-Testing-for-CF/ [Accessed 20th November 2015].

Cystic Fibrosis Mutation Database. 2011. CFMDB Statistics [Online]. Available: http://www.genet.sickkids.on.ca/cftr/StatisticsPage.html [Accessed 28th November 2013].

Cystic Fibrosis Trust. 2010. Laboratory standards for processing microbiological samples from peoplewith cystic fibrosis: report of the UKCystic Fibrosis Trust Microbiology Laboratory Standards Working Group [Online]. Available: https://www.cysticfibrosis.org.uk/media/82034/CD_Laboratory_Standards_Sep_10.pdf [Accessed 12th December 2013].

Cystic Fibrosis Trust. 2015. What causes cystic fibrosis? [Online]. Available: http://www.cysticfibrosis.org.uk/about-cf/frequently-asked-questions#na [Accessed 20th November 2015].

Dahlen G, Linde A. 1973. Screening plate method for detection of bacterial betaglucuronidase. Appl. Microbiol. **26:**863-866.

Dalcin D, Ulanova M. 2013. The Role of Human Beta-Defensin-2 in *Pseudomonas aeruginosa* Pulmonary Infection in Cystic Fibrosis Patients. Infect Dis Ther. **2:**159-166.

Davidson RM, Hasan NA, de Moura VC, Duarte RS, Jackson M, Strong M. 2013. Phylogenomics of Brazilian epidemic isolates of *Mycobacterium abscessus* subsp. *bolletii* reveals relationships of global outbreak strains. Infect. Genet. Evol. **20:**292-297.

Davis GL, Ray NA, Lahiri R, Gillis TP, Krahenbuhl JL, Williams DL, Adams LB. 2013. Molecular assays for determining *Mycobacterium leprae* viability in tissues of experimentally infected mice. PLoS Negl. Trop. Dis. **7:**e2404.

De Bel A, De Geyter D, De Schutter I, Mouton C, Wellemans I, Hanssens L, Schelstraete P, Malfroot A, Pierard D. 2013. Sampling and decontamination method for culture of nontuberculous mycobacteria in respiratory samples of cystic fibrosis patients. J. Clin. Microbiol. **51**:4204-4206.

De Groote MA, Pace NR, Fulton K, Falkinham JO. 2006. Relationships between mycobacterium isolates from patients with pulmonary mycobacterial infection and potting soils. Appl. Environ. Microbiol. **72**:7602-7606.

De Soyza A, Hall AJ, Mahenthiralingam E, Drevinek P, Kaca W, Drulis-Kawa Z, Stoitsova SR, Toth V, Coenye T, Zlosnik JE, Burns JL, Sa-Correia I, De Vos D, Pirnay JP, T JK, Reid D, Manos J, Klockgether J, Wiehlmann L, Tummler B, McClean S, Winstanley C. 2013. Developing an international *Pseudomonas aeruginosa* reference panel. Microbiologyopen. **2**:1010-1023. **Delost MD**. 2015. Introduction of diagnostic microbiology, Burlington, US, Jones and Bartlett Learning.

Dhiman N, Hall L, Wohlfiel SL, Buckwalter SP, Wengenack NL. 2011. Performance and cost analysis of matrix-assisted laser desorption ionization-time of flight mass spectrometry for routine identification of yeast. J. Clin. Microbiol. **49:**1614-1616.

Dick T, Lee BH, Murugasu-Oei B. 1998. Oxygen depletion induced dormancy in *Mycobacterium smegmatis*. FEMS Microbiol. Lett. **163**:159-164.

Dodge JA, Lewis PA, Stanton M, Wilsher J. 2006. Cystic fibrosis mortality and survival in the UK: 1947–2003. Eur. Respir. J. **29:**522-526.

Doig KD, Holt KE, Fyfe JA, Lavender CJ, Eddyani M, Portaels F, Yeboah-Manu D, Pluschke G, Seemann T, Stinear TP. 2012. On the origin of *Mycobacterium ulcerans*, the causative agent of Buruli ulcer. BMC Genomics. **13:**258.

Dyer DL. 1970. Microbiological detection and identification system. U. S Patent patent application US3551295 A.

El Helou G, Viola GM, Hachem R, Han XY, Raad, II. 2013. Rapidly growing mycobacterial bloodstream infections. Lancet Infect. Dis. **13**:166-174.

Embil J, Warren P, Yakrus M, Stark R, Corne S, Forrest D, Hershfield E. 1997. Pulmonary illness associated with exposure to *Mycobacterium-avium* complex in hot tub water. Hypersensitivity pneumonitis or infection? Chest. **111**:813-816.

Esteban J, Martin-de-Hijas NZ, Kinnari TJ, Ayala G, Fernandez-Roblas R, Gadea I. 2008. Biofilm development by potentially pathogenic non-pigmented rapidly growing mycobacteria. BMC Microbiol. **8:**184.

Esther CR, Jr., Esserman DA, Gilligan P, Kerr A, Noone PG. 2010. Chronic *Mycobacterium abscessus* infection and lung function decline in cystic fibrosis. J. Cyst. Fibros. **9:**117-123.

Esther CR, Jr., Henry MM, Molina PL, Leigh MW. 2005. Nontuberculous mycobacterial infection in young children with cystic fibrosis. Pediatr. Pulmonol. **40:**39-44.

Esther CR, Jr., Hoberman S, Fine J, Allen S, Culbreath K, Rodino K, Kerr A, Gilligan P. 2011. Detection of rapidly growing mycobacteria in routine cultures of samples from patients with cystic fibrosis. J. Clin. Microbiol. **49**:1421-1425.

EUCAST. 2014. European Committee on Antimicrobial Susceptibility Testing [Online]. Available: http://www.eucast.org/ [Accessed 3rd September 2014 2014].

Euzeby JP. 2015. List of prokaryotic names with standing in nomenclature: Genus Mycobacterium [Online]. Available: http://www.bacterio.net/mycobacterium.html [Accessed 21st April 2015.

Falk P, Hoskins LC, Larson G. 1990. Bacteria of the human intestinal microbiota produce glycosidases specific for lacto-series glycosphingolipids. J Biochem. 108:466-474.

Falkinham JO, 3rd. 1996. Epidemiology of infection by nontuberculous mycobacteria. Clin. Microbiol. Rev. **9:**177-215.

Falkinham JO, 3rd. 2009. Surrounded by mycobacteria: nontuberculous mycobacteria in the human environment. J. Appl. Microbiol. **107:**356-367.

Falkinham JO, 3rd. 2011. Nontuberculous mycobacteria from household plumbing of patients with nontuberculous mycobacteria disease. Emerg. Infect. Dis. **17:**419-424.

Falkinham JO, 3rd, Parker BC, Gruft H. 1980. Epidemiology of infection by nontuberculous mycobacteria. I. Geographic distribution in the eastern United States. Am. Rev. Respir. Dis. **121**:931-937.

Falkinham JO, Pruden A, Edwards M. 2015. Opportunistic premise plumbing pathogens: Increasingly important pathogens in drinking water. Pathogens. **4:**373-386.

Fangous MS, Mougari F, Gouriou S, Calvez E, Raskine L, Cambau E, Payan C, Hery-Arnaud G. 2014. Classification algorithm for subspecies identification within the *Mycobacterium abscessus* species, based on matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. **52**:3362-3369.

Farrell PM, Rosenstein BJ, White TB, Accurso FJ, Castellani C, Cutting GR, Durie PR, Legrys VA, Massie J, Parad RB, Rock MJ, Campbell PW, 3rd, Cystic Fibrosis F. 2008. Guidelines for diagnosis of cystic fibrosis in newborns through older adults: Cystic Fibrosis Foundation consensus report. J. Pediatr. **153**:S4-S14.

Feazel LM, Baumgartner LK, Peterson KL, Frank DN, Harris JK, Pace NR. 2009. Opportunistic pathogens enriched in showerhead biofilms. Proc. Natl. Acad. Sci. U. S. A. 106:16393-16399.

Feeley JC, Gibson RJ, Gorman GW, Langford NC, Rasheed JK, Mackel DC, Baine WB. 1979. Charcoal-yeast extract agar: primary isolation medium for *Legionella pneumophila*. J. Clin. Microbiol. **10**:437-441.

Ferroni A, Vu-Thien H, Lanotte P, Le Bourgeois M, Sermet-Gaudelus I, Fauroux B, Marchand S, Varaigne F, Berche P, Gaillard JL, Offredo C. 2006. Value of the chlorhexidine decontamination method for recovery of nontuberculous mycobacteria from sputum samples of patients with cystic fibrosis. J. Clin. Microbiol. **44**:2237-2239.

FitzSimmons SC. 1994. The changing epidemiology of cystic fibrosis. Curr. Probl. Pediatr. **24:**171-179.

Fjallbrant H, Akerstrom M, Svensson E, Andersson E. 2013. Hot tub lung: an occupational hazard. Eur. Respir. Rev. **22:**88-90.

Floto RA, Haworth CS. 2015. The growing threat of nontuberculous mycobacteria in CF. J. Cyst. Fibros. **14:**1-2.

Floto RA, Olivier KN, Saiman L, Daley CL, Herrmann JL, Nick JA, Noone PG, Bilton D, Corris P, Gibson RL, Hempstead SE, Koetz K, Sabadosa KA, Sermet-Gaudelus I, Smyth AR, van Ingen J, Wallace RJ, Winthrop KL, Marshall BC, **Haworth CS**. 2016. US Cystic Fibrosis Foundation and European Cystic Fibrosis Society consensus recommendations for the management of non-tuberculous mycobacteria in individuals with cystic fibrosis. Thorax. **71 Suppl 1:**i1-i22.

Fonseca JD, Knight GM, McHugh TD. 2015. The complex evolution of antibiotic resistance in *Mycobacterium tuberculosis*. Int. J. Infect. Dis. **32:**94-100.

Fujirebio. 2015. INNO-LiPA® MYCOBACTERIA v2 [Online]. Available: http://www.fujirebio-europe.com/products-services/product-browser/inno-lipar-mycobacteria-v2 [Accessed 20th July 2015].

Fujiwara K, Tsuru D. 1978. New chromogenic and fluorogenic substrates for pyrrolidonyl peptidase. J Biochem. **83:**1145-1149.

Fukuda T, Matsumura T, Ato M, Hamasaki M, Nishiuchi Y, Murakami Y, Maeda Y, Yoshimori T, Matsumoto S, Kobayashi K, Kinoshita T, Morita YS. 2013. Critical roles for lipomannan and lipoarabinomannan in cell wall integrity of mycobacteria and pathogenesis of tuberculosis. MBio. **4**:e00472-00412.

Gadsby DC, Vergani P, Csanady L. 2006. The ABC protein turned chloride channel whose failure causes cystic fibrosis. Nature. **440**:477-483.

Gangadharam PRJ, Jenkins PA 1998. Mycobacteria. I. Basic aspects, New York, N.Y, Chapman and Hall.

Garcia-Agudo L, Jesus I, Rodriguez-Iglesias M, Garcia-Martos P. 2011. Evaluation of INNO-LiPA mycobacteria v2 assay for identification of rapidly growing mycobacteria. Braz. J. Microbiol. **42**:1220-1226.

Gee KR, Sun WC, Bhalgat MK, Upson RH, Klaubert DH, Latham KA, Haugland RP. 1999. Fluorogenic substrates based on fluorinated umbelliferones for continuous assays of phosphatases and beta-galactosidases. Anal. Biochem. 273:41-48.

Gilligan PH, Gage PA, Bradshaw LM, Schidlow DV, DeCicco BT. 1985. Isolation medium for the recovery of *Pseudomonas cepacia* from respiratory secretions of patients with cystic fibrosis. J. Clin. Microbiol. **22:**5-8.

Gilljam M, Schersten H, Silverborn M, Jonsson B, Ericsson Hollsing A. 2010. Lung transplantation in patients with cystic fibrosis and *Mycobacterium abscessus* infection. J. Cyst. Fibros. **9:**272-276.

Gitti Z, Neonakis I, Fanti G, Kontos F, Maraki S, Tselentis Y. 2006. Use of the GenoType Mycobacterium CM and AS assays to analyze 76 nontuberculous mycobacterial isolates from Greece. J. Clin. Microbiol. **44**:2244-2246.

Glazer CS, Martyny JW, Lee B, Sanchez TL, Sells TM, Newman LS, Murphy J, Heifets L, Rose CS. 2007. Nontuberculous mycobacteria in aerosol droplets and bulk water samples from therapy pools and hot tubs. J. Occup. Environ. Hyg. **4**:831-840.

Goodwin RH, Kavanagh F. 1950. Fluorescence of coumarin derivatives as a function of pH. Arch Biochem. **27:**152-173.

Grange JM. 1978. Fluorimetric assay of mycobacterial group-specific hydrolase enzymes. J. Clin. Pathol. **31:**378-381.

Grange JM, Clark K. 1977. Use of umbelliferone derivatives in the study of enzyme activities of mycobacteria. J. Clin. Pathol. **30**:151-153.

Grange JM, McIntyre G. 1979. Fluorigenic glycosidase substrates: their use in the identification of some slow growing mycobacteria. J. Appl. Bacteriol. **47:**285-288.

Greene JB, Sidhu GS, Lewin S, Levine JF, Masur H, Simberkoff MS, Nicholas P, Good RC, Zolla-Pazner SB, Pollock AA, Tapper ML, Holzman RS. 1982. *Mycobacterium avium-intracellulare*: a cause of disseminated life-threatening infection in homosexuals and drug abusers. Ann. Intern. Med. **97:**539-546.

Griffith DE. 2014. *Mycobacterium abscessus* subsp *abscessus* lung disease: 'trouble ahead, trouble behind...'. F1000Prime Rep. **6**:107.

Griffith DE, Aksamit T, Brown-Elliott BA, Catanzaro A, Daley C, Gordin F, Holland SM, Horsburgh R, Huitt G, Iademarco MF, Iseman M, Olivier K, Ruoss S, von Reyn CF, Wallace RJ, Jr., Winthrop K, A. T. S. Mycobacterial Diseases Subcommittee, American Thoracic Society, Infectious Disease Society of America. 2007. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am. J. Respir. Crit. Care Med. **175**:367-416.

Griffith DE, Aksamit TR. 2012. Bronchiectasis and nontuberculous mycobacterial disease. Clin. Chest Med. **33**:283-295.

Guerin ME, Kaur D, Somashekar BS, Gibbs S, Gest P, Chatterjee D, Brennan PJ, Jackson M. 2009. New insights into the early steps of phosphatidylinositol mannoside biosynthesis in mycobacteria: PimB' is an essential enzyme of *Mycobacterium smegmatis*. J. Biol. Chem. **284**:25687-25696.

Guillemin I, Jarlier V, Cambau E. 1998. Correlation between quinolone susceptibility patterns and sequences in the A and B subunits of DNA gyrase in Mycobacteria. Antimicrob. Agents Chemother. **42**:2084-2088.

HAIN Lifescience. 2015. GenoType Mycobacterium CM/AS [Online]. Available: http://www.hain-lifescience.de/en/products/microbiology/mycobacteria/genotype-mycobacterium-cmas.html [Accessed 20th April 2015].

HAIN Lifescience. 2017. GenoType NTM-DR VER 1.0 [Online]. Available: http://www.hain-lifescience.de/en/products/microbiology/mycobacteria/ntm/ genotype-ntm-dr.html [Accessed 31st March 2017].

Hardy CL, King SJ, Mifsud NA, Hedger MP, Phillips DJ, Mackay F, de Kretser DM, Wilson JW, Rolland JM, O'Hehir RE. 2015. The activin A antagonist follistatin inhibits cystic fibrosis-like lung inflammation and pathology. Immunol. Cell Biol. 93:567-574.

Harris KA, Kenna DT. 2014. Mycobacterium abscessus infection in cystic fibrosis: molecular typing and clinical outcomes. J. Med. Microbiol. **63**:1241-1246.

Harris KA, Kenna DTD, Blauwendraat C, Hartley JC, Turton JF, Aurora P, Dixon GLJ. 2012. Molecular fingerprinting of *Mycobacterium abscessus* strains in a cohort of pediatric cystic fibrosis patients. J. Clin. Microbiol. **50**:1758-1761.

Harris KA, Underwood A, Kenna DT, Brooks A, Kavaliunaite E, Kapatai G, Tewolde R, Aurora P, Dixon G. 2015. Whole-genome sequencing and epidemiological analysis do not provide evidence for cross-transmission of *mycobacterium abscessus* in a cohort of pediatric cystic fibrosis patients. Clin. Infect. Dis. **60**:1007-1016.

Harrison FC, Van Der Leck J. 1909. Aesculin bile salt media for water analysis. Am J Public Hygiene. **19:**557-563.

Haughland RP 1996. Handbook of fluorescent probes and pesearch products 7th Edition, Molecular Probes, USA.

Healy M, Huong J, Bittner T, Lising M, Frye S, Raza S, Schrock R, Manry J, Renwick A, Nieto R, Woods C, Versalovic J, Lupski JR. 2005. Microbial DNA typing by automated repetitive-sequence-based PCR. J. Clin. Microbiol. **43**:199-207.

Heizmann WR. 1993. Evaluation of Rambach agar for rapid detection of Salmonella in human feces. Eur. J. Clin. Microbiol. Infect. Dis. **12:**306-308.

Henry D, Campbell M, McGimpsey C, Clarke A, Louden L, Burns JL, Roe MH, Vandamme P, Speert D. 1999. Comparison of isolation media for recovery of *Burkholderia cepacia* complex from respiratory secretions of patients with cystic fibrosis. J. Clin. Microbiol. **37**:1004-1007.

Henry DA, Campbell ME, LiPuma JJ, Speert DP. 1997. Identification of *Burkholderia cepacia* isolates from patients with cystic fibrosis and use of a simple new selective medium. J. Clin. Microbiol. **35:**614-619.

Hoefsloot W, van Ingen J, Andrejak C, Angeby K, Bauriaud R, Bemer P, Beylis N, Boeree MJ, Cacho J, Chihota V, Chimara E, Churchyard G, Cias R, Daza R, Daley CL, Dekhuijzen PN, Domingo D, Drobniewski F, Esteban J, Fauville-

Dufaux M, Folkvardsen DB, Gibbons N, Gomez-Mampaso E, Gonzalez R, Hoffmann H, Hsueh PR, Indra A, Jagielski T, Jamieson F, Jankovic M, Jong E, Keane J, Koh WJ, Lange B, Leao S, Macedo R, Mannsaker T, Marras TK, Maugein J, Milburn HJ, Mlinko T, Morcillo N, Morimoto K, Papaventsis D, Palenque E, Paez-Pena M, Piersimoni C, Polanova M, Rastogi N, Richter E, Ruiz-Serrano MJ, Silva A, da Silva MP, Simsek H, van Soolingen D, Szabo N, Thomson R, Tortola Fernandez T, Tortoli E, Totten SE, Tyrrell G, Vasankari T, Villar M, Walkiewicz R, Winthrop KL, Wagner D, Nontuberculous Mycobacteria Network European Trials G. 2013. The geographic diversity of nontuberculous mycobacteria isolated from pulmonary samples: an NTM-NET collaborative study. Eur. Respir. J. **42**:1604-1613.

Hoiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. 2010. Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob. Agents. **35:**322-332.

Howard ST, Rhoades E, Recht J, Pang X, Alsup A, Kolter R, Lyons CR, Byrd TF. 2006. Spontaneous reversion of *Mycobacterium abscessus* from a smooth to a rough morphotype is associated with reduced expression of glycopeptidolipid and reacquisition of an invasive phenotype. Microbiology. **152**:1581-1590.

Huang CT, Tsai YJ, Wu HD, Wang JY, Yu CJ, Lee LN, Yang PC. 2012. Impact of non-tuberculous mycobacteria on pulmonary function decline in chronic obstructive pulmonary disease. Int. J. Tuberc. Lung Dis. **16**:539-545.

Huang CW, Chen JH, Hu ST, Huang WC, Lee YC, Huang CC, Shen GH. 2013. Synergistic activities of tigecycline with clarithromycin or amikacin against rapidly growing mycobacteria in Taiwan. Int. J. Antimicrob. Agents. **41:**218-223.

Huitt GA 2015. Nontuberculous mycobacteria, an issue of clinics in chest medicine, Pennsylvania, Elsevier Health Sciences.

Hurley MN, McKeever TM, Prayle AP, Fogarty AW, Smyth AR. 2014. Rate of improvement of CF life expectancy exceeds that of general population--observational death registration study. J. Cyst. Fibros. **13:**410-415.

Jamal W, Salama MF, Al Hashem G, Rifaei M, Eldeen H, Husain EH, Ahmad S, Rotimi VO. 2014. An outbreak of *Mycobacterium abscessus* infection in a pediatric intensive care unit in Kuwait. Pediatr. Infect. Dis. J. **33**:e67-70.

Jarlier V, Nikaido H. 1990. Permeability barrier to hydrophilic solutes in *Mycobacterium chelonei*. J. Bacteriol. **172**:1418-1423.

Jeon K, Kwon OJ, Lee NY, Kim BJ, Kook YH, Lee SH, Park YK, Kim CK, Koh WJ. 2009. Antibiotic treatment of *Mycobacterium abscessus* lung disease: a retrospective analysis of 65 patients. Am. J. Respir. Crit. Care Med. **180**:896-902.

Johnson MM, Odell JA. 2014. Nontuberculous mycobacterial pulmonary infections. J. Thorac. Dis. **6:**210-220.

Jonsson BE, Gilljam M, Lindblad A, Ridell M, Wold AE, Welinder-Olsson C. 2007. Molecular epidemiology of *Mycobacterium abscessus*, with focus on cystic fibrosis. J. Clin. Microbiol. **45**:1497-1504.

Kalich R, Bennert G, Koedel H, Ulber H, Grunewald R, Oqueka F, Gerloff W, Knauf B. 1976. Comparison of the efficiency of a modified Ogawa medium and the media used for culture investigation on tuberculosis in routine. Z. Erkr. Atmungsorgane. **145**:190-195.

Kapoor R, Yadav JS. 2012. Expanding the mycobacterial diversity of metalworking fluids (MWFs): evidence showing MWF colonization by *Mycobacterium abscessus*. FEMS Microbiol Ecol. **79**:392-399.

Kent PT, Kubica GP 1985. Public health mycobacteriology: a guide for the level III laboratory, U.S. Department of Health and Human Services, Centers for Disease Control, Atlanta, Ga.

Kerem B, Rommens JM, Buchanan JA, Markiewicz D, Cox TK, Chakravarti A, Buchwald M, Tsui LC. 1989. Identification of the cystic fibrosis gene: genetic analysis. Science. **245**:1073-1080.

Khoo KH, Dell A, Morris HR, Brennan PJ, Chatterjee D. 1995. Structural definition of acylated phosphatidylinositol mannosides from *Mycobacterium tuberculosis*: definition of a common anchor for lipomannan and lipoarabinomannan. Glycobiology. **5**:117-127.

Kim CJ, Kim NH, Song KH, Choe PG, Kim ES, Park SW, Kim HB, Kim NJ, Kim EC, Park WB, Oh MD. 2013. Differentiating rapid- and slow-growing mycobacteria by difference in time to growth detection in liquid media. Diagn. Microbiol. Infect. Dis. **75:**73-76.

Kim HY, Kim BJ, Kook Y, Yun YJ, Shin JH, Kim BJ, Kook YH. 2010a. *Mycobacterium massiliense* is differentiated from *Mycobacterium abscessus* and *Mycobacterium bolletii* by erythromycin ribosome methyltransferase gene (erm) and clarithromycin susceptibility patterns. Microbiol. Immunol. **54:**347-353.

Kirschner RA, Jr., Parker BC, Falkinham JO, 3rd. 1992. Epidemiology of infection by nontuberculous mycobacteria. *Mycobacterium avium, Mycobacterium intracellulare* and *Mycobacterium scrofulaceum* in acid, brown-water swamps of the southeastern United States and their association with environmental variables. Am. Rev. Respir. Dis. **145:**271-275.

Knutson KL, Hmama Z, Herrera-Velit P, Rochford R, Reiner NE. 1998. Lipoarabinomannan of *Mycobacterium tuberculosis* promotes protein tyrosine dephosphorylation and inhibition of mitogen-activated protein kinase in human mononuclear phagocytes. Role of the Src homology 2 containing tyrosine phosphatase 1. J. Biol. Chem. **273**:645-652.

Koch R 1881. Zur Untersuchung von pathogenen Organismen. *In:* Medizin, JSK (ed.). Berlin: Robert Koch-Institut.

Koch R. 1882. Die Atiologic der Tuberkulose. Berliner Klinische Wochenschrift. **15:**221-230.

Koch R. 1884. An address on Cholera and its bacillus. Br. Med. J. 2:453-459.

Koch R 1887. Investigations of the etiology of wound infections In: Carter, KC (ed.) Essays of Robert Koch. Connecticut: Greenwood Press.

Kogan I, Ramjeesingh M, Li C, Kidd JF, Wang Y, Leslie EM, P CS, E BC. 2003. CFTR directly mediates nucleotide-regulated glutathione flux. EMBO J. **22**:1981-1989.

Koh WJ, Jeon K, Lee NY, Kim BJ, Kook YH, Lee SH, Park YK, Kim CK, Shin SJ, Huitt GA, Daley CL, Kwon OJ. 2011. Clinical significance of differentiation of *Mycobacterium massiliense* from *Mycobacterium abscessus*. Am. J. Respir. Crit. Care Med. **183**:405-410.

Koh WJ, Kwon OJ, Lee KS. 2002. Nontuberculous mycobacterial pulmonary diseases in immunocompetent patients. Korean J. Radiol. **3:**145-157.

Kordulakova J, Gilleron M, Mikusova K, Puzo G, Brennan PJ, Gicquel B, Jackson M. 2002. Definition of the first mannosylation step in phosphatidylinositol mannoside synthesis. PimA is essential for growth of mycobacteria. J. Biol. Chem. **277:**31335-31344.

Kreindler JL. 2010. Cystic fibrosis: exploiting its genetic basis in the hunt for new therapies. Pharmacol. Ther. **125:**219-229.

Kreutzfeldt KM, McAdam PR, Claxton P, Holmes A, Seagar AL, Laurenson IF, Fitzgerald JR. 2013. Molecular longitudinal tracking of *Mycobacterium abscessus* spp. during chronic infection of the human lung. PLoS ONE. **8**:e63237.

Kubica GP, Baess I, Gordon RE, Jenkins PA, Kwapinski JB, McDurmont C, Pattyn SR, Saito H, Silcox V, Stanford JL, Takeya K, Tsukamura M. 1972. A cooperative numerical analysis of rapidly growing mycobacteria. J. Gen. Microbiol. **73:**55-70.

Kuhn H, Wonde B, Rabsch W, Reissbrodt R. 1994. Evaluation of Rambach agar for detection of Salmonella subspecies I to VI. Appl. Environ. Microbiol. **60**:749-751.

Kumar A, Parkash O, Girdhar BK. 2014. Analysis of antigens of *Mycobacterium leprae* by interaction to sera IgG, IgM, and IgA response to improve diagnosis of leprosy. Biomed Res Int. **2014**:283278.

Kunzelmann K. 2013. Control of membrane transport by the cystic fibrosis transmembrane conductance regulator (CFTR) [Online]. Bioscience Database. Available: http://www.landesbioscience.com/curie/chapter/4854/ [Accessed 30th November 2013].

Kusunoki S, Ezaki T. 1992. Proposal of Mycobacterium peregrinum sp. nov., nom. rev., and elevation of *Mycobacterium chelonae* subsp. *abscessus* to species status: *Mycobacterium abscessus* comb. nov. Int. J. Syst. Bacteriol. **42:**240-245.

Lau SK, Tang BS, Teng JL, Chan TM, Curreem SO, Fan RY, Ng RH, Chan JF, Yuen KY, Woo PC. 2014. Matrix-assisted laser desorption ionisation time-of-flight mass spectrometry for identification of clinically significant bacteria that are difficult to identify in clinical laboratories. J. Clin. Pathol. **67:**361-366.

Le Dantec C, Duguet JP, Montiel A, Dumoutier N, Dubrou S, Vincent V. 2002. Chlorine disinfection of atypical mycobacteria isolated from a water distribution system. Appl. Environ. Microbiol. **68**:1025-1032.

Leao SC, Tortoli E, Euzeby JP, Garcia MJ. 2011. Proposal that *Mycobacterium massiliense* and *Mycobacterium bolletii* be united and reclassified as *Mycobacterium abscessus* subsp. *bolletii* comb. nov., designation of *Mycobacterium abscessus* subsp. *abscessus* subsp. nov. and emended description of *Mycobacterium abscessus*. Int. J. Syst. Evol. Microbiol. **61:**2311-2313.

Leung JM, Olivier KN. 2013. Nontuberculous mycobacteria: the changing epidemiology and treatment challenges in cystic fibrosis. Curr. Opin. Pulm. Med. **19:**662-669.

Levy I, Grisaru-Soen G, Lerner-Geva L, Kerem E, Blau H, Bentur L, Aviram M, Rivlin J, Picard E, Lavy A, Yahav Y, Rahav G. 2008. Multicenter cross-sectional study of nontuberculous mycobacterial infections among cystic fibrosis patients, Israel. Emerg. Infect. Dis. **14:**378-384. Levy SB, McMurry L. 1978. Plasmid-determined tetracycline resistance involves new transport systems for tetracycline. Nature. **276:**90-92.

Lewis AH, Falkinham JO. 2015. Microaerobic growth and anaerobic survival of *Mycobacterium avium*, *Mycobacterium intracellulare* and *Mycobacterium scrofulaceum*. International journal of microbacteriology. **4**:25-30.

Lewis HA, Buchannan SG, Burley SK, Conners K, Dickey M, Dorwart M, Fowler R, Gao X, Guggino WB, Hendrickson WA, Hunt JF, Kearins MC, Lorimer D, Maloney PC, Post KW, Rajashankar KR, Rutter ME, Sauder JM, Shriver S, Thibodeau PH, Thomas PJ, Zhang M, Zhao X, Emtage S. 2004. Structure of nucleotide-binding domain 1 of the cystic fibrosis transmembrane conductance regulator. The EMBO Journal. **23**:282-293.

Lim SD, Todd J, Lopez J, Ford E, Janda JM. 1991. Genotypic identification of pathogenic mycobacterium species by using a nonradioactive oligonucleotide probe. J. Clin. Microbiol. **29:**1276-1278.

Lima AS, Duarte RS, Montenegro LM, Schindler HC. 2013. Rapid detection and differentiation of mycobacterial species using a multiplex PCR system. Rev. Soc. Bras. Med. Trop. **46**:447-452.

Lima CT, Magalhaes V. 2014. Abscess resulting from *Mycobacterium kansasii* in the left thigh of AIDS patient. An. Bras. Dermatol. **89:**478-480.

Loeffler F. 1881. Zur Immunitatsfrage Mitt. 1:134-187.

Luo L, Liu W, Li B, Li M, Huang D, Jing L, Chen H, Yang J, Yue J, Wang F, Chu H, Zhang Z. 2016. Evaluation of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of *Mycobacterium abscessus* subspecies according to whole genome sequencing. J. Clin. Microbiol. **54:**2982-2989.

Macheras E, Konjek J, Roux A-L, Thiberge J-M, Bastian S, Leão SC, Palaci M, Sivadon-Tardy V, Gutierrez C, Richter E, Rüsch-Gerdes S, Pfyffer GE, Bodmer T, Jarlier V, Cambau E, Brisse S, Caro V, Rastogi N, Gaillard J-L, Heym B. 2011. Multilocus sequence typing scheme for the *Mycobacterium abscessus* complex. Res. Microbiol. **165**:82-90.

Macheras E, Roux AL, Ripoll F, Sivadon-Tardy V, Gutierrez C, Gaillard JL, Heym B. 2009. Inaccuracy of single-target sequencing for discriminating species of the *Mycobacterium abscessus* group. J. Clin. Microbiol. **47:**2596-2600.

Maddocks JL, Greenan MJ. 1975. A rapid method for identifying bacterial enzymes. J. Clin. Pathol. **28:**686-687.

Mahajan R. 2013. Bedaquiline: First FDA-approved tuberculosis drug in 40 years. Int J Appl Basic Med Res. **3:**1-2.

Mahenthiralingam E, Coenye T, Chung JW, Speert DP, Govan JR, Taylor P, Vandamme P. 2000. Diagnostically and experimentally useful panel of strains from the *Burkholderia cepacia* complex. J. Clin. Microbiol. **38:**910-913.

Manafi M. 1996. Fluorogenic and chromogenic enzyme substrates in culture media and identification tests. Int. J. Food Microbiol. **31:**45-58.

Manafi M, Kneifel W. 1991. Fluorogenic and chromogenic substrates--a promising tool in microbiology. Acta Microbiol. Hung. **38:**293-304.

Manafi M, Kneifel W, Bascomb S. 1991. Fluorogenic and chromogenic substrates used in bacterial diagnostics. Microbiol. Rev. **55:**335-348.

Marchandin H, Michon AL, Jumas-Bilak E 2012. Atypical bacteria in the CF airways: Diversity, clinical consequences, emergence and adaptation. In: Sriramulu, D (ed.) Cystic Fibrosis - Renewed Hopes Through Research. France: Intech.

Marras TK, Daley CL. 2002. Epidemiology of human pulmonary infection with nontuberculous mycobacteria. Clin. Chest Med. 23:553-567.

Martiniano SL, Nick JA, Daley CL. 2016. Nontuberculous mycobacterial infections in cystic fibrosis. Clin. Chest Med. **37:**83-96.

Martiniano SL, Sontag MK, Daley CL, Nick JA, Sagel SD. 2014. Clinical significance of a first positive nontuberculous mycobacteria culture in cystic fibrosis. Ann Am Thorac Soc. **11:**36-44.

Marvin LF, Roberts MA, Fay LB. 2003. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in clinical chemistry. International journal of clinical chemistry. **337:**11-21.

Maurer FP, Bruderer VL, Ritter C, Castelberg C, Bloemberg GV, Bottger EC. 2014a. Lack of antimicrobial bactericidal activity in *Mycobacterium abscessus*. Antimicrob. Agents Chemother. **58**:3828-3836.

Maurer FP, Castelberg C, Quiblier C, Bottger EC, Somoskovi A. 2014b. Erm(41)-dependent inducible resistance to azithromycin and clarithromycin in clinical isolates of *Mycobacterium abscessus*. J. Antimicrob. Chemother. **69:**1559-1563.

Mazars E, Lesjean S, Banuls AL, Gilbert M, Vincent V, Gicquel B, Tibayrenc M, Locht C, Supply P. 2001. High-resolution minisatellite-based typing as a portable approach to global analysis of *Mycobacterium tuberculosis* molecular epidemiology. Proc. Natl. Acad. Sci. U. S. A. **98**:1901-1906.

Medjahed H, Gaillard JL, Reyrat JM. 2010. *Mycobacterium abscessus*: a new player in the mycobacterial field. Trends Microbiol. **18:**117-123.

MEGA. 2017. Molecular Evolutionary Genetics Analysis [Online]. Available: http://www.megasoftware.net/ [Accessed 20th July 2017].

Mendum TA, Wu H, Kierzek AM, Stewart GR. 2015. Lipid metabolism and Type VII secretion systems dominate the genome scale virulence profile of *Mycobacterium tuberculosis* in human dendritic cells. BMC Genomics. **16:**372.

Menninger JR. 1995. Mechanism of inhibition of protein synthesis by macrolide and lincosamide antibiotics. J. Basic Clin. Physiol. Pharmacol. **6**:229-250.

Metersky M 2012. Bronchiectasis, an issue of clinics in chest medicine, Pennsylvania, US, Elsevier

Migliori GB, Loddenkemper R, Blasi F, Raviglione MC. 2007. 125 years after Robert Koch's discovery of the tubercle bacillus: the new XDR-TB threat. Is "science" enough to tackle the epidemic? Eur. Respir. J. **29**:423-427.

Mirsaeidi M, Farshidpour M, Allen MB, Ebrahimi G, Falkinham JO. 2014. Highlight on advances in nontuberculous mycobacterial disease in North America. Biomed Res Int. **2014**:919474.

Moore M, Frerichs JB. 1953. An unusual acid-fast infection of the knee with subcutaneous, abscess-like lesions of the gluteal region; report of a case with a study of the organism, *Mycobacterium abscessus*, n. sp. The journal of investigative dermatology. **20**:133-169.

Morgan JF, Morton HJ, Parker RC. 1950. Nutrition of animal cells in tissue culture; initial studies on a synthetic medium. Proc. Soc. Exp. Biol. Med. **73:**1-8.

Mukherjee T, Boshoff H, Barry CE, 3rd. 2012. Comment on: Identification of antimicrobial activity among FDA-approved drugs for combating *Mycobacterium abscessus* and *Mycobacterium chelonae*. J. Antimicrob. Chemother. **67:**252-253.

Nakanaga K, Sekizuka T, Fukano H, Sakakibara Y, Takeuchi F, Wada S, Ishii N, Makino M, Kuroda M, Hoshino Y. 2014. Discrimination of *Mycobacterium abscessus* subsp. *massiliense* from *Mycobacterium abscessus* subsp. *abscessus* in clinical isolates by multiplex PCR. J. Clin. Microbiol. **52**:251-259.

Narang R, Narang P, Mendiratta DK. 2009. Isolation and identification of nontuberculous mycobacteria from water and soil in central India. Indian J Med Microbiol. **27:**247-250.

Nash KA, Brown-Elliott BA, Wallace RJ, Jr. 2009. A novel gene, erm(41), confers inducible macrolide resistance to clinical isolates of *Mycobacterium abscessus* but is absent from *Mycobacterium chelonae*. Antimicrob. Agents Chemother. **53**:1367-1376.

National Jewish Health. 2015. Reducing Exposure to Nontuberculous Mycobacteria [Online]. Available:https://www.nationaljewish.org/getattachment/ professionals/Newsletters/NTM-TB-Insights-Newsletter/NTM-TB-INSIGHTS-September-2015.pdf.aspx [Accessed 21st March 2017].

Nessar R, Cambau E, Reyrat JM, Murray A, Gicquel B. 2012. Mycobacterium abscessus: a new antibiotic nightmare. J. Antimicrob. Chemother. **67**:810-818.

Ng KP, Rukumani DV, Chong J, Kaur H. 2014. Identification of mycobacterium species following growth detection with the BACTEC MGIT 960 system by DNA line probe assay. International Journal of Mycobacteriology. **3**:82-87.

Novosad SA, Beekmann SE, Polgreen PM, Mackey K, Winthrop KL, Team MaS. 2016. Treatment of *Mycobacterium abscessus* Infection. Emerg. Infect. Dis. **22:**511-514.

Nye KJ, Fallon D, Frodsham D, Gee B, Graham C, Howe S, Messer S, Turner T, Warren RE. 2002. An evaluation of the performance of XLD, DCA, MLCB, and ABC agars as direct plating media for the isolation of Salmonella enterica from faeces. J. Clin. Pathol. **55**:286-288.

Oh CT, Moon C, Park OK, Kwon SH, Jang J. 2014. Novel drug combination for *Mycobacterium abscessus* disease therapy identified in a Drosophila infection model. J. Antimicrob. Chemother. **69**:1599-1607.

Olivier KN, Griffith DE, Eagle G, McGinnis Ii JP, Micioni L, Liu K, Daley CL, Winthrop KL, Ruoss S, Addrizzo-Harris DJ, Flume PA, Dorgan D, Salathe M, Brown-Elliott BA, Gupta R, Wallace RJ, Jr. 2016. Randomized trial of liposomal amikacin for inhalation in nontuberculous mycobacterial lung disease. Am. J. Respir. Crit. Care Med.

Olivier KN, Weber DJ, Wallace RJ, Jr., Faiz AR, Lee JH, Zhang Y, Brown-Elliot BA, Handler A, Wilson RW, Schechter MS, Edwards LJ, Chakraborti S, Knowles MR, Nontuberculous Mycobacteria in Cystic Fibrosis Study Group. 2003. Nontuberculous mycobacteria. I: Multicenter prevalence study in cystic fibrosis. Am. J. Respir. Crit. Care Med. 167:828-834.

Olivier KN, Yankaskas JR, Knowles MR. 1996. Nontuberculous mycobacterial pulmonary disease in cystic fibrosis. Semin. Respir. Infect. **11:**272-284.

Orduna P, Cevallos MA, de Leon SP, Arvizu A, Hernandez-Gonzalez IL, Mendoza-Hernandez G, Lopez-Vidal Y. 2011. Genomic and proteomic analyses of *Mycobacterium bovis* BCG Mexico 1931 reveal a diverse immunogenic repertoire against tuberculosis infection. BMC Genomics. **12:**493.

Pal R, Zeeshan F, Hameed S. 2014. Efflux pumps in drug resistance of *Mycobacterium tuberculosis*: A panoramic view. International journal of current microbiology and applied sciences. **3:**528-546.

Palomino JC, Martin A. 2014. Drug resistance mechanisms in *Mycobacterium tuberculosis*. Antibiotics (Basel). **3:**317-340.

Panda A, Kurapati S, Samantaray JC, Myneedu VP, Verma A, Srinivasan A, Ahmad H, Behera D, Singh UB. 2013. Rapid identification of clinical mycobacterial isolates by protein profiling using matrix-assisted laser desorption ionization-time of flight mass spectrometry. Indian J Med Microbiol. **31**:117-122.

Pang Y, Zheng H, Tan Y, Song Y, Zhao Y. 2017. *In vitro* activity of bedaquiline against nontuberculous mycobacteria in China. Antimicrob. Agents Chemother. **61**.

Pang YK, Ngeow YF, Wong YL, Liam CK. 2013. *Mycobacterium abscessus* - to treat or not to treat. Respirol Case Rep. **1:**31-33.

Pasteur L. 1860. Memoire sur la fermentation alcoolique. Annales de Chimie et de Physique. **58:**323–426.

Pawlik A, Garnier G, Orgeur M, Tong P, Lohan A, Le Chevalier F, Sapriel G, Roux AL, Conlon K, Honore N, Dillies MA, Ma L, Bouchier C, Coppee JY, Gaillard JL, Gordon SV, Loftus B, Brosch R, Herrmann JL. 2013. Identification and characterization of the genetic changes responsible for the characteristic smooth-to-rough morphotype alterations of clinically persistent Mycobacterium abscessus. Mol. Microbiol.

Pericone CD, Overweg K, Hermans PW, Weiser JN. 2000. Inhibitory and bactericidal effects of hydrogen peroxide production by *Streptococcus pneumoniae* on other inhabitants of the upper respiratory tract. Infect. Immun. **68**:3990-3997.

Perlman D. 1979. Use of antibiotics in cell culture media. Methods Enzymol. **58:**110-116.

Perry JD, Freydiere AM. 2007. The application of chromogenic media in clinical microbiology. J. Appl. Microbiol. **103**:2046-2055.

Philley JV, Wallace JRJ, Benwill JL, Taskar V, Brown-Elliott BA, Thakkar F, Aksamit TR, Griffith DE. 2015. Preliminary results of bedaquiline as salvage therapy for patients with nontuberculous mycobacterial lung disease. Chest.

Phillips GO, Williams PA 2000. Handbook of hydrocolloids, Cambridge, CRC Press.

Pierre-Audigier C, Ferroni A, Sermet-Gauelus I, Le Bourgeois M, Offredo C, Vu-Thien H, Fauroux B, Mariani P, Munck A, Bingen E, Guillemot D, Quesne G, Vincent V, Berche P, Gaillard JL. 2005. Age-related prevalence and distribution of nontuberculous mycobacterial species among patients with cystic fibrosis. J. Clin. Microbiol. **43**:3467-3470.

Pinheiro L, Brito CI, de Oliveira A, Martins PY, Pereira VC, da Cunha Mde L. 2015. *Staphylococcus epidermidis* and *Staphylococcus haemolyticus*: Molecular detection of cytotoxin and enterotoxin genes. Toxins (Basel). **7**:3688-3699.

Plongla R, Preece CL, Perry JD, Gilligan PH. Evaluation of RGM medium for detection and identification of nontuberculous mycobacteria from patients with cystic fibrosis. ASM-Microbe 19th June 2016 Boston, USA.

Plongla R, Preece CL, Perry JD, Gilligan PH. 2017. Evaluation of RGM medium for isolation of nontuberculous mycobacteria from respiratory samples from patients with cystic fibrosis in the United States. J. Clin. Microbiol. **55**:1469-1477.

Portaels F, de Rijk P, Jannes G, Lemans R, Mijs W, Rigouts L, Rossau R. 1996. The 16S-23S rRNA spacer, a useful tool for taxonomical and epidemiological studies of the *M. chelonae* complex. Tuber. Lung Dis. **77** 17-18.

Prammananan T, Sander P, Brown BA, Frischkorn K, Onyi G, Zhang Y, Bottger EC, Wallace JRJ. 1998. A single 16S ribosomal RNA substitution Is responsible for resistance to amikacin and other 2-deoxystreptamine aminoglycosides in *Mycobacterium abscessus* and *Mycobacterium chelonae*. J. Infect. Dis. **177:**1573-1581.

Preece CL, Wichelhaus TA, Perry A, Jones AL, Cummings SP, Perry JD, Hogardt M. 2016. Evaluation of various culture media for detection of rapidly growing mycobacteria from patients with cystic fibrosis. J. Clin. Microbiol. **54:**1797-1803.

Prevots DR, Marras TK. 2015. Epidemiology of human pulmonary infection with nontuberculous mycobacteria: a review. Clin. Chest Med. **36:**13-34.

Primm TP, Lucero CA, Falkinham JO, 3rd. 2004. Health impacts of environmental mycobacteria. Clin. Microbiol. Rev. 17:98-106.

Quinton P. 2010. Role of epithelial HCO₃- transport in mucin secretion: Lessons from cystic fibrosis. Am. J. Physiol. **299:**1222-1223.

Qvist T, Gilljam M, Jönsson B, Taylor-Robinson D, Jensen-Fangel S, Wang M, Svahn A, Kötz K, Hansson L, Hollsing A, Hansen CR, Finstad PL, Pressler T, Høiby N, Katzenstein TL, Scandinavian Cystic Fibrosis Study Consortium (SCFSC). 2015. Epidemiology of nontuberculous mycobacteria among patients with cystic fibrosis in Scandinavia. J. Cyst. Fibros. **14**:46-52.

Qvist T, Pressler T, Thomsen VO, Skov M, Iversen M, Katzenstein TL. 2013. Nontuberculous mycobacterial disease is not a contraindication to lung transplantation in patients with cystic fibrosis: a retrospective analysis in a Danish patient population. Transplant. Proc. **45**:342-345.

Rago F, Saltzberg D, Allen KN, Tolan DR. 2015. Enzyme substrate specificity conferred by distinct conformational pathways. J. Am. Chem. Soc. **137**:13876-13886.

Raju RM, Raju SM, Zhao Y, Rubin EJ. 2016. Leveraging advances in tuberculosis diagnosis and treatment to address nontuberculous mycobacterial disease. Emerg. Infect. Dis. **22:**365-369.

Rambach A. 1990. New plate medium for facilitated differentiation of *Salmonella* spp. from *Proteus* spp. and other enteric bacteria. Appl. Environ. Microbiol. **56:**301-303.

Ramon-Garcia S, Martin C, De Rossi E, Ainsa JA. 2007. Contribution of the Rv2333c efflux pump (the Stp protein) from *Mycobacterium tuberculosis* to intrinsic antibiotic resistance in *Mycobacterium bovis* BCG. J. Antimicrob. Chemother. **59**:544-547.

Ramsey WS, Nowlan ED, Simpson LB, Messing RA, Takeguchi MM. 1980. Applications of fluorophore-containing microbial growth media. Appl. Environ. Microbiol. **39:**372-375.

Rastogi N, Legrand E, Sola C. 2001. The mycobacteria: an introduction to nomenclature and pathogenesis. Rev. Sci. Tech. **20:**21-54.

Recht J, Kolter R. 2001. Glycopeptidolipid acetylation affects sliding motility and biofilm formation in *Mycobacterium smegmatis*. J. Bacteriol. **183**:5718-5724.

Reisner BS, Gatson AM, Woods GL. 1994. Use of Gen-Probe AccuProbes to identify *Mycobacterium avium* complex, *Mycobacterium tuberculosis* complex, *Mycobacterium kansasii,* and *Mycobacterium gordonae* directly from BACTEC TB broth cultures. J. Clin. Microbiol. **32**:2995-2998.

Renna M, Schaffner C, Brown K, Shang S, Tamayo MH, Hegyi K, Grimsey NJ, Cusens D, Coulter S, Cooper J, R BA, Newton SM, Kampmann B, Helm J, Jones A, Haworth CS, Basaraba RJ, DeGroote MA, Ordway DJ, Rubinsztein DC, Floto RA. 2011. Azithromycin blocks autophagy and may predispose cystic fibrosis patients to mycobacterial infection. The Journal of Clinical Investigation. **121:**3554-3563.

Reznikov BF. 1972. Incubation of Brucella on solid nutrient media with a phenol red indicator. Veterinariia. **7**:109-110.

Richter E, Rusch-Gerdes S, Hillemann D. 2006. Evaluation of the GenoType Mycobacterium Assay for identification of mycobacterial species from cultures. J. Clin. Microbiol. **44**:1769-1775.

Rickman OB, Ryu JH, Fidler ME, Kalra S. 2002. Hypersensitivity pneumonitis associated with *Mycobacterium avium* complex and hot tub use. Mayo Clin. Proc. **77**:1233-1237.

Ripoll F, Pasek S, Schenowitz C, Dossat C, Barbe V, Rottman M, Macheras E, Heym B, Herrmann JL, Daffe M, Brosch R, Risler JL, Gaillard JL. 2009. Non mycobacterial virulence genes in the genome of the emerging pathogen *Mycobacterium abscessus*. PLoS ONE. **4**:e5660.

Rodman DM, Polis JM, Heltshe SL, Sontag MK, Chacon C, Rodman RV, Brayshaw SJ, Huitt GA, Iseman MD, Saavedra MT, Taussig LM, Wagener JS, Accurso FJ, Nick JA. 2005. Late diagnosis defines a unique population of longterm survivors of cystic fibrosis. Am. J. Respir. Crit. Care Med. **171**:621-626.

Rodrigues L, Villellas C, Bailo R, Viveiros M, Ainsa JA. 2013. Role of the Mmr efflux pump in drug resistance in *Mycobacterium tuberculosis*. Antimicrob. Agents Chemother. **57:**751-757.

Rose SJ, Neville ME, Gupta R, Bermudez LE. 2014. Delivery of aerosolized liposomal amikacin as a novel approach for the treatment of nontuberculous mycobacteria in an experimental model of pulmonary infection. PLoS ONE. **9**:e108703.

Roux AL, Catherinot E, Ripoll F, Soismier N, Macheras E, Ravilly S, Bellis G, Vibet MA, Le Roux E, Lemonnier L, Gutierrez C, Vincent V, Fauroux B, Rottman M, Guillemot D, Gaillard JL, Herrmann JL. 2009. Multicenter study of prevalence of nontuberculous mycobacteria in patients with cystic fibrosis in France. J. Clin. Microbiol. **47:**4124-4128.

Roux AL, Viljoen A, Bah A, Simeone R, Bernut A, Laencina L, Deramaudt T, Rottman M, Gaillard JL, Majlessi L, Brosch R, Girard-Misguich F, Vergne I, de Chastellier C, Kremer L, Herrmann JL. 2016. The distinct fate of smooth and rough *Mycobacterium abscessus* variants inside macrophages. Open Biol. **6**.

Rubio M, March F, Garrigo M, Moreno C, Espanol M, Coll P. 2015. Inducible and acquired clarithromycin resistance in the *Mycobacterium abscessus* complex. PLoS ONE. **10:**e0140166.

Ruger K, Hampel A, Billig S, Rucker N, Suerbaum S, Bange FC. 2014. Characterization of rough and smooth morphotypes of *Mycobacterium abscessus* isolates from clinical specimens. J. Clin. Microbiol. **52**:244-250.

Runyon EH. 1959. Anonymous mycobacteria in pulmonary disease. Med. Clin. North Am. **43**:273-290.

Saffert RT, Cunningham SA, Ihde SM, Jobe KE, Mandrekar J, Patel R. 2011. Comparison of Bruker Biotyper matrix-assisted laser desorption ionization-time of flight mass spectrometer to BD Phoenix automated microbiology system for identification of gram-negative bacilli. J. Clin. Microbiol. **49**:887-892.

Saiman L, Siegel JD, LiPuma JJ, Brown RF, Bryson EA, Chambers MJ, Downer VS, Fliege J, Hazle LA, Jain M, Marshall BC, O'Malley C, Pattee SR, Potter-Bynoe G, Reid S, Robinson KA, Sabadosa KA, Schmidt HJ, Tullis E, Webber J, Weber DJ, Cystic Fibrous F, Society for Healthcare Epidemiology of A. 2014. Infection prevention and control guideline for cystic fibrosis: 2013 update. Infect. Control Hosp. Epidemiol. **35 Suppl 1:**S1-S67.

Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. **4:**406-425.

Saleeb PG, Drake SK, Murray PR, Zelazny AM. 2011. Identification of mycobacteria in solid-culture media by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. **49**:1790-1794.

Sassi M, Ben Kahla I, Drancourt M. 2013. *Mycobacterium abscessus* multispacer sequence typing. BMC Microbiol. **13:**3.

Sassi M, Drancourt M. 2014. Genome analysis reveals three genomospecies in *Mycobacterium abscessus*. BMC Genomics. **15:**359.

Scarparo C, Piccoli P, Rigon A, Ruggiero G, Nista D, Piersimoni C. 2001. Direct identification of mycobacteria from MB/BacT alert 3D bottles: comparative evaluation of two commercial probe assays. J. Clin. Microbiol. **39**:3222-3227.

Schaeffer ML, Khoo KH, Besra GS, Chatterjee D, Brennan PJ, Belisle JT, Inamine JM. 1999. The pimB gene of *Mycobacterium tuberculosis* encodes a mannosyltransferase involved in lipoarabinomannan biosynthesis. J. Biol. Chem. 274:31625-31631.

Schulze-Robbecke R, Buchholtz K. 1992. Heat susceptibility of aquatic mycobacteria. Appl. Environ. Microbiol. **58:**1869-1873.

Scoleri GP, Choo JM, Leong LE, Goddard TR, Shephard L, Burr LD, Bastian I, Thomson RM, Rogers GB. 2016. Culture-independent detection of nontuberculous mycobacteria in clinical respiratory samples. J. Clin. Microbiol. **54:**2395-2398.

Seddon P, Fidler K, Raman S, Wyatt H, Ruiz G, Elston C, Perrin F, Gyi K, Bilton D, Drobniewski F, Newport M. 2013. Prevalence of nontuberculous mycobacteria in cystic fibrosis clinics, United Kingdom, 2009. Emerg. Infect. Dis. **19:**1128-1130.

September SM, Brozel VS, Venter SN. 2004. Diversity of nontuberculoid mycobacterium species in biofilms of urban and semiurban drinking water distribution systems. Appl. Environ. Microbiol. **70**:7571-7573.

Sermet-Gaudelus I, Le Bourgeois M, Pierre-Audigier C, Offredo C, Guillemot D, Halley S, Akoua-Koffi C, Vincent V, Sivadon-Tardy V, Ferroni A, Berche P,

Scheinmann P, Lenoir G, Gaillard JL. 2003. *Mycobacterium abscessus* and children with cystic fibrosis. Emerg. Infect. Dis. **9**:1587-1591.

Sexton P, Harrison AC. 2008. Susceptibility to nontuberculous mycobacterial lung disease. Eur. Respir. J. **31:**1322-1333.

Shakil S, Khan R, Zarrilli R, Khan AU. 2008. Aminoglycosides versus bacteria--a description of the action, resistance mechanism, and nosocomial battleground. J. Biomed. Sci. **15:**5-14.

Shallom SJ, Gardina PJ, Myers TG, Sebastian Y, Conville P, Calhoun LB, Tettelin H, Olivier KN, Uzel G, Sampaio EP, Holland SM, Zelazny AM. 2013. New rapid scheme for distinguishing the subspecies of the *Mycobacterium abscessus* group and identifying *Mycobacterium massiliense* isolates with inducible clarithromycin resistance. J. Clin. Microbiol. **51**:2943-2949.

Simmon KE, Brown-Elliott BA, Ridge PG, Durtschi JD, Mann LB, Slechta ES, Steigerwalt AG, Moser BD, Whitney AM, Brown JM, Voelkerding KV, McGowan KL, Reilly AF, Kirn TJ, Butler WR, Edelstein PH, Wallace RJ, Jr., Petti CA. 2011. *Mycobacterium chelonae-abscessus* complex associated with sinopulmonary disease, Northeastern USA. Emerg. Infect. Dis. **17:**1692-1700.

Singhal N, Kumar M, Kanaujia PK, Virdi JS. 2015. MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Front Microbiol. **6:**791.

Slosarek M. 1980. Fluorescent method for testing the enzymic activity of mycobacteria. Folia Microbiol. (Praha). **25:**439-441.

Smith MJ, Efthimiou J, Hodson ME, Batten JC. 1984. Mycobacterial isolations in young adults with cystic fibrosis. Thorax. **39:**369-375.

Smyth A, Elborn JS. 2008. Exacerbations in cystic fibrosis. Management. Thorax.63:180-184.

Sparham PD, Harris DM, Spencer RC. 1984. Selective Kirchner medium in the culture of specimens for mycobacteria. J. Clin. Pathol. **37**:598-599.

Springer B, Stockman L, Teschner K, Roberts GD, Bottger EC. 1996. Twolaboratory collaborative study on identification of mycobacteria: molecular versus phenotypic methods. J. Clin. Microbiol. **34:**296-303.

Sreevatsan S, Stockbauer KE, Pan X, Kreiswirth BN, Moghazeh SL, Jacobs WR, Jr., Telenti A, Musser JM. 1997. Ethambutol resistance in *Mycobacterium tuberculosis*: critical role of embB mutations. Antimicrob. Agents Chemother. **41**:1677-1681.

Steed KA, Falkinham JO, 3rd. 2006. Effect of growth in biofilms on chlorine susceptibility of *Mycobacterium avium* and *Mycobacterium intracellulare*. Appl. Environ. Microbiol. **72**:4007-4011.

Stewart-Tull DES 1982. *Mycobacterium leprae* - The bacteriologist's enigma. biology of the mycobacteria, Volume 1: physiology, identification, and classification. 1st ed. New York: Academic Press.

Stinear TP, Seemann T, Harrison PF, Jenkin GA, Davies JK, Johnson PD, Abdellah Z, Arrowsmith C, Chillingworth T, Churcher C, Clarke K, Cronin A, Davis P, Goodhead I, Holroyd N, Jagels K, Lord A, Moule S, Mungall K, Norbertczak H, Quail MA, Rabbinowitsch E, Walker D, White B, Whitehead S, Small PL, Brosch R, Ramakrishnan L, Fischbach MA, Parkhill J, Cole ST. 2008. Insights from the complete genome sequence of *Mycobacterium marinum* on the evolution of *Mycobacterium tuberculosis*. Genome Res. **18**:729-741.

Stonebrink B, Douma J, Manten A, Mulder RJ. 1969. A comparative investigation on the quality of various culture media as used in the Netherlands for the isolation of mycobacteria. Selected Papers of the Royal Netherlands Tuberculosis Association. **12:**5-47.

Stout JE, Koh WJ, Yew WW. 2016. Update on pulmonary disease due to non-tuberculous mycobacteria. Int. J. Infect. Dis. **45**:123-134.

Suzuki H, Yoshida S, Yoshida A, Okuzumi K, Fukusima A, Hishinuma A. 2015. A novel cluster of *Mycobacterium abscessus* complex revealed by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS). Diagn. Microbiol. Infect. Dis. **83:**365-370.

Szumowski JD, Adams KN, Edelstein PH, Ramakrishnan L. 2013. Antimicrobial efflux pumps and *Mycobacterium tuberculosis* drug tolerance: evolutionary considerations. Curr. Top. Microbiol. Immunol. **374:**81-108.

Talati NJ, Rouphael N, Kuppalli K, Franco-Paredes C. 2008. Spectrum of CNS disease caused by rapidly growing mycobacteria. Lancet Infect. Dis. 8:390-398.

Taylor RH, Falkinham JO, 3rd, Norton CD, LeChevallier MW. 2000. Chlorine, chloramine, chlorine dioxide, and ozone susceptibility of *Mycobacterium avium*. Appl. Environ. Microbiol. **66:**1702-1705.

Taylor WI, Schelhart D. 1971. Isolation of Shigellae. 8. Comparison of xylose lysine deoxycholate agar, hektoen enteric agar, Salmonella-Shigella agar, and eosin methylene blue agar with stool specimens. Appl. Microbiol. **21**:32-37.

Telenti A, Marchesi F, Balz M, Bally F, Bottger EC, Bodmer T. 1993. Rapid identification of mycobacteria to the species level by polymerase chain reaction and restriction enzyme analysis. J. Clin. Microbiol. **31**:175-178.

The UK Cystic Fibrosis Trust Microbiology Laboratory Standards WorkingGroup. 2010. Laboratory standards for processing microbiological samples frompeoplewithcysticfibrosis[Online].Available:https://www.cysticfibrosis.org.uk/media/82034/CD_Laboratory_Standards_Sep_10.pdf [Accessed 18th December 2013].

Thomson R, Tolson C, Carter R, Coulter C, Huygens F, Hargreaves M. 2013a. Isolation of nontuberculous mycobacteria (NTM) from household water and shower aerosols in patients with pulmonary disease caused by NTM. J. Clin. Microbiol. **51:**3006-3011. **Thomson R, Tolson C, Sidjabat H, Huygens F, Hargreaves M**. 2013b. *Mycobacterium abscessus* isolated from municipal water - a potential source of human infection. BMC Infect. Dis. **13:**241.

Tortoli E, Bartoloni A, Bottger EC, Emler S, Garzelli C, Magliano E, Mantella A, Rastogi N, Rindi L, Scarparo C, Urbano P. 2001. Burden of unidentifiable mycobacteria in a reference laboratory. J. Clin. Microbiol. **39:**4058-4065.

Tortoli E, Cichero P, Piersimoni C, Simonetti MT, Gesu G, Nista D. 1999. Use of BACTEC MGIT 960 for recovery of mycobacteria from clinical specimens: multicenter study. J. Clin. Microbiol. **37:**3578-3582.

Tortoli E, Kohl TA, Brown-Elliott BA, Trovato A, Cardoso Leao S, Garcia MJ, Vasireddy S, Turenne CY, Griffith DE, Philley JV, Baldan R, Campana S, Cariani L, Colombo C, Taccetti G, Teri A, Niemann S, Wallace RJ, Jr., Cirillo DM. 2016. Emended description of *Mycobacterium abscessus*, *Mycobacterium abscessus* subsp. *abscessus*, *Mycobacterium abscessus* subsp. *bolletii* and *designation of Mycobacterium abscessus* subsp. *bolletii* and *designation of Mycobacterium abscessus* subsp. *nov*. Int. J. Syst. Evol. Microbiol. **66**:4471-4479.

Tortoli E, Mariottini A, Mazzarelli G. 2003. Evaluation of INNO-LiPA MYCOBACTERIA v2: improved reverse hybridization multiple DNA probe assay for mycobacterial identification. J. Clin. Microbiol. **41**:4418-4420.

Torvinen E, Suomalainen S, Lehtola MJ, Miettinen IT, Zacheus O, Paulin L, Katila ML, Martikainen PJ. 2004. Mycobacteria in water and loose deposits of drinking water distribution systems in Finland. Appl. Environ. Microbiol. **70**:1973-1981.

Trias J, Jarlier V, Benz R. 1992. Porins in the cell wall of mycobacteria. Science. **258**:1479-1481.

Tsai SH, Shen GH, Lin CH, Liau JR, Lai HC, Hu ST. 2013. Mab_3168c, a putative acetyltransferase, enhances adherence, intracellular survival and antimicrobial resistance of *Mycobacterium abscessus*. PLoS ONE. **8**:e67563.

Tsui LC, Dorfman R. 2013. The cystic fibrosis gene: a molecular genetic perspective. Cold Spring Harb Perspect Med. **3**:a009472.

van Ingen J, Boeree MJ, van Soolingen D, Mouton JW. 2012. Resistance mechanisms and drug susceptibility testing of nontuberculous mycobacteria. Drug Resist. Updat. **15**:149-161.

van Ingen J, van der Laan T, Dekhuijzen R, Boeree M, van Soolingen D. 2010. In vitro drug susceptibility of 2275 clinical non-tuberculous mycobacterium isolates of 49 species in The Netherlands. Int. J. Antimicrob. Agents. **35:**169-173.

van Roosmalen ML, Geukens N, Jongbloed JD, Tjalsma H, Dubois JY, Bron S,
van Dijl JM, Anne J. 2004. Type I signal peptidases of Gram-positive bacteria.
Biochim. Biophys. Acta. 1694:279-297.

Vermis K, Coenye T, LiPuma JJ, Mahenthiralingam E, Nelis HJ, Vandamme P. 2004. Proposal to accommodate *Burkholderia cepacia* genomovar VI as *Burkholderia dolosa* sp. nov. Int. J. Syst. Evol. Microbiol. **54:**689-691.

Verregghen M, Heijerman HG, Reijers M, van Ingen J, van der Ent CK. 2012. Risk factors for *Mycobacterium abscessus* infection in cystic fibrosis patients; a case-control study. J. Cyst. Fibros. **11:**340-343.

Vester B, Douthwaite S. 2001. Macrolide resistance conferred by base substitutions in 23S rRNA. Antimicrob. Agents Chemother. **45:**1-12.

Viljanen MK, Olkkonen L. 1993. Misdiagnosis of *Mycobacterium aviumintracellulare* by rapid PCR/DNA probe tests. Lancet. **341:**380-381.

Villella VR, Esposito S, Maiuri MC, Raia V, Kroemer G, Maiuri L. 2013. Towards a rational combination therapy of cystic fibrosis: How cystamine restores the stability of mutant CFTR. Autophagy. **9:**1431-1434.

Wallace RJ, Jr., Brown-Elliott BA, Ward SC, Crist CJ, Mann LB, Wilson RW. 2001. Activities of linezolid against rapidly growing mycobacteria. Antimicrob. Agents Chemother. **45**:764-767.

Wasilauskas B, Morrell R, Jr. 1994. Inhibitory effect of the Isolator blood culture system on growth of *Mycobacterium avium-M. intracellulare* in BACTEC 12B bottles. Journal of clinical microbiology. **32:**654-657.

Watkins RR, Lemonovich TL. 2012. Evaluation of infections in the lung transplant patient. Curr. Opin. Infect. Dis. 25:193-198.

Weiss CH, Glassroth J. 2012. Pulmonary disease caused by nontuberculous mycobacteria. Expert Rev. Respir. Med. 6:597-612; quiz 613.

Welch DF, Muszynski MJ, Pai CH, Marcon MJ, Hribar MM, Gilligan PH, Matsen JM, Ahlin PA, Hilman BC, Chartrand SA. 1987. Selective and differential medium for recovery of *Pseudomonas cepacia* from the respiratory tracts of patients with cystic fibrosis. J. Clin. Microbiol. **25**:1730-1734.

Wentworth AB, Drage LA, Wengenack NL, Wilson JW, Lohse CM. 2013. Increased incidence of cutaneous nontuberculous mycobacterial infection, 1980 to 2009: a population-based study. Mayo Clin. Proc. **88**:38-45.

Whittier S, Hopfer RL, Knowles MR, Gilligan PH. 1993. Improved recovery of mycobacteria from respiratory secretions of patients with cystic fibrosis. J. Clin. Microbiol. **31:**861-864.

Whittier S, Olivier K, Gilligan P, Knowles M, Della-Latta P. 1997. Proficiency testing of clinical microbiology laboratories using modified decontamination procedures for detection of nontuberculous mycobacteria in sputum samples from cystic fibrosis patients. The Nontuberculous Mycobacteria in Cystic Fibrosis Study Group. J. Clin. Microbiol. **35**:2706-2708.

Winthrop KL, Chang E, Yamashita S, lademarco MF, LoBue PA. 2009. Nontuberculous mycobacteria infections and anti-tumor necrosis factor-alpha therapy. Emerg. Infect. Dis. **15**:1556-1561.

Woese CR, Fox GE. 1977. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl. Acad. Sci. U. S. A. **74**:5088-5090.

Wohlgemuth J. 1908. A new method for the quantitative determination of diastatic ferment. Biochem Z. **9**:1-9.

Wong YL, Ong CS, Ngeow YF. 2012. Molecular typing of *Mycobacterium abscessus* based on tandem-repeat polymorphism. J. Clin. Microbiol. **50**:3084-3088.

World Health Organization. 2013. Genes and human disease: cystic fibrosis [Online]. Available: http://www.who.int/genomics/public/geneticdiseases/en/ index2.html#CF [Accessed 29th November 2013].

Wu J, Franzblau A, Xi C. 2015. Molecular characterization of microbial communities and quantification of *Mycobacterium immunogenum* in metal removal fluids and their associated biofilms. Environ Sci Pollut Res Int. **23**:4086-4094.

Xiang H, Masuo S, Hoshino T, Takaya N. 2007. Novel family of cholesterol esterases produced by actinomycetes bacteria. Biochim. Biophys. Acta. **1774:**112-120.

Yajko DM, Nassos PS, Sanders CA, Gonzalez CL, Reingold AL, Horsburgh Jnr CR, Hopewell PC, Chin DP, Hadley WK. 1993. Comparison of four decontamination methods for recovery of M. avium complex from stools. J. Clin. Microbiol. **32:**302-306.

Yang SC, Hsueh PR, Lai HC, Teng LJ, Huang LM, Chen JM, Wang SK, Shie DC, Ho SW, Luh KT. 2003. High prevalence of antimicrobial resistance in rapidly growing mycobacteria in Taiwan. Antimicrob. Agents Chemother. **47**:1958-1962.

Yu VL. 1979. *Serratia marcescens*: historical perspective and clinical review. N. Engl. J. Med. **300**:887-893.

Zaidi S, Elidemir O, Heinle JS, McKenzie ED, Schecter MG, Kaplan SL, Dishop MK, Kearney DL, Mallory GB. 2009. *Mycobacterium abscessus* in cystic fibrosis lung transplant recipients: report of 2 cases and risk for recurrence. Transpl. Infect. Dis. **11:**243-248.

Zajc-Satler J, Gragas AZ. 1977. Xylose lysine deoxycholate agar for the isolation of Salmonella and Shigella from clinical specimens. Zentralbl Bakteriol Orig A. **237:**196-200.

Zelazny AM, Root JM, Shea YR, Colombo RE, Shamputa IC, Stock F, Conlan S, McNulty S, Brown-Elliott BA, Wallace RJ, Jr., Olivier KN, Holland SM, Sampaio EP. 2009. Cohort study of molecular identification and typing of *Mycobacterium abscessus*, *Mycobacterium massiliense*, and *Mycobacterium bolletii*. J. Clin. Microbiol. **47**:1985-1995.

CHAPTER NINE

Publications and Conference Proceedings

Patents, conference proceedings and publications relating to this thesis

9.1 Patents

S. Orenga, A. Perry, J.D Pery, C.L Preece. (2016). Enrichment and selective culture of mycobacteria. France. WO2016124863 A1

9.2 Conference Proceedings

A. Perry, J.D. Perry, C.L Preece, D. Tierney, S. Peart, F.K. Gould: Antimicrobial activity of cysteamine against antibiotic resistant pathogens isolated from cystic fibrosis and non - CF patients including *Mycobacterium abscessus* complex from lung transplant recipients. 36th ISHLT Annual Meeting, WASHINGTON DC; 04/2016

A. Perry, C.L Preece, M. Permain, C. Williams, D. Tierney, A. Robb, S. Bourke, C. O'Brien, J.D Perry: RGM medium for isolation of mycobacteria from respiratory samples of patients with cystic fibrosis (CF). Inaugural Manchester Cystic Fibrosis Conference, Manchester, UK; 04/2016

C.L Preece, A. Perry, A.L Jones, S.P Cummings, M.F Thomas, M. Brodlie, C.J O'Brien, S.J Bourke, J.D Perry: Evaluation of various culture media for improved detection of rapidly growing mycobacteria from the sputum of patients with cystic fibrosis. 29th North American Cystic Fibrosis Conference, Phoenix, Arizona; 10/2015

C.L Preece, A. Perry, J.D. Perry, S.P. Cummings, A.L. Jones, S.J. Bourke: Comparison of two chromogenic media for isolation of *Staphylococcus aureus* from respiratory samples of patients with cystic fibrosis. European Cystic Fibrosis Conference, Brussels, Belgium; 06/2015

C.L Preece: A novel culture medium for recovery of rapidly-growing mycobacteria from the sputum of patients with cystic fibrosis. Northumbria University Post Graduate Research Conference, Northumbria University; 05/2015

R. Plonga, C.L Preece, J.D Perry, P.H Gilligan: Evaluation of RGM medium for detection and identification of non-tuberculous mycobacteria from patients with cystic fibrosis. ASM Microbe, Boston; 06/2016

A. Perry, C.L Preece, S. Bourke, S. Doe, C. O'Brien, M. Brodlie, M. Thomas, A. Robb, J.D Perry: RGM: A new medium for isolation of rapidly-growing mycobacteria from respiratory samples of patients with cystic fibrosis. 15 months experience of routine use for CF respiratory samples. CF Consortium Meeting, Liverpool, UK; 11/2016

36th ISHLT Annual Meeting WASHINGTON DC April 2016

Antimicrobial activity of cysteamine against antibiotic resistant pathogens isolated from cystic fibrosis (CF) and non-CF patients including *Mycobacterium abscessus* complex from lung transplant recipients Audrey Parry, John D Perry, Clair L. Preece, Daniel Tierney, Steven Peart, Frances K Gould. Microbiology Department, Freeman Hospital, Newcastle upon Tyne, Tyne and Wear, United Kingdom, NE7 7DN. The Institute of Transplantation Freeman Hospital Newcastle Upon Tyne UNITED KINGDOM

NTRODUCTION

Background: Lung transplantation for cystic fibrosis (CF) patients colonised with pan resistant bacteria, in particular Mycobacterium abscessus complex (MABSC) may preclude them from lung transplantation due to poor outcomes. Treatment of MABSC generally consists of a three drug regime including nephrotoxic/ototoxic amikacin. Oral cysteamine is licenced for the treatment of cystinosis and has recently been reported as having good antimicrobial and anti-biofilm activity against CF pathogens including MABSC. In addition it has mucolytic activity and reduces viscoelasticity of sputum.

Purpose of the study: We evaluated the antimicrobial activity of this compound against a collection of 31 strains of CF and non- CF pathogens including isolates from lung transplant recipients. We also evaluated the interaction of cysteamine with 12 anti-pseudomonal agents against 4 strains of *P*, neruginose (Pa).

MATERIALS AND METHODS

Microdilution MIC's against 12 MABSC were performed and bactericidal activity was assessed by subculture. MIC's were performed against a further collection of 19 strains including: Pa (n=3), Achromobacter spp. (n=2) and 1 each of the following: Burkholderia multivorons, Burkholderia cenocepacia, Ralstonia mannitolylitica, Stenotrophormonas multophilla, Pandoraea pulmonicola and Inquilinus limosus. NCTC strains of E coll, S aureus, C albicans, E faecalis and 4 carbapenemase-producing Enterobacteriacae (CPE) were also evaluated.

The Multiple Combination Bactericidal Test (MCBT) was utilized to assess synergy by incorporating cysteamine at 500 mg/L with 12 agents at the systemic concentration. The four strains of Pa selected were only susceptible to colomycin.

REFERENCES

Spokening (answer¹), a wood marcaethe antinicrobial & anti-biother agent for the meanwant of spoketheous, Chartier a at Orphanet Journal of Americhement (2014-19:18994); (wom.cold.com/contant/9/1/189

Opsilization as a typical indervandancia Code, Henrich Against Expression and Unserging Pathogenes: A Patient David en inter Source Codeming. In Automic adult and Meximizine Patiential Infrantian Dimension of all Alfordindicates (2015) (102, 2018) (2019) (2019) (2019)

Promocellenia ad wares counted generative biost are in healthy adults: a plice analy, transpiriter al. Millek According Cirked Pheneteology (2010) 378–384 Table 1: Minimum inhibitory concentrations (MIC) mg/L and minimum bactericidal concentrations (MBC) mg/L of all 31 isolates tested.

SPECIES	Ref	MIC (mg/L)	MBC (mg/L)
Gram negatives			
Achromobocter sp.	3355	512	512
Achromobacter sp.	3744	256	512
Acinetobocter sp.	3741	512	512
B. cenocepacia	3453	128	128
B. multivorans	3764	512	512
C. freundii complex	3797	512	512
E. coll	NCTC 10418	512	512
I. limosus	3652	256	256
K. pneumoniae	3796	512	512
K. pneumoniae	3809	512	512
P. aeruginosa	NCTC 10662	256	512
P. aeruginosa	3808	64	512
P. aeruginosa	3411	512	512
P. pulmonicola	3651	512	1024
R. mannitolytica	3304	256	256
5. maltophilia	3501	256	512
Gram positives			
C. albicans	NCTC 90028	1024	1024
E. faecalis	NCTC 775	512	1024
5. aureus	NCTC 6571	512	1024
Mycobacteria	ήr		
M. abscessus	1007	256	1024
M. abscessus	1021	256	512
M. abscessus	1042	256	512
M. abscessus	1043	1024	512
M. abscessus	1052	512	1024
M. abscessus	1058	512	1024
M. abscessus	1064	256	1024
M. bolletli	3016	512	1024
M. bolletli	3019	256	>1024
M. massiliense	3000	256	1024
M. massillense	3009	512	1024
M. massiliense	3020	256	1024

RESULTS

The MIC's of 12 MA85C ranged from 256-1024 mg/L with bactericidal activity against 8 strains at 1024 mg/L and 512 mg/L for 3 strains. One strain was inhibited at 256 mg/L but no bactericidal activity observed at 1024 mg/L. The MIC's of the 19 other isolates ranged from 64-1024 mg/L with bactericidal activity ranging from 128-1024 mg/L for all except *C. olbicans* (see Table 1). Cysteamine at 500mg/L was bactericidal against all 4 strains of Pa and no antagonism was observed with antipseudomonal agents in the MCBT (see Table 2).

Table 2: Antibiotics tested against four strains of *P* aeruginosa at EUCAST breakpoint as single agents and in combination with cysteamine at 500 mg/L (no antagonism was observed).

Antibiotics		tibiotic ICAST b			Antibiotics in combination with \$00 mg/L cysteamine				
Instantin Stong/L)	Pa 1	Pa 2	Pa 3	Pa 4	Pa 1	Pa	Pa 3	Pa4	
Timentin	R	「肉」	R	R	5		5	5	
Ceftazidime	R	8	R	R	5	5	5	5	
Ciproflexacin	R	8	R	R	5	5	5	\$	
Tazocin	R	R	R	R.	5	.5	- 5	5	
Colomycin	5	5	5	5	5	5	.5	\$	
Meropenem	R	R		8	5	5	5	5	
Aztreonam	R	8	8	R	5	5	5	5.	
Tobramycin	R	R	R	R	5	-5	-5	5	
Doripenem	R	8	R	R	3	.5	5	5	
Tempcillin	R	R	R	R	1.0	5	5	5	
Fostomycin	R	8	R	R	3	3	5	8	
Co-trimoxazole	R	8	R	R	5	5	5	5	
Cysteamine	.5	5	5	5	1.5	15	5	5	

CONCLUSIONS

A study by Devereux et al, 2015 demonstrated cysteamine has in vitro properties potentially therapeutically beneficial in cystic fibrosis (CF). In this study they investigated the antimicrobial and mucolytic activity of cysteamine against the complex biologic matrix of CF sputa. The results of our study are comparable with those of other studies that demonstrate that cysteamine has potential as an antimicrobial agent for the treatment of severe infection caused by pan resistant bacteria and may therefore have potential for treatment of post lung transplant patients with or without CF and warrants further evaluation. The tolerability and antimicrobial activity of cysteamine is due to be assessed in CF patients.

RGM: A new medium for isolation of Rapidly Growing Mycobacteria from respiratory samples of patients with cystic fibrosis

Inaugural Manchester Cystic Fibrosis Conference 21st April, 2016

*Audrey Perry¹, Clair L Presce¹³, Caroline Williams¹, Michelle Permain¹, Deniel Tiermey¹³, All Robb¹, Steve Bourke¹, Onli O'Brien¹, John D Perry¹ Neurobiology Description Constrained Transmission (Sector Press, University Perry). Control Description of Perry¹ il Centre, Royal Victoria Inferna (*audrey.perny@nast.che.uk)

BACKGROUND

Rapidly-growing mycobacteria may be significant pathogens in patients with cystic fibrosis (CF) leading to a decline in lung function. In the European CF population, the predominant species of mycobacteria are rapidly-growing species, especially Mycobacterium abscessus complex (MABSC) which consists of M. abscessus subsp. abscessus, subsp. massiliense and subsp. bolletil. The CF Trust recommend submission of sputum for AFB culture annually. RGM medium (see Figure 1) is a novel, highly-selective agar medium for the isolation of rapidly-growing mycobacteria from patients with CF. All CF respiratory samples are inoculated direct onto the agar with no decontamination required. Although not yet commercially available, this medium can be provided by the Freeman Hospital Microbiology department. We report here, our experience of using RGM medium for culture of respiratory samples from patients with CF over a 15-month period. We compared these results to traditional AFB cultures performed at Newcastle PHE laboratory, Freeman Hospital during the same time period.

MATERIALS & METHODS

time period for AFB culture .

1. Between December 2014 and February 2016, 4408 clinical samples from 625 patients with CF were cultured onto RGM medium. The main specimen types were sputa (n = 2443) and cough swabs (n = 1557). Culture plates were incubated for 10 days at 30°C and read after 4, 7 and 10 days of incubation.

RESULTS (see table 1)

1. Fifty six of 625 patients submitted at least one sample from which mycobacteria were recovered (prevalence: 8.9%). Of the patients who were colonized or infected, the implicated species included M. abscessus complex (60.7%), M. chelonae (16.1%), M. fortuitum (1.8%), M. mucogenicum (1.8%) and Mycobacterium species (19.6%). Sputum samples were more likely to yield mycobacteria than cough swabs (8.5% versus 1.9% positivity, respectively). However, for 15 patients, mycobacteria were first isolated by culture of cough swabs.

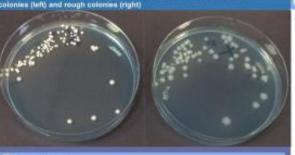
mycobacteria were confirmed to species level using rpoB, hsp65 and sodA sequence cluster analysis, Colindale, UK . 2: We extracted data from the laboratory database for frequency of submission of sputum samples sent to PHE Newcastle during the same

Colonies were identified using MALDI-TOF mass spectrometry (Bruker) and

2. Of 625 patients screened using RGM between 21/11/14 - 13/02/16, for 412 patients (66%) no sample was sent for AFB culture. For 213 patients, 469 samples were cultured for AFB. Seventy three (15.5%) cultures were contaminated and no report could be issued with respect to isolation of AFB. 22 patients were positive for AFB (prevalence 10.8%).

Table 1. Mycobacteria recovered from 4408 respiratory samples submitted by patients with CF using RGM medium and comparison with surveillance using formal AFB culture.

		Number of samp	les and patie	nts (n) teste	d using RGM medium.		No. of patients tested (n)
	Total	Cough Swabs	Sputa	BAL	Miscellaneous	Patients	using formal AFB culture
-	4408	2443	1557	131	277	625	213*
Total mycobacteria	195	46	133	4	12	56	22"
M. abscessus complex	168	40	114	Z	12	34	13
M. chelonae	10	2	8	0	0	9	3
M. fortuitum	2	0	2	0	0	1	0
M. avium complex*	0	0	0	0	0	0	6
M. mucogenicum	1	0	1	0	0	1	o
M. tuberculosis*	0	0	0	0	0	O	1
Other Mycobacterium species	14	4	8	2	0	11	0


RGM is not designed for iss lation of slow growing mycobacteria

REFERENCES

C. L., et al. (2018). "A navel culture real fit fibratic " J Cast Fibras 25(2): 186-184

and C. T. Grone (2014). "Myraim Med Microleki 66(9: 20): 1241-1246

469 camples cultured from 213 patients. Two different Mycobocteniam spp isolated from one patient so

Figure 1: RGM medium showing pure growth of M. abscessus smooth colonies (left) and rough colonies (right)

CONCLUSIONS

- Culture on RGM medium can be embedded into routine laboratory methods and allows the culture of all respiratory samples (including cough swabs) without decontamination of samples.
- This approach allowed detection of mycobacteria in samples from 56 patients whereas routine surveillance of the same patient population (n = 625) using formal AFB culture allowed detection of mycobacteria in only 22 patients. This was mainly due to the fact that sputum samples were not submitted for formal AFB culture from two thirds of this patient group during the 15-month period.
- Mycobacteria can be recovered from cough swabs using RGM medium in patients who are not producing sputum whereas such samples are not deemed appropriate for AFB culture.
- Our experience is that use of RGM medium offers a simple and straightforward method for enhanced surveillance of Nontuberculous Mycobacteria (NTM) disease in patients with CF. Annual submission of samples for formal AFB culture may still be necessary to recover slowgrowing mycobacteria.

繼

25th Annual North American Cystic Fibrosis Conference Oct 2015, Phoenix, Actorsa

Evaluation of various culture media for improved detection of rapidly growing mycobacteria from the sputum of patients with cystic fibrosis

Preece, CL*, 5.3, Perry, A¹, Jones, A.L.², Cummings, S.P.², Bourke, S.J.³, Robb, A.¹, Thomas, M.F.⁴, Brodlie, M⁴, O'Brien CJ⁵, & Perry, J.D.^{1,2}

NTRODUCTION

Background: Isolation of non tuberculous mycobacteria (NTM) from the sputum of patients with cystic fibrosis (CF) is particularly challenging due to the overgrowth of many more rapidly growing species that colonise the lungs of patients with CF^{1,2}. Fungi and Gram negative bacteria can quickly overgrow and conceal any mycobacteria², with decontamination protocols also potentially reducing the yield of mycobacteria¹. Recently, extended incubation of Bivrkholderia cepacia selective agar (BCSA) has been recommended as a suitable and effective culture method for rapidly growing NTM from the sputum of patients with C², however variable cepacia media offer inconsistent results in terms of isolation rates of NTM. With this in mind, a number of cepacia media were evaluated against both Middlebrook selective medium and a novel RGM medium⁴

MATERIALS & METHODS

File conversentially available pre-pound media for the isolation of Buckhalderio operas complex (BCC) were assessed and compared with two media designed specifically for the isolation of rescolateria (RGM mediam and Middletrock 7HL1 settcher agait. All server media were challenged with LAP isolates of rapid-proving myclosteria, 43 disalters of RCC and 142 coldets belonging to other species. Each dostine was supervised in 1 ten of same [5:85%) to a turbisity equivalent to a McCalent 25 standard (approximately 1.5 x 10° CHU/m) and a multipoint necellator was asset to delver inclusion and approximately 1 at per spot (Lo. appreximately 1.5 x 10° CHU/m) and a multipoint necellator was asset to delver inclusion and approximately 1 at per spot (Lo. appreximately 1.5 x 10° CHU/m). CPUL All media were inclusted for 10 days at 18°C.

Table 2: Number of non mycobacteria isolates recovered on various selective again after ten days of incubation at 30°C

RESULTS

Evaluation of seven selective agars for supporting the growth of mycobacteria. Clear differences were revealed between the five different brands of BCSA in terms of their ability to support the growth of mycobacteria. For example, on Cepacia selective agar (bioMérieux) 95.9% of mycobacteria generated growth within 4 days of incubation compared with only 40.1% of isolates on Oxioid 8. cepacia agar (Table 1). After ten days of incubation, ten isolates had still not grown on Oxoid 8. cepacia agar including M. abscessus complex (MABSC) (n = 4), M. chelonoe (n = 3), M. Naterense (n = 2) and M. mucogenicum (n = 1). All isolates were recovered on Cepacia selective agar (bioMérieux) whereas other brands of BCSA failed to support the growth of between four and eight isolates. All isolates were recovered on Middlebrook 7H11 selective agar and RGM medium.

Evaluation of seven selective agars for inhibition of non-mycobacteria.

Table 2 and Figure 1 provides insights into the selectivity of the seven selective media with 185 non-mycobacteria. All of the five brands of BCSA showed effective inhibition of *P. oeruginosa*, which is an essential attribute of such media. Inhibition of other species was more variable however. For example, of 28 isolates of *S. ouveus* (mainly methicillin-resistant strains), 21 (75%) were able to grow on 8D OFFBI. medium whereas only three isolates were able to grow on Oxoid 8. cepacia agar and bioMérieux BCSA. All brands of media for isolation of 8CC showed a poor ability to inhibit the growth of fungi – particularly Aspergillus spp. and yeasts. Overall, bioMérieux BCSA showed the greatest selectivity and 8D OFFBI, showed the weakest selectivity among the five brands tested.

Although Middlebrook selective medium is designed specifically for the isolation of mycobacteria from clinical samples, the growth of other non-mycobacterial species was relatively common with 73 out of 186 (39.25%) isolates able to grow. Overall, its selectivity was inferior to the two most selective media for BCC, although it was able to inhibit the growth of *Aspergillus fumigatus*. RGM medium was by far the most selective of all of the agars tested, with 90% of non-mycobacteria inhibited including all fungi and Gram-positive bacteria.

	•	BCSA	Cepakia telective agar	R. Cognette agar	Coparis	CHINE	RSM medians	Millinger
		bioMórias:s	bioMérieae	Onold	80	80	N/A	Laboratoria
		33431	44347	PORMS	258150	254485	14/4	PP4058
MARIC	*4							
Die 4		51.6	29.8	10.4	258	25.6	56.5	/ 198.5
Der 7		81.9	96.8	91.8	96.8	96.0	10.5	10.7
Day 10		82.9	300	85.7	100	15.1	100	300
Mt. chelonae	41							
264		87.7	0007		85.3	100	1.82	100
2017		3.00	100	48.0	95.8	209	190	200
Day 10		4.000	000	90.	87.7	108	190	200
Other species*	10							
Day 4		. 18		18	.76	40	10	39
Day T		34	80	- 66		40	-	10
Per 11		.10	300		- N	15	1.80	100
Tatal myoshasteria	347							
Day 4		85.4		40.5	94.0	80.8	44.6	-47.3
Die 7		HL.B	94	88	95.8	10.1	88.6	97,8
Die 18		84.5	100	98.2	92.3	97.8	186	900.

ACKNOWLEDGEMENTS

The authors are graphic for the support provided by staff of the Eventian Respiral Microsology Department, Newcastle upon Type, UK. Meare also graphic to St. Wiscent's University Hospital, Dablin, Republic of Vetend, and Public Health England, Newcastle upon Type, UK. for

		104	Deporta solocities agint	R. cepacia Apar	Ceperia madium	offer	-	THILday
		biolitérieus	SoMerina	Osold	90	60	8/4	E&O Laboratorio
		20681	44147	PODDAS	256180	254483	6/8	PHONE
Gram negatives	141	54	80	58	59	77.	- 18	- 10
Distantiantername	33	- 4	0	2	z .		. 6	1
A opposition.		1	2.8				.3	2.6
Admetalisation ap-	1.				0			0
8 opporte complexi	- 40	24	40	24	2.0	48		.29
St optyleministry /	1.	1.14				1.1		
E. minicate	1.1		1		+	£.71		1.1
N://fueroze	1		0					100
2. Speakur	100	- 0	1		4		1.1	1.
All untersholls	1.4		- Q		0	4		. 0
N Seveneets	1	1	1.		4	1 C		
defendentivel ap.	1		1		4 .	1		±
R umugment	- 11							
Pandonee spa							1	
A remelative					#		. p	T
5 methodala	4		1	1				1.6
dram pasitions	11		44		58	22		. 7
A saledla	C.1		0	100	6.:	a.:		0.0
Estatements (pp)	1.		. 0					
S. normal	24		10	1.0	34	28.	1.0	
Internetation	4		12					. 0.
Taket and Fungi								
4. (imigation	1.1	- 4	1		1	2		. 0
A DETEN	1	- 1	1	1	1	£ 5.1	6	
Condular spin.	1	- 4		× .				4
it replices	1.1		. 0		4.2			5.6
Concernant .	1.1	0			X	1.5		
6.prolificane	114		+		4	6		- 0
Tutal	185	81	29	47		301	18	71



Figure 1: Growth of non-invectoacteria at day 7 on various selective media. Species on Columbia blood agar control plate Achromobacter sp. (n = 2), Ackretobacter sp. (n = 1), BCC (n = 2), P aeruginosa (n = 11), C. freundi (n = 1), M. morganii (n = 1), S. małłophilia (n = 2)

CONCLUSIONS

RGM medium supported the growth of all isolates of mycobacteria and was more selective against other bacteria and fungi than any other culture medium. Media for the isolation of BCC varied in their ability to support the growth of BCC and mycobacteria as well as their ability to inhibit other flora. A notable feature of RGM medium was its ability to prevent the growth of yeast, fungi and Gram positive bacteria with no isolates of these demonstrating growth within the ten days of incubation. From our analysis we conclude that RGM medium offers a superior option than any of the other from the sputum of patients with CF.

It is anticipated that RGM medium will be made commercially available in due course but until then, the authors are committed to making the culture medium freely available to clinical laboratories who wish to independently verify the findings of this study.

REFERENCES

POSTER NUMBER 376

Comparison of two chromogenic media for isolation of *Staphylococcus aureus* from respiratory samples of patients with cystic fibrosis

Cystic Fibrosis Conference. June 2015, Brussels, Belgium

Preece, C.L. ^{1,2}, Perry, A¹, Jones, A.L. ², Cummings, S.P. ², Bourke, S.J.³ & Perry, J.D.^{1*}

INTRODUCTION.

Background: Staphylococcus aureus is a significant pathogen in pulmonary infections associated with cystic fibrosis (CF). Isolation of *S. aureus* from sputum may be challenging due to the large number of other bacteria and fungi commonly present, including Gram-negative species that frequently possess resistance to multiple antimicrobials. It is therefore necessary to use a local uncer medium that has a high degree of selectivity for *S. aureus*. Isolation of *S. aureus* is further complicated in CF by the increasing occurrence of small-colory variants (SCV)^[1]. Children and adolescents are often colonised with *S. aureus*, however SCV are predominantly found to be associated with advancing age, and also said to be linked to chronic and recurrent infections^[2]. These SCV can be challenging to detect largely due to their reduced growth rate, atypical pin point colory morphology and uncharacteristic biochemical properties^[3]. They may consequently remain undetected when using conventional methods and their frequency may be largely underestimated in patients with CP⁽⁴⁾.

Purpose of the study: chrom ID S. aureus ELITE is a new chromogenic agar medium for the isolation of S. aureus that has improved selectivity. It is also optimised, by the inclusion of specific growth factors, for the isolation of auxotrophic strains of S. aureus (SCV). The aim of this study was to compare the performance of chrom ID S. aureus ELITE with an established chromogenic medium for the isolation of S. aureus from respiratory samples from patients with CF.

MATERIALS & METHODS

Two chromogenic agar based media, chromID S. oureus (chromID) and chromID S. oureus ELITE (chromID ELITE) (bioMérieux, Marcy-l'Étoile, France), were compared. These pre-prepared media were evaluated with 231 respiratory samples which included cough swabs (n = 108) and sputum samples (n = 123) from 171 distinct patients with CF. Sputum samples were homogenized (1:1) with sputasol, and 10 µL was cultured onto each medium. The clinical material from cough swabs was dispersed into 2 mL of saline (0.85%) and 10 µL was cultured onto each medium. Plates were incubated at 20 h, 48 h, and 72 h and any colonies showing expected colouration were identified using MALDI-TOF MS (Bruker, UK).

RESULTS

5. oureus was isolated from 52 samples (22%) (See Table 1). The sensitivity of chromID was 62% after 20 h of incubation, rising to 79% after 72 h, chromID EUTE showed a sensitivity of 79% after 20 h, rising to 92% after 72 h (P = 0.12). Fewer false positives were encountered on chromID EUTE (n = 68) compared with chromID (n = 146) Table 2 shows the numbers of each species generating coloured colonies on the two chromogenic media after 72 h incubation.

Figure: 5. aureus isolated from sputum is shown as prominent pink colonies on chromID ELITE (a) and green colonies on chromID (b)

Table 1: Sensitivity of two chromogenic media for isolation of 5. aureus

		chromID 5. aureu:		chromID S. aureus ELITE			
	20 h	48 h	72 h	20 h	48 h	72 h	
Number of positive specimens	32	39	41	41	43	48	
Sensitivity (%)	62	75	79	79	83	92	
False Positives	23	102	146	9	38	68	
Positive Predictive Values	58	28	22	82	53	41	

Table 2: Coloured colonies recovered on two chromogenic

Species	chromID	ChromID ELITE	Species	chromID	chromID ELITE	
A. radicidentis	1	0	K pheamoniae	1	0	
A. sylasosidaru	1	8	K. vhizophilio	1	0	
8. celere	25	13	L. Inctis	1	0	
A. cenacepacia	0	2	M. Arteus	14	3	
8. cereus	1	1	Microbecterium sp.	1	1	
Accillus upp.	1	2	M. aslovnsir	0	1	
8. multivorans	0	1	N. perflava	1	0	
drevibacterium sp.	1	0	Ochrobactrum sp.	4	0	
C albicans	13	0 P. serugin		7	11	
C indologenes	5	4	R. mucilaginosa	18	2	
C. peropuliosis	9	0	5. epidermidis	19	4	
E. fonckum	0	1	5. hoemolyticus	1	1	
G. adjocens	2	0	5. horninis	2	0	
G. hannalysans	0	1	S. mettaphilia	12		
Gemello sp.	4	0	5. pentnari	0	1	
I. Betostar	1	4	S. wareeri	0	1	
			False Positives	146	68	

CONCLUSIONS

chromID ELITE is an effective medium for the isolation of *S. aureus* with challenging clinical samples that frequently contain small colony variant isolates of *S. aureus* as well as a diversity of other species regularly isolated from CF patients including many with antibiotic resistance. It was notable that after 18 h incubation, chromID ELITE displayed equivalent sensitivity to chromID that had been incubated for 72 h. An additional advantage of chromID ELITE was that fewer false positive colonies were recovered. In terms of sensitivity and specificity, chromID ELITE is a superior option to chromID for recovery of *S. aureus* from respiratory samples from patients with CF.

ACKNOWLEDGEMENTS

The authors are most grateful to bioMérieux, La-Balme-les-Grottes, France for provision of chromogenic media and sponsorship of this study and to Actavis UK Ltd, Weybridge, Surrey for part sponsorship of the conference.

REFERENCES

	er, 5, et al. (2007) Prevalence and clinical significance of Stuphylococcus survey inval-colory variants in cyre long classes. J Clin Microbiol. 45(1): 168-72.
	i, S., et al. (2013) Provalence and genetic diversity of Staphylococcus durnus setal-colony variants. In cys spaciests. Clin Microbiol Infect. 19(1): 77-84
	U.B.C. (2014) Small colony variants (SCH) of Staphylococcus avreus - a bacterial survival strategy. Infect Sen 8, 515-22
4. Gart	Ia, L.G., et al. (2013) Artibiotic activity against small-colony variants of Staphylocaccus asreas: review of minul and clinical data. J. Arthmicrob Chemother. 48(7): 1455-64.

ABSTRACT NUMBER 61

Northumbria University Post Graduate Conference. May 2015

A novel culture medium for recovery of rapidly-growing mycobacteria from the sputum of patients with cystic fibrosis

Clair L. Preece ^{3,6}, Audrey Perry ³, Bethany Gray ⁶, Dervla T. Kenna ⁵, Amanda L. Jones ⁸, Stephen P. Cummings ⁶ Ali Robb ², Matthew F. Thomas ⁶, Malcolm Brodlie ⁶, Christopher J. O'Brien ⁴, Stephen J. Bourke ^{*}, John D. Perry ^{3,6} The Newcastle upon Tyne Hospitals

NTRODUCTION

Background: Non-tuberculous mycobacteria (NTM) are ubiquitous environmental organisms found in soil and water that are increasingly associated with pulmonary infection in patients with cystic fibrosis (CF). Infection with NTM is difficult to recognise and treat [1] with prevalence in sputum estimated at 7 to 24% for patients with CF [2]. The predominant species of NTM within the CF population in the UK, Europe is *Mycobacterium obscessus* complex (MABSC) [3-5] which comprises three subspecies: *Mycobacterium abscessus*, *Mycobacterium bolletii* and *Mycobacterium massilense*. Infection with MABSC is associated with a decline in lung function [3,6] and may cause severe complications post lung transplantation [7].

Purpose of the study: Detection of NTM is routinely achieved by culture of sputum onto both solid media, e.g. Lowenstein-Jensen medium [8], and liquid broth, e.g. the mycobacterial growth indicator tube (MGIT). Culture in a liquid broth medium can provide more rapid results as well as an increased yield of mycobacteria [9]. However the rate of contamination with non-mycobacterial species is greater and many samples are discarded due to the overgrowth of faster growing microorganisms that frequently colonize the lungs of CF patients. *Burkholderia cepacia* selective agar (BCSA) has been recommended as a convenient and effective culture medium for the isolation of rapidlygrowing NTM, however, not all NTM will grow on BCSA and overgrowth, particularly by fungi and Gram-negative bacteria, remains a problem [10]. A novel selective culture medium (RGM medium) was developed and evaluated for the isolation of rapidly-growing NTM from the sputum of children and adults with CF.

MATERIALS AND METHODS

A total of 115 isolates of rapidly-growing mycobacteria and 98 other bacteria and fungi were inoculated onto RGM medium after initial testing with a selection of growth factors and antimicrobials. These were assessed for growth at 30°C for seven days. A total of 502 consecutive sputum samples were collected from 210 patients with CF. Each sample was homogenized and cultured onto both RGM medium and BCSA (bioMérieux, France). Cultures were incubated for 10 days at 30°C and read at four, seven and ten days. All colonies on both media were identified using MALDI-TOF MS (Bruker, UK) and any NTM confirmed by rpoB, hsp65 and sodA gene sequencing (Public Health, Colindale, UK) Table 1: Mycobacteria recovered from culture of 502 sputum samples on Burkhoideria cepecia selective agar (BSCA) and RGM medium.

SPECIES	TOTAL		BCSA	RGM		
	(office readland		Sandbury (%)		Sendbully (%)	
M. obscessus	鼓	18	42	31	100	
M. massiliense	11		33	11	100	
M. cheisnae	4	1	17	5	83	
M. avium	2	0	0	2	100	
M. Botzevense	2	σ	0	2	100	
M. salmoniphilam	z	0	0	2	100	
M. mucogenitum	1	0	0	1	100	
Total mycobacteria	55	-17	31	54	56	

FREWER: M. advancesur isolated from sportain shown as prominent white calculate on RGM mediam (a) and anable to be detected on BCSA due to overgrowth of hingi and yearts (b)

Table 2: Other species recovered from culture of 502 sputum samples on Burkholderic capacia selective agar (BSCA) and RGM medium.

SPECIES	BESA	RGM	SPECIES	BCSA	RGM	
Number of isolates (n)	100 1	1.12	Number of isolates (n)	1715	200	
Fungi and Yeasts	226	. 0	Gram negative	136	-46	
A. kahar	1		Pseudomonas spp.	14	8	
A fuerigator	69		R capacia camples	80	28	
A. terrese	6 0 5 mathaphále 121 0 Achromoberter spa		24	0		
Veasile			22	28		
E. detenaticida	tidi 23 G Entershecteriaceae		34	2		
5. opkopennum	5	5 G A.Sweene		4	2	
Gram positive	547	đ	Ochrobectrum app.	4.	0	
Staphylecoccus upp.	29		Pandorano upp.	3	3	
Enterococcus app.	14		A heatfill	1	0	
Streptococcus app.		.0	M. redictalerana	4.	0	
G. odlacene		0	R. midlabocher	1	0	
L patacase/	2	0	Spihingomonet sp.	1	0	
M. Arteur	1	.0	D. ackdoworone	0	1	
W. cyriaclgeorgica	2	0	Tetal non-mycabacteria	419	46	

RESULTS

NAME AND ADDRESS OF

A total of 114 out of 115 mycobacteria grew on RGM medium within seven days of incubation, and only one isolate of *M. obscessus* failed to grow, but did grow on sub culture. Of 98 non-mycobacteria inoculated onto RGM medium, 92/98 (94%) were completely inhibited including all Gram-positive and fungal isolates. All 213 isolates grew well on control media.

Results with sputum samples showed that out of 502 samples tested from 210 distinct patients, 55 samples from 33 distinct patients yielded NTM giving an overall prevalence of 15.7%. Twenty one of the 210 patients were colonised with MABSC (prevalence: 10%). Table 1 shows the numbers of each species recovered by the two media. RGM medium enabled the detection of NTM from 54 of 55 positive samples whereas BCSA recovered NTM from 17 of 55 positive samples (sensitivity: 98% vs. 31%; $P \le 0.0001$). For patients who had NTM found in their sputum (n = 33), 23 were detected using RGM only, one was detected using BCSA

(n = 33), 23 were betected using KGM only, one was detected using BCSA only (M. chelonae) and nine were detected using both media

 $\{P \le 0.0001\}$. A notable feature of RGM medium was its ability to prevent the growth of fungi and Gram-positive bacteria and no isolates of either of these groups were recovered from 502 sputum samples during ten days of incubation (Table 2).

CONCLUSIONS

RGM medium offers a simple and effective culture method for the isolation of rapidly-growing mycobacteria in sputum samples from patients with CF. This method eradicates the requirement of lengthy decontamination steps of samples prior to culture, which could potentially effect the viability of NTM. The availability of this medium allows for the systematic screening of all sputum samples routinely referred for culture from patients with CF.

ACKNOWLEDGEMENTS

The authors are grateful for the support provided by staff of the Freeman Hospital Microbiology Department, Newcastle upon Tyne, UK. We are also grateful to St. Vincent's University Hospital, Dublin, Republic of Ireland, and Public Health England, Newcastle upon Tyne, UK, for contributing isolates of mycobacteria.

Poster by CLAIR PREECE (PhD Student, Year 2, Faculty of Health & Life Sciences) simal: clair.preece@northumbria.ac.uk Tel: 0191 2231226

SUNDAY-373

Evaluation of RGM Medium for Detection and Identification of Nontuberculous Mycobacteria from Patients with Cystic Fibrosis Rongpong Plongla^{1,2}, Clair L Preece³, John D Perry³ and Peter H Gilligan^{1,4}

THE UNIVERSITY. 1.1 OF NORTH CAROLINA of SHAPES HILL Contact Infla Millander Christel Laboratories Michaeles Chronic Laterative LIAC Konpros Di Minning Dr Chapsel Hill, NC 27514 Phone: \$84-304-1443 Rongsong_Portpla@inol.un..ob/

¹ UNC School of Medicine; ² King Chulalongkom Memorial Hospital and Chulalongkom University, Bangkok, Thailand; ³ Freeman Hospital and Northumbria University, Newcastle upon Tyne, UK: ⁴ UNC Health Care System, Chapel Hill, NC, USA

Objectives: We evaluated the identification of NTM on a novel selective medium (RGM) using MALDI-TOF MS and to determine the recovery of NTM on this medium from CF respiratory speciments. Methods: 41 archived isolates were grown on RGM and Burkholderia cepacia selective agar (BCSA). After 72-95h incubation at 30°C, archived isolates were identified by MALDI-TOF MS. 869 consecutive CF respiratory samples, including 177 specimens with concomitant AFB cultures (AFBC), were inoculated directly on RGM and BCSA and were observed for 4 weeks, MALDI-TOP MS or sequencing of 16s rRNA. gene was used to identify the organisms. Results: In MALDI-TOF MS study, all NTM grew on both media could be correctly identified by MALDI-TOF MS, except 1 M. immunogenum on BCSA. RGM medium showed a significantly higher sensitivity (96.9%) for detection of mycobacteria in 859 samples than BCSA (34.7%) (P = + 0.0001). The sensitivity of RGM medium (93.2%) was also significantly higher than that of formal AFB culture (47,7%) when compared using a subset of 177 samples (P = 0.0001). Conclusion: RGM has a higher recovery rate of NTM and is more selective than BCSA. MALDI-TOF MS can be used to identify mycobacteria on RGM.

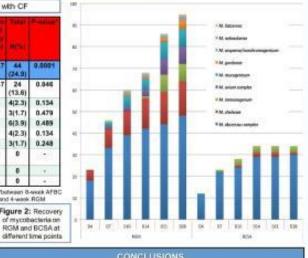

- Nontuberculous myoebocteria INTMI are pathogens in patients with cystic fibrosis (CF). Overgrowth of cultures with bacteria or fungi is a challenge for the recovery of NTM.
- RGM medium (RGM) is a novel selective agar containing OADC supplement and 4-entimicrobial mixture, and is designed to improve detection of NTM.
- We evaluated the identification of NTM on this medium using MALDI-TOF MS (bioMérieux) and recovery of NTM on RGM from CF respiratory specimens.

MATERIALS AND METHODS

MALDI-TOF MS Study: 41 archived isolates (Table 1) were grown on RGM and Burkholderia capacia selective apar (BCSA). After 72-96h incubation at 30°C, archived Isolates were identified by MALDI-TOF MS

Clinical specimens: 889 Respiratory specimens (Table 2) from 493 CF patients were prospectively collected from December 2015 to April 2016. Specimens were directly plated on RGM and BCSA. On RGM and BCSA. growth was observed at 4, 7, 10, 14, 21 and 28 days of Incubation at 30°C in all: AFB outpute (177 samples from 159 patients) was inoculated into liquid (MGIT) and solid media (LJ) after double decontamination with NALC-NaOH and oxalic acid. AFBC was examined weekly for B weeks.

Organism Identification: MALDI-TOF MS (bioMérieux, Durham, NC) was used to identified RGM and becteria. For mycobacteria, spectra were analyzed using bM Wtek MS research use-only system (RUO) with SARAMIS v4.12 database. Confidence value of ≥ 75% is acceptable. Sequencing of 16s rRNA gene was used to identified slow-growing mycobacteria



complex (blue arrow) and M. avium complex (red arrow) on RGM

Organism	4- week RGM N(%)	Sen W (%)	4-week BCSA N(%)	Sen at y??	Total N(%)	P-value	4	2323	ALCON.	の一日日	North AFRIC	2.5 4.5	Takat H(%)	
Mycobacteria	95 (10.9)	96.9	34 (3.9)	34,7	98 (11.3)	<0.0001	41 (23.2)	93.2	7 (3.9)	15.9	21 (11.9)	47.7	44 (24.9)	9.
M. abscessus complex	48 (5.5)	100	30 (3.4)	62.5	48 (5.5)	<0.0001	23 (13.0)	95.8	4(2.3)	16.7	16 (9.0)	65.7	24 (13.6)	0
M. chelonse	16(1.5)	100	1(0.1)	6.3	16(1.8)	0.0003	4(2.3)	100	2(1.1)	50.0	0	+	4(2.3)	0
M. Immunogenum	8(0.9)	72.7	3(0.3)	27.3	11(1.3)	0.228	2(1.1)	66.7	1(0.6)	33.3	0		3(1.7)	0
M. avium complex	8(0.9)	100	0		B(0.9)	0.013	5(2.8)				5(2.8)		6(3.9)	0
M. mucogen/cum	8(0.9)	100		-	8(0.9)	0.013	4(2.3)				0		4(2.3)	0.
M. gordonee	4(0.5)	100			4(0.5)	0.134	3(1.7)				0		3(1.7)	0
M. arupense/ nonchromogenicum	1(0.1)	100		1	1(0.1)		0	3	۰		0		0	1.8
M. nebraskense	1(0.1)	100	. 0		1(0.1)	1.01		1.00			0		0	
M. Natzerena	1(0.1)	100	0		1(0.1)	10.00	0			. 4	0	34.3	0	1.1
TABLE 4: Other spec	ies reco	vere	d on RG	M, B	CSA and	AFBC fr	om CF	respi	ratory sp	pecim	ens		utwaan 8- d 4-waak	
		4-wee		eak	Total						Testal	E 15	gure 2	: Re

Organism	4-week RGM N(%)	4-week BCSA N(S)	N(%)	REGMI MING	BCSA NCS)	ALBC MUST	MEN
Bacteria and hungi	95 (10.9)	243 (28.1)	254 (29.2)	22 (12.4)	87 (49.2)	73 (41.2)	89 (50.3)
Burkholderla spp.	42(4.8)	54(6.2)	54(6.2)	9(5.1)	9(5.1)	Overgrowth	
Other nondermenters	31(3.6)	57(6.6)	63(7.5)	9(5.1)	23(12.9)	on AFBC	
Enteric Gram-negative	1(0.1)	5(0.6)	5(0.6)	1(0.6)	2(1.1)	•MGIT 6 (3.4)	
Gram-positive	1(0.1)	6(0.7)	7(0.8)	0	2(1.1)	14	
Molds	0	55(6.3)	55(6.3)	0	25(14.1)	45 (25.4)	
Candida spp.	7(0.8)	55(8.3)	56(6.4)	0	21(11.9)	Both	
Trichesperon spp.	13(1.5)	11(1.3)	14(1.6)	3(1.7)	5(2.8)	21 (11.9)	

archived isolates grown on RGM and		Nei la	IF MS on 41 BC:SA Growth ID 10 10 11 11 5 5 2 2 3 2		TABLE 2: Type of specimens			
Organism (n)	RGM		BCSA		Specimen Type	BCSA	AFBC	
	Growth	10	Growth	80	Total	869	177	
M. abscessus subsp. abscessus (11)	11	-11	10	10	Sputum/	507 (58.4%)	133 (75.1%)	
W. abscessus subsp. massiliense (11)	11	-11	-11	- 11	tracheal aspirate			
M. chelonae (5)	5	5	5	5	BAL fluid/ bronchial wash	48 (5.5%)	40(22.6%	
M. fortuitum complex (6)	6	6	2	2				
M. immunogenum (3)	3	3	3	2	Deep pharyngeal	314 (36.1%)	4 (2.3%)	
M. mucogenicum (5)	5	5	1	1	swab	[30.179]		

 RGM has a higher NTM recovery rate and is more selective than BCSA. MALDI-TOF MS can be used to identify mycobacteria on RGM. There is a potential to obviate the AFBC. Significance of mycobacteria other than M. abscessus complex in CF needs to be studied. More samples are needed to justify direct recovery of M. avium complex on this medium

John D. Perry has received funding for Research or Consultancy from diagnostics companies including bioMenico. Recton Dickinson and Lab M

RGM: A new medium for isolation of Rapidly Growing Mycobacteria from respiratory samples of patients with cystic fibrosis 15 months experience of routine use for CF respiratory samples

CF Consortium meeting 29th November, 2016

Audrey Perry¹, Clair L. Preece², Steve Bourke², Simon Doe², Chris O'Brien⁴, Malcolm Brodile⁴, Matthew Thomas², All Robis³, John D Perry¹ Microbiology Department, Freeman Hospital, Newcastle upon Tyne, Tyne and Wear, NE7 7DN. ²Adult & Paediatric Cystic Fibrosis: Units, Royal Victoria Infirmary, Newcastle upon Tyne, Tyne and Wear, NE1 4LP.

Background:

Non-tuberculous mycobacteria (NTM) are ubiguitous environmental organisms found in soil and water that are increasingly associated with pulmonary infection in patients with cystic fibrosis (CF). Infection with NTM is difficult to recognize and treat with prevalence in sputum estimated at 7 to 24% for patients with CF. The predominant species of NTM within the CF population in the UK, and several other European countries, is Mycobacterium abscessus complex (MABSC) which comprises three subspecies: Mycobacterium abscessus subsp. abscessus, Mycobacterium abscessus subsp. bolletii and Mycobacterium abscessus subsp. massiliense. Infection with MABSC is associated with a decline in lung function and it may cause severe complications post lung transplantation. There is also convincing evidence that the prevalence of infection by MABSC is increasing in the CF population.

New CF guidelines (2016)

Recommendation 1: The potential for cross infection with NTM (particularly *M. abscessus* complex) between individuals with CF should be minimized by following National Infection Control Guidelines.

Recommendation 2: Cultures for NTM should be performed annually in spontaneously expectorating individuals with a stable clinical course.

Recommendation 3: In the absence of clinical features suggestive of NTM pulmonary disease, individuals who are not capable of spontaneously producing sputum do not require screening cultures for NTM.

Recommendation 4: The CF Foundation and the ECFS recommend that culture and smears for acid fast bacilli from sputum should be used for NTM screening.

Recommendation 5: The CF Foundation and the ECFS recommend against the use of oro-pharyngeal swabs for NTM screening.

Purpose of the study:

We performed an audit of TB culture results from Newcastle PHE and up to 24% cultures were abandoned due to overgrowth of other CF pathogens. We therefore designed an in house media to overcome this problem. RGM is a new selective agar for isolation of NTM. This media is now routinely used in our laboratory for all CF respiratory samples including cough swabs. We have reviewed our data after 15 months of routine use.

Methods: Sputa are digested with sputasol, 10 µl is cultured onto ¼ RGM, cough swabs are cultured direct. Plates are incubated at 30°C for 10 days. Isolates are Initially identification by AFB stain and MALDI MS TOF (Bruker); first and second isolates are confirmed by *rpoB/sodA/hsp65* sequence cluster analysis and VNTR strain typing at Colindale.

Results: see table 1.

Table 1. Mycobacteria recovered from 4408 respiratory samples submitted by patients with CF using RGM medium and comparison with surveillance using formal AF8 culture.

		No. of patients tested (n)					
	Total	Cough Swabs	Sputa	BAL	Miscellaneous	Patients	using formal AFB culture
Since and a	4408	2443	1557	131	277	625	213*
Total mycobacteria	195	46	133	4	12	56	22%
M. abscessus complex	168	40	114	2	12	34	13
M. chelonae	10	2	8	0	0	9	3
M. fortuitum	2	0	2	0	0	1	0
M. avium complex*	0	0	0	0	0	0	6
M. mucogenicum	1	0	1	0	0	1	0
M. tuberculosis*	0	0	0	0	0	0	1
Other Mycobacterium species	14	4	8	2	0	11	0

Discussion The new CF guidelines do not recommend cough swabs for NTM culture as they are unsuitable for TB culture systems. Using RGM agar NTM was first detected from 15 patients using cough swabs. NTM were detected from more than twice as many patients (56 vs. 22) by routine use of RGM rather than relying on annual submission of specimens for formal AFB culture There is the potential for cross infection with MABSC and if an annual screening sample is all that is submitted then patients not known to be colonized may act as reservoirs for MABSC. The prevalence of MABSC is higher than *B cepacia* complex (BCC) and these species are isolated using BCC selective agars used routinely for all CF samples yet routine culture for NTM is not performed. RGM is a highly selective agar that can be incorporated into routine use for all CF respiratory samples for the isolation of NTM and without the need for expensive, laborious TB culture systems.

https://www.contellbrosis.org.uk/the-work-we-de/clinical-care/temensus-docaments

Press et al A novel culture medium for liolation of rapidly grawing mycobacteria from the spartam of patients with cyclic fibrosis. / Cyst. Fibros. 2016 Mar;15(2):166-91.

Presse et of Puplication of Various Calture Media for Detection of Rapidly Growing Mycobacteria from Patients with Cyclic Fibrosis. J Cite Microbiol. 2016 Apr 20, pill JCM.00071.34,

9.3 Publications

Preece CL, Wichelhaus TA, Perry A, Jones AL, Cummings SP, Perry JD, Hogardt M. 2016. Evaluation of various culture media for detection of rapidly growing mycobacteria from patients with cystic fibrosis. J. Clin. Microbiol. 54:1797-1803.

Preece CL, Perry A, Gray B, Kenna DT, Jones AL, Cummings SP, Robb A, Thomas MF, Brodlie M, O'Brien CJ, Bourke SJ, Perry JD. 2015. A novel culture medium for isolation of rapidly-growing mycobacteria from the sputum of patients with cystic fibrosis. J. Cyst. Fibros. 15:186-191.

Eltringham I, Pickering J, Gough H, Preece CL, Perry JD. 2016. Comparison of the Mycobacterial Growth Indicator Tube (MGIT) with culture on RGM selective agar for detection of mycobacteria in sputum samples from patients with cystic fibrosis. J. Clin. Microbiol. 54: 2047-2050.

R. Plonga, C.L Preece, J.D Perry, P.H Gilligan. 2016. Evaluation of RGM medium for isolation of non-tuberculous mycobacteria from respiratory samples of patients with cystic fibrosis. J. Clin. Microbiol. 55: 1469-1477.