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Abstract

Telepresence robots empower human operators to navigate remote environments. However,
operating and navigating the robot in an unknown environment is challenging due to delay
in the communication network (e.g., distance, bandwidth, communication drop-outs etc.),
processing delays and slow dynamics of the mobile robots resulting in time-lagged in the
system. Also, erroneous sensor data measurement which is important to estimate the robot’s
true state (positional information) in the remote environment, often create complications
and make it harder for the system to control the robot. In this paper, we propose a new
approach for state estimation assuming uncertain delayed sensor measurements of a Telep-
resence robot during navigation. A new real world experimental model, based on Augmented
State Extended Kalman Filter (AS-EKF), is proposed to estimate the true position of the
Telepresence robot. The uncertainty of the delayed sensor measurements have been modelled
using probabilistic density functions (PDF). The proposed model was successfully verified in
our proposed experimental framework which consists of a state-of-the-art differential-drive
Telepresence robot and a motion tracking multi-camera system. The results show significant
improvements compared to the traditional EKF that does not consider uncertain delays in
sensor measurements. The proposed model will be beneficial to build a real time predictive
display by reducing the effect of visual delay to navigate the robot under the operator’s
control command, without waiting for delayed sensor measurements.

Keywords: State estimation, delay compensation, telepresence, robot navigation,
AS-EKF.

1. Introduction

A Telepresence system is a set of technology which gives the appearance of being present,
at a place other than their true location. Telepresence allows a human operator to control
and navigate a mobile robot around the remote environment and in many cases interact
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with their audiences through video conferencing [1]. In general, a Telepresence system is
composed of a local site (where a human operator drives a hand-controller device); a remote
site (where a mobile robot interacts with the physical world); and a communication channel
that links both sites. A Telepresence robot provides interactive two-way audio and video
communication with a remote sender and a receiver for building a communication system
between the two people in different places. These systems, which are primarily used in the
context of promoting social interaction between people, became popular in many emerging
applications including hospitals and healthcare consultations, remote co-working in office
spaces, tour guidance, security and surveillance (e.g., remote night watch person1), factory
inspection, instructor led educations and many more.

Telepresence robots suffer significant challenges during navigation in the remote site due
to varying communication time delays [2] frequently caused by the present state of the
network as depicted in Figure 1. Moreover, the distance between the human operator and
remote sites of a Telepresence system introduces time varying delays adding distortion in
the reference commands and feedback signals resulting in instability or poor performance
of the system. The time elapsed between making an action decision and perceiving the
consequences of that action in the environment introduces control delay. Therefore, it is
advantageous to compensate such delays for robust navigation of a Telepresence robot. A
predictive display is also be helpful to address the challenges of visual mismatch between
the predicted state and actual navigation state of the robot.

Communication
channel

Remote site Local site

Mobile
Robot
———
Visual

feedback

Sensor
feedback

DelaysEnvironment

Control
commands

———
State

estimation
model

Predictive
display

Haptics
Human
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Figure 1: A brief architecture of the Telepresence system with introducing uncertain time varying commu-
nication delay.

This paper proposes a new approach for state estimation that can model and compensate
such delays using uncertain delayed sensor measurements in Telepresence robot navigations.
We hypothesized multiple augmented states in the proposed approach to estimate the true

1https://www.knightscope.com//

2

https://www.knightscope.com//


position of a commercially available differential drive Telepresence robot. The uncertainty of
the delayed sensor measurement was modelled using a probabilistic density functions (PDF).
This is particularly challenging specially for a differential drive robot where additional sys-
tem errors occur due the kinematics of individual wheels. While there have been several
attempts to address the delay problem in mobile robots and tele operated systems, to the
best knowledge of the authors this is the first time such a hypothesis is applied on a com-
mercially available differential drive Telepresence robot in a real environment experimental
framework.

2. Background and contributions

2.1. Delay modelling in Telepresence systems

Although several methods and algorithms were proposed to address such time delay
problem in the Telepresence (also known as Tele-operated) systems it is still an open issue
that needs to be addressed. The presence of time delay causes instability in the system and
poor performance of the robot navigation. In this subsection we described few efforts of the
time delay compensation methods in the Telepresence systems.

Kawabata et al. [3] have proposed a framework of human interface systems for tele-
operation to achieve smooth operation of a mobile robot through a communication link,
considering time delays in data transfer. The prototype of the teleoperation system was
constructed utilizing the virtual world as an operation interface. Colledanchise et al. [4]
have also showed how to use event based sampling to reduce the number of measurements
done, thereby saving time, computational resources and power, without jeopardizing critical
system properties such as safety and goal convergence.

Anderson and Vittorias et al. [5, 6] have introduced a new control law for controlling
a teleoperator with time delay, which achieved stability for the teleoperator independent
of time delay in the system. The model based on the scattering theory, which allows the
transmission and encoding of haptic data in time delayed teleoperation systems. Funda et
al. [7, 8] in his research proposed a new control methodology, called teleprogramming, which
allows for efficient control of a robotic system in the presence of significant feedback delays
without substantial degradation in the overall system performance. A teleprogramming
system allows the operator to kinesthetically as well as visually interact with a graphical
simulation of the remote environment and to interactively, on-line teleprogram the remote
manipulator through a sequence of elementary symbolic instructions.

An important feature Telepresence system is a possibility transmission delay and data
packet drop-outs over the Internet. If a significant amount of time elapsed or data is dropped
due to network congestion, it may result in discontinuity of the reference trajectories and the
forces transmitted between the master and the slave. Brady et al. [9] developed a new robot
controlling model where communication propagation delays exist over the internet. This
model is flexible enough to embrace the wide variety of possible communication mediums for
remote teleoperation. Mora et al. [10] presented a novel method combining the visualization
of two models of the mobile robot inside a 3D virtual environment. One model represents the
position and orientation provided by real time GPS located on the robot and another model
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is based on inputs given by human operator through the information gathered by the laser
range finder sensor to deal with the time delay and narrow bandwidth limitations. While,
Hu et al. [11] introduced a 3D model based predictive display system where the operator
sees the predicted image instead of delayed video to control a robot remotely. Natori et
al. [12] have presented a effective time delay compensation method based on the concept
of network disturbance and communication disturbance observer for bilateral teleoperation
systems under time varying delay. They validated the time delay compensation method for
both the cases of constant delay and time varying delay with Smith predictor.

Bejczy et al. [13, 14] have developed a predictive display system based on high-fidelity
real-time graphics overlay for use in time-delayed telemanipulation. Human-assisted camera
calibration techniques were also developed for an exact alignment of the graphics image
with the actual camera view. Slawinski et al. [15] have proposed a predicted control scheme
applied to teleoperation of a mobile robot with force feedback and time-varying delay. While
the user receives delayed force and generates delayed commands permanently, the scheme
predicts the users intention and fuses such commands with a stable controller in order to
achieve a collision-free trajectory of the mobile robot.

In this paper, we aim to address issues related to time delay effecting robot state esti-
mation in the remote site from the local site. At this juncture, it is worth noting that we
envisage to build a predictive display system at the local site to help the human operator to
navigate the mobile robot with time-varying delayed measurement and the proposed system
aimed to support real-time robot position tracking and immediate control at the human
operator site. As the mobile robot is controlled by a human operator through a communica-
tion network in a remote site, the human operator should know the robot’s pose to control
the robot smoothly. If the time delays are not compensated to estimate the robot pose
correctly in the remote site, the human operator may cause an accident crashing obstacles
because of the robot pose which the operator inaccurately recognised. Therefore, we de-
signed a non-linear state estimation computational model to estimate the robot’s true state
by incorporating a new approach for delay compensation.

2.2. State estimation to compensate time delay in the navigation

The state of a robot is a set of position, orientation and velocity, which is the robots
motion over time. This includes estimation of the state of the robot’s kinematic system by
combining knowledge from a priori information and sensor measurements. State estimation
in dynamical systems is crucial in real-world applications as the true state is unknown and
sensors have a limited precision, therefore, provide only a sequence of uncertain noisy mea-
surements. Commonly used state estimation methods to stabilize non-linear delayed system
include filtering methods [16, 17] or predictor feedback control theory [18, 19]. Among them
filtering methods such as the Extended Kalman Filter (EKF) are commonly used in robot
navigation to acquire an estimate of the true state from noisy measurements. However, when
a filtering processor is connected to a sensor through a network, there is a fundamental com-
munication time. Moreover, if raw sensor data require post-processing, in order to update
the state of the dynamical system, additional post-processing time is needed, resulting in a
delay between the acquisition of a measurement and its availability to the filter.
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If the time delay is known, the past state can be predicted applying backward prediction
of the current state. Bar-Shalom [20] proposed an optimal and suboptimal algorithm for one
step delayed measurement. The extended version for multi-step delayed measurements also
proposed in [21]. In case of a non-linear system, it needs modifications for state estimation.
Larsen et al. [22] introduced a method based on extrapolation of a delayed measurement
to the present time using past and present estimates of the Kalman Filter. An extension
algorithm of [22] is proposed in [23] that interpolating a delayed measurement minimizes
the computational time even for significant time delays.

State augmentation has also been used in time delayed measurement. Delayed mea-
surement directly corrects the past state and a new prediction of the current state is then
obtained from the corrected past state. Challa et al. [24] presented a Bayesian solution to the
out of sequence measurement (OOSM) problem and provided approximate, implementable
algorithms for both cluttered and non-cluttered scenarios involving single and multiple time-
delayed measurement. Van Der Merwe et al. [25] applied the sigma point Kalman Filter
instead of EKF to the augmented technique to fuse latency lagged observations for non-linear
estimation and multiple sensors fusion.

If there is uncertainty in measurement delay, it is hard to predict because the measured
time delay may have noise. Julier and Uhlmann [26] suggested a covariance union algorithm
for accommodating time step uncertainty directly into the observation covariance so that
filter consistency is always maintained. Jun et al. [27] proposed event based filtering for
time-varying non-linear systems that uses probabilities to address uncertain missing mea-
surements. A recursive filtering algorithm is proposed by Zou et al. [28] targetting a class
of linear time-varying systems of networked sensors for robust signal transmission. Within
the scope, this paper only focuses on estimating uncertain time delays for robot navigation.
The underlying assumption in such cases is that if the time delay is able to be modelled as a
form of a distribution, the uncertainty of delay can be modelled. Challa et al. [24] proposed
a probabilistic data association filter to deal with data association issues arising from the
presence of clutter in the OOSM problem. Choi et al. [29] proposed a state estimation
algorithm incorporating uncertainty of measurement delay. By modelling uncertain delay as
a probabilistic density function is accounted for by the proposed estimator, combined with
the augmented state Kalman Filter. However, the majority of these algorithms reported
simulation only results that neither considered a real environment nor the techniques were
applied on a real robot.

2.3. Our contributions

While state estimation with augmentation methods have been proposed in the literature,
they were not applied in Telepresence navigation. Only exception is Choi et al. [29] where
the authors simulated their algorithms with an intention to apply on Telepresence robot
navigation. However, a real life scenario poses many other additional challenges including
system errors, mechanical errors relating to robot kinematics. In addition to this, a differen-
tial drive robot (our chosen state-of-the-art industrial Telepresence robot) imposes additional
complexities mainly due to individual wheels controls impacting the robot kinematics.
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To address this we propose an experimental model for state estimation for navigation
of Telepresence robots with uncertain and delayed sensor measurements in a non-linear
system. We hypothesised and developed the approach by introducing augmented states into
the computational model for differential drive Telepresence robot navigation. This is verified
using a real world Telepresence robot navigation in the laboratory environment using a new
experimental framework. The contributions of this work are:

• A delay compensated non-linear state estimation approach considering continuous and
uncertain time delay in measurement data. Multiple augmented states, considering
delay as a model of Probability Density Function (PDF) in the form of Gaussian or
Gamma distribution, are applied within the filtering method to estimate the true robot
position from noisy measurements.

• A new real-environment experimental framework for Telepresence robot navigation to
evaluate the performance of the proposed non-linear filter based state estimator.

• To prove the success of our approach, the proposed model was experimentally verified
on a state-of-the-art differential-drive Telepresence robot in the real-environment using
the proposed framework.

An overall flow diagram of the proposed model is shown in Figure 8 and described in
Section 3. The overall framework is shown in Figure 2 followed by a detailed description in
Section 4. The initial idea and primary results were reported in the form of conference pub-
lications [30, 31]. This paper provides detailed mathematical formulation of the proposition,
introduces uncertainty in measurement delay and provides extensive experimental results
and discussions. To the best knowledge of the authors, the proposed approach is first of its
kind in compensating delays in differential-drive Telepresence robot navigation.

This paper is organised as follows. In Section 3.1.2, the non-linear function equations are
derived. Section 3.3 introduces the methodology to deal with the delayed measurement. In
Section 4, the experimental framework has presented. In Section 5, experimented results are
analysed and evaluated the proposed methodology. Finally, Section 6, concludes the paper.

3. Delay compensated state estimation

3.1. Preliminaries

The proposed computational model relies on a couple of preliminaries including the kine-
matic model and extend Kalman filters (EKF) which has been used to develop the hypothesis
and the algorithm. Therefore, it is sensible to revisit these briefly in this subsection.

3.1.1. Kinematic model of a differential drive robot

The robot used in this research was a four-wheeled differential drive Telepresence robot.
Two front wheels were drive wheels and rear two wheels were castor wheels for stability.
Drive wheels were controlled independently by Robot Operating Systems (ROS2) commands

2www.ros.org/core-components/
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Figure 2: Experimental framework with a state-of-the-art off-the-shelve Telepresence robot Beam+. The
robot was a differential drive robot which was controlled by ROS commands from a host computer through
WiFi communication. The movement of the robot was captured by the multiple Vicon motion tracker.

from a host computer. The kinematic model [32] of a differential drive robot was defined as
follows:

xk = xk−1 + ∆Dk−1 ∗ cos θk, (1)

yk = yk−1 + ∆Dk−1 ∗ sin θk, (2)

zk = zk−1, (3)

θk = θk−1 + ∆θk−1, (4)

∆Vk−1 =
1

2
∗ (vl,k + vr,k) ∗ dt, (5)

∆θk−1 =
rw

b
∗ (ωl,k − ωr,k) ∗ dt, (6)

where, xk, yk and zk were the Cartesian coordinates of the robot, ∆Dk−1 was the travelled
distance at time step k − 1 to k, θk was the angle between robot and x axis, ∆θk−1 was the
rotation angle at time step k−1 to k, vl,k and vr,k were linear velocity of left wheel and right
wheel, ωl,k and ωr,k were angular velocity of left wheel and right wheel, rw was the radius
of the two drive wheels and dt was the sampling time.

3.1.2. Filter based state estimation equations

In this research, our aim was to estimate the true robot pose from noisy sensor mea-
surements. The process governed by the non-linear stochastic differential equation with
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Figure 3: The Robot Kinematics in this experiment. The robot was a four-wheeled differential drive Telep-
resence robot. Two front wheels were drive wheels and rear two wheels were castor wheels for stability.

Figure 4: The figure shows an ideal case, when sensor measurement data enters into the filtering algorithm
without any time delay (Figure adapted from [29]).

estimating the state vector x ∈ Rn represented as

xk+1 = f(xk, uk, wk). (7)

The measurement equation with z ∈ Rm was represented by

zk = h(xk, vk), (8)

where, the non linear function f(·) in Equation (7) relates the state at time step k to the state
at step k+1. The non linear function h(·) in the measurement Equation (8) relates the state
xk to the measurement zk. xk+1 represents the actual state vector including the previous
state xk, an control input uk and the process noise wk. zk represents the measurement
state vector including the state xk and the measurement noise vk. The random variables wk
and vk represent the process and measurement noise respectively. They are assumed to be
independent of each other, white, with zero mean Gaussian distributions, being Q and R
the process and measurement noise covariance, respectively.

In an ideal case considering no time delay in the system, in a single time occurrence,
when sensor measurement data arrives to the computer, its coincide with the measurement
data at the same time step available in a Filter as shown in Figure 4. In such cases filtering
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methods like EKF algorithm [16][33] is applied. A complete set of EKF estimation equations
can be expressed as

Time update equations (Prediction):

x̂−k+1 = f(x̂k, uk, 0), (9)

P−
k+1 = AkPkA

T
k +WkQkW

T
k . (10)

In the EKF, the time update equations represent the state x̂− and covariance P−, both
estimated from the time step k to the time step k+ 1. Ak and Wk are the process Jacobians
at step k, and Qk is the process noise covariance at step k.

Measurement update equations (Correction):

Kk = P−
k H

T
k (HkP

−
k H

T
k + VkRkV

T
k )−1, (11)

x̂k = x̂−k +Kk(zk − h(x̂−k , 0)), (12)

Pk = (I −KkHk)P
−
k . (13)

In the EKF, the measurement update equations correct the state and covariance esti-
mates with the measurement. Hk and Vk are the measurement Jacobians at step k, and Rk

is the measurement noise covariance at step k.

3.2. Delay modelling

Figure 5: If the measurement data is corrupted by continuous time delay, the measurement data arrival
time in the computer does not coincide with the moment when the data enters into the filtering algorithm
(Figure adapted from [29]).

However, in reality, the system is assumed to be delayed. Considering time delay as
continuous in nature both time steps do not coincide with each other, which produces an
amount of time delay during navigation as shown in Figure 5. In such cases, the measurement
equation should be redefined as [23]

zk = h(xk−τk , vk−τk), (14)

where, τk is the number of delayed time steps.
In our case, we assumed that the time delays τk are not precise due to various delay,

namely, feedback delay and transmission delay and data packet drop-outs over the Internet
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Figure 6: If the time delay is uncertain in nature and the arrival at different time step in the filtering
algorithm is random (Figure adapted from [29]).

due to network congestions as discussed in Section 2.1 and hence the arrival in different
filter measurement time durations ∆t are random as shown in Figure 6. Therefore, it is
important to model uncertain delays to obtain a consistent state estimator. Such uncertain
delays are modelled here by probabilistic density functions (PDF). When the measurement
data arrived at the filter, the probability that the measurement at a given time step was
calculated by integrating the PDF over the time interval as shown in Figure 7. It is worth
noting that one may use time stamps instead of the PDFs. However, time stamp alone is
unlikely to solve the problem of state estimations as the time stamp information itself is to
be delayed along with the measurements. Additionally measuring and processing individual
time stamps will increase the complexity and not always necessary as the delays can be
modelled using known distributions, e.g., Gaussian and Gamma.

Figure 7: If the measurement data arrival is uncertain, the time delay is considered as a probabilistic density
function (e.g., Gaussian or Gamma). The probability of the time step in example measurement data is shown
in this figure (Figure adapted from [29]).

The probability of the measurement data in kth time step can be expressed as

δk = P
(
(tk − ∆t

2
) ≤ t < (tk + ∆t

2
)
)
, (15)

=

∫ tk−∆t
2

tk+ ∆t
2

p(t)dt,

where, P (.) denotes probability and p(.) denotes the PDF.
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3.2.1. Delay distributions

The delay distributions have been studied in the literature and in this work we have
focused on two most commonly reported PDFs, i.e., (1) Gaussian and (2) Gamma distribu-
tions. The former one represents general delay modelling when delay distributions are not
known [34, 35] and the latter one constitutes of Internet-based delay models when Gaussian
model fails in characterising the distribution property or the distribution of the input traffic
rates is non-Gaussian [36, 37, 38]. These PDFs are defined as follows:

Gaussian distribution: The probability density function of the Normal distribution or
Gaussian distribution is:

f(x) =
1

σ
√

2π
exp− 1

2 (
x− µ
σ

)2, (16)

where the parameter µ is the mean or expectation and σ is the standard deviation of the
distribution.

Gamma distribution: The probability density function in the shape-rate parametrization
is

f(x) =
β−αxα−1 exp(−x

β
)

Γ(α)
for x > 0 and α, β > 0 (17)

where Γ(α) is the Gamma function and α and β are shape and rate parameter. These
parameters are related to the mean and variance of the delay by µ = α/β and σ = β2/α.

While the most commonly used delay distributions are Gaussian and Gamma distribu-
tions and hence, considered in our algorithm, other probability distributions such as uniform
distribution could be used to model the uncertain time delay which is outside the scope of
this paper.

3.3. The algorithm

When sensor measurements are corrupted by the time delay, the current state could not
be directly corrected using the current measurement, since a delayed sensor measurement
was actually carrying information about a past measurement state. Here, x(k) could not be
corrected directly because the measurement values depend on the past measurement state
x(k − τ). Therefore, the past measurement state corresponding to a delayed measurement
needed to be determined before using the delayed measurement during the state estimation.
The current state also needed to be corrected after correcting the appropriate past state.

3.3.1. Augmented State Extended Kalman Filter (AS-EKF)

In this research, we have used augmentation of states with EKF filter [29] for delay
compensated state estimation of Telepresence robots with considering uncertain delayed
sensor measurements as depicted in Figure 8. We augmented the present and past states
into several augmented state vectors to estimate the robot’s true position. The current
measurement state which containing information of the past measurement states, directly
corrects the augmented state vectors. In this way, in a delayed system, we determined
the corresponding past state in the augmented state vector. After that, the past state
was updated using the delayed measurement data and the current state was simultaneously
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Figure 8: Flow diagram of the proposed algorithm. The diagram shows the sequence of steps involved in
the AS-EKF model used in this work.

corrected in the augmented state vector. It is to be noted that firstly the algorithm considers
known fixed time delay which is then extended to compensate uncertain delays using PDFs.

For one time step delay, the prediction equation was modified as[
xk+1

xk

]
=

[
f(xk, uk, wk)

xk

]
(18)

where,
[
xTk+1 xTk

]T
was the augmented state vector. The measurement equation was

zk = h

([
0 I

] [xk+1

xk

]
, vk

)
(19)

where, I was the identity matrix, the current measurement zk was used to update[
xTk+1 xTk

]T
.

For multi step delays, the prediction equation defined as

X(k+1) =


f(xk, uk)I 0 0 0

0
. . . 0

...
0 0 I 0

Xk

+


wk
0
...
0

 (20)

≡ f(Xk,Uk,Wk)

where, X(k) was the augmented state vector defined by
[
xTk xTk−1 · · · xTk−n

]T
and n

was the maximum number of delayed time steps. The measurement equation was rewritten
as
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(a) (b)

Figure 9: Histogram of delay probability density functions for average delay τ = 10: (a) and (b) represent
Gaussian and Gamma distributions, respectively.

Zk = h




0
...
I
...
0



T 
xk
...

xk−τk
...

xk−n



+


0
...

vk−τk
...
0

 (21)

≡ h(Xk,Vk)

where, τk represented the time delay, which was less than n, and I was placed at the
corresponding time step k − τk. If the time delay τk is known and regular, the augmented
state vector can be estimated recursively via the EKF algorithm.

EKF algorithm consists prediction and measurement update stages. In the prediction
stage, state prediction was carried out by the prediction equation (Equation (7)). The
error covariance was propagated by the Jacobian of the prediction model and the process
noise covariance(Q). The measurement update stage or measurement model was based
on the prediction model and the error covariance (Equation (8)). The Jacobian of the
measurement model and the measurement noise(R) were needed to obtain the Kalman gain
(K). The proposed method was implemented in the augmented state vector using prediction
and measurement update stages of EKF algorithm.

Dealing uncertain delays: So far our model considers known continuous delays and com-
pensated the prediction through augmented states. However, in practice often delays are
unknown (as discussed in Section 2.1) and therefore we extend the AS-EKF to handle un-
certain delays. Our hypothesis is that while delay for each measurement is different, the
average delay is measurable by modelling the probability of factors that introduces such
delay, e.g., feedback or Internet communication. In this work the modelling of uncertain
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delays were done using the PDF in terms of two different delay distributions, i.e., Gaussian
and Gamma (as discussed in Section 3.2.1) to get a consistent state estimator. Examples of
such delays, i.e., Gaussian and Gamma are shown in Figure 9 (average delay τ = 10).

In extending the proposed algorithm for uncertain delays, we consider such average delay
(modelled by PDFs, the peaks in example figure) as continuous input to the system. This
allows us to directly apply proposed AS-EKF for state estimation in uncertain scenarios.
We verify this hypothesis in Section 5.2.2 by simulating various average delays for uncertain
time delay scenarios. The results are promising and asserts the fact that the proposed algo-
rithm offers a better and consistent delay compensated state estimation in both the certain
and uncertain delayed system environment.

4. The framework

The proposed framework was built based on our experimental requirements, e.g., state
estimation of a Telepresence robot in an environment with erroneous sensor measurement
due to system noise and uncertain delays (communication, processing etc.). We captured
these requirements in the following subsections and described our framework which helps us
to design, simulate and experiments in the controlled lab environment. An overall system
architecture of our framework is depicted in Figure 2.

4.1. Requirements and Framework Components

In order to simulate various usage scenarios in our research there were some criteria
needed to be fulfilled in selecting a Telepresence robot and setting up the software-hardware
environment. These criteria are (1) the robot should be a mobile robot, (2) remotely operable
in controlled manner, (3) have teleconferencing capabilities, and (4) a means to track robots
real position.

4.1.1. Telepresence Robot

In order to have a greater control over the robot, it is sensible to chose a differential
drive robot that has control individual wheels. We have used Beam+3 which is a state-of-
the-art market leading differential drive Telepresence robot in our experiments which has
Telepresence capability and control through WiFi communication. Beam+ has two built-in
high dynamic range cameras, LCD display and four microphone arrays with powerful audio
amplifier provide a real, physical sense of presence in remote environment.

4.1.2. Odometry error correction

In a differential-drive mobile robot, incremental odometry errors are usually caused by
kinematic imperfections of the robot. The two most significant errors are generated from
unequal wheel diameters and the uncertainty about the effective wheelbase [39]. As the
Telepresence robot used this research was a differential drive robot as described in Figure 3,
it produced an enormous amount of dead-reckoning errors during navigation. Using the

3https://suitabletech.com/products/beam
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UMBMark [39] method we have measured the dead-reckoning accuracy of the robot to find
out the variance in the robot navigation and modelled in the proposed algorithm.

4.1.3. Control and Simulation Software

There are two parts of the software component in our framework: a) robot control using
ROS and b) state estimation algorithmic development in MATLAB. As the latter one is
commonly used for algorithmic development we only describe the robot control component
using ROS. The proposed framework used ROS to navigate and control the robot. Although
ROS is widely used in robotics, it challenging to control any commercial robots with a
closed ecosystem using ROS. A ROS driver (a ROS node to access the hardware) was
used for the experimental purposes. An existing open access robot driver (rosbeam4) was
modified, customized and installed in our Beam+ robot to communicate through standard
WiFi access point with a Linux based (Ubuntu) host computer. Several ROS packages that
solve basic robotics problems including pose estimation, localisation in a map and mobile
navigation were used in this work which includes several commands for launching nodes,
introspecting topics and publishing control actions as a host to the Telepresence robot.
Using ROS commands we developed algorithms to instruct the robot to navigate following
the pre defined trajectory, monitor its progress, stop or redirect it along the way, and be told
when it has succeeded (or failed). Also, we captured robot’s positional information during
the navigation.

4.1.4. Tracking Hardware

We captured robot’s navigation data using Vicon motion capture system5. Twelve mo-
tion captured cameras were installed and calibrated in the lab which is capable of tracking
robot’s true state during the experiment. We have attached some retro reflective markers
on the robot to represent it as a rigid body. Vicon cameras along with its software were
used to record the movement of the robot. They operate in three dimensions, and tend to
have high resolution, high accuracy and low variance [40].

The state estimation algorithms were implemented in a Linux based host computer. The
host computer connects the Telepresence robot using ROS driver and sends ROS control
command to the robot to form a raster-scan navigation path and receives 3D positional
data of the navigation captured by the Vicon motion cameras through standard WiFi.
The motion capture data was used for two purposes: a) to verify the system path and b)
to simulate other scenarios by introducing noise and delay which helped to develop the
experimental setup for robust navigation.

4.2. The framework set-up and Data collection

The host computer connects the Telepresence robot using ROS driver, sends the ROS
control command to the robot to form a raster-scan navigation path and receives 3D posi-
tional data of the robot navigation captured by the Vicon motion cameras through WiFi. We

4https://github.com/xlz/rosbeam
5https://www.vicon.com/
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performed all the experiments within the robotics laboratory in our department. The exper-
iment was to create a raster-scan path where the mobile robot travel distance was horizontal
2000mm and vertically 500mm and the orientation was 90◦. We performed several runs to
capture measurement data with combination of various linear velocities (100− 500mm/sec)
and angular velocities (100−500mm/sec). For all the experiments the mobile robot’s start-
ing pose was the same.

The ROS control commands were sent from the host computer over the WiFi to manoeu-
vre the robot creating the predefined path. Position and orientation data were recorded and
used as measurement data in the proposed algorithm. The robot wheel diameters and wheel-
base were modified using the correction factor calculated by dead-reckoning. On the other
side, the captured robot navigation data using Vicon cameras has a low variance (3.58mm2)
as reported in [40] which was also used estimating the robot’s true position. It is to be
noted that the Vicon captured positional data was used to simulate the noisy measurement
by introducing random white noise.

Experimental parameters such as initial robot position, linear and angular velocity, cor-
rection factors for wheelbase and wheel diameter, robot variance and measurement time
steps etc. are provided in Table 1.

Experimental parameters Value

Initial position (x, y, z, θ) (0,0,0,0)

Wheel radius (rw) 75 mm

Wheel base (b) 263 mm

Velocity (vl, vr, ωl, ωr) 100 mm/sec

Wheelbase correction factor (Eb) 0.9691

Wheel diameter correction factor (cl, cr) 0.9969, 1.0031

Robot variance (σ2
∆θ = σ2

V ) 2.13

Vicon measurement time steps 0.01 sec

Continuous delay parameters

Known and regular delay in time steps (τ) [10, 15, 20, 25]

Known and regular delay in sec [0.1, 0.15, 0.2, 0.25] sec

Uncertain delay parameters

Gaussian parameters for uncertain delay µ = [10, 15, 20, 25] and σ = τ/4

Gamma parameters for uncertain delay α = β =
√
τ

Table 1: Parameters used in the experiments.
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5. Experimental results

5.1. Experimental setup

We have evaluated the proposed approach considering delayed robot navigation mea-
surements. Using the proposed framework (described in Section 4), a raster scan robot
navigation path (design path) was created to simulate and study our approach. Firstly,
algorithm was written in ROS to remotely control the Telepresence robot Beam+. The real
navigation path was monitored and tracked through the Vicon motion tracking system. As
mentioned previously Vicon has extremely small error variance and hence, the Vicon output
data has been considered as the actual robot path in all our experiments.

We envisage two scenarios, 1) robot navigation in a regular and known delayed envi-
ronment; and 2) robot navigation in an unknown and uncertain delayed environment. In
addition to that we also considered the measurement for positional data are noisy. Ideally to
create such scenarios in real life one would need to arrange a set up where the local site and
remote sites are physically distanced at least in order or hundreds of miles/ kilometers so
that the physical communication delays are noticeable. In absence of such large geographical
distance in the lab environment, we simulated the data.

Firstly, the robot velocity was assumed to have white Gaussian noise and the measure-
ment data is accordingly also corrupted by the sensor noise. For this purposes, we have
added random position noise to the Vicon output data. The noisy positional data is then
arranged to insert known and unknown delays to simulate various scenarios in this work.

In real environment scenario, we cannot assume the time delay between sending a control
command to the robot and the moment when the received sensor measurement data entered
in the state estimator. We assumed that the measurement time delay was uncertain. In this
paper, we applied state estimation algorithm to obtain the robot’s true position calculating
and modelling the uncertain time delay as discussed in Section 3.2.1.

5.2. Results and discussions

In order to verify our proposed approach, we initially experimented with an overall
simulation followed the experiments as described in Section 5.1. A raster scan robot path
was simulated using MATLAB simulations. Delay was introduced on the measurement
values as a unit of time steps. Regular EKF and the proposed delay compensated approach
(AS-EKF) were applied to show the effectiveness of the delay compensation approach. The
results such simulation was shown in Figure 10 where the figure on the left hand side
shows the complete path. The right hand figure is a zoomed version of the selected area
which clearly shows regular EKF was unable to handle delay when the robot changes its
direction. On contrary, as expected the AS-EKF compensated the delay and closely follows
true robot path. On verification of our approach on the simulations, we performed detailed
experiments on the Beam+ telepresence robot using the experiential framework (described
in the following subsections).

5.2.1. Scenario I: Regular and known time delay

Considering regular and known time delay in the sensor measurement, we applied both
EKF and delay compensated AS-EKF algorithms as discussed in Section 3.3. To gain an
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(a) (b)

Figure 10: Comparison of EKF with AS-EKF estimated robot path with simulated time delayed measure-
ment data. (a) overall robot navigation path; (b) zoomed version of the selected path that shows effectiveness
of AS-EKF over regular EKF.

Delay RMSE Improvement

in time steps EKF AS-EKF (%)

10 17.60 11.88 32.50

15 20.57 12.01 41.63

20 23.38 11.94 48.92

25 26.17 11.96 54.28

Table 2: RMSE error comparison for regular and known time delay.

in-depth insight we have introduced a number of delay in time steps (τ = [10, 15, 20, 25])
corresponding to delay in equivalent of [0.1, 0.15, 0.2, 0.25] seconds, respectively. The delay
parameters are shown in Table 1. Results for corrected navigation path (for τ = 10) is
shown in Figure 11. The results show that AS-EKF algorithm is reducing the linearisation
error and compensating the time delay more precisely. Instead of EKF estimated path, the
AS-EKF estimated path is more close to the robot control path.

In order to capture performance for delay compensation, we calculated the error in terms
of root mean square error (RMSE) between the Vicon measurement (absolute robot path)
and estimated path by EKF and AS-EKF, respectively, with respect to measurement time
steps. The results for complete paths are shown in Figure 12 and average RMSE errors for
entire paths are reported in Table 2.

The results show that with the increase of number of delayed steps in the measurement
data, the performance of the EKF algorithm proportionally decreases as the time delay in
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(a) (b)

Figure 11: Comparison of EKF with AS-EKF estimated robot path with time delayed measurement data.
(a) Overall comparison; (b) Comparison between EKF and AS-EKF.

the measurement data degraded the state estimation accuracy of the algorithm. AS-EKF
significantly reduces the error and maintained at the same level by compensating the error
introduced by the delay. In our experiments we have achieved improvements of 33% to 54%
when considering the delay compensated AS-EKF as opposed to regular EKF.

5.2.2. Scenario II: Uncertain time delay

As mentioned earlier sections, regular and known time delays are rare in real life envi-
ronments. Therefore, we consider scenarios with uncertain time delays as discussed in Sec-
tion 3.2. As previous study shows uncertain delays can be modelled using the probability
density functions (PDF), such as, Gaussian and Gamma distributions, we considered both
distributions in simulating delays within measurement values. Random delays with averages
similar to the known regular time delays are introduced in respective distributions and the
distribution parameters were calculated accordingly. The distribution parameters are re-
ported in Table 1 and example plots of positional error due to uncertain delay with respect
to time steps for both Gaussian and Gamma distributions are shown in Figure 13 (average
time delay τ = 10). As described in Section 3.3.1 (Dealing uncertain delays), we considered
the average delays as input to the system and estimated states using the proposed AS-EKF
algorithm. Similar to known delays the results of AS-EKF for uncertain delays were com-
pared against state estimation using EKF only that does not considers delay compensation.

The results for delay with Gaussian and Gamma distributions are shown in Figure 14
and Figure 15, respectively. Similar to the known and regular delay, we calculated the error
between the estimated path and Vicon measurements (absolute robot path) and compared
for EKF without considering delay compensation and AS-EKF that compensated the delay
by assuming the average delay in these scenarios. The RMSE error for Gaussian and Gamma
distributed delays are shown in Table 3 and Table 4, respectively. In both cases we have
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(a) τ = 10. (b) τ = 15.

(c) τ = 20. (d) τ = 25.

Figure 12: RMSE error comparison for regular and known time delay. The red line and blue line represent
the RMSE error of EKF and AS-EKF estimation.

observed more than 50% improvements.
Finally we have compared the estimation error for various scenarios, e.g., regular and

known delay, uncertain delay with Gaussian and Gamma distributions. The results are
shown in Figure 16 for τ = [10, 20]. We have also compared the RMSE errors and reported
in Figure 17.

5.3. Discussions

We have conducted all experiments using our proposed experimental framework. The
delay compensated state estimation approach successfully estimated the robot’s true posi-
tion during navigation and compensated the time delay from the noisy measurement data
as described before. During the experiments we have used the robot’s original hardware
parameters.

Comparing with existing EKF techniques estimating robot’s true position, we have shown
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(a) (b)

Figure 13: Positional error due to uncertain delay with average delay τ = 10: (a) and (b) represent delay
modelled using Gaussian and Gamma distributions, respectively.

Average delay RMSE Improvement

in time steps EKF AS-EKF (%)

10 19.11 13.22 30.79

15 31.54 13.08 39.29

20 23.62 12.81 45.77

25 26.67 13.07 50.99

Table 3: RMSE error comparison for uncertain time delays with Gaussian distribution.

that our delay compensated AS-EKF based approach improves the estimation of robot
positions in the scenarios with delayed noisy sensor measurements. The observation indicates
best results are achieved by the delay compensated AS-EKF when the delay is regular and
known. Although, it is not as good as the known delay scenario, the proposed algorithm
works well for uncertain delays provided the average delay is known which can be estimated
empirically. We also observed the algorithm works relatively better for Gamma distribution.
This is due to the fact that the Gamma distribution in our experiments are relatively skewed
towards left, i.e., smaller delays.

6. Conclusions

In this paper, a delay compensated state estimation approach for a Telepresence robot
with uncertain delayed navigation measurement was presented. EKF combining with aug-
mented state model was successfully executed estimating actual robot position modelling
known and uncertain time delays in the robot navigation. The uncertainty of the time delays
were modelled by considering PDF in terms of Gaussian and Gamma distributions. The
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(a) Average τ = 10. (b) Average τ = 15.

(c) Average τ = 20. (d) Average τ = 25.

Figure 14: RMSE error comparison for uncertain time delay with Gaussian distribution. The red line and
blue line represent the RMSE error of EKF and AS-EKF estimation respectively.

robot paths estimated by the delay compensated AS-EKF algorithm and EKF algorithm
that does not consider any delay, are compared to evaluate the improvement in navigation
performance. The proposed model was experimentally implemented in simulation and ver-
ified in the real environment experimental framework with a state-of-the-art commercial
Telepresence robot. As a future work, we intend to build a predictive display to address
the challenges of visual mismatch between the predicted state and actual navigation state
of the robot. The predictive display is envisaged to show the immediate estimated robot
path while the robot is navigating under delayed network.
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(a) Average τ = 10. (b) Average τ = 15.

(c) Average τ = 20. (d) Average τ = 25.

Figure 15: RMSE error comparison for uncertain time delay with Gamma distribution. The red line and
blue line represent the RMSE error of EKF and AS-EKF estimation respectively.
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