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a b s t r a c t

In this paper, a hierarchical attention network is proposed to generate robust utterance-level em-
beddings (H-vectors) for speaker identification and verification. Since different parts of an utterance
may have different contributions to speaker identities, the use of hierarchical structure aims to learn
speaker related information locally and globally. In the proposed approach, frame-level encoder and
attention are applied on segments of an input utterance and generate individual segment vectors. Then,
segment level attention is applied on the segment vectors to construct an utterance representation. To
evaluate the quality of the learned utterance-level speaker embeddings on speaker identification and
verification, the proposed approach is tested on several benchmark datasets, such as the NIST SRE2008
Part1, the Switchboard Cellular (Part1), the CallHome American English Speech ,the Voxceleb1 and
Voxceleb2 datasets. In comparison with some strong baselines, the obtained results show that the
use of H-vectors can achieve better identification and verification performances in various acoustic
conditions.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

The goal of speaker recognition is to recognize a speaker
rom the characteristics of voices (Bai, Zhang, & Chen, 0000;
oddar, Sahidullah, & Saha, 2017). Representing the speaker prop-
rties into low dimensional feature space is beneficial for many
ownstream tasks, and such compact representations used to
istinguish speakers (speaker embedding) have been an attrac-
ive topic and is widely used in some studies, such as speaker
dentification (Park, Cho, Park, Kim, & Park, 2018), verification
Le & Odobez, 2018; Novoselov, Shulipa, Kremnev, Kozlov, &
hchemelinin, 2018; Snyder, Garcia-Romero, Povey, & Khudan-
ur, 2017), detection (McLaren, Castan, Nandwana, Ferrer, & Yil-
az, 2018), segmentation (Garcia-Romero, Snyder, Sell, Povey,
McCree, 2017; Wang, Downey, Wan, Mansfield and Moreno,

018), and speaker dependent speech enhancement (Chuang,
ang, Hung, Tsao, & Fang, 2019; Gao et al., 2015).
Traditionally, GMM-UBM (Dehak, Kenny, Dehak, Dumouchel,
Ouellet, 2010) based I-vectors played an important role in

peaker embedding generation. With the rapid growth of deep
earning techniques, previous works (rahman Chowdhury, Wang,
oreno, & Wan, 2018; Snyder, Garcia-Romero, Sell, Povey, &
hudanpur, 2018) used deep neural networks such as time de-
ay neural networks (TDNNs) (Peddinti, Povey, & Khudanpur,
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2015) and convolutional neural networks (CNNs) (Kalchbren-
ner, Grefenstette, & Blunsom, 2014; Zhang, Koishida and Hansen,
2018) to extract speaker embeddings. Variani, et al. developed
the d-vector which uses multiple fully-connected neural network
layers (Variani, Lei, McDermott, Moreno, & Gonzalez-Dominguez,
2014). In Snyder et al. (2018), Snyder, et al. proposed X-vectors,
which consists of a TDNN structure that can model relationships
in wide temporal contexts and computes speaker embeddings
from variable length acoustic segments.

However, different parts of an utterance may have differ-
ent contributions to speaker identities. How to highlight the
importance of different parts of an input utterance is underde-
veloped. Zhu, Ko, Snyder, Mak, and Povey (2018), for example,
proposed an attentive X-vector architecture that added a global
self-attention layer within the basic X-vector architecture. The
attention mechanism is located prior to the statistics pooling
operation. The attention mechanism computes weights for each
temporal frame, and the weight vector is multiplied with the
original feature map. In the output feature sequence, each of the
temporal frames is assigned a weight number that indicates the
importance of that frame to the target speaker identities. The re-
sults show the attentive X-vector model out-performs the original
X- vector model. Both Okabe, Koshinaka, and Shinoda (2018) and
Wang, Okabe, Lee, Yamamoto and Koshinaka (2018) proposed
similar architectures that compute weights on different positions
of the input frames. Both of the works demonstrated that at-
tention mechanism performs better than the X-vector model in

speaker recognition.
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The attention mechanism highlights the most relevant part
to the training target that can improve the performance of the
model for different purposes (rahman Chowdhury et al., 2018).
This property allowed for noise reduction methods to be devel-
oped for both image and speech signals, whereby the corrupted
features were allocated lower weights to ensure that the model
focuses on the clean features. In this way, excess noise can be
reduced and the robustness of the model can be improved (rah-
man Chowdhury et al., 2018; Wang, Okabe et al., 2018). The
attention mechanism used in the speaker recognition model was
a self-attention layer that was built into the speaker recognition
model. Similar to the self-attention mechanisms used in other
domains, the attention mechanism in speaker recognition models,
such as attentive X-vector and ResNet, can highlight the most
relevant features in terms of the speaker identities and discard
the irrelevant ones (Okabe et al., 2018; Wang, Okabe et al., 2018).

However, the attention mechanism described above has two
potential problems. Firstly, the self-attention layer computes the
global attention weights for each frame of the sequence. Longer
sequences of, say, three seconds, may contain multiple relevant
features that are important to the target speaker and, since the
softmax function based global attention can only highlight some
of the important features, the model is likely to lose some sig-
nificant information. This is due to the fact that global attention
computes the importance weight for each frame in the whole
sequence. The softmax function constrains all of the attention
values that can be summed to one (to simulate the probability
procedure. As the sequence becomes longer, the importance of
each frame is diluted (Okabe et al., 2018; Wang, Okabe et al.,
2018). For example, when there are two significant features in
the sequence, one of the features is captured by the attention
mechanism and a high weight value is assigned (e.g. larger than
0.5). The remainder of the sequence can only share the remainder
of the weighting (e.g. less than 0.5), so the second significant
feature will be incorrectly weighted. This phenomenon is shown
and discussed in Section 5 and Fig. 2, using the experimental
results.

The second problem is that the global self-attention only
captures global features, but pays insufficient attention to local
features due to the computation process discussed above. In noisy
conditions, as indicated by Le Prell and Clavier (2017), different
types of noises (including fluctuating and steady noise) can affect
the speech signal locally. For example, if one speaker-related
feature (present in some frames) is distorted in some segment (or
region) of the utterance, the global attention mechanism cannot
capture it. For example, in Fig. 2, Section 5, the global attention
mechanism cannot capture the important feature in the first
segment.

In order to address the two issues discussed above, the key is
to develop a new neural network architecture that can capture
both local and global features in one framework. The attention
mechanism needs to be used in both local and global scenarios,
and this is something that can be achieved through the use of
hierarchical structures like the document classification approach
proposed by Yang et al. (2016). In this approach, the network
firstly uses multiple word level encoders, each one of which
captures the local features between words in each sentence and
the attention mechanism is used to assign weights for each word
within each sentence. Each sentence is then summarized in a
single sentence vector. At a higher level, the generated sentence
vectors are then inputted into a sentence level encoder which
focuses on the global information between each sentence and
the attention mechanism was used to allocate weights between
each of the sentence vectors. The sentence level encoder then
compresses different sentence vectors to generate a document

vector, which is then used for the final prediction.
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The key attribute of this approach is that the hierarchical
attention structure captures the local and global information at
two levels. It gristly measures the importance of each word in one
sentence, then measures the importance of each sentence in one
document, recognizing the fact that the importance of the same
word may be different in different sentences (Yang et al., 2016).

In this paper, a hierarchical attention network is proposed,
inspired by the work of Yang et al. (2016) described above, in
which the utterance is viewed as a document, the segments
are sentences and the frames are viewed as the words. The
proposed hierarchical attention network captures the local and
global speaker-related features by using the frame-level and
segment-level encoders. As discussed above, some features may
be corrupted in some segments but become cleaner in others.

The hierarchical attention network splits the input signal into
different segments. The frame-level encoder with attention com-
putes the attention weights between each frame within the seg-
ment. Then, the segment-level encoder measures the importance
between each segment and generates the utterance vector for the
final prediction of the speaker identities.

In the previous published paper: H-vectors: Utterance-level
speaker embedding using a hierarchical attention model (Shi,
Huang, & Hain, 2020), the hierarchical attention network is pro-
posed and experiments were conducted on the SRE08, SWBC
and CHE datasets. In this paper, besides the effectiveness of the
proposed approach, its robustness against noise on several bench-
mark datasets, such as Voxceleb1 and Voxceleb2, will be also
evaluated. Moreover, in this paper, a sliding window instead of
a static window is employed to avoid missing possibly useful in-
formation for the related speaker tasks. The effectiveness of these
two types of windows will be discussed in the following sections.

The rest of the paper is organized as follows: Section 2 dis-
cussed the related works, including recent works on speaker
recognition and attention mechanisms. Section 3 presents the
architecture of our approach. Section 4 depicts the used data, ex-
perimental setup, and the baselines to be compared. The obtained
results are shown in Section 5, and a conclusion is finally drawn
in Section 6.

2. Related works

The generation of speaker embeddings is a long-established
task. To extract a general speaker representation, Dehak et al.
(2010) defined a ‘‘total variability space’’ containing the speaker
and channel variabilities simultaneously, and then extracted the
speaker factors by decomposing feature space into subspace cor-
responding to sound factors including speaker and channel ef-
fects. With the rapid development of deep learning technologies,
some architectures using deep neural networks (DNN) have been
developed for general speaker representation (Snyder et al., 2018;
Variani et al., 2014).

In Variani et al. (2014), Variani et al. introduced the d-vector
approach using the LSTM and averaging over the activations of
the last hidden layer for all frame-level features. Snyder et al.
(2018) used a five-layer DNN with taking into account a small
temporal context and statistics pooling. In Chung, Nagrani, and
Zisserman (2018) and Xie, Nagrani, Chung, and Zisserman (2019),
Chung et al. and Xie et al. applied ResNet architecture, such as
ResNet-34 and thin-ResNet-34 into speaker verification.

Recently, attention mechanism is widely used in speaker em-
bedding generation, as attention mechanism allows the model
to pay attention on different parts of the input and highlight
the most important part. For speaker recognition, there are some
previous studies (Okabe et al., 2018; rahman Chowdhury et al.,
2018; Wang, Okabe et al., 2018; Zhu et al., 2018) using attention
mechanism. Wang, et al. used an attentive X-vector where a self-
attention layer was added before a statistics pooling layer to
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eight each frame (Okabe et al., 2018; Wang, Okabe et al., 2018;
hu et al., 2018). Rahman, et al. jointly used attention model
nd K-max pooling to selects the most relevant features (rahman
howdhury et al., 2018). Zhang, Koishida et al. (2018) used triplet
oss combined with a very deep convolutional neural network
o learn high quality speaker embeddings with small intra-class
istances.
In addition to speaker recognition, the attention model has

lso been widely used in natural language processing (Bahdanau,
ho, & Bengio, 0000; Huang et al., 2016; Luong, Pham, & Man-
ing, 0000; Yang et al., 2016), speech recognition (Chorowski,
ahdanau, Serdyuk, Cho, & Bengio, 2015; Mirsamadi, Barsoum, &
hang, 2017; Moritz, Hori, & Le Roux, 2019; Zhang, Du, Wang,
hang and Tu, 2018), and computer vision (Li, Tang, Deng, Zhang,
Tian, 2017; Mejjati, Richardt, Tompkin, Cosker, & Kim, 2018;
ktay et al., 0000; Wang et al., 2017; Woo, Park, Lee, & So Kweon,
018; Xu et al., 2015). In Bahdanau et al. (0000), Bahdanau,
t al. designed an attention model to allow the each time step of
ecoder to pay attention to different parts of the input sentence.
u et al. used an attention model in a similar way to design
n encoder decoder network for image caption (Xu et al., 2015).
n Moritz et al. (2019), Moritz, et al. combined CTC (connec-
ionist temporal classification) and attention model to improve
he performance of end to end speech recognition. In Chorowski
t al. (2015), Mirsamadi et al. (2017) and Zhang, Du et al. (2018),
ifferent attention models were also designed for speech emotion
ecognition and phoneme recognition, respectively. To further
mprove the robustness of the attention model, some previous
tudies used two attention models within one framework. Luong,
t al. used global attention and local attention, where global
ttention attends to the whole input sentence and local attention
nly looks at a part of the input sentence (Luong et al., 0000).
i, et al. applied global and local attention in image processing to
urther improve the performance (Li et al., 2017). Woo, et al. used
patial attention and channel attention to extract salient features
rom input data (Woo et al., 2018).

. Model architecture

Fig. 1 shows the architecture of the proposed hierarchical
ttention network. The network consists of several parts: a frame-
evel encoder and attention layer, a segment-level encoder and
ttention layer, and two fully connected layers. Given input
coustic frame vectors, the input sequence is split into several
egments. The frame-level encoder and attention layers firstly
ompress each segment into a segment vector. Then, the segment-
evel encoder and attention layers generate an utterance vector
rom the segment vector sequence, and the following classifier is
rained to perform speaker identification or verification.

.1. Frame-level encoder and attention

For the frame-level processing, an utterance is divided into
segments: S = {S1, S2, . . . , SN} using a sliding window with

ength M and step H . Each segment S i ∈ RM×L
= {xi1, xi,2, . . . ,

i,M} containsM L-dimensional acoustic frame vectors xi,t ∈ R1×L,
here i denotes the ith segment, t denotes the tth frame, i ∈
{1, . . . ,N}, t ∈ {1, . . . ,M}.

In the frame-level encoder, a one-dimensional CNN is used
on each segment, and followed by a bidirectional GRU (Chung,
Gulcehre, Cho, & Bengio, 2014) in order to get information from
both directions of acoustic frames and contextual information.

S ′i = CNN(Si)
−→
h i =

−−→
GRU(S ′i )

←−
h =

←−−
GRU(S ′)
i i
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The output of a frame-level encoder hi = [
−→
h i,
←−
h i] contains

the information of the segment Si, where hi ∈ RM×E and hi =

{hi,1, hi,2, . . . , hi,M}

In the frame-level attention layer, a two-layer MLP is first
used to convert hi into score vector zi, by which a normalized
importance weight vector αi can be computed via a softmax
function (Yang et al., 2016).

αi,t =
exp(zi,t )∑M
t=0 exp(zi,t )

(1)

zi,t = Relu(hi,tWi,0 + bi,0)Wi,1 , (2)

where zi,t and αi,t are a scalar score and normalized score for each
time step t respectively. Wi,0 ∈ RE×E , bi,0 ∈ R1×E and Wi,1 ∈

RE×1 are the parameters of a two-layer MLP. These parameters
are shared when processing N segments. A weighted output of
frame-level encoder is computed by

Ai,t = αi,thi,t (3)

Following Snyder et al. (2018), a statistics pooling is applied on
Ai to compute its mean vector (µi) and std (σ i) vector over t .
A segment vector VSi is then obtained by concatenating the two
vectors:

VSi = concatenate(µi, σ i) (4)

3.2. Segment level encoder and attention

For the segment-level encoder and attention, the same steps
used in frame-level encoder and attention are implemented ex-
cept for a bi-directional GRU layer, as the omission of the GRU
layer can accelerate training when processing a large number of
samples.

The output of the frame level encoder and attention is VS ∈

RN×E
= {VS1 ,VS2 , . . . ,VSN }. The weight vector αs

∈ RN×1
=

{αs
1, α

s
2, . . . , α

s
N} of segment level attention can be computed as

follows (Pan et al., 2019):

αs
i =

exp(zsi )∑N
i=0 exp(z

s
i )

zsi = Relu(VSiWn,0 + bn,0)Wn,1 ,

(5)

where zsi and αs
i are a scalar score and normalized score for each

segment vector VSi respectively. Wn,0 ∈ RE×E , bn,0 ∈ R1×E and
Wn,1 ∈ RE×1 are the parameters of a two-layer MLP. A vector is
generated using a statistics pooling over all weighted segments:

µU = mean(
∑

i

αs
i Si)

σU = std(
∑

i

αs
i Si)

VU = concatenate(µU , σU )

(6)

The final speaker identity classifier is constructed using a two-
layer MLP with VU being its input. As shown in Fig. 1, the output
of the first fully connected layer can be used as the final utterance
embedding, represented by EmbU .

4. Experiment

4.1. Data and use

To comprehensively test the proposed approach, four datasets,
NIST SRE 2008 part1 (SRE08), CallHome American English Speech
(CHE), Switchboard Cellular Part 1 (SWBC), Voxceleb1 (Vox1) and
Voxceleb2 (Vox2), are used in this paper to train the proposed
model and evaluate utterance embedding performance.
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Fig. 1. The architecture of hierarchical attention network.
SRE08 indicates the 2008 NIST speaker recognition evalua-
ion test set (Group, 2011), which contains multilingual tele-
hone speech and English interview speech. In this work, Part1
f SRE2008, containing about 640-hour speech and 1336 dis-
inct speakers, is selected in our experiments. The interview
peech signals are approximately 3 min segmented from long
onversations.
SWBC (David Graff & Walker, 2001) contains 130 h telephone

peech, totally 254 speakers (129 male and 125 female) under
arious environment conditions (indoors, outdoors and moving
ehicles). The stereo speech signals are split into two monos, and
oth of them are used in experiments.
CHE (Alexandra Canavan & Graff, 2001) contains 120 tele-

hone conversations speech between native English speakers
totally 120 speakers). Among all of the calls, 90 of them are
laced to various locations outside North America. In this dataset,
peech from the left channel is used, as the labels of speakers
n the right channels are unavailable. In our experiments, SRE08
s used to train the proposed model, by which Utterance-level
mbeddings can be then generated using CHE and SWBC.
The Voxceleb1 (Vox1) (Nagrani, Chung, & Zisserman, 2017)

ataset is also employed as it is one of the most widely used
atasets for speaker identification and verification. This dataset
s extracted from Youtube videos, collected ‘‘in the wild’’, and
as an official train–test split for both speaker identification and
erification tasks. For the speaker identification task, the training
et and test set contain the same number of speakers. For the
peaker verification split, the test set contain 37,720 test pairs,
0 distinct speakers totally.
The Voxceleb2 (Vox2) dataset (Chung et al., 2018) is the exten-
ion of Voxceleb1, with a larger number of speakers (6112) and
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larger number of utterances (more than 1 mission utterances).
The development set of Vox2 contains 5994 speakers while the
test set contains 118 speakers. In this paper, Vox2 dataset (both
development set and test set) is used for training and the test set
of Vox1 is used for evaluation.

To evaluate the robustness of the proposed approach, extra
noise from MUSAN dataset is used. MUSAN dataset contains three
categories of noises: general noise, music and babble (Snyder,
Chen, & Povey, 0000). The general noise type contains 6 h of
audio, including DTMF tones, dialtones, fax machine noises etc.
The music type contains 42 h of music recording from different
categories. The babble type contains 60 h of speech, includ-
ing read speech from public domain, hearings, committees and
debates etc.

In this work, energy based VAD (Pang, 2017) is used to remove
the unvoiced signals. After using VAD, each segment is viewed
as an utterance. The total number of utterances of the three
datasets is listed in Table 1. Each segment is further segmented
into frames using a 25 ms sliding window with a 10 ms shift. All
frames are converted into 20-dimensional MFCC feature vectors.
Similar to Yang et al. (2016), to build a hierarchical structure, each
utterance, fragment and frame vector obtained here are viewed
as a document, sentence and word, respectively.

4.2. Experimental setup

In this work, both speaker identification and speaker verifica-
tion tasks are conducted to evaluate the proposed model using
the utterance-level embeddings. Both of the speaker identifi-
cation and speaker verification experiments are split into two
scenarios, each scenario uses different datasets.
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Fig. 2. The visualization of the attention weights. (a) The original spectrogram, (b) the noise corrupted spectrogram, (c) the global attention weights for the original
pectrogram, (d) the global attention weights for the corrupted spectrogram, (e) the H-vector attention weights for the original spectrogram and (f) the H-vector
ttention weights for the corrupted spectrogram.
Table 1
The details of four speech datasets: Part1 of Sre2008 (SRE08), CallHome (CHE), Switchboard (SWBC), Voxceleb1
(Vox1) and Voxceleb2 (Vox2).
Dataset Type #Speaker Size (h) #Utterance (1 s) #Utterance (3 s)

SRE08 Telephone+Interview 1336 640 3,528,326 1,176,453
CHE Telephone 120 60 252,224 84,460
SWBC Telephone 254 130 1,008,901 336,417
Vox1 Interview 1251 352 2,305,315 868,438
Vox2 Interview 6112 2442 11,408,822 3,610,387
The first scenario is to evaluate the quality of the generated
tterance-level speaker embeddings. In this scenario, SRE08, CHE
nd SWBC datasets are used. The models are firstly trained us-
ng SRE08 dataset. Then, the trained model is used to extract
tterance-level embeddings for both SEBC and CHE. The speaker
dentification and verification tasks are then conducted on the
tterance-level embeddings
For the speaker identification task, datasets are randomly split

nto training and test data with 9:1 ratio. The training set and
est set have the same number of speakers. For the speaker
erification task, in SWBC, there are 50 speakers in the enrollment
333
set and 120 speakers in the evaluation set, with 10 utterances for
each speaker. In the CHE, there are 30 speakers in the enrollment
set and 60 speakers in the evaluation set. Each speaker has 10
utterances. As a further comparison with some state-of-the-art
methods, the related experiments were also conducted on the
Voxceleb datasets.

The second scenario is to evaluate the robustness of the gen-
erated utterance-level speaker embedding in noise conditions.
In this scenario, Voxceleb1 (Vox1) dataset is used. Vox1 dataset
is recorded ‘‘in the wild’’, and additional noise signals are aug-

mented.
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he architecture parameters of the proposed approach, where M denotes the

segment length, N denotes the number of segments in one utterance.
Level Model Input Output

Frame-level

CNN (M,20,1) (M,1,512)
Bi-GRU (M,512) (M,1024)
Attention (M,1024) (M,1024)
Statistics Pooling (M,1024) (1,2048)

Segment-level
CNN (N,2048,1) (N,1,1500)
Attention (N,1500) (N,1500)
Statistics Pooling (N,1500) (1,3000)

Utterance-level DNN (512) (1,3000) (1,512)
DNN (512) (1,512) (1,512)

For both speaker identification and speaker verification tasks,
he training sets are augmented by mixing Voxceleb1 data with
oise signals from MUSAN dataset at a random SNR level (0, 5, 10,
5 and 20 dB). The test utterances are mixed with a certain type
f noise with one of the five SNR levels (0, 5, 10, 15 and 20 dB).
In speaker identification task, both training and test sets con-

ain the same number of speakers (1251 speakers) (Nagrani et al.,
017). The training set contains 145,265 utterances and the test
et contains 8251 utterances. In order to reduce possible bias, the
USAN dataset is also split into two parts for training and test.
his is to ensure that the noise signals used for training will not
e reused for test.
For the speaker verification task, there contains 148,642 ut-

erances (1211 speakers) in the VoxCeleb1 development dataset,
nd 4874 utterances (40 speakers) in the test dataset (Nagrani
t al., 2017). There are total 37,720 test pairs. The same data
onfiguration on the data for speaker recognition task is also set
or speaker verification.

For the experiments described above, both of the window
ize (M) and step size (H) of the proposed hierarchical attention
etwork are fixed at 30 frames, which means there is no overlap
etween each segment. There is also an extra experiment to test
he effectiveness when changing the window size and step size.

.2.1. Baselines
In the experiments, some baselines, such as X-vectors (Snyder

t al., 2018), attentive X-vectors (Wang, Okabe et al., 2018; Zhu
t al., 2018) and ResNet (Chung et al., 2018; Xie et al., 2019) were
uilt up for comparisons.
The first baseline (‘‘X-Vectors’’) is based on a TDNN archi-

ecture (Snyder et al., 2018). It is now widely used for speaker
ecognition and is effective in speaker embedding extraction. It
ontains a five-layer TDNN based frame-level feature extractor,
ach layer operating on certain time steps. A statistics pooling
peration is applied on the output of the frame-level feature
xtractor to summarize the output sequence into a vector. Then,
DNN based segment-level feature extractor is used to generate
he final speaker embedding.

The second baseline (‘‘Attentive X-Vectors’’) is made by com-
ining a global attention mechanism with X-vectors (Okabe et al.,
018; Wang, Okabe et al., 2018; Zhu et al., 2018). In addition
o the frame-level feature extractor, statistics pooling operation
nd the segment-level feature extractor, the Attentive X-vectors
se a global attention mechanism on the output of the frame-
evel feature extractor before the statistics pooling operation.
he attention mechanism used in Attentive X-vectors directly
ompute weights on each frame, which is different from the
roposed approach.
The baseline of ResNet contains different variations of the

esNet architecture, such as the ResNet-34 (Chung et al., 2018)
nd thin ResNet-34 (Xie et al., 2019). As many works pub-
ished state-of-the-art results using ResNet architecture on the
334
Voxceleb2 dataset. As a result, the ResNet baseline is used for
comparison of the proposed approach and the published state-
of-the-art results.

4.2.2. Evaluation metric
In this work, prediction accuracy and the equal error rate (EER)

are used as the evaluation metrics for speaker identification (Ge,
Iyer, Cheluvaraja, Sundaram, & Ganapathiraju, 2017) and speaker
verification (Cheng & Wang, 2004), respectively.

The models are trained by AM-softmax (m is set to 0.35, s is
set to 40) (Wang, Cheng, Liu and Liu, 2018) loss function instead
of the normal softmax function to achieve a better performance.
AM-Softmax (additive margin softmax) aims to learn large inter-
class distance and small intra-class distance for the obtained
embeddings (Wang, Cheng et al., 2018). Cosine similarity is used
to measure the distance of the two embeddings.

Moreover, to show the quality of the learned utterance-level
embeddings, t-SNE (Maaten & Hinton, 2008) is used to visualize
their distributions after being projected on a 2-dimensional plane.

4.3. Implementation

Table 2 shows the configuration of the proposed architecture.
It also contains batch normalization (Ioffe & Szegedy, 2015) and
dropout (Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhut-
dinov, 2014) layers, where the dropout rate is set to 0.2. Adam
optimizer (Kingma & Ba, 0000) is used for all experiments with
β1 = 0.95, β2 = 0.999, and ϵ = 10−8. The initial learning rate is
10−4.

5. Results

Table 3 lists some state-of-the-art results tested on Voxceleb1
when the training samples are from Voxceleb1 or Voxceleb2. It
can be found that the proposed H-vectors model can outper-
form most of the strong baselines. The reason H-vector model
can reach comparable results with the ResNet based methods
(e.g. ResNet-34 or ResNet-50) may be that the hierarchical struc-
ture captures the local and global features. The frame-level en-
coder and attention can capture local features, which is useful to
learn speaker related information within a specific region of an
utterance recording and reduce the possible interferences from
other regions. The segment-level encoder and attention can cap-
ture global features, this means the contributions from different
regions of an utterance will be balanced.

In order to show how the attention mechanism works, Fig. 2
shows the visualization of the attention weights. Fig. 2(a) is
the spectrogram of a 3s utterance randomly selected from the
Voxceleb1 dataset. Fig. 2(b) shows the noise corrupted spectro-
gram (with 0 dB). For a better visualization, here demonstrate
spectrograms, instead of MFCCs, of utterance recordings. Figs. 2
(c) and (d) show the attention weights obtained by using the
attentive X-vector (global attention) on the original utterance and
the noise corrupted utterance respectively. Figs. 2 (e) and (f) show
the attention weights obtained by using the H-vector in the same
conditions. Note that the number of the attention weights in
the attentive X-vector is 300 (there are 300 frames in the input
data) and the number of the segment-level attention weights in
H-vector is 10 (10 segment vectors). In order to compare the
attention weights, the attention weights of the attentive X-vector
are divided into 10 groups.

Although the weight distributions displayed in Fig. 2(c) and
(d) show that the use of both attentive X-vector and H-vector can
learn the importance of features in different parts of an utterance
recording, the attentive X-vector assigned a high weight value,
about 0.5 to the 8th segment. This means the contribution of
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Table 3
The comparison of the proposed approach with the state-of-the-art on Voxceleb1 test set.

Model Training set Loss EER %

Nagrani et al. (2017) VGG-M Voxceleb1 Softmax 10.2
Nagrani et al. (2017) VGG-M Voxceleb1 Softmax+Contrastive 7.8
Shon, Tang, and Glass (2019) CNN+TDNN Voxceleb1 Softmax 6.79
Cai, Chen, and Li (0000) ResNet-34 Voxceleb1 A-Softmax+PLDA 4.46
Okabe et al. (2018) X-vector (TAP) Voxceleb1 Softmax+PLDA 4.70
Okabe et al. (2018) X-vector (SAP) Voxceleb1 Softmax+PLDA 4.19
Okabe et al. (2018) X-vector (ASP) Voxceleb1 Softmax+PLDA 3.85
Hajibabaei and Dai (0000) ResNet20 Voxceleb1 A-Softmax 4.40
Hajibabaei and Dai (0000) Retnet-20 Voxceleb1 AM-Softmax 4.30
Ours H-vector Voxceleb1 AM-Softmax 4.28

Chung et al. (2018) VGG-M Voxceleb2 Softmax+Contrastive 5.94
Chung et al. (2018) ResNet-34 Voxceleb2 Softmax+Contrastive 5.04
Chung et al. (2018) ResNet-34 Voxceleb2 Softmax+Contrastive 4.83
Chung et al. (2018) ResNet-50 Voxceleb2 Softmax+Contrastive 4.19
Chung et al. (2018) ResNet-50 Voxceleb2 Softmax+Contrastive 4.43
Chung et al. (2018) ResNet-50 Voxceleb2 Softmax+Contrastive 3.95
Xie et al. (2019) Thin-ResNet-34 Voxceleb2 Softmax+TAP 10.48
Xie et al. (2019) Thin-ResNet-34 Voxceleb2 Softmax+NetVLAD 3.57
Xie et al. (2019) Thin-ResNet-34 Voxceleb2 AM-Softmax+NetVLAD 3.32
Xie et al. (2019) Thin-ResNet-34 Voxceleb2 Softmax+GhostVLAD 3.22
Xie et al. (2019) Thin-ResNet-34 Voxceleb2 AM-Softmax+GhostVLAD 3.23
Nagrani, Chung, Xie, and Zisserman (2020) Thin-ResNet-34 Voxceleb2 AM-Softmax+GhostVLAD 2.87
Ours H-vector Voxceleb2 AM-Softmax 3.63
Ours H-vector Voxceleb2 AM-Softmax+Contrastive 3.21
Table 4
Identification accuracy on the test data of SRE08 when the utterance length is
1 s or 3 s. M and H are set to 30 frames.
Utterance length Model Accuracy %

1 s
X-vector 90.1
X-vector+Att 92.1
H-vector 94.5

3 s
X-vector 95.2
X-vector+Att 96.7
H-vector 98.5

the 8th segment is dominant over the rest 9 segments. This
might easily cause an overestimate, and thus probably lead to an
incorrect decision. As a comparison, although the H-vector model
allocated the highest weight to the 8th segment, it is close to 0.3
as shown in Fig. 2(e) and (f), and other segments are also allocated
a relatively reasonable attention values. It shows the H-vector
model can highlight feature contributions from multiple regions
of an utterance recording.

It may be that the global attention process within the attentive
-vector model may tend to favour few number of regions over
thers of a recording, whereas the hierarchical structure of the
-vector model is able to highlight contributions from more
egions by computing the attention weights within a small seg-
ent, and then computing the attention weights over all seg-
ents.
Table 4 shows the identification accuracy on the test data

f SRE08 using the proposed approach and two baselines. Two
ifferent utterance lengths, 1 s and 3 s, are used in the exper-
ments, respectively to evaluate the performance of the models
n short and long input utterances. The use of the H-vectors
hows higher accuracy when using either 1-second or 3-second
nput length than the two baselines. When the length of input
tterances is 1 s, the accuracy obtained using the H-vectors can
each 94.5%, with 4.4% improvements over X-vectors and 2.4%
mprovement over X-vectors+Attention, respectively. When the
ength of input utterances is 3 s, the accuracy obtained using
he H-vectors can reach 98.5%, with about 3% improvement over
-vectors and about 2% improvements over X-vectors+Attention.
he proposed approach is more robust than the two baselines
hen processed utterances are short. In addition, the accuracies
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Table 5
Identification accuracy and equal error rate (EER) on CHE dataset when the
utterance length is 1 s or 3 s. M and H are set to 30 frames. The previous
published results (Pre) are also listed (Shi et al., 2020).
Utterance length Model Accuracy % EER % (Pre) EER %

1 s
X-vector 84.8 1.94 1.86
X-vector+Att 87.5 1.61 1.53
H-vector 89.1 1.44 1.36

3 s
X-vector 89.4 1.46 1.39
X-vector+Att 91.0 1.21 1.18
H-vector 92.8 1.08 1.01

obtained using 3-second utterances are better than those using
1-second utterances. This probably means a longer utterance may
contain more information relevant to a target speaker than short
ones.

To evaluate the quality of embeddings extracted using the
proposed approach and its robustness on out-of-domain data,
two additional datasets (SEBC and CHE) are employed in our
experiments. Tables 5 and 6 show the identification accuracy
and verification equal error rate when using the embeddings
learned on the SWBC and the CHE dataset, respectively. In these
two tables, the previous published results are also listed (Shi
et al., 2020). The previous work used different post-processing
techniques for the obtained embeddings: The models are trained
using normal softmax function, PLDA back-end (Salmun, Opher,
& Lapidot, 2016) is applied on the embeddings to reduce the
dimension to 300 (Shi et al., 2020).

On the two datasets, the H-vectors consistently outperforms
the two baselines whether the length of utterances is 1 s or
3 s. In CHE dataset, the H-vector approach reaches 89.1% pre-
diction accuracy and 1.44% equal error rate, with more than 3%
improvement than X-vectors and Attentive X-vectors in speaker
identification task. In speaker verification task, the H-vectors also
achieved 3% relative improvement than X-vectors and attentive
X-vectors. Similar to the results in SRE08 dataset, the results
obtained by three-second utterance length are better than that
using one-second utterance length.

For most of the cases, the results obtained by this work are
slightly better than that of the previous published results. The
reason might be the use of AM-Softmax function in the training

process.
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able 6
dentification accuracy and Equal Error Rate (EER) on SWBC dataset when the
tterance length is 1 s or 3 s. M and H are set to 30 frames. The previous
ublished results (Pre) are also listed (Shi et al., 2020).
Utterance length Model Accuracy % EER % (Pre) EER %

1 s
X-vector 78.2 2.23 2.17
X-vector+Att 81.0 2.05 2.02
H-vector 83.7 1.92 1.90

3 s
X-vector 81.3 2.01 1.98
X-vector+Att 84.0 1.82 1.79
H-vector 86.2 1.69 1.61

Fig. 3. The DET curve on the SEBC dataset when the segment length is 3 s.

From the results in Tables 4–6, it is obvious that the best
esults are obtained by SRE08 dataset. The results obtained on
WBC dataset are lower than those on the other two datasets.
ince the model is trained on the SRE08 corpus, the identification
erformances on its test data are clearly better than those on
he other two datasets. In comparison with SRE08 dataset, both
HE and SWBC could be viewed as out-of-domain dataset. There
ight be some mis-match between the test sets of CHE and
WBC dataset and the SRE08 dataset (used for training). Further-
ore, as the SWBC dataset contains a wide range of environment
onditions (indoors, outdoors and moving vehicles), the acoustic
onditions are worse than SRE08 and CHE dataset. As a result,
oth its identification and verification performances are relatively
orse than those obtained on the CHE dataset.
To further show the performance of the proposed model, Fig. 3

llustrates the detection error tradeoff (DET) curve of the three
odels (X-vectors, Attentive X-vectors and H-vectors) on SWBC
ataset when the utterance length is 3 s. From Fig. 3, it is clear
hat H-vectors obtained both lower false reject rate and false
larm rate, and yield lower equal error rate. Attentive X-vectors
btained higher false reject rate and false alarm rate, but still
ower than that obtained by X-vectors. This might be mainly due
o the use of attention mechanism. Attentive X-vectors use global
ttention that allocates different weights on each frame, which
ould highlight the importance of different frames. However,
ith the combination of local and global attention, the proposed
ierarchical attention could out-perform the attentive X-vectors,
eaching lower false reject rate and false alarm rate.
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Table 7
Identification accuracy and Equal Error Rate (EER) on Voxceleb1 dataset when
the utterance length is 1 s or 3 s. M and H are set to 30 frames.
Utterance length Model Accuracy % EER %

1 s
X-vector 85.8 5.75
X-vector+Att 86.9 5.22
H-vector 88.7 4.97

3 s
X-vector 88.2 5.13
X-vector+Att 89.2 4.79
H-vector 90.4 4.64

Table 8
Identification accuracy and Equal Error Rate (EER) on Voxceleb1 dataset when
the window size M is changed from 15 to 35 frames.
Utterance length Window size Accuracy % EER %

1 s

15 86.4 5.24
20 87.3 5.01
25 89.2 4.82
30 88.7 4.97
35 88.3 5.11

3 s

15 88.7 4.72
20 89.6 4.43
25 91.0 4.28
30 90.4 4.64
35 89.5 4.79

To further evaluate the quality of extracted utterance-level
embeddings, t-SNE (Maaten & Hinton, 2008) is used to visu-
alize the distribution of embeddings by projecting these high-
dimensional vectors on a 2D plane. In the SWBC dataset, 10
speakers are selected and 500 three-second segments are ran-
domly sampled for each speaker. Fig. 4(a), (b), and (c) show the
distribution of selected samples of 10 speakers after using X-
vectors, X-vectors+Attention, and H-vectors, respectively. Each
colour represents a distinct speaker and each point represents
an utterance. The black mark represents the centre point of each
speaker class. Fig. 4(a) shows the distribution of the embeddings
obtained by X-vectors. It is clear that, in this figure, some samples
from different speakers are not well discriminated as there are
overlaps between speaker classes. Due to the use of an atten-
tion mechanism in X-vectors+Attention, Fig. 4(b) shows a better
sample distribution than Fig. 4(a). However, some samples of
a speaker labelled by a blue colour are not well clustered. In
Fig. 4(c), the embedding obtained by H-vectors performs a better
separation than the baseline methods.

In the second scenario, Voxceleb1 dataset is used to evalu-
ate the proposed approach. In this scenario, the three models
(X-vectors, Attentive X-vectors and H-vectors) are trained using
the official training set of Voxceleb1 for speaker identification
and verification tasks. Table 7 shows the speaker identification
accuracy and equal error rate on the Voxceleb1 dataset. Similar
to the results in the previous three datasets, H-vectors show bet-
ter performance on Voxceleb1 dataset. In speaker identification
task, H-vectors achieved 88.7% accuracy in when the utterance
length is 1 s and 90.4% accuracy when the utterance length
is 3 s. H-vectors obtain more than 3% relatively improvement
than X-vectors and Attentive X-vectors. In speaker verification
task, H-vectors reach 4.97% equal error rate on one-second ut-
terance length and 4.64% on three-second utterance length, the
improvement is also significant.

In the hierarchical attention network architecture, different
window size (M) and step size (H) might influence the perfor-
mance. In order to evaluate the performance of the proposed
H-vectors when using different window size (M) and step size
(H), Tables 8 and 9 show the prediction accuracy and equal error
ate on Voxceleb1 dataset when the window size changes from
5 to 35 frames, and the step size changes from 15 to 35 frames.
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Fig. 4. Embedding visualization using t-SNE. In the SWBC dataset, 10 speakers are selected and 500 three-second segments are randomly sampled for each speaker.
Each colour represents a speaker, and each point indicates an utterance. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
Table 9
Identification accuracy and Equal Error Rate (EER) on Voxceleb1 dataset when
the step size H is changed from 15 to 35 frames.
Utterance length Step size Accuracy % EER %

1 s

15 87.5 4.93
20 89.6 4.86
25 89.4 4.92
30 88.7 4.97
35 87.1 5.12

3 s

15 90.1 4.61
20 91.0 4.43
25 90.6 4.37
30 90.4 4.64
35 88.3 4.90

Table 10
Speaker identification results for different noise types (Noise, Music and Babble)
at different SNR (0–20 dB), and the original Voxceleb1 test set. The utterance
length is 3 s. M and H are set to 30 frames.
Noise type SNR X-vectors Att-X-vectors Statistical H-vectors

Noise

0 74.6 75.8 73.8 76.9
5 79.5 79.4 78.7 81.3
10 83.1 84.0 83.8 86.0
15 85.0 86.3 85.9 87.2
20 87.9 87.8 86.7 88.9

Music

0 68.2 70.1 66.7 72.3
5 72.0 73.5 71.4 74.8
10 79.4 81.0 79.5 82.9
15 84.2 86.6 83.3 87.8
20 86.1 88.0 85.2 89.3

Babble

0 64.1 65.2 62.1 67.9
5 70.5 71.4 68.4 74.0
10 77.4 77.0 76.4 78.7
15 83.5 84.5 81.8 86.2
20 86.6 86.9 86.0 88.1

Original 88.2 89.2 87.6 90.4

From the results, the model is more sensitive to the change of
the window size. The best performance of is obtained when M is
equal to 25 frames for both one or three seconds segment length.
While, for the change of the step size, the best performance is
obtained when H is equal to 20 frames. One possible reason is
that the use of sliding window (the window size is larger than
the step size) instead of static window (the window size is equal
to the step size) might capture more information.

In order to evaluate the robustness of the proposed model
in noise conditions, additional noises from MUSAN dataset are
mixed with the utterances from the original Voxceleb1 dataset.
Tables 10 and 11 show the speaker identification accuracy and
speaker verification equal error rate on different noise conditions.
Three noise types are used: general noise, music and speech
337
Table 11
Speaker verification results for different noise types (Noise, Music and Babble)
at different SNR (0–20 dB), and the original Voxceleb1 test set. The utterance
length is 3 s. M and H are set to 30 frames.
Noise type SNR X-vectors Att-X-vectors Statistical H-vectors

Noise

0 12.26 11.32 12.82 10.92
5 10.01 9.26 11.03 9.03
10 8.33 7.77 8.92 7.28
15 7.25 6.76 8.14 6.50
20 6.91 6.02 7.48 5.95

Music

0 14.15 12.92 15.88 12.68
5 11.03 10.04 12.20 9.83
10 9.35 8.64 10.69 8.33
15 8.41 8.08 9.83 7.62
20 6.79 6.25 7.72 6.17

Babble

0 30.02 27.77 32.56 26.82
5 16.46 15.32 18.02 14.58
10 13.26 12.53 15.38 12.38
15 9.10 8.31 10.47 8.14
20 7.95 7.22 8.91 7.04

Original 5.47 5.06 5.93 4.64

noise. The noise level is changed from 0 dB to 20 dB. The utter-
ance length is three seconds.

From the results, the proposed H-vectors outperform the two
baselines in different noise conditions. When the noise type be-
comes complex and the noise level becomes larger, such as babble
and music noise type at 0 and 5 dB, the gap between the results
of H-vectors is larger than that of the two baselines. Even if the
noise type is ‘‘Babble’’ and the noise level is 0 dB, the proposed
H-vectors model can reach 67.7% prediction accuracy, and ob-
tain more than 5% relative improvement than X-vectors and 3%
relative improvement than Attentive X-vectors.

The ‘‘Statistical’’ in Tables 10 and 11 represents the H-vector
model that is without the attention mechanism in both frame-
level and segment-level encoders. In this case, only statistical
pooling operation is used to compress the sequence input a
vector, without allocating weights for each frame. This is to
evaluate the effectiveness of the attention mechanism. The results
show that the H-vector with attention out-performs that without
attention mechanism under almost all of the noise conditions.
When the noise level becomes larger, the gap between H-vector
with attention and that without attention becomes larger. This
phenomenon shows the local and global attention mechanisms
are essential for the H-vector model, they can help the model to
improve the robustness.

6. Conclusion and future work

In this paper, a hierarchical attention network was proposed
for utterance-level embedding extraction. Inspired by the hier-

archical structure of a document made by words and sentences,
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ach utterance is viewed as a document, segments and frame
ectors are treated as sentences and words, respectively. The use
f attention mechanisms at frame and segment levels provides a
ay to search for the information relevant to target locally and
lobally, thus obtains better utterance level embeddings, includ-
ng better performances on speaker identification and verification
asks, and better performances in various noise conditions.

In the future work, different attention mechanisms, such as
he multi-head attention mechanism will be investigated in the
ierarchical structure. Moreover, the attention mechanism in dif-
erent dimensions of the input data, such as time and frequency
imensions, will be tested.
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