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In this paper, we propose a new cohesive model to stably and accurately simulate the
delamination propagations in composite laminates under quasi-static and low-velocity
impact transverse loads using comparatively coarse meshes. In this model, a pre-softening
zone ahead of the existing traditional softening zone is proposed. In this pre-softening zone,
the initial stiffnesses and the interface strengths at the integration points of cohesive ele-
ments are gradually reduced as the corresponding effective relative displacements at these

Ié?t/]t:i:/f:interface model points increase. However, the onset displacement corresponding to the onset damage is
Laminate not changed in this model. Moreover, the fracture toughness of materials for determining

the final displacement of complete decohesion is kept constant. This cohesive model is
implemented in the explicit time integration scheme combined with a powerful three-
dimensional (3D) hybrid finite element for evaluating the delamination propagations on
interfaces in composite laminates. A DCB problem is employed to analyze the characteris-
tics of the present cohesive model. In order to reduce the computational cost for dealing
with more complex problems, a stress-based criterion is also adopted in our numerical
model for evaluating various in-plane damages, such as matrix cracks, fiber breakage,
etc. Finally, two experimental examples are employed to illustrate the validity of the pres-
ent approach.

Delamination

Finite element analysis
Transverse loads
In-plane damages

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction transverse matrix cracking, etc. The second category in-

cludes the interface damages, i.e. delaminations among

It is well-known that very complicated damage phe-
nomena occur in composite laminated structures under
transverse loads. Understanding the mechanisms of the
happening and propagation of the damages is crucial for
properly designing this kind of structures. Generally, there
are two main categories in various damages in composite
laminates under the transverse loads. The first category
consists of various in-plane damages, such as fiber failure,
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multiple laminae, which are the dominant damages of
laminates.

So far, a lot of research has been conducted to experi-
mentally or numerically investigate the damage phenom-
ena of composite laminates under the transverse loads. In
the following, only the studies in the field of theoretical
models and numerical simulations are briefly reviewed.
For various in-plane damages, various stress-based criteria
have been put forward. For instance, Chang and Chang
(1987) and Hou et al. (2000) proposed the tension-shear
failure criteria for matrix cracking. In these criteria, the
damage conditions relate to single ply failure, which are
not unique, but have a great degree of commonality with
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other widely accepted criteria. Also, to predict the delam-
inations in laminates, some stress-based criteria have been
proposed. For instance, Brewer and Lagace (1988) pro-
posed a delamination criterion. Hou et al. (2001) further
modified this delamination criterion by taking into account
the interaction between the out-of-plane compression and
interlaminar shear. From many previous studies, it has
been concluded that the stress-based criteria are effective
to predict the initiation of various damages, especially for
in-plane damages, such as fiber failure and matrix crack-
ing. However, there has been much debate on that using
the stress-based criteria to simulate damage propagation
process, especially for delamination extension. As pointed
out by Davies and Zhang (1995), in the stress-based criteria
for delamination, the scale effects would not be exhibited
as in a fracture model. Therefore, it may be inaccurate to
use them to predict the delamination size or model the
delamination propagation. It almost certainly requires an
energy release rate algorithm based on the knowledge of
fracture mechanics.

To understand the mechanism of the delaminations
occurring on the interfaces of different layers, besides the
above stress-based criteria, some methods based on frac-
ture mechanics have also been proposed. For instance,
Zheng and Sun (1995) and Li et al. (2002a,b) directly eval-
uated the strain energy released rate of the mixed-mode at
the delamination front for modeling the delamination
propagation. However, this kind of methods cannot deal
with the initiation of delaminations, therefore, some initial
pre-existing small delamination areas must be assumed.
Furthermore, various cohesive interface models, which
can tackle the initiation and propagation of crack or delam-
ination simultaneously, are widely used due to their inher-
ent simplicity and efficiency (Xu and Needleman, 1994;
Camacho and Ortiz, 1996; Geubelle and Baylor, 1998;
Reddy et al., 1997; Mi et al., 1998; Goncalves et al., 2000;
Camanho and Davila, 2002; Segurado and Llorca, 2004;
Nishikawa et al., 2007). However, when using cohesive ele-
ments to simulate the interface damage propagations, such
as delamination propagation, there are two main prob-
lems. The first one is the numerical instability problem as
pointed out by Mi et al. (1998), Goncalves et al. (2000),
Gao and Bower (2004) and Hu et al. (2007a). This problem
is caused by a well-known elastic snap-back instability,
which occurs just after the stress reaches the peak strength
of the interface. Especially for those interfaces with high
strength and high initial stiffness, this problem becomes
more obvious when using comparatively coarse meshes
(Hu et al., 2007a). Traditionally, this problem can be con-
trolled using some direct techniques. For instance, a very
fine mesh can alleviate this numerical instability, however,
which leads to very high computational cost. Also, very low
interface strength and the initial interface stiffness in the
whole cohesive area can partially remove this convergence
problem, which, however, lead to the lower slope of load-
ing history in the loading stage before the happening of
damages. Furthermore, various generally oriented method-
ologies can be used to remove this numerical instability,
e.g. Riks method (Riks, 1979) which can follow the equilib-
rium path after instability. Recently, the artificial damping
method with additional energy dissipations has been

proposed by Gao and Bower (2004). Also, the present
authors proposed a kind of move-limit method (Hu et al.,
2007a) to remove the numerical instability using cohesive
model for delamination propagation. In this technique, the
move-limit in the cohesive zone provided by artificial rigid
walls is built up to restrict the displacement increments of
nodes in the cohesive zone of laminates after delamina-
tions occurred. Therefore, similar to the artificial damping
method (Gao and Bower, 2004), the move-limit method
introduces the artificial external work to stabilize the com-
putational process. As shown later, although these meth-
ods (Gao and Bower, 2004; Hu et al., 2007a) can remove
the numerical instability when using comparatively coarse
meshes, the second problem occurs, which is the error of
peak load in the load-displacement curve. The numerical
peak load is usually higher than the real one as observed
by Goncalves et al. (2000) and Hu et al. (2007a).

With the previous background in mind, the objective of
this paper is to propose a new cohesive model named as
adaptive cohesive model (ACM), for stably and accurately
simulating delamination propagations in composite lami-
nates under transverse quasi-static or impact loads when
using comparatively coarse cohesive elements in order to re-
duce the computational cost. In this model, ahead of the
existing softening zone located at the delamination tip,
we propose a pre-softening zone. In this pre-softening zone,
with the increase of effective relative displacements at the
integration points of cohesive elements on interfaces, the
initial stiffnesses and interface strengths at these points
are reduced gradually. However, the onset displacement
for starting the real softening process is not changed in this
model. The critical energy release rate or fracture tough-
ness of materials for determining the final displacement
of complete decohesion is kept constant. In the pre-soften-
ing zone, the lower limit of the interface strength and stiff-
ness can be theoretically estimated according to the mesh
size. This cohesive model is implemented in the explicit
time integration scheme combined with a powerful 3D
eight-noded hybrid brick element (Cao et al., 2002) for
evaluating the delamination propagations in composite
laminates. A DCB problem is employed to analyze the
properties of the present ACM. We found that this model
can effectively remove the numerical instability and errors
in the peak loads for coarse meshes. Moreover, to deal with
more complex damage phenomena in composite laminates
with lower computational cost, a stress-based criterion by
Hou et al. (2000) is adopted to tackle various in-plane dam-
ages at the integration points within individual 3D brick
element. The strategy for updating the in-plane stiffness
due to various in-plane damages in our previous work
(Hu et al., 2007a) is adopted. Then, two categories of dam-
age patterns in composite structures under transverse
loads, i.e. delaminations and in-plane damages are tackled
independently. Finally, this numerical simulation method
is applied for more complex problems, such as GFRP and
CFRP laminated plates under transverse quasi-static or im-
pact loads. The corresponding experimental results are
employed to validate the present method. It is shown that
the present method can successfully simulate the complex
damage behaviors of laminates under transverse loads
with lower computational cost.
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2. Theory of cohesive element for interface damages
2.1. Theory of traditional cohesive element

To analyze the delamination propagation at interfaces
in laminates, there have been a lot of proposed cohesive
models in many previous studies, here a zero-thickness
cohesive element with eight-nodes in Fig. 1 is adopted
(Camanho and Davila, 2002) to simulate the resin-rich
layer connecting the several laminae of a composite lami-
nate, which is briefly described here for the integrity of the
work.

The constitutive equation of zero-thickness cohesive
elements is established in terms of relative displacements
and tractions across the interface. The relative displace-
ments for an element with a general orientation in 3D
space are defined in Fig. 1. In this figure, at each integration
point of cohesive element, we define the relative displace-
ments s = {31, d>, 93} in local coordinates obtained from
the displacement vector u = {u;, uy, us}T in the global coor-
dinates as follows:

5, = Bu (1)

The constitutive relationship of the cohesive element, D, at
each integration point, relates the tractions, 7, to the rela-
tive displacements §s as

75 = Dsds (2)

The stiffness matrix of the cohesive element can be ob-
tained from the principle of virtual work as follows:

Zero—thickness
Z, ug cohesive element

Y, Usy 63 /_' 52
J,

k — / B'D,B.dI 3)
r

The 4 x 4 Newton-Cotes closed integration scheme, which
can overcome the locking caused by the strong initial
interface stiffness (Camanho and Davila, 2002), is adopted
in this work to evaluate the stiffness matrix of cohesive
element.

Here, it is a fundamental task to build up an appropriate
constitutive equation in the formulation of the cohesive
element for accurate simulations of the interlaminar crack-
ing process. It is considered that there is a process zone or
cohesive zone ahead of the delamination tip, which physi-
cally represents the coalescence of crazes in the resin-rich
layer located at the delamination tip and reflects the way
by which the material loses load carrying capacity. As
shown in Fig. 2 for a bi-linear model (Camanho and Davila,
2002) in the cases of typical pure mode I, II or III, after the
interfacial normal or shear tractions attain their respective
interlaminar tensile or shear strengths at an integration
point of the cohesive element, the stiffness of the cohesive
element at this point is gradually reduced to zero. The soft-
ening onset displacements are obtained as

N =N/K, 8=S/K, &=T/K 4)

where N, S and T are the interlaminar tensile and shear
strengths, respectively, and K is the initial stiffness of
interface.

The area under the traction-relative displacement
curves is the respective (mode I, II, IIl) fracture toughness
(Gic, Guc, Guie), which is used to define the final relative dis-
placements corresponding to complete decohesion, i.e., i,
6% and o as

of of of
/ 73dd3 = Gic, / T,dd, = Gy, / T1dd1 = Guie
Jo Jo Jo
(5)

The final displacements for the state of complete decohe-
sion are then obtained as

ok =2Gic/N, o5 =2Gyc/S, o) =2Guc/T (6)

For the mixed-mode, the current effective relative dis-
placement J, is defined as

Fig. 1. Cohesive interface element. Om = \/b% + 5% + <53)2 = \/5§hear + <53>2 (7)
T T
N G S, T
Ic Guc,Guic
K (1-d)K K (I-d)K
Unload Unload

50 S 50, 51 012
93 0 3 GucGuig L2 ra

Clos

crac

Fig. 2. Constitutive law of traditional cohesive interface element.
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where Sgpear represents the norm of the vector defining the

tangential relative displacements of the element, and the

MacCauley bracket (i.e. ()) is defined as
0<=x<0

X) = 8

) {x <x>0 ®)

Assuming S =T, the single-mode relative displacements
at softening onset are defined from Eq. (4) as follows:

N =N/K, =055 =08 =S/K (9)

shear

When the opening displacement d5 is greater than zero, the
mode mixity ratio g is

[; _ 5shear (10)
03

The softening onset displacement of mixed-mode, i.e. 6%, is
then defined as

5950 ;sz ,
(5?‘1 _ 3TN (97 +(803)° = 53 >0 (11)
5(s)hear +<=03<0

The final displacement of mixed-mode corresponding
to the state of complete decohesion is obtained from the
well-known B-K model as follows:

n
-2 |Gic + (Guc — Gie) £,
oty = { | ()] “353>0 (12)
(0% + (85)* =05 <0

nis chosen through the comparison with experimental re-
sults (usually it ranges from 1.3 to 1.8).

Furthermore, 6% is defined to be the maximum effec-
tive relative displacement of one integration point within
a cohesive element in the loading history. Using the max
value of the effective relative displacement rather than
the current value 6., prevents healing of the interface. Fi-
nally, the constitutive matrix D in Eq. (2) for mixed-mode
is evaluated by the penalty parameter, i.e. initial stiffness
of interface K, the damage evolution function d, and the
softening onset and final displacements of mixed-mode,
ie, 0% and &', respectively, as
Ok = oM < % intact
o [(1 —d)K] <= &% < 6™ < f  and 63 >0
ds[(1 = d)K + Kdog] < 6% < o™ < of  and
Dy =< 55 <0 softening (13a)
0<om™ >4 and 6;5>0
5533%1( <~ 5$ax = 5;1 and 63 <0
complete decohesion

f o
_ Om(On™ — )
= —

™ (9 — Oy)

del0,1] (13b)

where d; is the Kronecker delta.

It should be noticed that the above equation avoids the
interpenetration of the crack faces of the cohesive element
in the state of compression for softening and complete dec-
ohesion states.

2.2. Adaptive cohesive model

In many previous studies (Mi et al., 1998; Goncalves
et al., 2000; Gao and Bower, 2004; Hu et al., 2007a), it
was found that computations using cohesive zones to
model crack nucleation often experience convergence diffi-
culties at the point where the crack first nucleates. Various
approaches (Riks, 1979; Gao and Bower, 2004; Hu et al,,
2007a) can be used to resolve these convergence problems,
which usually introduce the artificial external work into
the original system to stabilize the computational process.
Another problem is the error in the peak load of the load-
displacement curve when using comparatively coarse
meshes although the stable numerical simulations can be
realized using these approaches. To remove the numerical
instability when using the coarse meshes, as shown in
Fig. 3, ahead of the traditional softening zone, we insert a
transition area called as pre-softening zone. In this zone,
the initial stiffness and interface strength of the integration
points in cohesive elements are gradually reduced as J;™
increases. In Fig. 4, the stiffness K and the interface
strength, e.g., N for mode I, are linearly updated with the
increase of 6™ as follows:

5max
Ni = ;?) (Nmin - NO) +N07 (NO > Nmin)
and (% < oM™ < 50 (14a)
5max
Ki = gl_o(Kmin - KO) + K07 (KO > Kmin)
m
and (0% < oM < 59 (14b)

where Np is the initial interface strength, Ny, the lower
limit of interface strength, K, the initial stiffness and Ky,
is the lower limit of stiffness.

Note that Eq. (14a) also holds for S and T used in modes
II and III. By choosing the proper ratio between the lower
limits of strength and stiffness (e.g., Nmin and Ky,), from
Eq. (9), the following relations can be realized easily:
_ NO _ Ni(éﬁax) Nmin

T Ko Ki(0M™) " Kin
0 _ SO Si((smax) Smin

m

7Koo Ki(0™™) ™ Komin

%

09 =0 (forS=T) (15)
Therefore, from Eq. (11), the onset displacement 6%, in the
pre-softening zone is the same as that in the traditional
cohesive model, which does change in the updating pro-
cess of the interface stiffness and strength.

Moreover, to keep the constant fracture toughness G,
when reducing K, N and S in Eq. (14), the final displace-
ment 6% is adjusted correspondingly according to Egs. (6)
and (12), which is schematically shown in Fig. 4. Once
the integration point enters into the real softening process,
i.e, oM > 50 the current values of strength and stiffness,
i.e, N, and K, in Figs. 3 and 4, will be constantly used in
the subsequent computations. It should be noted that «
in Eq. (14) is a parameter to define the size of pre-soften-
ing zone. When « = 1, the present ACM model degenerates
into the traditional cohesive model.

In the above adaptive model, Ny can be taken as the real
interface strength. Therefore, it is crucial to define Npn
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Fig. 3. Schematic view of adaptive cohesive model (o = 0-1.0).

Gc=constant

N min

—Kumin

K=constant

fO summnn fn fmin
O O Om

Fig. 4. Constitutive law of adaptive cohesive model.

from the consideration of computational stabilization and
accuracy. Mi et al. (1998) have concluded that several ele-
ments in the softening zone are needed to realize stable
numerical simulations of the interface crack propagation.
Here, by referring to this statement, for instance, for the
case of mode I, the size of softening zone R was defined
by Geubelle and Baylor (1998) as follows:
nE G
R=NeRy = 5 25 N% (16)

min

where N, is the number of elements in softening zone,
which ranges from 2 to 5 from our numerical experiences,
R, the element size, and E,olymer and v are the Young's
modulus and Poisson’ ratio of polymer.

Finally, Npin, Wwhich depends on the element size, can be
calculated as follows:

o s Epolymer GIC
Ninin = \/2 1=V2 NR, 17)

For the mixed-mode, the similar formulation can be set up
by simply rezplaﬂcing Gic by G, which is equal to G+
(Guc — Gic) (ﬁ) from Eq. (12).

The above ACM is of the engineering meaning when
using coarse meshes for complex composite structures,

which is, in fact, an ‘artificial’ means for achieving the sta-
ble numerical simulation process. A reasonable explana-
tion is that all numerical techniques are artificial, whose
accuracy strongly depends on their mesh sizes, especially
at the front of crack tip. To remove the factitious errors
in the simulation results caused by the coarse mesh sizes
in the numerical techniques, we artificially adjust some
material properties in order to partially alleviate or remove
the numerical errors. Otherwise, we have to resort very
fine meshes, which may be computationally impractical
for very complex problems from the capabilities of most
current computers. Of course, the modified material
parameters should be those which do not have the domi-
nant influences on the physical phenomena. For example,
the interface strength usually controls the initiation of
interface cracks. However, it is not crucial for determining
the crack propagation process and final crack size from the
viewpoint of fracture mechanics. Moreover, there has been
almost no clear rule to exactly determine the interface
stiffness, which is a parameter determined with a high de-
gree of freedom in practical cases. Therefore, the effect of
the modifications of interface strength and stiffness can
be very small since the practically used onset displacement
8° for delamination initiation is remained constant in our
model. For the parameters, which dominate the fracture
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phenomena, should be unchanged. For instance, in our
model, the fracture toughness dominating the behaviors
of interface damages is kept constant.

3. Numerical verifications
3.1. A DCB problem

A DCB test specimen of a (0°),4, T300/977-2 carbon fi-
ber-reinforced epoxy laminate, containing a thin insert at
the mid-plane near the loaded end, is simulated (Camanho
and Davila, 2002). As shown in Fig. 5, this specimen is
150 mm long, 20 mm wide, with two 1.98 mm thick plies,
and with an initial crack length of 55 mm. The material
properties are: E;=150.0 GPa, E;; =E33=11.0GPa, Gz =
G13=6.0 GPa, Gy3=3.7GPa, vi2=v13=0.25, v,3=045 and
p=1444 kg/m>. It is a static experiment (Camanho and
Davila, 2002). As shown in Fig. 5, in our computations,
the loading speed is taken as 10 mmy/s. From our numerical
experiences, this low speed can yield sufficiently stable
results without obvious inertia effects. Moreover, the ten-
sile strength N, mode-I fracture toughness Gc, and the ini-
tial stiffness of cohesive zone K are defined in Table 1. The
mesh size and predicted Ny, using Eq. (17) are listed in
Table 2 when Epolymer = 3.0 GPa and N, = 3 (three elements
in softening zone). Also, it should be noted that for the qua-
si-static examples in Sections 3.1 and 3.2, to speed up the
computations, a one-step linear static analysis is first per-
formed up to a proper loading level before the happening
of damages. Then the computations are switched into the
explicit time integration scheme. Also, o = 0 in Fig. 3 is con-
stantly used in all examples.

Side View
V =10mm/sec
% 55mm Cohesive Elements ¢

[
[

T1.98mm

¢ Initial Delamination
V =10mm/sec

Top View

{4 150mm AL

—>x 20mm

T

Fig. 5. Geometry of a [0°/0°] DCB problem.

Table 1

Properties of cohesive element

No (MPa) Ko (N/mm?) Gic (kJ/m?) 8% (mm) o (mm)
45 3.0 x 10* 0.378 0.0015 0.0119
Table 2

Mesh size and predicted Ny, in Eq. (17)

Mesh size, R, (mm) Initial No — Nmin (MPa)

1.0 45.0 - 22.5
2.0 45.0 - 15.0

The various results are shown in Fig. 6 for two kinds of
cohesive mesh sizes. First, the comparison of the results of
traditional cohesive element, ACM and experiment (Cama-
nho and Davila, 2002) is shown in Fig. 6(a) for the mesh
size of 1 mm. From it, we can find that when the practical
interface strength is used in the traditional cohesive model,
i.e., 45.0 MPa, the result of traditional cohesive model has a
sudden stop and the computation is forcefully terminated
due to very strong numerical instability. With the decrease
of interface strength to 10.0 MPa in the traditional model,
the result is very stable, however, the slope of loading
curve before the peak load is obviously lower than those
of experimental ones (Camanho and Davila, 2002). For
the results of ACM, when Ny, is 22.5 MPa predicted by
Eq. (17), very good result can be obtained by comparing
with the experimental ones. However, when Ny, is taken
as 10.0 MPa in ACM, the same result as that of traditional
cohesive model of the same interface strength is obtained.
In Fig. 6(b), the results of the artificial damping (Gao and
Bower, 2004) and the move-limit technique (Hu et al.,
2007a) for stabilizing the numerical computations are
plotted. From this figure, we can find that both techniques
work stably, however, the peak loads predicted by these
techniques are slightly higher than the experimental ones.
When the mesh size is 2 mm, from Fig. 6(c), it can be found
that the traditional cohesive element cannot track the
loading-displacement history due to a sudden stop. The re-
sults of ACM for two values of Ny, are good although the
oscillation is more significant compared with those of
1 mm mesh size. Also, the slope of loading curve of ACM
using 15 MPa as N, which is predicted by Eq. (17), is clo-
ser to the experimental results compared with that of ACM
using 10 MPa as Np,. In Fig. 6(d), we can find that the re-
sults of the artificial damping (Gao and Bower, 2004) and
the move-limit (Hu et al., 2007a) yield much higher peak
loads than the experimental ones. By comparing with
Fig. 6(b) for the case of 1 mm mesh size, we can find that
with the increase of mesh size, the error in peak loads in-
creases too in these two methods (also see the work by
Goncalves et al., 2000). Naturally, this phenomenon is not
caused by the above two techniques (Gao and Bower,
2004; Hu et al., 2007a). The reason is from the employed
linear cohesive elements. For a cohesive elements located
at the crack tip, the distribution of the relative displace-
ments within one element is linear. If the elemental size
is too large, this distribution of the relative displacements
cannot reflect the real one in the crack tip area, which leads
to the higher external peak load. However, in Fig. 6(d), the
errors in the peak load of ACM are much smaller than those
predicted by the stabilization techniques (Gao and Bower,
2004; Hu et al., 2007a) due to the proper decrease of inter-
face stiffness. From the above discussions, we can find that
ACM can yield very good results from the aspects of the
peak load and the slope of loading curve if Ny, is properly
defined.

The comparison of results obtained from the different
mesh sizes is illustrated in Fig. 7. In this figure, it should
be noted that for the case of mesh size of 0.25 mm, the con-
ventional cohesive model can produce the stable and con-
verged results. Only for the mesh sizes of 1 and 2 mm, the
present ACM is employed. From this figure, it can be found
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Fig. 6. Comparison of different results of DCB problem. (a) Results of traditional cohesive element, ACM and experiments (mesh size R, = 1 mm). (b) Results
of stabilizing techniques (Gao and Bower, 2004; Hu et al., 2007), ACM and experiments (mesh size R, = 1 mm). (c) Results of traditional cohesive element,
ACM and experiments (mesh size R, = 2 mm). (d) Results of stabilizing techniques (Gao and Bower, 2004; Hu et al., 2007), ACM and experiments (mesh size

R, =2 mm).
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Fig. 7. Comparison of load histories of different mesh sizes.

that the different mesh sizes result in almost the same
loading curves. For the different stages shown in Fig. 7,
i.e. A-D, the delamination tip positions for various mesh
sizes are shown in Fig. 8, which demonstrates that the
delamination propagation speeds are almost the same for
various mesh sizes. Also, the softening zone sizes corre-
sponding to the different mesh sizes are shown in Fig. 9.
From it, we can find that, naturally, the softening zone
tends to be wider as the mesh size increases and the
corresponding lowest interface strength Np;, decreases.
However, the softening zone keeps constant as the delam-

D
’é\ 70 C .
E
ks
=
&
- 60r
2
E —O— Mesh size = 0.25 mm
E / —— Mesh size = 1.0 mm
8 50k A —— Mesh size = 2.0 mm

4 5

6
Displacement (mm)

Fig. 8. Comparison of positions of delamination tips of different mesh
sizes.

ination propagates. With the reasonable Nyy;,, the increase
in softening zone size due to larger mesh size does not
influence the load history and delamination size signifi-
cantly. Finally, the correct and typical thumbnail delami-
nation shape at the point E in Fig. 7 is shown in Fig. 10.

3.2. Verification of GFRP plate under transverse quasi-static
load

A square [0°/90°/0°] GFRP plate (Kamiya et al., 1998) is
analyzed using the proposed method. The plate is shown in
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Fig. 9. Comparison of softening zone sizes of different mesh sizes.

Fig. 11. The material properties are: E;=37.9 GPa, E; =
Es= 9.67 GPa, G12 = G23 = G3] =3.72 GPa, Va1 = 0.0855,
V32 =04, v13=0.296 and p=1620kg/m>. The interface
strengths are: Ng=24MPa, Npyj,=20MPa, Sp=Ty=
42.7MPa, Smin=Tmin=35.3 MPa, Gic=0.24kJ/m? Gjc=
Guic = 0.64 kj/m?. Due to symmetry of this problem, only
one quarter of plate is modeled as shown in Fig. 11. Fur-
thermore, to reduce the computational cost, the cohesive
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elements are only inserted into the lower interface
between 90° and 0°, since from the experimental observa-
tion there is no obvious delamination at the upper inter-
face. The strength parameters of GFRP material (Hu et al.,
2007a) for evaluating the in-plane damages and the updat-
ing scheme of in-plane stiffness are adopted.

In the analysis, the applied load is modeled by a uni-
formly distributed pressure on 0.5 mm x 0.5 mm central
square area of the quarter plate. For the relation between
the applied load and the central deflection of plate, the
numerical and experimental results (Kamiya et al., 1998)
are shown in Fig. 12. The result of the move-limit method
(Hu et al., 2007a) is also plotted in Fig. 12 for comparison.
In this case, it can be found that both methods yield very
good results. The present ACM approach can yield very
good results compared with experimental one. At the point
A, the matrix cracking happens, which leads to a small
drop of applied force. At points B and C shown in Fig. 12,
the numerically obtained delaminations at the lower inter-
face, i.e., 90°//0° are shown in Fig. 13(a) and (b). Moreover,
the experimental result at the point C (Kamiya et al., 1998)
is shown in Fig. 13(c). Comparison between Fig. 13(b) and
Fig. 13(c) reveals that the numerical delamination is in a
very good agreement with the experimental one. The pea-
nuts shape delamination is a typical pattern for this kind of
cross-ply laminates.

delamination front at “E”

delamination

10

12
XX10mm)

14

Fig. 10. Delamination shape at the point E in Fig. 7.

10 mm/sec. /

Numerical model (1/4)
Mesh size 2.0mm

( Mesh size 0.5mm
around load point)

L=90mm Y
90°
X
00
o 1.07mm
214
9020 1.07mm
0
Y AN A N A AN

Cohesive elements

Fig. 11. Schematic view of a square GFRP cross-ply plate under central transverse load.
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Fig. 12. Comparison between the experimental and numerical results of
displacement vs. load.

3.3. Verification of CFRP plate under transverse low-velocity
impact load

3.3.1. Low-velocity impact test

The third example is a low-velocity impact problem,
and the experiments were performed by the present
authors using a weight-drop impact test machine of Dynat-
up 9250HD. The experimental setup is shown in Fig. 14.
The specimens were prepared according to the SACMA
standard of CAI test. As shown in Fig. 15, a quasi-isotropic
CFRP laminated plate of 32 plies as [(45°/0°/—45°/90°)4]s is
put on the bottom frame with four fixed points. This plate
is impacted by an impacting body of a lower semi-spheri-
cal shape and the mass of 4.6 kg. As shown in Table 3, we
have performed eight tests for four impact energy levels,
i.e. 3.0, 4.8, 6.0 and 7.2 J. Two tests have been carried out
for each energy level. When the impact energy is 3.0],
there is no impact-induced damage in Table 3. It is inter-
esting to note that for the impact energy of 4.8 ], the dam-
ages occur in one specimen, but does not occur in another
one. Therefore, the impact energy of 4.8 ] can be thought of
as the threshold of impact energy, which induces the pos-
sible damages in CFRP laminates. When the impact energy
is higher than 4.8 ], e.g., 6.0 and 7.2 ], there are obvious
impact-induced damages in four specimens. The ultrasonic
results of specimen after impact for these two energy lev-
els will be shown later. From the ultrasonic results, it can
be found that the damage area in the impacted side is

a b

15 mm

U Impactor

i F Strain sensor 7.5 mm |

mm g
CFRPiplate
e . ® (32 pligs)

Point support

13 mm
/ Frame support

LA s o

Fig. 14. Schematic view of impact test.

larger than that of the opposite side of impact. At the
cross-sections of specimen, the approximate delamination
distribution along the thickness direction is shown in
Fig. 16. The damages near the top and bottom surfaces
within three plies can be practically observed using ultra-
sonic inspections. The internal damages are speculated.
Although the extent of the delamination is not quantified
in this figure, it increases with depth and a typical conical
shape is obtained with the top surface located close to the
impact point.

3.3.2. Numerical modeling of low-velocity impact test

First, in our numerical model, the following material
properties of lamina of CF/epoxy are used: E; = 135.0 GPa,
E,=E5= 10.0 GPa, G]z = G13 =5.50 GPa, 623 =4.50 GPa,
V12 =0.0183, vy3=0.45, v,3=025, p=1489 kg/m>. Also,
the properties for damage simulations are listed as follows:
No =85.0 MPa, Sp=Tp=106.0 MPa, Npin = 76.5 MPa, Spin =
Tmin = 95.4 MPa, Gic=0.5kJ/m?, Gyc=Guc=1.0kJ/m% To

C

gt
mm

12 mm

=

40 mm

FTPPPPIPPIN THETPTIVYN PP FPPPPP

40 mm

B

Fig. 13. Delamination shapes at lower interface at points B and C in Fig. 12. (a) Numerical (point B), (b) numerical (point C), (c) experimental (point C, see

Kamiya et al., 1998).
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32 ply
[(45/0/-45/90),)]s

~ 90°
e

152 mm

Fig. 15. Specimen of 32 plies quasi-isotropic CFRP plates.

Table 3
Results of impact tests for various impact energies
Case no. Impact energy (J) Damage
1 3.0 None
2 3.0 None
3 4.8 None
4 4.8 Damaged
5 6.0 Damaged
6 6.0 Damaged
7 7.2 Damaged
8 7.2 Damaged
@ Practically observed area
V4 .
— =
; = Spe_culated area

—t +

—t

—

JE— . . A I—

— Delamination —

p— —

— area F—

— —

~ L‘z. 3 layers

Fig. 16. Schematic view of delamination distribution along thickness
direction in experimental specimen.

deal with the possible the in-plane damages, the strength
parameters of CFRP material (Hu et al., 2007a) are adopted.
However, the fiber breakage has not been considered in the
present model since from the experimental observations,
no fiber breakage has been identified. Also, as shown in
Fig. 17 for the indentation o between a ball and a lami-
nate, the modified Hertz contact law (Tan and Sun, 1985)
is employed to deal with the contact between the ball
and the laminate, which is listed as follows:

e Loading

F=rKo!® 0<o<om (18)

W]

m, , lOCc
7
A}

Fig. 17. Contact model between a rigid ball and laminates.

Table 4
Constants used in modified Hertz contact model

Indentation constants

f=0.094, o, = 0.1667 mm, k = 1.423 x 10° Njem'®, g=2.5

e Unloading

q
Oc — O
F=Fn|—— 19

m <5xm - O(o) ( )
where o, is the maximum indentation in the loading stage,
Fy, is the maximum contact load before unloading, and «
is permanent indentation and defined as

oo — {ﬁ(ocm — o) if o > o (20)

0 if  om < et

where  and o, are experimental constants. x and q, which
depend on the shape of the ball and material properties of
the laminate and the ball. All of these parameters are taken
from the work of Tan and Sun (1985), and listed in Table 4.

Some efforts have been performed to reduce the com-
putation cost when modeling this complex problem with
32 plies. The whole plate needs be modeled due to the
existence of +45° plies. As shown in Fig. 18, the plate is
divided into three portions. In the central area of
35 mm x 35 mm, along the thickness direction, 32 brick
elements at 32 plies are placed plus 30 cohesive elements
at 30 interfaces since the maximum size of delaminations
is smaller than 30 mm x 30 mm from experimental obser-
vations. Also, at the interface of middle two plies 90°/90°,
there is no need to insert cohesive interface element. The
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Fig. 18. Schematic view of finite element discretization. (a) Top view, (b) side view.

mesh size in this central area is 2.5 mm x 2.5 mm. In gen-
eral, there is an enormously important problem, i.e., the
happening of acoustic emission from the impact load and
the associated damaging events, which can be used to lo-
cate the impact position and to monitor the damage hap-
pening (Mal et al., 2003a,b). To reflect these acoustic
waveforms in the numerical model, whose central fre-
quency is usually lower than 120kHz (Mal et al.,
2003a,b), the element size should be sufficiently small
relating to the wavelength. In general, Ag wave mode in
Lamb waves possesses the shortest wavelength, at around
100 kHz, which ranges from 1.5 to 2.5 cm depending the
thickness and stack sequence of CFRP plates. Therefore,
the size of present element, i.e., 2.5 mm x 2.5 mm, is suffi-
ciently small to reflect these acoustic waveforms since the
present element holds a linear strain and stress fields (Cao
et al., 2002). In the outer region marked by dotted lines in
Fig. 18, the cohesive elements at 30 interfaces are omitted,
and only 32 brick elements at 32 plies are placed along the
thickness direction. In the outermost area, only one brick
element along the thickness direction is placed. The reason
is that the deformation behaviors and damage characteris-
tics of laminates induced by low-velocity impacts are dom-
inated by the local area under the ball. The distant
structural information far away from impacted area is
not important (Li et al., 2002a,b). The equivalent material
properties of the outermost one layer are determined from

the comparison of first three natural frequencies of a can-
tilevered specimen, which are obtained from vibration
tests and numerical computation of a one-layer model,
respectively. In Fig. 18, with the assumption of linear dis-
tribution of in-plane displacements along the thickness
direction, some strong springs are inserted at the boundary
between the 32-layer region and the 1-layer region to en-
force the continuity of displacements. Finally, the total
number of elements including the cohesive elements is
24,696. The contact force between the ball and CFRP lam-
inates is simulated by a distributed load applied on a
4 mm x 4 mm central square area of plate since it is ob-
served that there is an approximate circular unrecoverable
indentation area of radius of around 2.0 mm ~ 2.5 mm on
specimens after impacts.

3.3.3. Comparison of numerical and experimental results
First, for the case of 3.0 ] without impact damages, the
impact force histories obtained numerically and experi-
mentally are shown in Fig. 19(a). This figure illustrates that
the numerical result agree with two experimental results
very well. In numerical simulations, no damages have been
identified too. For the cases of 6.0 and 7.2 ], the compari-
sons of the impact force histories are demonstrated in
Fig. 19(b) and (c), respectively. From these figures, it can
be found that the numerical results agree with the experi-
mental ones very well. One can observe that the repeat-
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Fig. 19. Comparison of numerical and experimental results (impact force). (a) 3.0], (b) 6.0], (¢) 7.2].
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Fig. 20. Comparison of numerical and experimental results (deflection, 7.2 ]).
ability of two experimental results is acceptable, consider- Fig. 19(c), we can find that the impact force of 7.2 J is basi-
ing the shape of these curves and force levels for the dam- cally similar to that of 6.0 J in Fig. 19(b). However, after the
aged samples. For the features of impact force history, after sudden drop from the peak load, the impact load of 7.2]
the peak load, there is a sudden drop in the force history. does not decrease immediately as that of 6.0 J. In contrast,

After this drop, the impact force decreases gradually. From there is a platform where the impact load keeps almost



932 N. Hu et al. /Mechanics of Materials 40 (2008) 920-935

constant. After this platform, the impact load decreases
gradually. The numerical result reproduces this feature
very well compared with the experimental one in Fig.
19(c).

The comparison of numerical and experimental deflec-
tions is demonstrated in Fig. 20 for the case of 7.2]. It
can found that the numerical result agrees with two exper-
imental ones very well. Three deflections seem to be very
smooth in the left figure of Fig. 20. However, if we enlarge
a local region of the numerical deflection as shown in the
right figure of Fig. 20, we can find that the deflection is very
smooth before 0.001 s, i.e., corresponding to the stage be-
fore the peak load in Fig. 19(c). It means that there is no
significant damaging extent before the peak load. How-
ever, after 0.001 s, there are obvious and continuous oscil-
lations of plate deflection in the right figure of Fig. 20,
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which corresponds to the unloading stage in Fig. 19(c). In
this stage, the delamination and other damaging extents
extend continuously which cause the number of high-fre-
quency acoustic emission events to increase dramatically
as shown experimentally by Mal et al. (2003a,b). In gen-
eral, corresponding to the contact load, few isolated acous-
tic signals also occur, however, whose main frequency
content is much lower than those of the continuous acous-
tic events caused by damaging events. Usually, the ampli-
tude of plate oscillations caused by the acoustic wave
propagation is very small as shown in the right figure of
Fig. 20 (also see, Hu et al., 2007b,c).

To illustrate the delaminations at various interfaces,
two sections, i.e. X-X and Y-Y sections are defined in Fig.
18(a). A sketch of the delaminations at various interfaces
obtained numerically is shown in Fig. 21 for 6.0 and 7.2 ].

O
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E
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I
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Delamination (mm)

o
o
—_
o

Cohesive layer No.

-15 -10 -5 0 5 10 15

Delamination (mm)

Fig. 21. Delaminations at various interfaces. (a) X-X section (6.0 ]), (b) Y=Y section (6.0]), (c) X-X section (7.2 ]), (d) Y-Y section (7.2 ]).
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By comparing these results with that shown in Fig. 16, we
can find that the present numerical model can capture the
main features of delamination distribution along the thick-
ness direction. Furthermore, the delaminations on the side
of impact and the opposite side of impact, which are ob-
tained from numerical computations and ultrasonic
inspections of specimens, respectively, are shown in Figs.
22 and 23. In these figures, for the numerically obtained
delaminations on the side of impact, the delaminations be-
tween the first and tenth interfaces are plotted. Mean-
while, for the delaminations on the opposite side of
impact, the delaminations between the 21st and 30th

(X10 mm)
&

—_

0.5

Y
o
Frfrrrrfrrrrfrrrrgrrrrfrrrrfrrrrprr
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interfaces are plotted. From these figures, we can find that
the numerically obtained delaminations agree with exper-
imental ones very well although the maximum sizes of del-
aminations are slightly smaller than those of experimental
ones at the opposite side of impact. Also, compared with
the experimental results, the numerically obtained delam-
ination shape is more unsymmetrical. As to the computa-
tional instability problem, after investigating various
cases, it is very interesting to find that the computational
process tends to be more instable as the impacting speed
of the ball decreases at the same impact energy level. Nat-
urally, the present ACM can still be employed to avoid this

Nl

-1.5 -1 -0.5 0 0.5
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I L L L L L L L LA LB LB LA

1.5
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-1.5 -1

1

1.5

(X10 mm)

Fig. 22. Comparison of delaminations obtained from FEM and experiments at the side of impact on specimen. (a) Numerical (6.0 J), (b) experimental (6.0 ]),

(c) numerical (7.2]), (d) experimental (7.2 ]).
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Fig. 23. Comparison of delaminations obtained from numerical computations and experiments at the opposite side of impact on specimen. (a) Numerical

(6.0]), (b) experimental (6.0]), (c) numerical (7.2 ]), (d) experimental (7.2 ]).

instability. For higher impacting speeds, the numerical
instability is not obvious.

4. Conclusions

In this research, we have put forward a novel cohesive
model for simulating the delamination propagations in
composite laminates under transverse loads. This cohesive
model is implemented in the explicit time integration
scheme with a powerful 3D finite element. A DCB problem
is employed to analyze the characteristics of the present
cohesive model. From the results, it can be found that the

present model can yield stable computational results, and
can reduce the errors in the peak load caused by compara-
tively coarse meshes. In fact, with the guarantee of the
acceptable accuracy, the cohesive elemental size in our
model can be enlarged by around 5-10 times larger than
that used in the traditional cohesive model. Moreover, to
analyze the complex damages happening in laminates, a
stress-based criterion is incorporated into our numerical
model for predicting various in-plane damages, such as
matrix cracks, fiber breakage, etc. Finally, two experi-
mental examples of laminated plates under transverse
quasi-static and low-velocity impact loads are employed
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to illustrate the validity of the present approach. It can be
found that the present numerical model can successfully
capture the main features of complex damage phenomena
in composite laminates under transverse loads.
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