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A B S T R A C T

Unmanned aerial vehicles (UAVs) have drawn increased research interest in recent years, leading to a vast
number of applications, such as, terrain exploration, disaster assistance and industrial inspection. Unlike UAV
navigation in outdoor environments that rely on GPS (Global Positioning System) for localization, indoor
navigation cannot rely on GPS due to the poor quality or lack of signal. Although some reviewing papers
particularly summarized indoor navigation strategies (e.g., Visual-based Navigation) or their specific sub-
components (e.g., localization and path planning) in detail, there still lacks a comprehensive survey for the
complete navigation strategies that cover different technologies. This paper proposes a taxonomy which firstly
classifies the navigation strategies into Mapless and Map-based ones based on map usage and then, respectively
categorizes the Mapless navigation into Integrated, Direct and Indirect approaches via common characteristics.
The Map-based navigation is then split into Known Map/Spaces and Map-building via prior knowledge. In
order to analyze these navigation strategies, this paper uses three evaluation metrics (Path Length, Deviation
Rate and Exploration Efficiency) according to the common purposes of navigation to show how well they
can perform. Furthermore, three representative strategies were selected and 120 flying experiments conducted
in two reality-like simulated indoor environments to show their performances against the evaluation metrics
proposed in this paper, i.e., the ratio of Successful Flight, the Mean time of Successful Flight, the Mean Length
of Successful Flight, the Mean time of Flight, and the Mean Length of Flight. In comparison to the CNN-based
Supervised Learning (directly maps visual observations to UAV controls) and the Frontier-based navigation
(necessitates continuous global map generation), the experiments show that the CNN-based Distance Estimation
for navigation trades off the ratio of Successful Flight and the required time and path length. Moreover,
this paper identifies the current challenges and opportunities which will drive UAV navigation research in
GPS-denied environments.
1. Introduction

The portability, maneuverability and flexibility of UAVs provide
potential flying capabilities in complex 3D environments which may
contain unexpected obstacles. With the development of high-precision
sensors such as GPS, cameras and Light Detection and Ranging (LiDAR)
sensor, UAVs have abilities for localization, object detection and obsta-
cle avoidance and can be deployed in many diverse applications such
as agriculture [1], traffic monitoring [2] and facilities inspection [3] as
shown in Fig. 1.

Many UAV applications require complete autonomous navigation,
which consists of multiple sub-components without human interven-
tion, which need to consider: (a) Where am I going? (b) Where am
I? and (c) How do I get there? [4] For example, Gyagenda et al. [5]
proposed a comprehensive bottom-up review to access multiple sub-
components of perception, localization and motion planning. They
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indicated that only 16% of the research presented complete navigation
strategy while 62% of sub-component research focuses on UAV localiza-
tion. According to their survey, the potential future research is expected
to employ more advanced sensors such as signal-of-opportunity sensors,
event cameras and miniaturized radar combining with advanced algo-
rithms like adaptive AI techniques to improve the perception capability.
In addition, localization technologies with higher attentions (62% of
sub-component research) require high-fidelity simulators to reduce the
risks of collision due to the localization errors.

Several review papers focus on vision-based navigation such as Lu
et al. [6] divided the strategies into mapless, map-building and map-
based and further introduced the sub-components such as localization
and mapping, obstacle avoidance and path planning. Arafat et al. [7]
investigates more UAV vision-based navigation system which covers
vailable online 29 September 2023
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Table 1
Summary of proposed surveys.

Ref. Focuses Contributions

[5] Complete GPS-denied
navigation

Comprehensively reviewed the complete navigation strategies with multiple sub-components of
perception, localization and motion planning. Concluded the future research of combining advanced
sensors with AI-based technologies, and high-fidelity simulators.

[6,7] Vision-based navigation [6] Concluded the challenges of: (1) The hardware constraints of power and storage consumption, and
computational complexity for 3D navigation; (2) Poor synchronization of multi-sensor fusion raised by
different sensors’ noise features. [7] Summarized four major issues to be considered when designing
the navigation system, which are the scalability, computational power, reliability and robustness.

[8] Vision-IMU fusion
navigation

Summarized the Visual Odometry based on Visual-IMU fusion achieved less memory and power
requirements comparing to SLAM, and also proposed a modular multi-sensor fusion approach for
better pose estimation.

[9] OF-based navigation Summarized the navigation tasks of using OF approaches (e.g., distance and velocity estimations and
vertical landing) and indicated the challenges of lack of quantitative evaluation and real-time
processing of OF approaches.

[10] AI-based navigation Comparing the AI-based navigation technologies based on a uniform criteria including features,
time-complexity and parameter number. Indicated the future research in developing big data
processing, computing power, energy efficiency and fault handling.

[11,12] 3D path planning [11] comprehensively reviewed and compared path planning algorithms based on time complexity,
environments and real-time. [12] compared path planning algorithms based on a uniform evaluation
criteria including complexity, adaptiveness, environments, fault tolerance and etc.

[13] Conventional path
planning

Analyzed path planning algorithms by quantitatively comparing the results of Computational Time
and Error in the same environment.

[14] Computational intelligence
path planning

Summarized that the current research trend of path planning is online processing in 3D environments.

[15] Bio-inspired path planning Focused on the bio-inspired algorithm and compared each other based on the energy efficiency,
communication delay, environmental complexity and computational burden.

[16] Outdoor localization Compared the positioning methods based on trajectory length, environmental size and localization
error, also indicated the potential improvements of proposing public datasets, source codes and
hardware accelerators.

[17] Indoor localization Compared the performances between different sensors (e.g., camera, IMU, WiFi, etc.) by using
positioning accuracy and indicated their pros and cons.
Fig. 1. Example of tasks.

from indoor to outdoor environments and analyzes the advantages and
limitations of the sub-components of collision avoidance and path plan-
ning. Balamurugan et al. [8] proposed another vision-based navigation
survey and revealed that most works which fuse monocular/stereo
cameras with Inertial Measurement Unit (IMU) for pose estimation are
faster, demanding less memory and power requirements compare to Si-
multaneous Localization and Mapping (SLAM). Optical flow (OF) as one
of the vision technologies was used for autonomous navigation. Chao
et al. [9] reviewed the OF-based navigation methods and indicated its
challenges of quantitation evaluation, real-time high-resolution image
processing and multi-vision system.

Current research trends in autonomous UAV navigation points to-
wards the growing use of Artificial Intelligence (AI) technologies, which
are reviewed by Rezwan and Choi [10]. They classify the AI-based
technologies into optimized-based approaches (e.g., PCO, ACO, GA)
and learning-based approaches (e.g., RL, DRL and DL) and analyze
by comparing the features, time complexity and parameter number.
Future research can be summarized as the improvement and novel ideas
in big data processing, computing power, energy efficiency and fault
handling.

Instead of focusing on the complete navigation strategy, other sur-
veys have paid more attention to sub-components such as Path Plan-
ning, Obstacle Avoidance and Localization. Path planning and obstacle
avoidance have been surveyed by [11–15] with a different focus and
2

contributions. Yang et al. [11] classified the 3D path planning methods
into five categories according to their features and tried to find the
optimal method by analyzing the time complexity, available environ-
ments (static/dynamic) and real-time applicability for each category.
Amarat and Zong [12] proposed a uniform performance evaluation
metric to answer the questions of the best to use and perspective
areas for operation. Radmanesh et al. [13] summarized the features
of conventional algorithms and compared the results of timing costs
and deviations with the optimal solutions in simulated environments.
Zhao et al. [14] concluded the real-time applicability in available
environments (2D/3D) for 231 Computational Intelligence-based path
planning methods and indicated the potential trends with a statisti-
cal methodology. Poudel et al. [15] classified the Bio-inspired path
planning algorithms into the groups: swarm intelligence, evolutionary
algorithm, behavior-based and bio-inspired neural network, and further
compared with each other in terms of their specific features, advantages
and limitations.

As another sub-component of autonomous navigation, localization
was also studied based on different sensors. For example, Couturier and
Akhloufi [16] reviewed absolute vision-based localization for applica-
tions in outdoor environments and compared the strategies according
to popular methods, practical environments and performances to draw
a conclusion for future improvements. As a result of GPS signal attenu-
ation in indoor environments, Perez Rubio et al. [17] sorted strategies
based on available sensors including camera, IMU, infrared, radio trans-
mitters/receivers, ultrasonic and others in addition to briefly discussing
their advantages/drawbacks.

To intuitively illustrate the differences of the aforementioned sur-
veys, Table 1 shows their primary focuses and contributions.

Although the above surveys have investigated UAV navigation
strategies, path planning and localization, they still have limitations as
follows: (1) Lack of a comprehensive survey for the complete navigation
strategies which include the specific and possibly independent sub-
components of navigation systems covering aspects from data capturing



Robotics and Autonomous Systems 170 (2023) 104533Y. Chang et al.
Fig. 2. Overall process of the complete navigation strategy considered in this paper.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

to the control policy or path planning. (2) The limited evaluation
does not allow direct study on how well the strategies can perform.
(3) Do not have verification in reality-like environments which lack
an effective data comparison to draw the potential improvements for
future works. Therefore, contributions in this paper are as follows:

∙ According to the summarized overall process of the complete nav-
igation strategy shown in Fig. 2, this work firstly proposes a
taxonomy, see Fig. 3, to review and classify the complete UAV
navigation strategies in GPS-denied environments according to
the map usage, common characteristics and prior knowledge.
Then survey their corresponding sub-components based on the
diagrams of Figs. 4 and 13.

∙ Analyzing relevant technologies of complete navigation strategies in
detail according to the processing diagrams shown in Figs. 4
and 13 as well as proposing a new set of evaluation metrics for
theoretical performance evaluation.

∙ Quantitatively analyzing three representative navigation strategies
which respectively conducted 120 flying experiments in reality-
like environments based on Microsoft AirSim [18] for simulated
evaluation.

The rest of the paper is organized as follows. Section 2 introduces
the summarized process of navigation, taxonomy and the definitions
of terminologies used in this paper. Sections 3 and 4 focus on the
detailed study of the existing complete Mapless and Map-based nav-
igation strategies along with their technologies. Section 5 provides
performance evaluations which include a theoretical evaluation based
on the results presented by the literature and a simulated evaluation
to verify the representative strategies in two reality-like environments.
Section 6 identifies the current challenges and opportunities while
Section 7 concludes the paper.

2. Process of navigation, taxonomy and definition

In recent decades, various strategies for UAV autonomous naviga-
tion have been proposed. In this review, the focus is drawn to the
complete UAV navigation strategies which include the whole process
(i.e., covering all sub-components) from data capturing to the control
policy or path planning [19]. The overall navigation strategy with the
sub-components concerned in this paper is shown in Fig. 2.

In Fig. 2, the blue boxes represent the sub-components of the overall
process and are numbered as 1⃝- 7⃝. The gray box has grouped the
major sub-components. The taxonomy firstly considers the map usage
which classifies the navigation strategies into Mapless and Map-based
at the first level since their system architectures and control policies are
quite different. The following will illustrate the basis and terminology
definitions of the Mapless and Map-based categories.
3

Mapless category Mapless Navigation, as shown above the green
dash line in Fig. 2, usually does not need any prior knowledge of
the environment but rather perceive the environment as they navi-
gate it without creating any maps during navigation [20,21]. The 2⃝
Non-distance Perceptron processes sensor data to obtain different Non-
distance representations while the 3⃝ Distance Perceptron obtains the
Distance representations from sensor data. The 4⃝ Control Unit is able
to process Non-distance representations (i.e., from 2⃝ Non-distance Per-
ceptron) or Distance representations (i.e., from 3⃝ Distance Perceptron)
and outputs the 7⃝ UAV Commands (i.e., [𝑉𝑥, 𝑉𝑦, 𝑉𝑧, 𝑟𝑜𝑙𝑙, 𝑝𝑖𝑡𝑐ℎ, 𝑦𝑎𝑤]).

The workflows of Mapless Navigation are 1⃝- 2⃝- 7⃝, 1⃝- 2⃝- 4⃝- 7⃝ and
1⃝- 3⃝- 4⃝- 7⃝ while the first one is defined as Integrated Approaches

and the rest of them are Non-integrated Approaches. The reason is
that 1⃝- 2⃝- 7⃝ integrates the Control Unit within the entire algorithm
while the others require an independent 4⃝ Control Unit to get the
UAV Commands. Moreover, the Non-integrated approaches can be
further classified as 1⃝- 2⃝- 4⃝- 7⃝ Direct Approaches and 1⃝- 3⃝- 4⃝- 7⃝
Indirect Approaches depending on the 4⃝ Control Unit calculates the
direct Non-distance or indirect Distance representations. We place the
Integrated, Direct and Indirect Approaches at the same level for better
understanding and will respectively explain their features in detail as
below.

∙ 1⃝- 2⃝- 7⃝ Integrated Approaches: There is no independent 4⃝ Control
Unit in these approaches, that is, the Control Unit is integrated
within the entire algorithm. The Non-distance representations
of these approaches are less correlated with environments but
directly corresponded to the UAV control. For example, a Con-
volutional Neural Network acts as an encoder which extracts
the sensor data and directly outputs UAV control commands
(e.g., steering and speed).

∙ 1⃝- 2⃝- 4⃝- 7⃝ Direct Approaches: In comparison with Integrated Ap-
proaches, the Non-distance representations of these approaches
are more relevant with environments but less correspond to
the UAV control such as relative positions in corridors and OF
differences. Therefore, these approaches require an indepen-
dent 4⃝ Control Unit as the Decision Tree to directly map the
environmental representations to the UAV Commands.

∙ 1⃝- 3⃝- 4⃝- 7⃝ Indirect Approaches: In order to achieve precise control,
the Distance representations of these approaches are usually
extracted from 3⃝ Distance Perceptron and formulated as a
distance matrix. The 4⃝ Control Unit summarizes these large
amounts of distance information and outputs the UAV Com-
mands. Therefore, the strategies using Distance representations
(e.g., CNN-based, OF-based and Reflection-based Distance Esti-
mation) are classified as Indirect Approaches.

Map-based category Map-based Navigation, below the green
dash line in Fig. 2, requires the metrical or topological representa-
tions of environments [21] and consists of Obstacle Mapping, UAV
Self-localization and Path Planning sub-components which are in-
dependent to each other. Concerning whether prior knowledge is
provided or not, we classify strategies as Known Map/Spaces and
Map-building [22] where the former provides prior environmental
information such as specific landmarks and accessing points while
the latter requires constructing 2D/3D maps simultaneously during
navigation (i.e., SLAM-based navigation) in the unknown spaces.

∙ Known Map/Spaces: The strategies have prior spatial details about
the environments such as the positions of access points, start and
destinations, obstacles or even the entire maps before navigation
which is followed by UAV Self-localization and Path Planning.

∙ Map-building: Counting on Leonard and Whyte [23], it can be seen as
SLAM-based navigation which was defined as simultaneous map
building and localization during navigation without any prior
information.



Robotics and Autonomous Systems 170 (2023) 104533Y. Chang et al.
Fig. 3. Taxonomy of the UAV complete navigation strategy in GPS-denied
environments.

Fig. 4. Mapless navigation.

According to the aforementioned illustrations in Section 2, we
summarize a taxonomy of the UAV complete navigation strategy in
GPS-denied environments as Fig. 3 shows.

3. Mapless navigation

According to the Overall Process in Fig. 2 and the taxonomy in
Fig. 3, we further show the specific technologies of Integrated, Di-
rect and Indirect Approaches as the processing schematic diagram in
Fig. 4. The workflows of 1⃝- 2⃝- 7⃝ Integrated Approaches, 1⃝- 2⃝- 4⃝- 7⃝
Direct Approaches and 1⃝- 3⃝- 4⃝- 7⃝ Indirect Approaches in Fig. 4 are
corresponded to Fig. 2. It also shows the interior technologies of 2⃝
Non-distance and 3⃝ Distance Perceptron as yellow boxes in detail.

The rest of these Section will respectively survey the Integrated,
Direct and Indirect Approaches of Mapless navigation strategies as well
as their technologies.

3.1. Integrated approaches

Based on the definition in Section 2 and processing diagram in
Fig. 4, the Integrated Approaches directly map the input 1⃝ Sen-
sor Reading to the 7⃝ UAV Commands without an independent 4⃝
Control Unit. Currently, Deep learning algorithms, especially the CNN-
based Supervised Learning and Reinforcement Learning such as 2⃝
Non-distance Perceptron for visual-based navigation show remarkable
capabilities in this direct mapping [24].

Supervised learning When a large dataset along with sufficient
labels is provided, supervised learning maps the input images into
the UAV commands, shown in Fig. 5(a). For example, one of the
residual convolutional models [25] was used by Loquercio et al. [26]
named DroNet which directly predicts the steering angle in the range of
[− 𝜋

2 ,
𝜋
2 ] and the probability of collision [0, 1] from the input continuous

gray images. A low-pass filter was used to smooth the steering angle
and the probability of collision was transformed into velocity. Further
research carried out by Palossi et al. [27] applied DroNet to a nano-UAV
4

Fig. 5. Examples of supervised learning. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

equipped with a PULP-GAP8 embedded processor for unknown indoor
navigation. For the purpose of improving power efficiency on a limited
resource device, Palossi et al. [27] not only minimized the pooling size
and replaced the float-point computation with fixed-point computation,
but also added batch normalization in a convolutional layer to keep the
same original accuracy. The extensive evaluations of [26,27] illustrate
that their DroNet networks have competitive generalization capabil-
ity for unknown environments but are sensitive to ‘line-like’ patterns
(i.e., focus on car lanes) since their networks were trained based on
the Udacity’s self-driving car dataset [28].

We also proposed a HDIN dataset [29] shown as Fig. 5(b) based
on Integrated Approaches. The HDIN dataset contains steering images
which their labels are normalized into the range of [−1, 1] (shown
as ‘Images with steering labels’ in Fig. 5(b)). The HDIN dataset also
separates collision images into ‘Non-collision’ and ‘Collision’ classes
depending on whether the distance to collision is smaller than 50 cm.
The Non-collision and Collision images are respectively shown in the
green and red box, and respectively labeled as 0 and 1 to represent
the probabilities of collision. The residual convolutional model [25] is
able to simultaneously predict the steering angle and the probability of
collision for UAV indoor navigation.

Reinforcement learning Supervised learning requires a large
number of images with relevant and accurate labels for training which
poses a great challenge for annotations. To solve this problem, self-
supervised learning methods such as Reinforcement Learning have
arisen which does not require any labels but interacts with environ-
ments to obtain rewards as Fig. 6 shows. AlMahamid and Grolinger [30]
reviewed the Reinforcement Learning methods used for UAV naviga-
tion and indicated that the UAV’s commands is one of the basis for
classification.

Specifically, the discrete commands such as the preset directions:
forward, left, right, up, and down were used by Abhik Singla et al. [31],
who proposed a recent reinforcement learning model by combining
a conditional generative adversarial network (cGAN) [32], a deep Q-
learning network and a recurrent network [33] to directly output UAV
commands (i.e., ’Go straight’, ‘Turn left’ and ‘Turn right’). It firstly
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Fig. 6. Reinforcement learning architecture [31].
Fig. 7. Teacher–student vision-based policy trajectories [39].
applies the cGAN to generate the depth maps from RGB images and
then, feeds 𝑙 generated depth maps simultaneously into 𝑙 streams deep
Q-learning network, finally followed by a recurrent network layer for
temporal attention and outputted optimal Q-value for desire state–
action. Unlike most CNN-based Reinforcement Learning navigation
which requires start and destination for its reward function, Abhik
Singla et al. [31] mainly take collision situations into account in
unknown spaces.

Continuous commands oppose to discrete commands which specify
the quantity of movement in various directions. For example, Xue and
Gonsalves [34] firstly pretrained the Convolutional Variational Autoen-
coder [35] (a encoder–decoder structure) to turn the RGB images into
depth images, then used the latent features extracted from the encoder
as current State 𝑆𝑡 with collision and non-collision rewards to train
the Reinforcement Learning model. Similarly, Vemprala et al. [36] also
employed the latent features extracted from the encoder of Convo-
lutional Variational Autoencoder to train the Reinforcement Learning
model, but the inputs are asynchronous measurements of changes in
per-pixel brightness at a microsecond level (i.e., event streams) which
are provided by event-based camera.

In addition to being used in random navigation and obstacle avoid-
ance, Reinforcement Learning is also used in drone racing (i.e., passing
gates) in order to push the vehicle to higher speed and robustness.
Several competitions have been organized such as IROS 2016–19’s
Autonomous Drone Racing series [37] and NeurIPS 2019’s Game of
Drones [38]. Fu et al. [39] applied a 2-step Teacher–Student Policy
training, where the Teacher Policy training takes the ground truth of
gate’s and UAV’s states to train the Reinforcement Learning model and
the Student Policy training is based on the contrastive learning [40] to
match up the extracted latent features from Teacher and Student Policy.
Fu et al. [39] conducted simulated experiments along the trajectories
shown in Fig. 7 (i.e., Circle, Fig. 8 and SplitS trajectories), and obtained
the same level of racing performances (Circle: 4.95 s, Fig. 8: 6.76 s,
SplitS: 8.58 s) comparing with the state-based policy [41] (Circle:
4.97 s, Fig. 8: 6.84 s, SplitS: 8.74 s). Fu et al. [39] also changed the
environmental brightness, color and obstacles as visual disturbances
and distractors, and obtained similar racing performances in three
trajectories (Circle: 4.95±0.08 s, Fig. 8: 6.76±0.12 s, SplitS: 8.58±0.16 s).
5

Fig. 8. Examples of relative positions obtained by CNN-based extraction.

3.2. Direct approaches

In Direct Approaches, the Non-distance representations are nor-
mally extracted from the Field of View (FOV) based on CNN or OF
algorithms and more related to the environments (e.g., corresponding
to corridor’s positions and object’s positions) than the Integrated Ap-
proaches (e.g., corresponding to UAV Commands such as roll, pitch,
yaw). The independent Control Unit outputs the corresponding reac-
tive commands for autonomous navigation according to this extracted
information. Specifically, the current complete navigation strategies
focus on using CNN-based and OF-based algorithms to extract relative
positions in the corridors and the difference of optical flow magnitudes
for the Control Unit.

CNN-based extraction The existing complete navigation strate-
gies applied CNN-based classification algorithms to understand the
current position and followed by a specific Control Unit for behavior
arbitration. For example, Padhy et al. [42] applied DenseNet-161 [43]
as the backbone CNN model and modified the outputs of the last latent
layer with four nodes which respectively inferred as 𝐶𝑒𝑛𝑡𝑒𝑟, 𝐿𝑒𝑓𝑡,
𝑅𝑖𝑔ℎ𝑡 and 𝐸𝑛𝑑 of corridor positions. Fig. 8(a) respectively shows the
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proposed images of left, center and right position of corridor excluding
the end of corridor from Ref. [42]. The Control Unit receives the
classification results to control the UAV shifting away from the side
walls and flying along the center of the corridor. Another example relies
on estimating the angle 𝜃 (0∼180◦) between the central line of the
corridor and the bottom edge in the input image (as Fig. 8(b) shows).
By combining the genetic algorithm with Deep CNN which encodes
the hyperparameters as genes, Chhikara et al. [44] proposes a DCNN-
GA which firstly adjusted the hyperparameters of VGG-16 [45] during
training and then, transferred the last five layers of VGG-16 by stacking
them after the Xception [46] model to predict the angle 𝜃. The Control
Unit of DCNN-GA corrects the UAV’s direction by adjusting the angle
𝜃 to 90◦, that is, center-forward of corridors. Moreover, the CNN-based
object detection identifies specific objects from visual perceptions to
correct the UAV’s directions. Jung et al. [47] modified the backbone
network AlexNet [48] to alter the UAV’s heading angle by detecting
approaching gates in the images for drone racing (as Fig. 8(c) shows).

Semantic information such as Semantic Segmentation is one of the
image processing methods, which is responsible for classifying the
different objects in images. This method is widely used for UAV path
tracking and planning. For example, Cao et al. [49] improved the light-
weight ENet [50] with low computational complexity to obtain the
row-to-row segmentation of farmland crops from RGB images, then
applied a random sampling consensus algorithm to extract the navi-
gation line for precise spraying in intelligent agricultural management.
Similarly, Luca et al. [51] used the extracted semantic masks as inputs
to train the Deep Reinforcement Learning model for path planning,
where the predictive paths should be able to avoid texture-less areas
that are problematic for visual odometry such as water and woodlands.
However, both of them were only able to navigate at a relative higher
altitude without obstacle avoidance.

OF-based extraction Optical Flow can be treated as the change
of structural light in the image especially the movements of pixels
due to the relative motions between the camera and scenes [52]. The
OF features extracted by the OF-based Magnitude Estimation which
enables the Control Unit to directly adjust orientation based on the
difference of OF magnitudes on the left and right side (𝑂𝐹𝐿, 𝑂𝐹𝑅) of
FOV.

As shown in Fig. 9, the pixel of the red dot where the yellow lines
cross is the Focus of Expansion in 3D space. The vertical blue line
crossing the red dot separates the entire OF magnitudes into 𝑂𝐹𝐿, 𝑂𝐹𝑅
and their difference is 𝑂𝐹𝑅 −𝑂𝐹𝐿. It is used by Yoo et al. [53] where
the yaw angle is calculated towards the lower magnitude of 𝑂𝐹𝐿 and
𝑂𝐹𝑅 (i.e., named as balance strategy [54]), but it requires the relative
distance-to-collision and the UAV’s velocity. Rather than pre-defining
velocity and obtaining distances from extra sensors, Agrawal et al. [55]
transformed the horizontal and vertical velocities of specific pixels to
the relative speed in the real world for OF-based Magnitude Estimation.
An inverse strategy was followed to overcome the collision probability
when the small OF difference of balance strategy causes insufficient
steering rate. However, the limitation of the inverse strategy is still
caused by the low OF magnitude differences between two sides which
lead to left/right jitters.

3.3. Indirect approaches

Distance Perceptron in Figs. 2 and 4 provides the distance-to-
collision information to the independent Control Unit for shifting
away from obstacles and making decisions for navigation. Unlike the
Control Unit in Direct Approaches processing the limited extracted
information such as relative positions, the large amount of distance-to-
collision information is usually formulated as a matrix which requires
the Control Unit to comprehensively compress data by clusterization
and classification, that is, to minimize the information size for nav-
igation guidance. Both the CNN and OF algorithms provide distance
estimation from captured input images while the distances detected
from Reflection-based sensors such as Infrared, Ultrasonic, and Laser
are fused and estimated.
6

Fig. 9. 𝑂𝐹𝐿 and 𝑂𝐹𝑅 magnitudes [56]. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. Examples of CNN-based distance estimation.

CNN-based distance estimation Kouris et al. [57] proposed a
customized dataset, where each image has 3 distance labels pointing
towards the [−30◦, 0◦, 30◦] of FOV shown as Fig. 10(a). A 2-stream CNN
model was fed with 2 sequential frames 𝑡 and 𝑡−1 simultaneously to op-
timize the distance prediction by extracting spatial–temporal features.
The Control Unit receives these 3 predicted distances and calculates
their sum of vectors as the next available direction, also the next
linear forward velocity is processed based on the minimum distance
threshold simultaneously. However, it requires large efforts to create
their customized dataset by specifically installing 3 pairs of infrared
and ultrasonic sensors with sensor-fusion and time-synchronization,
and manually controlling the UAV flying in corridors [29].

Different to collecting a customized dataset with limited distance
labels, The CNN-based Distance Estimation was trained based on the
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public datasets to generate depth maps which can be used by the in-
dependent Control Unit to achieved self-navigation [58]. For example,
Chakravarty et al. [59] used a Global Coarse Scale Network [60] to
generate depth maps where the distances in the central vertical and
horizontal stripes were used to steer the drone away from obstacles
if it is closer than the distance threshold. To minimize the accuracy
degradation of distance estimation in different scenes and improve
optimal path selection, Yang et al. [61] proposed an obstacle avoidance
system based on ResNet-50 [25] which includes an average measured
depth error when approaching obstacles. This error occurs when the
limited FOV only observes part of the structures since it is too close
to the obstacles (i.e., structure incompleteness). The further research
of Yang [62] used predicted confidence from the outputs of distance
estimation instead of just using a measured depth error to effectively
minimize the deviations. As shown in Fig. 10(b), the Control Unit of
these avoidance systems [61,62] clusters the similar depth values and
selects the nearest and maximum free space within FOV as candidate
waypoints (i.e., the center of the black circle).

The CNN-based object detection is also a good way to estimate
distances such as Garcia et al. [63] who applied YOLO v3 [64] to
only identify the useful indoor structures such as corridor intersections
(e.g., red dash circle), walls and doors rather than recognizing all
objects in public datasets. As shown in Fig. 10(c), since the different
distances to the objects lead to different bounding boxes’ dimensions,
the Control Unit regresses the bounding boxes’ dimension to real-world
distances.

OF-based distance estimation As for OF-based Distance Estima-
tion, Zingg et al. [65] illustrated that the OF magnitudes compensated
by IMU data can be used to estimate the distance from the UAV to
both sides shown as Fig. 11(a). 250 distances are respectively estimated
within the 80◦ areas on left and right sides of the UAV while the
frontal 50◦ section is not taken into account. 𝐷𝐿 and 𝐷𝑅 respectively
indicate all distance vectors pointing to left and right and their distance
values are indicated by 𝑦𝐿 and 𝑦𝑅. Through zeroing the normalized
error 𝑒𝑛 =

|𝑦𝑅|−|𝑦𝐿|
|𝑦𝑅|+|𝑦𝐿|

where 𝑦𝐿 and 𝑦𝑅 are respectively absolute median
values of all 𝑦𝐿 and 𝑦𝑅, the UAV can navigate along the central line of
corridors but require precise IMU data to eliminate deviations.

McGuire et al. [66] combined EdgeFlow [67] and EdgeStereo as
Fig. 11(b) shows without using the inertial sensors to provide the rela-
tive velocity. The EdgeFlow processes two consecutive left-eyed frames
(i.e., red and blue images) to estimate forward and sideways velocity
while the EdgeStereo captures two current frames from both eyes of
the binocular camera (i.e., blue and green images) to calculate the
distance. However, when the UAV’s sides are close to the obstacle such
as walls, the narrow angle between the obstacle and UAV’s orientation
leads to incorrect distance estimation and further results in collision.
Also, the limited resolution from onboard cameras results to insufficient
long-distance estimation.

Reflection-based distance estimation The Reflection-based algo-
rithms use particular sensors integrated with transmitter and receiver
to measure distances based on the time of flight of specific electro-
magnetic waves such as radio. For example, by placing the ultrasonic
sensors around the UAV as shown in Fig. 12(a), the surrounding
distances to obstacles are directly collected within the limited range
(i.e., 3 m) [68,69]. To compensate the limitations of shorter range and
surfaces which may absorb the signals like clothes and textiles [70], a
series of Kalman Filter in the Control Unit are used to fuse Infrared
(red circles in Fig. 12(b)) and Ultrasonic sensors (yellow circles in
Fig. 12(b)) [71,72]. The fusion-estimated distances can be used for a
simple Avoidance Strategy which sets the 𝑛𝑒𝑎𝑟, 𝑚𝑒𝑑𝑖𝑢𝑚 and 𝑓𝑎𝑟 areas
to adjust the UAV’s velocity based on PID control [70,71]. However,
since these Ultrasonic/Infrared sensors only return the frontal distances
without relative directions to the UAV, there is no steering commands
to navigate through the obstacles. As a result, Du and Liu [73] applied
a Fuzzy algorithm in the Control Unit to process the obstacle’s direc-
tion and distance for adjusting the UAV’s orientation. Nevertheless,
7

Fig. 11. Examples of OF-based distance estimation. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 12. Examples of reflection-based distance estimation. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

the specific sensors’ IDs and simulation experiments are required for
the fuzzification of obstacle’s direction. To simplify the requirements,
LiDAR (yellow circle in Fig. 12(c)) which provides distances along with
corresponding directions with a wide range of FOV was used by Moffatt
et al. [74]. In their work, the Artificial Potential Field (APF) in the
Control Unit calculates the sum of repulsive vectors to steer away from
obstacles without mapping and localization.

4. Map-based navigation

According to the Overall Process in Fig. 2 and the taxonomy in
Fig. 3, the processing schematic diagram of the Map-based Navigation
Strategy along with its various sub-components is shown as Fig. 13 and
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Fig. 13. Map-based navigation. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
the sub-components at the same level shown as same colors. The major
sub-components are 5⃝ Mapping and Localization and 6⃝ Path Planning
where the former can be divided into Known Map/Spaces and Map-
building (shown as yellow boxes in 5⃝) depending on whether using
prior knowledge or not. Specifically, strategies in Known Map/Spaces
not just read sensor data, but also obtain prior knowledge of environ-
ments such as the positions of access points, start and destinations,
obstacles or even the entire maps for UAV self-localization. In compar-
ison, strategies in Map-building do not obtain any prior environmental
information but only include map reconstruction along navigation.

6⃝ Path Planning which contains different Objectives and Planners is
possibly independent to the Mapping and Localization. The Objectives
can be summarized as the Goal-Direction and Self-Exploration depend-
ing on navigation with a defined destination or global exploration
without a destination. The Planners include the Graph-based Planning
and Bio-inspired Planning. Specifically, according to the introductions
of Wilson [75], a graph 𝐺 = (𝑉 ,𝐸) consists of a finite set 𝑉 of nodes
(or vertexes) corresponding to pixels/voxels of original image and a
finite set 𝐸 of edges connecting neighboring nodes. The Graph-based
Planning includes Graph Searching and Graph Sampling algorithms,
which the Graph Searching is responsible to search through a set of
nodes (𝑉 ) on a graph or map (𝐺) for optimal path searching while the
Graph Sampling algorithms usually sample the environment as a set
of nodes (𝑉 ), or other forms, then map and search to find an optimal
path [11]. The Bio-inspired Planning can be literally understood as
mimicking biological behaviors to deal with path planning and opti-
mization. The rest of this Section will respectively illustrate the relevant
technologies within 5⃝ Mapping and Localization and 6⃝ Path Planning
for the complete UAV navigation strategies.

4.1. Mapping and localization

4.1.1. Known map/spaces
Prior Knowledge includes the positions of accessing points, obsta-

cles, start and destination and even the entire 2D/3D maps. Therefore,
it is not always necessary to reconstruct the maps during navigation,
but the UAV Self-localization technologies such as Visual Odometry
(VO), Landmark and Radio Frequency-based (RF-based) localization of
the existing complete UAV navigation strategies are required.

VO Couturier and Akhloufi [16] defines VO as a process which
compares the current and the previous visual observed from a single or
multiple cameras to analyze differences in egomotion (i.e., egomotion
estimation or pose estimation). Methods of VO pose estimation can be
divided into two classes, Feature-based and Direct Methods, where the
former relies on invariant feature descriptors and the latter estimates
motions directly from intensity values. For example, Al-Kaff et al. [76]
applied Feature-based VO based on the normal procedures which in-
clude the feature detector, feature matching in sequential images and
frame-to-frame pose estimation. The Direct Methods of VO was further
developed by Forster et al. [77] who proposed a semi-direct VO which
8

matches few feature patches instead of the entire images for pose
estimation. To increase the pose estimation accuracy, Forster et al. [77]
also minimized the deviations of feature patch matching based on
iterative Gauss Newton procedure. These two approaches [76,77] are
based on the downward monocular camera but the VO pose estimation
can also be used based on forward stereo camera. Through generating
depth images from stereo camera, Fu et al. [78] tracked the features
of depth images based on the common Feature-based VO for pose
estimation.

Landmark Landmarks with specific representations that are dif-
ferent from the background in the FOV have shown great opportunities
for localization in cooperation with visual recognition [79,80].

Dawadee et al. [81] proposed a landmark-based navigation system
which used a three-stage detector [82] to recognize roof landmark pat-
terns as waypoints, by comparing with stored features in database for
UAV’s drifting correction during point-to-point navigation as Fig. 14(a)
shows.

Apart from matching features in database, the CNN-based object
detection, SSD Inception V2 was used to detect the QR code as land-
marks (shown in Fig. 14(b)) which contain coordinate information for
the UAV’s calibration [83].

Similarly, Mac et al. [84] used ground patterns that contained global
positions as landmarks to calculate the UAV’s orientation and position,
further converted to the world coordinate. As Fig. 14(c) shows, each
row includes three bits, the bit values are zero and one corresponding
to the white and black bit. The global coordinate is calculated based
on Eq. (1).

𝑥 = 20𝑥0 + 21𝑥1 + 22𝑥2
𝑦 = 20𝑦0 + 21𝑦1 + 22𝑦2

(1)

The ground landmarks can also be treated as path for trajectory
tracking shown in Fig. 14(d), such as Grijalva and Aguilar [85] who
used ORB algorithm [86] to extract feature points of ground landmarks
for each divided region of interest as well as setting the median of
feature points as the route interpolation for path generation.

These large number of manually placed landmarks are mostly used
for localization calibration, but do not have placement management.
Therefore, Wang et al. [87] firstly segmented the values between [0,
1] to represent the possibility 𝑝 that the landmark 𝑘 can be sensed
by the UAV 𝑣 in different distances 𝑑𝑖𝑠(⋅, ⋅) according to the Eq. (2).
Based on the predefined trajectories, a minimal number of landmarks
will be optimally placed at specific locations to ensure that the UAV can
continuously acquire information from all landmarks with a possibility
over than 1 (i.e., ∑𝑘 𝑝𝑘).

𝑝 =

⎧

⎪

⎪

⎨

⎪

⎪

1, 0 < 𝑑𝑖𝑠(𝑘, 𝑣) ≤ 15

0.6, 15 < 𝑑𝑖𝑠(𝑘, 𝑣) ≤ 25

0.3, 25 < 𝑑𝑖𝑠(𝑘, 𝑣) ≤ 35
(2)
⎩

0, 𝑑𝑖𝑠(𝑘, 𝑣) > 35
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Fig. 14. Examples of landmarks.

RF-based The communication infrastructures that can transmit
and receive RF signals such as WiFi access points and cellular towers
are installed in many urban environments. The calculations based on
Radio Signal Strength Indicator (RSSI) and Time difference of Arrival
enable distance measurements in GPS-denied environments [88]. For
example, Nunns et al. [89] presented a modified formula from [90] to
explain the relationship between the RSSI and distance by adjusting
the parameters through experiments. If the distances and at least 3
exact positions of RSSI sources are known, the trilateration is used to
localize the receiver (i.e., UAV localization) such as Stojkoska et al. [91]
and Marasigan et al. [92]. Another RF source such as the cellular
tower allows to calculate the pseudorange to the receiver based on
the fundamental of Time Difference of Arrival [93]. The positions of
cellular towers can be treated as landmarks to minimize the accu-
mulative errors during dead-reckoning navigation [94], or using an
Extended Kalman Filter to estimate the receiver’s own states while
simultaneously estimating the positions of cellular towers [95].
9

Fig. 15. RF-based localization for UAV aided search and rescue operation [96–98].

Table 2
UAV states with respect to RSSI.

State RSSI (dBm)

s = 1 𝑃𝑅 > −40
s = 2 −50 ≤ 𝑃𝑅 ≤ −40
s = 3 −60 ≤ 𝑃𝑅 ≤ −50
s = 4 −70 ≤ 𝑃𝑅 ≤ −60
s = 5 −80 ≤ 𝑃𝑅 ≤ −70
s = 6 −90 ≤ 𝑃𝑅 ≤ −80
s = 7 −100 ≤ 𝑃𝑅 ≤ −90
s = 8 −110 ≤ 𝑃𝑅 ≤ −100
s = 9 −120 ≤ 𝑃𝑅 ≤ −110
s = 10 𝑃𝑅 < −120

The group of North Carolina State University [96–98] dedicated to
sense RSSI values which help to lead the UAV towards the victim as
Fig. 15(a) shows. Instead of using RSSI or Time difference of Arrival
for distance estimation, they defined the received RSSI values at each
position as states and converted into a heatmap (Fig. 15(b)), then
applied Q-learning [99] to plan a path towards the target with higher
signal strength. Ciftler et al. [96] firstly transformed the observed RSSI
value 𝑃𝑅 into the corresponding UAV state as shown in Table 2. To
solve the challenge of choosing inappropriate state from the rough
given range (Table 2), Chowdhury et al. [97] assigned state labels
based on the new RSSI values which referred to the fact that each grid
(separated by 1 meter) has a unique RSSI value. Furthermore, in order
to locate the target as fast as possible, Kulkarni et al. [98] conducted
experiments and revealed that the directional antenna has a shorter
convergence time and 2.4 GHz has better propagation through con-
structions in indoor areas. Similarly, Jayasekara et al. [100] proposed
an RSSI measurement model characterized by the likelihood function
modeled with Gaussian mixture to locate the potential RF sources.

4.1.2. Map-building
Map-building navigation strategies are also known as SLAM-based

navigation [101] shown as Fig. 16. It concentrates on constructing
local/global maps during navigation in totally unknown areas to over-
come the challenges of chicken-and-egg dilemma, that is because local-
ization requires the 3d model of the world while building 3D model in
turn requires vehicle poses. According to two commonly used sensors
(cameras and LiDARs), We will briefly introduce the technologies of
V-SLAM and LiDAR-SLAM, which act as Mapping and Localization of
existing complete UAV navigation strategies.

V-SLAM Currently, monocular SLAM can be divided into
Feature-based and Direct methods such as the popular ORB-SLAM
[102] and LSD-SLAM [103] shown as the different processing schematic
diagrams in Fig. 17.

Specifically, the Featured-based ORB-SLAM requires descriptors
(e.g., SIFT, SURF and BRIEF) to extract and match key-points in two
consecutive images. According to these matched key-points, minimiz-
ing their reprojection errors (the pixel-position error between the
projected pixel of the real-world 3D-point and the reprojected pixel
3D-point based on the current estimated pose) to estimate the camera
pose and generate sparse 3D maps. However, the sparse 3D maps might



Robotics and Autonomous Systems 170 (2023) 104533Y. Chang et al.
Fig. 16. General steps of SLAM-based navigation [101].

Fig. 17. Feature-based ORB-SLAM and Direct LSD-SLAM [104].

miss important information. Therefore, Esrafilian and Taghirad [105]
enriched the UAV’s surrounding points which is generated by ORB-
SLAM based on the plane fitting, clustering and classification for
map-building.

In contrast to Feature-based ORB-SLAM, Direct LSD-SLAM does not
use descriptors to search key-points from images but instead uses the
image intensities to estimate the location and surrounding area. For ex-
ample, Stumberg et al. [106] applied the Direct monocular LSD-SLAM
to optimize the camera pose by minimizing the photometric errors
of the high gradient pixels and generate semi-dense maps. In order
to overcome the difficulties of observing texture-less areas, Stumberg
et al. [106] developed a star discovery motion around the UAV’s current
position for 360◦ local map construction to increase the surrounding
occupied voxels.

Apart from monocular V-SLAM, RGB-D cameras use structured Light
to directly provide depth information and RGB images for dense 3D
reconstruction without any motion [107]. For example, Xu et al. [108]
used the OctoMap packages [109] with RGB-D SLAM [110] which
extracts and matches the RGB visual feature points for pose estimation
consecutively and then, together with dense point clouds to generate
3D coordinate system.

Researchers also integrated the instantaneous IMU readings with
consecutive visual frames for better pose estimation and localization,
which inspired Chen et al. [111] to propose a FLVIS [112] stable con-
trol system with a stereo camera. Its IMU model is a loop closing thread
with decreased gradient feedback for accurate and robust orientation
10
Fig. 18. Cartographer submap generation [120,121]. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

estimation. Then the IMU states are fed into the RGB-D feature-based
pose estimation for correction and the errors are fed back to the IMU
model. Another Visual-Inertial SLAM algorithm, OKVIS [113], was used
by Alzugaray et al. [114] for monocular-inertial SLAM. Different from
FLVIS [112] which uses gradient feedback for orientation estimation
at first, OKVIS [113] uses the instantaneous IMU readings to predict
the current pose state for keypoint extraction and matching. The key-
point reprojection and IMU errors (i.e., camera and IMU pose error,
consecutive images relative pose error) are conjunctly optimized.

Lidar-SLAM Unlike visual sensors which may require relative
motions and/or is sensitive to textures and illumination for environ-
ment reconstruction [115], LiDAR calculates the time of flight of a
laser to directly output the relative distance and position of obstacles,
creating what are known as point clouds. If obstacle information and
current vehicle location is known, local/global environments can be
easily reconstructed. Therefore, several environment simulation en-
gines such as Gazebo [116] with UAV model plugins which can provide
vehicle ground truth pose estimation were used by [117–119] and
assumed there is no error for vehicle localization. The obstacle infor-
mation from LiDAR scanning can be mapped into the multi-resolution
OctoMap [109] for environment reconstruction.

In contrast to assuming no errors for localization, Batinovic et al.
[120] applied the Google’s Cartographer SLAM algorithm [121] to
generate 3D maps shown as Fig. 18. They introduced the concept of
submaps and replaced the scan-to-scan to scan-to-submap matching.
Each LiDAR scan (Fig. 18 (red)) tries to insert into the local current
submap (Fig. 18 (black)) by placing more hit points at the occupied
grids based on loop closure optimization until the current submap
completes creation (Fig. 18 (blue)). Then adjusting the pose of each
submap to minimize the overlap errors between them to construct
global maps. Another LiDAR-SLAM was proposed by Youn et al. [122],
which uses the error-state Kalman filter to fuse the visual odometry and
IMU status for pose estimation. Then the obstacle information from 2D
LiDAR and pose estimation are conjunctly mapped into the OctoMap
for 2D reconstruction.

4.2. Path planning

4.2.1. Objective
The Map-based navigation strategies contains different objectives

for planning as shown in Fig. 13. The Objective can be divided into
Goal-Direction [122] and Self-Exploration [123] where the former
can be literally understood as giving potential destination in the en-
vironments for autonomous navigation. The Self-Exploration is more
complicated since it requires the discovery of the entire unknown
spaces and the problem is considered to be fully solved when 𝑉𝑓𝑟𝑒𝑒 ∪
𝑉𝑜𝑐𝑐 = 𝑉 ∖𝑉𝑟𝑒𝑠 [118], where the 𝑉𝑓𝑟𝑒𝑒 ⊂ 𝑉 , 𝑉𝑜𝑐𝑐 ⊂ 𝑉 and 𝑉𝑟𝑒𝑠 ⊂ 𝑉
respectively represent the free, occupied and residual areas of the entire
3D space 𝑉 ⊂ 𝑅3. Therefore, the rest of 4.2.1 will study the guidance
system of Self-Exploration, that is the Next Best View (NBV) and
Frontier-based methods, which make decision for the next waypoint.
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Frontier-based The Frontier-based algorithm was introduced by
Yamauchi [124] and used on ground vehicle platform at the beginning.
The common procedures of Frontier-based algorithm are: (a) Defining
the 𝐹𝑟𝑜𝑛𝑡𝑖𝑒𝑟𝑠 regions at the edges between the explored and unexplored
areas as candidate waypoints; (b) Calculating the comprehensive gain
of candidate waypoints containing benefit (e.g., information gain) and
cost (e.g., path length) metrics; (c) Selecting the next waypoint from
candidates with the best comprehensive gain.

According to these procedures, Yamauchi [124] groups the can-
didate waypoints at frontiers as a set and guided the vehicle to the
nearest accessible and unvisited boundaries. Faria et al. [117] further
developed the frontier selection by considering if the next waypoint is
visible, accessible and has enough free space enabling the UAV to fly in
a circle for 3D reconstruction. Also, the frontier selection searches lo-
cally (i.e., around the UAV) when no frontiers are found, then escalates
to global search. Instead of traversing local and global frontiers to select
the next unknown point, Batinovic et al. [120] performed mean-shift
clustering [125] to decrease the number of candidate waypoints from
dense frontiers for faster selection. Their works defined the information
gain as the number of unknown voxels around the candidate waypoints
and then, combined with navigation distance to comprehensively make
decision.

NBV In comparison with Frontier-based, NBV methods consider
the candidate waypoints within the range of entire known spaces
including the current sensor measurement rather than just frontiers
and then, calculate the comprehensive gain for selection. The Frontier-
based can also be regarded as an NBV algorithm, but the candidate
waypoints are generated at frontier regions.

Bircher et al. [118] followed the principles of NBV. After the current
point clouds, depending on the sensor scope (FOV and maximum
ranges), were matched into the global maps, an incremental geometric
tree was built from the current position to the surrounding unmapped
voxels in known space. The information gain extracted the best node
which has more explorable unmapped voxels and longer paths. The
experiments show that the NBV is able to find more hidden areas than
the Frontier-based exploration [118]. Wang et al. [119] also built an
incremental tree as a topological roadmap for self-exploration but the
key difference is to only generate within the sensor scope. With just de-
tecting the frontiers around each node on the roadmap, the evaluation
efficiency of information gain was improved and used along with cost-
to-go to decide candidate waypoints. Similarly, Yang et al. [126] used
Mutual Information [127] to select a path towards the information-
rich area. Another contribution is about overcoming the restrictions
of resolution and orientation of the grid-based occupancy map, which
uses Gaussian Process occupancy maps to predict the probabilities of
obstacles.

4.2.2. Planner
The Planner is the last component of the Map-based navigation

strategies (shown as Fig. 13) and aims to find a point-to-point optimal
path with collision avoidance. According to definitions in the second
paragraph of Section 4, planners can be summarized as Graph-based
Planning and Bio-inspired Planning shown in Fig. 13. Specifically,
Graph-based Planning includes Graph Searching and Graph Sampling
algorithms which are all based on the finite nodes of environments
while the Bio-inspired Planning driven by biological behaviors which
aims to optimize the planning results.

Graph-based planning As shown in Fig. 19, if the nodes in the
nvironments had been assigned such as using multiple regions with
ame size to represent nodes [128], the Graph Searching is responsible

to plan an optimal path from start to goal. Graph Searching includes
arious algorithms such as Dijkstra [129], A* [130], Theta* [131], Lazy
heta* [132] and Jump Point Search (JPS) [133]. Graph Sampling is

responsible to sample environments as a set of nodes, or other forms,
then search to find an optimal path from start-to-goal according to [11].
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There are Active and Passive sampling methods where the former e
indicates algorithms can form a path to goal all by its own processes
(e.g., APF [134] and Rapid Random Tree (RRT) [135]) while the latter
(e.g., Probabilistic Roadmap (PRM) [136] and Voronoi Diagram [137])
generates a set of paths as a map net which requires a combination of
Graph Searching algorithm. The followings will detailly introduce the
specific algorithms shown in Fig. 19.

As for Graph Searching, the classical Dijkstra [129] is a Breadth-
irst Search which expands ranges in circles around the start until this
xpansion reaches the goal. It was used by Maini and Sujit [138] who
efined the obstacles’ vertexes as nodes and considered the steering
ngle constraints [139], also applied a goal-to-start reverse search if
tart-to-goal searching fails to find the destination.

A* [130] expands Dijkstra by taking goal-cost into consideration,
hich is more goal-directional than the Breadth-First Search of Dijkstra.
or example, Feng et al. [140] reduced the number of candidate
aypoints by only calculating the vertexes approaching to the goal on

he obstacles’ boundaries that satisfy the dimension of UAV. Although
* [130] optimized the planing efficiency with goal-cost function, the
gent’s next move is one of the eight surrounding directions, which
akes stiff and jittered path planning. As a result, Theta* [131] uses

he framework of A* but proposes a line-of-sight (LOS) checking to
elete the intermediate nodes between two direct-connected waypoints
hich has no collision. This helps to smooth the planned path but

aised computational demands of LOS, so Lazy Theta* [132] delayed
OS checking until a point when the nodes are completely opened. It
as used by Faria et al. [117] to reach an accessible unknown point

or self-exploration.
Another optimization of A* path searching is Jump Point Search

JPS) proposed by Harabor et al. [133]. It introduces the Force Neigh-
or to define the Jump Point and only put the Jump Points rather than
ll unnecessary intermediate nodes into 𝑜𝑝𝑒𝑛𝑙𝑖𝑠𝑡 to reduce searching

processes. Chen et al. [111] applied the improved JPS [141] as global
planner to find the shortest path and a Heuristic Angular Search based
local planner [142] to find a kinetically feasible path.

APF [134] is a well-known Active Graph Sampling method which
refers to the significant points such as the positions of obstacles and
goals as the repulsive and attractive potential nodes for goal-direction
path planning [143]. However, there are two instinct limitations of
conventional APF. Firstly, the complicated surrounding obstacles of
the UAV produce the zero resultant force may lead to local minima.
Secondly, the obstacles placed close to the destination which results to
the non-zero resultant force of destination, further causes unreachable
destinations. To overcome these limitations, Liu et al. [144] improves
on conventional APF with an extra repulsive force pointing toward
the goal when it is activated while Mac et al. [84] added the ‘to-
goal’ distance and the ‘agent’s velocity’ respectively into repulsive and
attractive. APF can also combine with A* graph searching [145], where
the A* searches a path to the next waypoint, further respectively inte-
grating an APF local planner for obstacle avoidance and another APF
direction controller pointing towards the information-rich areas [119].

Rapid Random Tree (RRT) [135] is another Active Graph Sampling
ethod, which incrementally generates a geometric tree as paths to-
ards the given points and contains random branches. For example,

elf-exploration strategies [118,120,126] applied RRT within the scope
f explored areas from the current position to the next waypoints
e.g., searched by APF [105]) for path planning. Considering randomly
enerating tree nodes within the range of explored areas results in
dditional computational burdens, Youn et al. [122] proposed a goal-
irectional incremental RRT named RRT*-GD-Smart. It combines the
dvantages of the low-cost connection of RRT*-Smart [146] and the
ast computation of RRT-GD [147] which only generates the new nodes
owards the destination.

Probabilistic Roadmap (PRM) [136] and Voronoi Diagram [137]
re the Passive Graph Sampling methods which require additional
raph searching based on the generated map nets. PRM [136] for self-

xploration is a node-based multi-query planner which contains the
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Fig. 19. Graph-based planning algorithms in the complete navigation strategies.
Fig. 20. The agent–environment interaction in Reinforcement Learning [154].

roadmap expansion, the feasible path planning and the random-bounce
walking. The limitation of the original PRM is the unused nodes which
may lead to the redundant computation. Therefore, Xu et al. [108]
proposed a dynamic exploration planner by respectively using incre-
mental roadmaps which only adds new nodes with high scores for
unknown areas, and uses a Euclidean Signed Distance Function to
optimize execution time and path length.

The generated Voronoi Diagram [137] contains a cell’s boundaries
as secure trajectories by regarding obstacles’ boundaries as seed nodes
to decompose a visible graph. However, the limitation of the Voronoi
Diagram is the large computational demand which results in a limited
execution frequency. Therefore, Gruter et al. [148] gave a tailored
and analytical method for Voronoi Diagram generation containing safe
paths with parabola borders, and used Dijkstra [129] to construct a tree
like shortest-path with shortcut path checking.

Bio-inspired planning Path Planning of the complete navigation
strategies include Bio-inspired Planning algorithms such as CNN-based
Reinforcement learning [149], Ant Colony Optimization (ACO) [150,
151], Genetic Algorithm (GA) [152] and Particle Swarm Optimization
(PSO) [153].

Reinforcement Learning contains four prime components, the Agent,
Environment, Reward and Action, which interact with each other as
shown in Fig. 20. The current Agent’s Action 𝐴𝑡 in the Environment
obtains the next Reward 𝑅𝑡+1 and State 𝑆𝑡+1, then feeds back to the
Agent as a loop. For example, an insect visual system such as the Lobula
Giant Moment Detector is the inspiration for the perception network
proposed by He et al. [155], where the State is the current UAV’s vision
and the manual-designed Reward function determines the best yaw and
velocity for the next movement. Q-learning [99] is an improved Rein-
forcement Learning technique which combines the States and Actions
into Q values 𝑄(𝑠, 𝑎) to represent the current estimation. The works
of North Carolina State University [96–98] defined RSSI values as
States, and eight uniformly-spaced direction actions as the output of the
Reward function which are calculated from the difference between the
last two received RSSI signals (𝑅𝑆𝑆𝐼𝑡−𝑅𝑆𝑆𝐼𝑡−1). Moreover, regarding
static 2D maps as input images, Theile et al. [156] introduced a Double
Deep Q Network with two uniform CNN models (i.e., policy and target)
which were fed with a local map around the agent and the global map
simultaneously for immediate collision avoidance and general direction
decision respectively. The system shows that the proposed strategy can
plan a path to trade off the multi-objective of coverage path planning
and data harvesting.
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Fig. 21. Knowledge sharing of multi-colony ACO [157].

ACO [150,151] mimicked the behavior characteristics of ant
colonies, that is, iteratively tracking pheromone trails between way-
points to find the optimal path solution. However, a single ant colony
has probabilities to output sub-optimal solutions because of the early
stop. To avoid this problem, Cekmez et al. [157] proposed a Multi-
Colony optimization for knowledge sharing between colonies shown in
Fig. 21. When all colonies complete one iteration and their ants have
been sorted according to their fitness values, the first half of the ants
in each colony directly update their pheromone tables while a local
optimization is applied to the second half to update themselves. At each
tenth iteration, the best 10 ants of each colony share their pheromones
to colony next to them. The results indicated that the multi-colony op-
timization outperforms a single colony solution in selection of different
paths without being trapped in a sub-optimal path.

GA [152] is a global optimization that imitates genetic procedures
containing core operators of Selection, Crossover and Mutation to
search for the optimal solution shown as the processing diagram in
Fig. 22. Specifically, GA used in path planning usually encodes the
feasible regions or waypoints in environments as genes to generate
chromosomes, then calculates fitness values and selects two parents
chromosomes (i.e., Parent 1 and Parent 2) from start (green 1) to
destination (red 20). Two point Crossover exchanges the yellow gene
segments between two parent chromosomes to generate Offspring 1 and
2 while Swap Mutation swaps the gray genes in both two Offspring
chromosomes to generate Offspring 1′ and Offspring 2′. Optimization
will retain the better chromosome by calculating the fitness values until
iteration complete.

Original GA principles inspired Sonmez et al. [158] to solve the
Traveling Salesman Problem in a 3D virtual environment. This method
encodes the intermediate waypoints as genes and the paths as chro-
mosomes, then uses tournament selection to choose two better parent
chromosomes. The following 2 point Crossover and the Swap Mutation
of Sonmez et al. [158] are same as the processing diagram of Fig. 22 to
generate better offsprings. Another GA path planning was proposed by
Golabi et al. [128], which decomposed a 3D environment into finite
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Fig. 22. Processing diagram of GA. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
grids as waypoints according to different altitude levels and ground
surface cells. The path length, energy consumption and path risk were
taken into consideration for multi-objective GA which structured two-
row chromosomes where the first-row genes are visiting cells and the
second-row represents random altitudes.

To eliminate the requirements of encoding chromosome for GA and
high sensitivity of swarm’s size for ACO, PSO adjusts the speed and
position vectors of particles based on their own experiences (individual
best) and swarm communications (global best) to seek the optimum
values. For example, Singh et al. [94] defined the cellular towers as
waypoints and a path consists of a set of waypoints, and the best
particle will be found by updating the swarm by considering the time
taken from start to goal. To improve the performance of convergence
and global/local best searching, Mirshamsi et al. [159] applied parallel
computing for multi-directional particles (i.e. x, 𝑦 and, z), and stop
until the maximum allowed iterations or the cost is less than the given
threshold. The experiments illustrated that the convergence time is
lower than 1 s and it has potential to be utilized in real-time dynamic
path planning in 3D GPS-denied environments.

5. Performance evaluation

The taxonomy of Fig. 3 is based on common characteristics of
sub-components and their processing flowcharts, which are possibly
independent and different. Therefore, Section 5.1 will firstly sepa-
rate the complete UAV navigation strategies into Random Navigation,
Goal-Directional Navigation and Self-Exploration categories based on
corresponding termination conditions. Specifically, the Random Navi-
gation means the UAV Mapless navigation in unknown spaces without
destination and its termination condition is collision on obstacles; The
Goal-Directional Navigation represents the UAV Map-based navigation
which generates optimal path towards destination and its termination
condition is reaching target; The Self-Exploration is the UAV Map-
based Self-Exploration in unknown spaces and its termination condition
is complete exploring spaces. 5.1.1 will explain the three proposed
Evaluation Metrics used to respectively analyze these three categories
and followed by discussions in 5.1.2.
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Although the 5.1 Theoretical Evaluation comprehensively analyzes
and discusses the complete navigation strategies, they were conducted
in different environments based on various devices and platforms.
Therefore, the comparison between these strategies based on the same
environments, devices and conditions is necessary, and it is also scarce
in the current review papers. As a result, the simulated performances
of the representative complete navigation strategies in two reality-like
environments will be evaluated in our own implemented experiments
in 5.2 as guidance for future researches.

5.1. Theoretical evaluation

5.1.1. Evaluation metrics
The current review papers mostly focused on the sub-components

of autonomous navigation (e.g., Localization and Path Planning) which
can be concluded with specific evaluation metrics (e.g., accuracy of
localization and computational complexity of path planning) since they
have almost similar application. However, the review papers for the
complete navigation strategies which start from data capturing to the
control policy or path planning are scarce, and lack of a uniform criteria
to evaluate them since the technologies and purposes are diverse.

Therefore, three uniform Evaluation Metrics (i.e., Path Length, De-
viation Rate and Exploration Efficiency) are proposed to evaluate the
various strategies according to their common characteristics of ob-
jectives including corresponding termination conditions. The original
results from the literature in 5.1.2 is summarized to illustrate how well
the strategies can perform.

∙ Path Length - 𝐿𝑒𝑛 (𝑚): This is the evaluation metric for the
Mapless Random Navigation. Since the termination condition of these
strategies is occurrence of collision, the usual evaluation metrics are
Flight Time [57] and Path Length [26]. However, the Flight Time can
vary based on the UAV’s speed and battery power, therefore, it is
proposed that the Path Length 𝐿𝑒𝑛 (𝑚) be used for fair comparison,
i.e. the greater 𝐿𝑒𝑛 (𝑚) the UAV is able to travel without collision, the
better performance it is.
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Table 3
Environmental complexity.

Envs detail Envs type

Open spaces Envs 1
Enclosed rooms
(e.g., office, seminar, café rooms)

Envs 2

Corridor Envs 3

∙ Deviation Rate - 𝑅𝑎𝑡𝑒 (%): This is the evaluation metric for
he Map-based Goal-Directional Navigation which has no prior envi-
onmental information (e.g., the entire maps) except the given start
nd destination. The UAV generates the shortest path from start to
estination, and terminates navigation until reaching the destination
ithout collision. Therefore, we use Deviation Rate 𝑅𝑎𝑡𝑒 (%) for fair

omparison by taking the errors between the ideal shortest path length
𝐿𝑒𝑛 (𝑚) and the actual generated path length 𝐿𝑒𝑛 (𝑚). The smaller

he calculated 𝑅𝑎𝑡𝑒 (%) based on the following Eq. (3), the better the
erformance.

𝑎𝑡𝑒 = 𝐿𝑒𝑛 − 𝑆𝐿𝑒𝑛
𝑆𝐿𝑒𝑛

× 100% (3)

∙ Exploration Efficiency - 𝐸𝑓𝑓𝑐: This is the evaluation metric of
the Map-based Self-Exploration. The termination condition relies on the
completion of discovering the entire environment. The most common
evaluation metric is the ratio of the explored areas (𝑚3) divided by
Flight Time or Path Length, where the explored areas represented by
various indexes such as explored volumes [117–119]. We use the actual
Path Length 𝐿𝑒𝑛 (𝑚) and the 𝑆𝑖𝑧𝑒 (𝑚3) of the environments to evaluate
heir Exploration Efficiency 𝐸𝑓𝑓𝑐 expressed in Eq. (4). The shorter
𝑒𝑛 to explore the larger 𝑆𝑖𝑧𝑒, the better performance of exploration,

.e. the larger 𝐸𝑓𝑓𝑐 the better.

𝑓𝑓𝑐 = 𝑆𝑖𝑧𝑒
𝐿𝑒𝑛

(4)

Since the navigation strategies were conducted in various environ-
ments which seems impossible to compare, we group the environments
into three major types according to specific details such as Open Spaces,
Enclosed Rooms and Corridor shown as Table 3. It helps to minimize
the impact from environments. Specifically, The Open Spaces represent
the environments with no boundaries while the Enclosed Rooms mean
the environments with boundaries such as office, seminar and café
rooms.

5.1.2. Theoretical analysis
This part will analyze the theoretical performances of Random

Navigation, Goal-Directional Navigation and Self-Exploration by listing
their environmental complexity, essential approaches and technologies,
evaluation metrics and limitations in Tables 4, 5 and 6. In these
three tables, Envs indicates the environmental complexity including
the environment types (i.e., Envs1, Envs2, Envs3) from Table 3 and
Dynamic/Static (D/S) obstacles (e.g., Poles, Walls of Static obstacles,
and Human or dynamic obstacles). 𝐿𝑒𝑛 (𝑚), 𝑅𝑎𝑡𝑒 (%) and 𝐸𝑓𝑓𝑐 are
three evaluation metrics explained in 5.1.1 while the Limitations are
concluded from original papers. The contents in evaluation metrics
column includes ‘∗’ which represents the values are calculated based
on the data from reference papers, and ‘-’ which indicates the values
are not provided.

According to the taxonomy of Fig. 3 and processing diagram of
Mapless Navigation in Fig. 4, Approaches in Table 4 are Integrated,
Direct and Indirect while the Methods are the technologies at the
beginning of each paragraph in Section 3.

In Table 5, Waypoints represent whether it contains intermedi-
ate positions to separate a long trajectory into several segments be-
tween start and destination. According to Fig. 13, since strategies with
given destination are Goal Direction, it requires the sub-components of
Mapping & Localization (M&L) and Planner.
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As for Self-Exploration strategies, Table 6 adds the Exploration
methods (i.e., NBV, Frontier-based and etc.) but removes the Way-
points in comparison with Table 5.

By inspecting the strategies in Table 4, the Integrated Approach
with Supervised Learning [26,27] implemented the same CNN model
(i.e., DroNet). They obtained the maximum 𝐿𝑒𝑛 of 113 m in Corri-
dors with Static obstacles which outperformed other Approaches with
corresponding Methods. However, the most significant limitation is
their dependence of ‘line-like’ patterns as strong features since their
training datasets are collected based on outdoor car-driving which has
lanes to follow. Regarding the strategies conducted in Enclosed Spaces
with Static obstacles, the Indirect Approach with CNN-based Distance
Estimation [59] achieved the best 𝐿𝑒𝑛 of 43.92 m. This strategy is the
same as [61,62] which trained the CNN model by feeding the public
visual depth datasets, but its limitations show that it is unavailable for
glass surfaces such as windows on the walls and requires texture-rich
backgrounds for the CNN extractor. Notably, the Integrated Approach
with Reinforcement Learning [31,34,36,39] was able to execute in
Enclosed Spaces with both Dynamic and Static obstacles. However,
the generated depth maps of [31] have visual deviations which affect
feature extraction while the simple and limited environments provided
by simulators [34,36,39] lead to overfitting and affect generalization
capabilities.

Because Waypoints represent the intermediate positions which help
to calibrate the UAV’s position to follow the trajectory, the strategies
in [94] achieved the smallest 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑅𝑎𝑡𝑒 of 4.2% which outper-
formed other works without Waypoints in Table 5. In comparison, the
LiDAR-SLAM with Graph-based RRT planner [122] obtained similar
𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑅𝑎𝑡𝑒 of 14.1% to the RF-based localization with Bio-inspired
Reinforcement Learning planner [98] (average 12.8%), but the latter
one was conducted in relative more complex environments (i.e., Cor-
ridors). Though the Graph-based RRT planner can generate optimal
path from current position to destination, the sudden appearance of
obstacles due to the FOV of LiDAR and blind spots affects UAV’s
velocity. The RF-based localization does not face the challenges of
blind spots and has a larger covered size in comparison with LiDAR-
SLAM, however, the manually designed state based on RSSI values
for Reinforcement Learning has limitations. For example, the specific
state-definition is difficult to be used in other environments, and the
unstable RSSI values lead to incorrect UAV’s commands since radio
signal reflect.

The strategies’ Exploration Efficiency 𝐸𝑓𝑓𝑐 can be seen in Ta-
ble 6. Bircher et al. [118] and Batinovic et al. [120] both applied the
LiDAR-SLAM and Graph-based RRT planner for global exploration in
similar environments but the only difference is the NBV and Frontier-
based methods. Although Bircher et al. [118] states that the NBV
exploration is able to find more hidden areas than the Frontier-based
exploration, Batinovic et al. [120] uses flexible multi-resolution fron-
tiers and mean-shift clustering which allows to decline the number of
candidate frontier points, further decrease the computational burden
and repeated routes. This performance can also be observed in Enclosed
Spaces which Batinovic et al. [120] obtained 𝐸𝑓𝑓𝑐 of 37.5 outper-
forming other works. Both Xu et al. [108] and Wang et al. [119] were
experimented in similar environments, it is still difficult to recognize
which affects 𝐸𝑓𝑓𝑐 since they have different SLAM technologies and
planners. Based on careful comparison if ignoring the localization and
planner sub-technologies, both NBV exploration strategies are slightly
different related to addition of nodes. Wang et al. [119] only added
nodes within FOV to generate roadmaps while Xu et al. [108] added
nodes in all unknown areas. As a result, the latter somewhat enlarges
the checking processes for next waypoint decision.

5.2. Simulated evaluation

The purposes of this simulated experiment is to eliminate the in-
fluences caused by different environments, hardware devices and plat-

forms, and to quantitatively compare the performances of selected
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Table 4
Mapless random navigation.

Envs Approaches Methods Ref 𝐿𝑒𝑛 (𝑚) Limitations

Envs1 S Indirect Reflection-based DEa [73,74] – [73] require multi-directional sensors with their IDs for Fuzzy
Algorithm in the Control Unit. [74] required IMU data to estimate
UAV’s status for APF Algorithm in the Control Unit.

Envs2 D&S Integrated RLb [31] – Generated depth maps with deviations affect feature extraction.

Envs2 S
Integrated RLb [34,36,39] max 100 of [36] The environments provided by the simulators are limited, simple

and lack of real-world scenarios, which led to limited generalization
capability.

Indirect CNN-based DEa [57,59,61,62] max 43.92 of [59] [57,59] are unavailable to detect glass surfaces. [59,61,62] require
texture-rich background.

OFc-based DEa [66] 36.6e (122 s × 0.3 m/s) Stuck at corners since the small heading angles to walls.

Envs3 S

Integrated SLd [26,27] max 113 of [27] Sensitive to ‘line-like’ patterns.

Direct CNN-based Extraction [42,44,47] – [42,44] affected by insufficient illumination and limited samples.
[47] specifically requires gate placement.

OFc-based Extraction [53,55] max 40 of [53] Insufficient yawing and left/right jitters caused by close two-side
OF magnitudes (𝑂𝐹𝑅 − 𝑂𝐹𝐿).

Indirect CNN-based DEa [59,63] max 74 of [63] Limited FOV leads to collision if close to walls.

OFc-based DEa [65] 60 Require precise inertial sensor to estimate UAV’s speed with
deviation elimination.

a Distance Estimation.
b Reinforcement Learning.
c Optical Flow.
d Supervised Learning.
e Calculated based on data from reference papers in ().
Table 5
Map-based goal-directional navigation.

Waypoints Envs M&La Planner Ref 𝑅𝑎𝑡𝑒 (%) Limitations

Present
Envs1 S RFb-based Graph-based PSOc [94] 4.2%d

(𝐿𝑒𝑛 = 540, 𝑆𝐿𝑒𝑛 = 518)
Dead-reckoning navigation between
waypoints leads to accumulative drifts.

Envs2 S Landmark Graph-based APFd [84] – Envs require to be full-covered by
landmarks.

V-SLAM Graph-based JPSe [111] – Require texture-rich background and
more computational resources.

Absent
Envs2 S LiDAR-SLAM Graph-based RRTf [122] 14.1%h

(Len = 16.3, SLen = 14.28)
Recalculate optimal path when
encountering unknown obstacles which
affects UAV’s speed.

Envs3 S V-SLAM Graph-based RRTf [105] – The insufficient sparse map enrichment
leads to longer path.

RFb-based Bio-inspired RLg [96]
[97,98]

[98]: 7.1%h

(Len = 45.11, SLen = 42.13); 13.4%h

(Len = 111.34, SLen = 98.18); 17.8%h

(Len = 111.34, SLen = 94.48)

Similar RSSI values lead to error state
decision and signal reflection affects
shortest path finding.

a Mapping & Localization.
b Radio Frequency.
c Particle Swarm Optimization.
d Artificial Potential Field.
e Jump Point Search.
f Rapid Random Tree.
g Reinforcement Learning.
h Calculated based on data from reference papers in ().
representative strategies in a completely unknown GPS-denied spaces
for investigating their advantages and drawbacks. This Subsection will
firstly give our justifications on the selection mechanisms along with
corresponding strategy, then describe the simulation environments fol-
lowed by our discussions and conclusions.

5.2.1. Strategies selection
Since it is impossible to verify all strategies, we used the follow-

ng criteria to make our selection: (a) We considers the strategies
hich are involved in both Mapless and Map-based category; (b) The

omplete navigation strategies can be conducted in totally unknown
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environments; (c) The strategies based on two commonly used sensors,
cameras and LiDARs, will be considered; (d) Both conventional and
novel strategies with competitive performances are also taken into
account. According to criteria (a) and (b), the Map-less Random Nav-
igation strategies in Table 4 and Self-exploration strategies in Table 6
are suitable. In addition, the criteria (c) helps to select the visual-
based navigation strategies in Table 4 and LiDAR-SLAM navigation
strategies in Table 6. Furthermore, novel and conventional strategies
with competitive performances based on criteria (d), that is novel
visual-based Integrated Approach with Supervised Learning [26] and
Indirect Approach with CNN-based Distance Estimation [61] in Table 4
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Table 6
Map-based self-exploration.

Envs M&La Exploration Planner Ref 𝐸𝑓𝑓𝑐 Limitations

Envs1 S LiDAR-SLAM NBVb Graph-based RRTc [118] 13.9f

(Size = 18.2k, Len = 1314)
Limited FOV affects finding the NBV.

[126] – Require to pretrain GP maps for distance
detection.

Frontier-based Graph-based RRTc [120] 71.4f

(Size = 20k, Len = 280)
Information gain as guidance may lead
to repeated routes.

Envs2 S

V-SLAM Star Discovery – [106] – Additional movements towards the
measurable structures (e.g., edges and
textures).

NBVb Graph-based PRMd [108] 13.9f

(Size = 0.6k, Len = 43.12)
Adding nodes within unknown spaces
leads to repeated routes.

LiDAR-SLAM
NBVb Graph-based APFe [119] 19.8f

(Size = 0.9k, Len = 45.4)
Adding node within limited FOV of 2D
laser scanner affects finding the NBV.

Frontier-based Graph-based Lazy Thetaf [117] 17.8f

(Size = 75.8k, Len = 4260)
Require look around maneuver for 3D
maps reconstruction.

Graph-based RRTc [120] 37.5f

(Size = 6k, Len = 160)
Information gain as guidance may lead
to repeated routes.

Envs3 S V-SLAM NBVb Graph-based PRMd [108] 8.2f

(Size = 1.2k, Len = 318.58)
Adding nodes within unknown spaces
leads to repeated routes.

LiDAR-SLAM NBVb Graph-based APFe [119] 14.3f

(Size = 1.5k, Len = 105.2)
Adding node within limited FOV of 2D
laser scanner affects finding the NBV.

a Mapping & Localization.
b Next Best View.
c Rapid Random Tree.
d Probabilistic Roadmap.
e Artificial Potential Field.
f Calculated based on data from reference papers in ().
Fig. 23. DroNet architecture [26].
proposed in the most recent years, and the conventional Frontier-
based navigation [124] with LiDAR-SLAM in Table 6 are selected for
verification.

Mapless integrated approach with supervised learning Loquercio
et al. [26] constructed a residual CNN named DroNet which directly
predicts the steering angle and collision probability from the input gray
images shown in Fig. 23. In Alg. 1, the Input of DroNet are gray image
𝐼𝑘 and global 2D position 𝜉𝑘 = (𝑥𝑘, 𝑦𝑘) which respectively captured
by the front camera and simulator while the Output is 𝑞𝑘 = (𝑉𝑥𝑘 , 𝜓𝑘)
which represents the UAV’s rigid body command at time 𝑘. In order
to smooth the continuous forward velocities 𝑉𝑥𝑘 and yaw angles 𝜓𝑘,
a low-pass filter was used for predictions shown as Eqs. (5) and (6)
where 𝑝𝑡 indicates the collision probability range from [0, 1] and 𝑠𝑘
represents a steering angle within the range of [− 𝜋

2 ,
𝜋
2 ]. The DroNet

model, origin coordinate and the Euclidean Distance between two
points are respectively shown as 𝑁 , 𝜉𝑜 = (0, 0) and 𝐸𝑢𝑐𝐷𝑖𝑠. We set
the 𝐿𝑎𝑛𝑑𝑖𝑛𝑔𝑍𝑜𝑛𝑒 within 0.5 m radius centered at 𝜉𝑜 = (0, 0), UAV
will navigate out of the 𝐿𝑎𝑛𝑑𝑖𝑛𝑔𝑍𝑜𝑛𝑒 and the navigation task will be
terminated once it reaches the landing zone again. When the path
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length 𝑑𝑝 is over 1.5 m, we calculate the distance to 𝜉𝑜 = (0, 0) as 𝑑𝑜. If
𝑑𝑝 is over 1.5 m but the UAV is still in the 𝐿𝑎𝑛𝑑𝑖𝑛𝑔𝑍𝑜𝑛𝑒, we record it
as a failure.

𝑉𝑥𝑘 = (1 − 𝛼)𝑉𝑥𝑘−1 + 𝛼(1 − 𝑝𝑡)𝑉𝑚𝑎𝑥 (5)

𝜓𝑘 = (1 − 𝛽)𝜓𝑘−1 + 𝛽
𝜋
2
𝑠𝑘 (6)

Mapless indirect approach with CNN-based distance estim-
ation CNN-based Distance Estimation for Navigation [61] used ResNet-
50 [25] as backbone CNN architecture to predict the depth maps
𝑌𝑘 directly from input RGB image 𝐼𝑘 at first, then partition 𝑌𝑘 into
𝑖 clusters via 𝑀𝑒𝑎𝑛𝑆ℎ𝑖𝑓𝑡 algorithm [160] as clustered depth map
𝑄(𝑑𝑜𝑏𝑠𝑘 ). Because of the limited FOV, structure incompleteness 𝑆𝐼𝑛 was
calculated based on Eq. (7), where (𝑤𝑛, ℎ𝑛) and (𝑊 ,𝐻) respectively
represents the width and height of cluster 𝑛 and image 𝐼𝑘. To reduce the
prediction errors for approximating objects, Ego Dynamic Space [161]
was used to compute effective distances 𝑑𝑒𝑓𝑓𝑘 via Eq. (8) which contains
a measured mean depth error 𝑒 = 0.45 and a predefined threshold 𝑇 .
𝑆𝐼
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Algorithm 1 DroNet Navigation
Input: Gray Image 𝐼𝑘, Global 2D Position 𝜉𝑘
Output: UAV’s control command 𝑞𝑘
1: Initialize 𝑞𝑘 and 𝜉𝑜
2: 𝑇 𝑎𝑘𝑖𝑛𝑔𝑂𝑓𝑓
3: Record ground truth 2D position 𝜉𝑘 from the simulator
4: Calculate 𝑑𝑝 =

∑𝑘
1 𝐸𝑢𝑐𝐷𝑖𝑠(𝜉𝑘, 𝜉𝑘−1)

5: If 𝑑𝑝 > 1.5𝑚, go to step 6; Otherwise jump to step 8
6: Calculate 𝑑𝑜 = 𝐸𝑢𝑐𝐷𝑖𝑠(𝜉𝑘, 𝜉𝑜)
7: If 𝑑𝑜 > 1𝑚, go to step 8; Otherwise jump to step 11
8: Capture gray image 𝐼𝑘
9: Get 𝑞𝑘 ← [𝑉𝑥𝑘 , 𝜓𝑘] = 𝑁(𝐼𝑘)

10: Go to step 3
11: 𝐿𝑎𝑛𝑑𝑖𝑛𝑔 and end the program

The cost functions of clusters determine the next UAV’s command via
Eq. (9), where 𝑟𝑛, 𝜌𝑛, 𝑑𝑘𝑠 and 𝑆 respectively represent the radius of
cluster 𝑛, the distance to the UAV’s Y-Z plane, the minimum distance
to the FOV boundary, and the UAV’s size. If 𝑑𝑒𝑓𝑓 of all clusters are
over 0 and when the size of cluster along UAV’s 𝑋-axis 𝑆𝑐 is greater
than 1.5 × 𝑆, UAV will navigate towards it; Otherwise it will select the
next direction according to the maximum 𝐶𝑛. Autonomous navigation
of [61] is similar to DroNet which allows UAV to navigate out of and
return to the 𝐿𝑎𝑛𝑑𝑖𝑛𝑔𝑍𝑜𝑛𝑒, but the differences are the UAV’s rigid body
command 𝑞𝑘 = (𝑉𝑥𝑘 , 𝑉𝑦𝑘 , 𝜓𝑘) and the ResNet-50 𝑁 as Alg. 2 shows.

Algorithm 2 CNN-based Distance Estimation for Navigation
Input: RGB image 𝐼𝑘, Global 2D Position 𝜉𝑘
Output: UAV’s control command 𝑞𝑘
1: Initialize 𝑞𝑘 and 𝜉𝑜
2: 𝑇 𝑎𝑘𝑖𝑛𝑔𝑂𝑓𝑓
3: Record ground truth 2D position 𝜉𝑘 from the simulator
4: Calculate 𝑑𝑝 =

∑𝑘
1 𝐸𝑢𝑐𝐷𝑖𝑠(𝜉𝑘, 𝜉𝑘−1)

5: If 𝑑𝑝 > 1.5𝑚, go to step 6; Otherwise jump to step 8
6: Calculate 𝑑𝑜 = 𝐸𝑢𝑐𝐷𝑖𝑠(𝜉𝑘, 𝜉𝑜)
7: If 𝑑𝑜 > 1𝑚, go to step 8; Otherwise jump to step 19
8: Capture RGB image 𝐼𝑘
9: Predict depth map 𝑌𝑘 = 𝑁(𝐼𝑘)

10: Clustered depth map 𝑄(𝑑𝑜𝑏𝑠𝑘 ) =𝑀𝑒𝑎𝑛𝑆ℎ𝑖𝑓𝑡(𝑌𝑘)
11: for 𝑛 = 1 → 𝑖, do
12: Calculate 𝑑𝑒𝑓𝑓𝑘 based on Eq.(7) and (8)
13: If ∀ 𝑑𝑒𝑓𝑓 > 0, go to step 14; Otherwise 𝑞𝑘 = (0, 0,− 𝜋

2 ) and iterate
from step 8

14: If 𝑆𝑐 > 1.5×𝑆, 𝑞𝑘 = (𝑉𝑥𝑘 , 0, 0) and iterate from step 3; Otherwise go
to step 15

15: for 𝑛 = 1 → 𝑖, do
16: Calculate and sort 𝐶𝑛 based on Eq.(9)
17: Get 𝑞𝑘 ← (𝑉𝑥𝑘 , 𝑉𝑦𝑘 , 𝜓𝑘) = the center of 𝑚𝑎𝑥(𝐶𝑛)
18: Go to step 3
19: 𝐿𝑎𝑛𝑑𝑖𝑛𝑔 and end the program

𝑆𝐼𝑛 = 𝑚𝑎𝑥
[

𝑤𝑛
𝑊

,
ℎ𝑛
𝐻

]

(7)

𝑑𝑒𝑓𝑓𝑘 =

{

𝑄(𝑑𝑜𝑏𝑠𝑘 ) − 𝑒 − (𝑣 ∗ 𝑇 − 𝑎∗𝑇
2 ), 𝑖𝑓𝑆𝐼𝑛 > 𝑇𝑆𝐼

𝑛𝑢𝑙𝑙, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(8)

𝐶𝑛 =

{ 𝑟𝑛
𝜌𝑛
, 𝑖𝑓𝑑𝑘𝑠 > 𝑆

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(9)
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Algorithm 3 Frontier-based Navigation
Input: LiDAR data 𝑝𝑐𝑙𝑘, Global 2D Position 𝜉𝑘
Output: UAV’s command 𝑇 𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦
1: Initialize 𝑇 𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦, 𝜉𝑜, Global Map and Unvisited Frontiers
2: 𝑇 𝑎𝑘𝑖𝑛𝑔𝑂𝑓𝑓
3: Record ground truth 2D position 𝜉𝑘 from the simulator
4: Capture LiDAR data 𝑝𝑐𝑙𝑘
5: Generate Local Map and update Global Map based on 𝜉𝑘 and 𝑝𝑐𝑙𝑘
6: Update Unvisited Frontiers based on Global Map
7: If Unvisited Frontiers=∅, jump to step 11; Otherwise go to step 8
8: Get the nearest 𝑔𝑜𝑎𝑙 ∈ Unvisited Frontiers
9: Navigation: 𝑇 𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑖𝑒𝑠 = 𝐷𝑊𝐴(𝜉𝑘, 𝑔𝑜𝑎𝑙)

10: Go to step 3
11: Come back to 𝜉𝑜: 𝑇 𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑖𝑒𝑠 = 𝐷𝑊𝐴(𝜉𝑘, 𝜉𝑜)
12: 𝐿𝑎𝑛𝑑𝑖𝑛𝑔 and end the program

Fig. 24. Simulated environments.

Map-based frontier-based navigation The conventional Frontier-
based navigation [124] classified each cell into 𝑂𝑝𝑒𝑛, 𝑈𝑛𝑘𝑛𝑜𝑤𝑛 and
𝑂𝑐𝑐𝑢𝑝𝑖𝑒𝑑 classes. At current position 𝜉𝑘, we capture LiDAR data 𝑝𝑐𝑙𝑘
to generate a Local Map and match with Global Map for update. The
places that have been scanned without obstacles are denoted as 𝑂𝑝𝑒𝑛,
the places that have not been scanned are 𝑈𝑛𝑘𝑛𝑜𝑤𝑛, and the places
with obstacles are 𝑂𝑐𝑐𝑢𝑝𝑖𝑒𝑑. Frontiers are the boundaries between 𝑂𝑝𝑒𝑛
and 𝑈𝑛𝑘𝑛𝑜𝑤𝑛, through updating the set of unvisited frontiers, finding
out the nearest position as 𝑔𝑜𝑎𝑙 and using Dynamic Window Approach
(DWA) [162] from Topiwala et al. [163] as path planner to generate a
𝑇 𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 which includes a set of 2D positions, UAV will explore the
whole spaces and return to the start position until the set of unvisited
frontiers is empty. Frontier-based Navigation is shown in Alg. 3.

5.2.2. Environments
We design two indoor environments with the same layout based on

Unreal Engine 4 [164] shown in Fig. 24. Fig. 24(a) is the internal view
of these two environments which shows the layout of a square area
with a close corridor. Fig. 24(b) and (c) respectively represent the real-
world environments, Sim Envs 1 and 2, where the difference is that the
Sim Envs 2 has a square-shape white line on the ground which is used
to represent the lanes. Since the limitation of DroNet [26] is sensitive
to the ‘line-like’ pattern and is pretrained based on outdoor self-driving
datasets, we use these two environments to determine how significantly
the white lines impact the navigation.

A new simulator, AirSim [18], built on Unreal Engine [164] offers
physically and visually realistic simulations including controlling the
UAV and capturing sensor data. Therefore, Algorithms 1, 2 and 3 were
able to capture RGB/Gray image 𝐼𝑘 and LiDAR data 𝑝𝑐𝑙𝑘 respectively
from simulated physical camera1 and LiDAR.2 Furthermore, in order
to minimize the impact of localization for navigation since this paper
focuses on the complete navigation strategy instead of localization

1 https://microsoft.github.io/AirSim/camera_views/.
2 https://microsoft.github.io/AirSim/lidar/.

https://microsoft.github.io/AirSim/camera_views/
https://microsoft.github.io/AirSim/lidar/
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Fig. 25. Simulation trajectories. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 7
Simulation experiments.

Methods Sim Envs 1 Sim Envs 2

SFa MTSFb MLSFc MTFd MLFe SFa MTSFb MLSFc MTFd MLFe

DroNet navigation 0% 0 s 0 m 50.5 s 10.2 m 35% 97.2 s 26.2 m 74.3 s 19.3 m
DE navigation 45% 89.4 s 30.2 m 60 s 18.6 m 55% 115 s 29.32 m 90.5 s 22.3 m
Frontier-based navigation 100% 381.7 s 25.8 m 381.7 s 25.8 m 95% 379.3 s 25.7 m 366.9 s 24.8 m

a Ratio of Successful Flight.
b Mean time of Successful Flight.
c Mean Length of Successful Flight.
d Mean time of Flight.
e Mean Length of Flight.
accuracy, ‘simple-flight’ mode3 which enables the collections of ground
truth 2D position 𝜉𝑘 based on a well-calibrated state estimation was
applied.

The flagpole with a gamepad in Fig. 24(b) and (c) is the position
where the UAV takes off. In order to generate a more realistic environ-
ment, several indoor items have been placed including doors, windows,
water faucets, heaters, fire extinguishers, etc. The floor is made of dark
walnut wood which is used to distinguish the overall blue wall while
the white ceiling is embedded with lights. The overall dimension of this
environment is 10 m × 10 m × 3 m. Considering safe flights and trying
to simulate real environments, we calculate the width of corridors as
2.5 m and the inner walls as 5 m × 5 m × 3 m according to the same
proportions of 𝐶𝑜𝑟𝑟𝑖𝑑𝑜𝑟𝑊 𝑖𝑑𝑡ℎ

𝑈𝐴𝑉 in simulated and real environments.

5.2.3. Experiments and discussion
From Fig. 25, the start position is set at (0,0). The UAV will navigate

from the start point along the corridor and eventually return to the
𝐿𝑎𝑛𝑑𝑖𝑛𝑔𝑍𝑜𝑛𝑒 shown as the yellow dotted circle with 0.5 m radius at the
start position. The maximum velocity and the height above the ground
were respectively set as 1.5 m∕s and 0.5 m.

DroNet, CNN-based Distance Estimation and Frontier-based navi-
gation strategies illustrated as Algorithms 1, 2 and 3 were performed
in Sim Envs 1 and 2 for 20 times, that is totally 120 experiments to
collect the data. The performance indicators in Table 7 include the
Ratio of Successful Flight, the Mean time of Successful Flight, the Mean
Length of Successful Flight, the Mean time of Flight, and the Mean

3 https://microsoft.github.io/AirSim/simple_flight/.
18
Length of Flight. Among them, the Ratio of Successful Flight shows
the generalization capability and stability of navigation algorithms
conducting in unknown spaces. We denote the Successful Flight when
the UAV navigates through the corridor and returns to the 𝐿𝑎𝑛𝑑𝑖𝑛𝑔𝑍𝑜𝑛𝑒
without collision and show its trajectory as a green line with a circle
in Fig. 25, otherwise the Unsuccessful Flight is represented as the red
line with a cross. The Mean time and Mean Length of Successful Flight
calculate the average time and path length of successful navigation
that is required to indicate the best performance of navigation. In
comparison, the Mean time and Mean length of Flight were used to
illustrate the comprehensive performance of all experiments (in our
case this is 20) for each strategy.

It is clear from results that the white line significantly affects the
performance of DroNet navigation especially the Ratio of Successful
Flight which improves from 0% to 35%. The reason is related to
the DroNet training which was only based on Udacity’s outdoor self-
driving datasets [28] causing lane-dependence. In contrast to DroNet,
CNN-based Distance Estimation and Frontier-based navigation have
higher and more constant Ratio of Successful Flight between two
environments, that is average of 50% and 100% respectively which
shows better indoor generalization capability and stability. Notably,
the ground truth 2D position 𝜉𝑘 of DroNet and CNN-based Distance
Estimation for navigation is only responsible for termination by check-
ing UAV’s position whether within or out of the 𝐿𝑎𝑛𝑑𝑖𝑛𝑔𝑍𝑜𝑛𝑒, that is
unrelevant to control the UAV’s flight. In contrast, the Frontier-based
navigation which requires the ground truth 2D position to reconstruct
2D maps for path planning. Therefore, the failures of DroNet and CNN-
based Distance Estimation for navigation are completely related to
their CNN models. The Frontier-based navigation obtaining constant

https://microsoft.github.io/AirSim/simple_flight/
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successful ratio and trajectories shows the reliable ground truth 2D
position for stable path planning and the only failure relies on the minor
error of localization.

Regarding the best performance of navigation, CNN-based Distance
Estimation and Frontier-based navigation respectively obtain 89.4 s and
7.2 s of the Mean time of Successful Flight in Sim Envs 1 and 2. In
omparison, the longest Mean time of Successful Flight of Frontier-
ased navigation (around 380 s) shows the drawback of the required
onger processing time for map construction. Another aspect of the
est performance of navigation, the Mean Length of Successful Flight,
ndicates that the Frontier-based navigation gains the average 25.7 m
f the shortest path length since it has unvisited frontiers exploration
nd DWA local planner to avoid circuitous routes compared to other
trategies.

In order to quantitatively evaluate the difference between the best
nd the most comprehensive performances, we calculate the ratios
𝑀𝑇𝐹/𝑀𝑇𝑆𝐹 and 𝑀𝐿𝐹/𝑀𝐿𝑆𝐹 ) based on the results in Sim Envs 2.
he ratios show that the Frontier-based navigation has the smallest gap
ith 𝑀𝑇𝐹/𝑀𝑇𝑆𝐹 of 96.7% and 𝑀𝐿𝐹/𝑀𝐿𝑆𝐹 of 96.5% while the

DroNet navigation has the largest difference with only 𝑀𝑇𝐹/𝑀𝑇𝑆𝐹
of 76.4% and 𝑀𝐿𝐹/𝑀𝐿𝑆𝐹 of 73.7%. As considering to trade off
he Ratio of Successful Flight with the required time and path length,
NN-based Distance Estimation for navigation shows the balanced and
ompetitive performance.

Fig. 25 respectively shows the successful and failure trajectories for
ach strategy in two environments. The prime failures of DroNet and
NN-based Distance Estimation for Navigation are the collisions at the
ntrance of the 90◦ angles since the small angle between the UAV and

the corner entrance results to difficult feature extraction for the similar
near and distant backgrounds on the walls. It is can be seen that the
Frontier-based Navigation has more consistent trajectories because of
the higher accuracy of LiDAR data and the ground truth 2D position.

6. Challenges and opportunities

Previous sections investigate in detail the diversity of complete
navigation strategies and their corresponding sub-components along
with the uniform performance evaluations. Nevertheless, there are still
diversity challenges and opportunities for the UAV complete navigation
strategies including:

Public Datasets: The rising interests in supervised learning for UAV
autonomous navigation require reliable samples and labels. However,
our previous publication [29] indicated the lack of real-world and open-
source navigation datasets especially the indoor scenarios datasets. As
a result, there is a need for the community to propose as much public
indoor navigation datasets with corresponding labels as possible.

Sample Labels: The onerous labeling works draw attention to self-
supervised learning that requires samples with limited or no labels. For
example, the novel contrastive learning methods [40,165] are expected
to gain the common representations based on pre-training without
labels for better generalization in different environments, also speed
up the training processes for down-stream tasks.

Hardware Acceleration: Most GPS-denied autonomous navigation
containing Map-building task such as Frontier-based Navigation which
requires intensive on-board computational resources leads to spending
more time than the Mapless navigation. For the purposes of reducing
computational and memory requirements and improving real-time ca-
pability, there is a need to use software-defined hardware accelerator
such as FPGA to speed up the processes of map construction.

Sim-to-Real Generalization: Environments simulators like Gazebo
[116] and Unreal Engine [164] combining with Flight simulators such
as ROS [166] and AirSim [18] are able to collect data since they pro-
vide various real-like environments, and also for evaluation to reduce
the cost of UAV replacement parts because of crashes. However, the
conditions of the virtual environments provided by simulators such
as wind disturbance, illumination changes and moving objects have
19
considerable gaps between real-world environments. Therefore, a po-
tential improvement is to reduce the Sim-to-Real generalization limita-
tions by developing high-fidelity simulators with various environmental
conditions and constraints.

7. Conclusion

In this paper, we review the complete navigation strategies and
classify them by proposing the taxonomy based on their common
features. We first divide the strategies into Mapless and Map-based
according to map usage. The Mapless navigation methods are further
classified into Integrated Approaches, Direct Approaches and In-
direct Approaches based on whether independent Control Unit and
Distance Estimation module are used. The Map-based navigation is fur-
ther classified into known map/spaces and Map-building depending
on whether mapping and localization module exist. The detailed study
and analysis were provided for each strategy including technologies
followed by theoretical and simulated performance evaluation.

Three Evaluation Metrics (i.e., Path Length, Deviation Rate and
Exploration Efficiency) have been proposed to evaluate the theoretical
performances for their corresponding objectives (i.e., Random Mapless
Navigation, Map-based Navigation Generating optimal Path to Des-
tination and Self-Exploration). The theoretical evaluation draws the
conclusion for the Random Mapless Navigation where the Integrated
Supervised Learning achieved competitive flight sustainability with
longer path length. The waypoints along trajectories obviously help
to calibrate UAV’s status for generating shortest path and the RF-
based localization has larger covered size compared to LiDAR-SLAM.
As for Self-Exploration, the strategies of Frontier-based exploration with
Multi-Resolution maps benefit the Exploration Efficiency.

We also select three representative strategies (i.e., DroNet, CNN-
based Distance Estimation and Frontier-based navigation) for simulated
performance evaluation in two reality-like indoor environments. The
results show that the DroNet navigation performs the shortest Mean
time for Successful Flight but has limitation of generalization capabil-
ity since it lacks of training samples with indoor scenes. CNN-based
Distance Estimation for navigation is a good way to trade off the per-
formances especially the time-costs and path length with generalization
and stability in different environments. The Frontier-based navigation
obtains the most consistent performance and trajectory along with the
shortest path length to the destination but requires to speed up the
processes of map reconstruction.

Finally, analysis of the current complete UAV autonomous naviga-
tion strategies identified the following challenges and opportunities:
the necessity for more open-source navigation datasets with reliable
labels, the potential research of using the state-of-the-art self-learning
algorithms based on limited or without labels, the need to develop
hardware accelerators and high-fidelity simulator.
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