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A B S T R A C T

Currently, most potential field models for decentralised control of multiagent swarms use only single-valued
parameters for the computation of control vectors. This restriction often limits the structures that can evolve,
since agents are unable to modify their behaviour based on their structural role. This paper proposes an
enhanced model that uses the perimeter status of agents in selecting control parameters. This allows a wider
variety of emergent behaviours, many of which result in much improved swarm structures. The model is
based upon equivalence classes of agent pairs, defined by their perimeter status. Array-valued parameters are
introduced to allow each equivalence class to be given its own parameter values. The model also introduces a
new control vector to ‘flatten’ reflex angles between neighbouring agents on the swarm perimeter, often leading
to significantly improved swarm structure. Extensive experiments have been conducted that demonstrate how
the new model causes a variety of useful behaviours to emerge from random swarm deployments. The results
show that several important behaviours, such as shape control, void removal, perimeter packing and expansion,
and perimeter rotation, can be produced without the need for explicit inter-agent communication. The
approach is applicable to a variety of applications, including reconnaissance, area-coverage, and containment.
1. Introduction

This paper introduces a new model for agent coordination in swarm
formations. The model follows the principles of earlier potential field
models (Barnes et al., 2006b; Eliot et al., 2018; Gazi, 2005; Liang
et al., 2019; Schneider & Wildermuth, 2003; Son et al., 2017) but
is developed to allow greater control over the perimeter and agent
density of emerging swarm structures. A great advantage of potential
field models, particularly those that follow the approach of Reynolds
(1987), is that they allow for decentralised control of large swarms
of homogeneous agents, with low computation and communication
requirements. This makes possible the deployment of large, robust
swarms at low cost.

A disadvantage of such simple models is that the stable structures
that emerge are limited to either straight lines or partial lattices (Eliot,

✩ Additional material: A Jupyter notebook to run the simulations and generate the figures in the paper has been published as reproducible research at
https://doi.org/10.24433/CO.9511427.v1.
∗ Corresponding author.
E-mail addresses: neil.eliot@sunderland.ac.uk (N. Eliot), kendall.d.j@gmail.com (D. Kendall), michael.brockway.99@gmail.com (M. Brockway),

paul.oman@northumbria.ac.uk (P. Oman), abouridane@sharjah.ac.ae (A. Bouridane).
1 Retired 2019.
2 Retired 2018.

2017; Räz, 2013). Occasionally, the structures that emerge have anoma-
lies such as concave ‘dents’ or convex ‘peaks’ in their perimeter, or
voids in their internal core, which may arise as a result of agent
failure or environmental disturbance. Such anomalies contribute to the
disruption of otherwise well-structured swarms. The ability to create
more regular structures, with greater control over the nature of their
perimeters, is beneficial for effective deployment in applications such
as reconnaissance and area coverage, where ‘blind spots’ are best
eliminated (Elamvazhuthi & Berman, 2015), or containment, where a
swarm is used to surround an object or region (Cao et al., 2012).

To develop new behaviours, relying on greater control over perime-
ter agents, requires that it is possible to identify the perimeter status of
each agent, i.e. to determine for each agent whether it is on a perimeter
or not. This is discussed by Eliot et al. in Eliot (2017), Eliot et al.
(2018), Eliot et al. (2019) and the details are explained in Section 4.1.
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The new model presented in this paper builds on this capability by
using the perimeter status of agents to distinguish equivalence classes
of agent pairs and to assign different parameter values to each class,
allowing new emergent behaviours to be created. In addition, a novel
’convexity removal’ vector is included in the new model and it is shown
how this can achieve a significant improvement in swarm structure.
The simplicity of the model is such that large swarms of homogeneous
agents can be controlled without the need for explicit inter-agent
communication, and the swarm structures that evolve can be tailored
to the requirements of specific swarming applications.

Extensive experiments, using a discrete-time simulator that imple-
ments the new model, demonstrate the existence of model parameters
that can be used to control the properties of swarms that emerge
from random deployments of agents. Such properties include agent
density, circularity, self-healing, goal-seeking, and perimeter structure
and rotation. Heuristic guidelines are offered for the ‘tuning’ of model
parameters. A new k-NN distance metric is introduced and applied to
the analysis of the experimental results.

2. Related work

The use of potential fields to coordinate agents in swarm evolution
was introduced by Reynolds for the graphical simulation of flocks
of birds (Reynolds, 1987). The approach has been researched exten-
sively since then in a variety of multiagent swarms in an attempt
to improve their structure, manage obstacle avoidance, and enhance
navigation (Barnes et al., 2006a, 2006b, 2007; Eliot et al., 2018;
Gazi, 2005; Son et al., 2017). Improvements to swarm structure were
achieved through a prototype framework for self-healing swarms, de-
veloped by Dai et al. who considered how to manage agent failure in
hostile environments (Dai et al., 2006). This was similar to work by
Vassev and Hinchey, who modelled swarm movement using the ASSL
(Autonomic System Specification Language) (Vassev & Hinchey, 2009).
This technique was employed by NASA (US National Aeronautics and
Space Administration) for use in asteroid belt exploration as part of
their ANTS (Autonomous Nano Technology Swarm) project. However,
this work was focused on internal systems failure of agents, rather than
on the removal of anomalies in agent distribution.

In the context of swarm structure maintenance, the need for for-
mation control has been discussed by Speck and Bucci with respect
to the diverse applications of swarms and the need to control swarm
structure (Speck & Bucci, 2018). Roach et al. focused on the effects of
sensor failure, and the impact that has on agent distribution (Roach
et al., 2015). Lee and Chong identified the issue of concave edges
within swarms in an attempt to create regular lattice formations (Lee
& Chong, 2008). The main focus of their work is the dynamic re-
structuring of inter-agent formations. Ismail and Timmis demonstrated
the use of bio-inspired healing using granuloma formation, a biological

ethod for encapsulating an antigen (Ismail & Timmis, 2010). They
lso considered the effect that failed agents can have on a swarm
hen traversing a terrain (Timmis et al., 2016). Jung et al. pro-
osed a mediator-based approach using monolithic agents (Jung &
oodrich, 2013), however, the formations are ‘controlled’ by a human
nd not truly emergent behaviours. Karthikeyan and Ali proposed a
ommunications-based technique to create specific shapes, such as
ines, circles and triangles, in a defined Euclidean space (Karthikeyan

Ali, 2006). Bruemmer et al. also proposed shape-forming swarms,
gain using a communications-based methodology (Bruemmer, 2002).
ópez-González et al. demonstrated a parallel genetic algorithm for
istance control in multi-agent swarms comprising a small number of
gents (López-González et al., 2020). Johnson and Brown have devel-
ped computation-free techniques to allow swarms of simple robots
o form a perimeter around a target. Their approach requires external
ontrol over the environment in order to control the behaviour of the
warm (Johnson & Brown, 2016). He et al. also proposed a formation
2

ontrol mechanism which is communications-based (He et al., 2018).
Fig. 1. Agent fields.

Fedele and D’Alfonso proposed a model for swarm structure control but
it assumes ‘without delay’ communications-based architecture (Fedele
& D’Alfonso, 2017). Fedele and D’Alfonso also proposed a matrix-
based coordination algorithm to modify the movement of a swarm’s
agents, allowing shape formation in a fixed 3D environment (Fedele
& D’Alfonso, 2021). Extensions to the potential field model have been
proposed by Hao Fang et al. for connectivity preservation in flocks
of multiagent systems (Fang et al., 2017) and by Ivić et al. for area
coverage (Ivić et al., 2017).

This paper proposes a new extension to the potential field model
that can be used to induce, among other behaviours, perimeter expan-
sion, perimeter packing and void removal. This is an extension of the
work presented by Eliot et al. (2019) and Ismail and Timmis (2010),
Timmis et al. (2016), and builds on the work of McLurkin and Demaine
on the detection of perimeter types (McLurkin & Demaine, 2009). A key
benefit of the approach proposed here is that it is entirely decentralised
and can be implemented using only sensors, without requiring explicit
communication between agents, so facilitating the control of larger,
emergent swarms than would otherwise be possible.

3. Basic swarming model

This section introduces a basic model of swarm evolution that is in
the tradition of potential field models introduced by Reynolds (1987)
and since adopted and adapted by many others. The model abstracts
the physical characteristics of agents and their environment. It is a
summary of the model used in our earlier work (Eliot et al., 2018; Eliot
et al., 2019) and serves as an introduction to the approach and as the
starting point for the development of a new, more powerful, model.

A swarm is a finite set of agents where each agent is uniquely
defined by its position vector in 2-D Euclidean space. The movement
of each agent, 𝑏, is determined by a vector that is the sum of a number
of weighted component vectors, each derived from interactions with
agents located in one or more potential fields associated with 𝑏. Fig. 1
hows an agent and its fields. 𝑃 is the perception field, i.e. the range of
he sensor array. 𝐶 is the cohesion field, and 𝑅 is the repulsion field.
ypical component vectors include: cohesion, 𝑣𝑐 , tending to move 𝑏

towards its neighbours; repulsion, 𝑣𝑟, tending to move 𝑏 away from its
neighbours; and direction, 𝑣𝑑 , tending to move 𝑏 towards a goal, if there
is one. The final resultant vector for 𝑏 is computed as the sum (1).

𝑣(𝑏) = 𝑣𝑐 (𝑏) + 𝑣𝑟(𝑏) + 𝑣𝑑 (𝑏) (1)

The cohesion vector for agent 𝑏 is calculated based on the proximity

of its cohesion neighbours, 𝑛𝑐 (𝑏), defined in (2), where 𝑆 is the set of all
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agents in the swarm, 𝐶 is the radius of the cohesion field for all agents,
nd ‖𝑏′ − 𝑏‖ is the distance from 𝑏 to 𝑏′.

𝑐 (𝑏) = {𝑏′ ∈ 𝑆 ∶ 𝑏′ ≠ 𝑏 ∧ ‖𝑏′ − 𝑏‖ ≤ 𝐶} (2)

e assume a vector from 𝑏 to 𝑏′ for each individual agent 𝑏′ in the
et of cohesion neighbours of 𝑏. These vectors are scaled by a constant
eighting factor, 𝑘𝑐 , and the overall cohesion vector for 𝑏, 𝑣𝑐 (𝑏), is

alculated as the average of these vectors, as shown in (3).

𝑐 (𝑏) =
1

|𝑛𝑐 (𝑏)|
∑

𝑏′∈𝑛𝑐 (𝑏)
𝑘𝑐 (𝑏′ − 𝑏) (3)

here |𝑛𝑐 (𝑏)| is the size of the set of cohesion neighbours of 𝑏.
The repulsion vector for agent 𝑏 is calculated based on the proximity

f its repulsion neighbours, 𝑛𝑟(𝑏), defined in (4).

𝑟(𝑏) = {𝑏′ ∈ 𝑆 ∶ 𝑏′ ≠ 𝑏 ∧ ‖𝑏′ − 𝑏‖ ≤ 𝑅} (4)

Informally, 𝑛𝑟(𝑏) is the set of agents in the swarm, 𝑆, that are positioned
inside the repulsion field of 𝑏. We assume a vector from 𝑏 away from
′ for each individual agent 𝑏′ in the set of repulsion neighbours of 𝑏.

The magnitude of each vector is inversely proportional to the distance
between 𝑏 and 𝑏′. These vectors are scaled by a constant weighting
factor, 𝑘𝑟, and the overall repulsion vector for 𝑏, 𝑣𝑟(𝑏), is calculated
as the average of these vectors, as shown in (5).

𝑣𝑟(𝑏) =
1

|𝑛𝑟(𝑏)|
∑

𝑏′∈𝑛𝑟(𝑏)
𝑘𝑟

(

1 − 𝑅
‖𝑏′ − 𝑏‖

)

(

𝑏′ − 𝑏
)

(5)

The direction vector for an agent is calculated based on the position
of the goal relative to the agent. If there is no goal then the direction
vector is the null vector. A goal is modelled simply as a point in the
same 2-D space inhabited by agents. For a goal, 𝑔, the direction vector
for agent 𝑏, 𝑣𝑑 (𝑏), is defined by (6).

𝑣𝑑 (𝑏) = 𝑘𝑑 (𝑔 − 𝑏) (6)

where 𝑘𝑑 is a constant weighting factor for direction vectors.
A more usual presentation of this kind of model is to lift the scalars,

𝑘𝑐 , 𝑘𝑟, and 𝑘𝑑 out of (3), (5) and (6), and apply them appropriately
in (1), giving an equivalent model, as below:

𝑣(𝑏) = 𝑘𝑐𝑣𝑐 (𝑏) + 𝑘𝑟𝑣𝑟(𝑏) + 𝑘𝑑𝑣𝑑 (𝑏)

𝑣𝑐 (𝑏) =
1

|𝑛𝑐 (𝑏)|
∑

𝑏′∈𝑛𝑐 (𝑏)
(𝑏′ − 𝑏)

𝑣𝑟(𝑏) =
1

|𝑛𝑟(𝑏)|
∑

𝑏′∈𝑛𝑟(𝑏)

(

1 − 𝑅
‖𝑏′ − 𝑏‖

)

(

𝑏′ − 𝑏
)

𝑑 (𝑏) = 𝑔 − 𝑏 (7)

he slightly unorthodox presentation of (1), (3), (5) and (6) helps to
ake clearer the relationship between the basic model and the new
odel presented in Section 4.

. A new model of swarm evolution

In this paper, we propose three main extensions to the basic model:

1. the addition of a ‘gap-filling’ vector to reduce both concavity and
convexity in swarm perimeters,

2. the use of array-valued parameters so that each agent’s be-
haviour can be modified depending on its perimeter status and
the perimeter status of its neighbours, and

3. the addition of a rotation vector for further control of the
movement of agents.
3

.1. Perimeter detection

Fig. 2(a) shows a simple swarm. Perimeter agents are highlighted in
ed and can form part of an inner or outer boundary. A swarm usually
lso contains non-perimeter (internal) agents, which are shown in
lack. Each agent’s perimeter status is identified using a cyclic analysis
f its cohesion neighbours (Fig. 2(b)). Ghrist et al. discuss a similar
echnique using sweep angles (Ghrist et al., 2008) as do McLurkin and
emaine (2009).

We order the cohesion neighbours of an agent 𝑏 by their polar angle
𝛼) with respect to 𝑏 and the positive 𝑥-axis (Fig. 2(b)).

The polar angle with respect to 𝑏 of a neighbour, 𝑏′, 𝛼(𝑏, 𝑏′), is the
ounter-clockwise angle that vector ⃗𝑏𝑏′ makes with the positive 𝑥 axis,
hown in Fig. 2(b) as 𝛼𝑖 and defined by (8).

(𝑏, 𝑏′) = 𝜃 where

∧ 0 ≤ 𝜃 < 2𝜋

∧ ‖𝑏′ − 𝑏‖(cos 𝜃, sin 𝜃) = 𝑏′ − 𝑏 (8)

We denote by ⟨𝑏0, 𝑏1, .., 𝑏𝑛−1⟩𝑏 a permutation of the set of neighbours,
𝑐 (𝑏), that is sorted in non-decreasing order of polar angle, i.e. 𝛼(𝑏, 𝑏0) ≤
(𝑏, 𝑏1) ≤ ⋯ ≤ 𝛼(𝑏, 𝑏𝑛−2) ≤ 𝛼(𝑏, 𝑏𝑛−1). Given such a list of length at least
, we say that neighbours 𝑏′ and 𝑏′′ are consecutive if and only if, for
ome 𝑖 ∈ {0,… , 𝑛−1}, 𝑏′ = 𝑏𝑖 and 𝑏′′ = 𝑏(𝑖+1)%𝑛, where %𝑛 indicates the
odulus with respect to integer 𝑛.

An agent 𝑏 is on a perimeter if it satisfies any one of three condi-
ions:

1. the agent has fewer than 3 neighbours, or
2. consecutive neighbours are not within each other’s cohesion

field, or
3. consecutive neighbours subtend a reflex angle (shown in

Fig. 2(b) as 𝛿3).

A function, 𝗉𝗋𝗆(𝑏), specifies these conditions formally. Let 𝑏 be the
gent of interest and 𝑏′, 𝑏′′ any pair of consecutive neighbours of 𝑏,
hen 𝗉𝗋𝗆(𝑏) is true if any one of the following conditions is satisfied:

1. |𝑛𝑐 (𝑏)| < 3, or
2. 𝑏′ ∉ 𝑛𝑐 (𝑏′′), or
3. 𝛿 > 𝜋, where 𝛿 = 𝛼(𝑏, 𝑏′′) − 𝛼(𝑏, 𝑏′) if 𝛼(𝑏, 𝑏′′) − 𝛼(𝑏, 𝑏′) ≥ 0 else

𝛿 = 𝛼(𝑏, 𝑏′′) − 𝛼(𝑏, 𝑏′) + 2𝜋.

.2. Gap-filling

A beneficial side-effect of the perimeter detection algorithm is that
t becomes possible to identify an additional vector to influence the
ovement of perimeter agents. If an agent has been identified as a
erimeter agent because it satisfies condition (2) above, namely that
here is a consecutive pair in its angle-sorted list of cohesion neighbours
hat are not cohesion neighbours of each other, then we say that there
s a gap between that pair of agents, and a vector is created to tend
o move the perimeter agent towards the midpoint of that gap, i.e. a
ap-filling vector for 𝑏 contributes a motion of 𝑏 towards the midpoint
f a gap identified in the perimeter test for 𝑏.

More formally, let ⟨𝑏0, 𝑏1, .., 𝑏𝑛−1⟩𝑏 be the cohesion neighbours of 𝑏
n polar angle order, and let 𝑏′ and 𝑏′′ be the first pair of consecutive
eighbours that satisfy condition (2) of the perimeter function 𝗉𝗋𝗆(),
hen a gap-filling vector, 𝑣𝑔(𝑏), for agent 𝑏 is defined by (9).

𝑔(𝑏) = 𝑘𝑔

(

𝑏′ + 𝑏′′
2

− 𝑏
)

(9)

where 𝑘𝑔 is a constant weighting factor for the gap-filling vector,
allowing the combination of it with other motion vectors (cohesion,
repulsion, ...) to be ‘‘tuned’’. Note that if there is no pair of consecutive
neighbours of 𝑏, satisfying the condition then 𝑣𝑔(𝑏) is defined to be the

⃗
zero vector, 0.
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Fig. 2. Perimeter detection.
The use of gap-filling vectors was first introduced in Eliot et al.
(2019) where it was shown to be effective in quickly reducing internal
voids. In this paper, we introduce the idea that a gap-filling vector
can also be created, in a similar way, for perimeter agents that satisfy
condition (3) of the perimeter function 𝗉𝗋𝗆(). The use of such a vector
is referred to as ‘flattening reflex angles’. See Fig. 2(b), where a gap-
filling vector of this type would contribute to a movement of agent 𝑏
towards the midpoint of a straight line between agents 𝑏0 and 𝑏3, so
tending to flatten the reflex angle 𝛿3. This seemingly small extension to
the idea of gap-filling is shown in Section 5 to have a very significant
effect in controlling the shape of the external perimeter during swarm
evolution.

4.3. Agent pair perimeter classes and array-valued parameters

The main contribution of this paper is the recognition that the
identification of agents as perimeter agents or non-perimeter (internal)
agents allows the use of different parameter values for each agent,
depending on its own perimeter status and the perimeter status of its
neighbours. This idea is explained in more detail in the following.

The perimeter and internal agents of a swarm 𝑆 are denoted 𝑆𝑝 and
𝑆𝑖, where

𝑆𝑝 = {𝑏 ∈ 𝑆 ∶ 𝗉𝗋𝗆(𝑏)}, and

𝑆𝑖 = {𝑏 ∈ 𝑆 ∶ ¬𝗉𝗋𝗆(𝑏)}

Each pair of agents in 𝑆 × 𝑆 is in one of the sets 𝑆𝑖𝑖 = 𝑆𝑖 × 𝑆𝑖,
𝑆𝑖𝑝 = 𝑆𝑖 × 𝑆𝑝, 𝑆𝑝𝑖 = 𝑆𝑝 × 𝑆𝑖, or 𝑆𝑝𝑝 = 𝑆𝑝 × 𝑆𝑝, depending on the
perimeter status of each agent in the pair. The sets 𝑆𝑖𝑖, 𝑆𝑖𝑝, 𝑆𝑝𝑖 and 𝑆𝑝𝑝
partition the set of agent pairs, 𝑆 × 𝑆, and are the equivalence classes
of an equivalence relation on 𝑆 × 𝑆. Therefore, we call these sets the
agent pair perimeter classes of 𝑆 or, more briefly, the perimeter classes
of 𝑆.

The perimeter class of a pair of agents, 𝑏, 𝑏′ ∈ 𝑆, is determined by
the perimeter status (i — internal, p — perimeter) of each, as shown
in the array:

[

𝑖 𝑝

𝑖 𝑆𝑖𝑖 𝑆𝑖𝑝
𝑝 𝑆𝑝𝑖 𝑆𝑝𝑝

]

𝑏

𝑏′
4

If we consider Fig. 2(a) then we can see the following examples of
perimeter classes containing agent pairs: (18, 21) ∈ 𝑆𝑖𝑖, (18, 39) ∈ 𝑆𝑖𝑝,
(39, 19) ∈ 𝑆𝑝𝑖, and (41, 40) ∈ 𝑆𝑝𝑝.

Now the idea is to replace the single-valued parameters, 𝑅, 𝑘𝑐 , and
𝑘𝑟 in (3) and (5) with array-valued parameters, so that each perimeter
class can be given its own specific value. For example, instead of a
single, constant value for 𝑘𝑐 , we can have an array of values, such as:

[

𝑘𝑐 𝑖 𝑝

𝑖 10 20
𝑝 30 40

]

𝑏

𝑏′

where 𝑘𝑐 = 10 if (𝑏, 𝑏′) ∈ 𝑆𝑖𝑖, 𝑘𝑐 = 20 if (𝑏, 𝑏′) ∈ 𝑆𝑖𝑝, etc.
Similarly, a 1-D array of values can be used instead of a scalar for

parameters associated with vectors that depend only on a single agent.
For example, in computing a weighted direction vector, instead of a
single, constant value for 𝑘𝑑 , we can have an array of values, such as
[10, 20], where 𝑘𝑑 = 10 if 𝑏 ∈ 𝑆𝑖 and 𝑘𝑑 = 20 if 𝑏 ∈ 𝑆𝑝.

Two dimensional array-valued parameters are normally written
linearly as, for example, 𝑘𝑐 = [[10, 20], [30, 40]], and are indexed using
any of 0∕𝖥𝖺𝗅𝗌𝖾∕𝑖 for internal agents and 1∕𝖳𝗋𝗎𝖾∕𝑝 for perimeter agents,
so, for the example above, 𝑘𝑐 [𝖳𝗋𝗎𝖾, 𝖥𝖺𝗅𝗌𝖾] = 30 and is used for any agent
pair in the perimeter class 𝑆𝑝𝑖.

4.4. The new model

At this point, most features of the new model can be presented as a
straightforward revision of the basic model of Section 3, in which the
single-valued parameters, 𝑅, 𝑘𝑐 , 𝑘𝑟, and 𝑘𝑑 used in (3), (5), and (6) are
replaced by array-valued parameters. It should now be clear that the
𝑘𝑐 , 𝑘𝑟 and 𝑘𝑑 parameters were placed inside the summation in these
equations in order to emphasise the relationship of the new model to
the basic model.

In addition, a gap-filling vector, as defined in Section 4.2, is in-
cluded in the resultant vector to promote self-healing, perimeter control
and better swarm structure.

Finally, rotation vectors, 𝑣𝑎(𝑏), are introduced that allow additional
control of agent behaviour. Rotation vectors are described in more
detail below.

The definition of the vectors, 𝑣(𝑏), is now given by (10).

𝑣(𝑏) = 𝑣 (𝑏) + 𝑣 (𝑏) + 𝑣 (𝑏) + 𝑣 (𝑏) + 𝑣 (𝑏) (10)
𝑐 𝑟 𝑑 𝑔 𝑎
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Fig. 3. Rotation vectors: the red circles represent perimeter agents, green arrows
represent direction vectors, blue arrows represent rotation vectors, the cross at (100,
100) represents the goal.

The cohesion vectors, 𝑣𝑐 (𝑏), in the new model are defined by (11),

𝑣𝑐 (𝑏) =
1

|𝑛𝑐 (𝑏)|
∑

𝑏′∈𝑛𝑐 (𝑏)
𝑘𝑐 [𝑠, 𝑠′](𝑏′ − 𝑏) (11)

where 𝑠 = 𝗉𝗋𝗆(𝑏) is the perimeter status of 𝑏 and 𝑠′ = 𝗉𝗋𝗆(𝑏′) is the
perimeter status of 𝑏′. 𝑘𝑐 is a 2 × 2 boolean-indexed, array-valued
parameter, as discussed in Section 4.3, that determines the weight of
each component of the cohesion vector according to the perimeter class
of the agent pair (𝑏, 𝑏′). The definition of cohesion neighbours, 𝑛𝑐 (𝑏), is
unchanged from (2).

The definition of repulsion vectors requires a minor modification to
the notion of repulsion neighbours, to allow the radius of the repulsion
field to be varied according to the perimeter status of the agents
involved, as shown in (12).

𝑛𝑟(𝑏) = {𝑏′ ∈  ∶ 𝑏 ≠ 𝑏′ ∧ ‖𝑏′ − 𝑏‖ ≤ 𝑅[𝑠, 𝑠′]} (12)

where 𝑠 = 𝗉𝗋𝗆(𝑏), 𝑠′ = 𝗉𝗋𝗆(𝑏′), and 𝑅 is a 2 × 2 boolean-indexed array
of constants that determine the radius of the repulsion field.

Now, the repulsion vectors, 𝑣𝑟(𝑏), are defined by (13).

𝑣𝑟(𝑏) =
1

|𝑛𝑟(𝑏)|
∑

𝑏′∈𝑛𝑟(𝑏)
𝑘𝑟[𝑠, 𝑠′]

(

1 − 𝑅[𝑠, 𝑠′]
‖𝑏′ − 𝑏‖

)

(𝑏′ − 𝑏) (13)

where 𝑠 = 𝗉𝗋𝗆(𝑏), 𝑠′ = 𝗉𝗋𝗆(𝑏′), and 𝑘𝑟 is a 2 × 2 boolean-indexed array
of constants that determine the weight of a component of the repulsion
vector according to the perimeter class of the agent pair (𝑏, 𝑏′).

The direction vectors, 𝑣𝑑 (𝑏), are defined by (14).

𝑣𝑑 (𝑏) = 𝑘𝑑 [𝑠](𝑔 − 𝑏) (14)

where 𝑠 = 𝗉𝗋𝗆(𝑏), 𝑘𝑑 is a 1-D, boolean-index array of constants giving
the weights of the direction vector for internal and perimeter agents,
and 𝑔 denotes the position of the goal.

The gap-filling vectors, 𝑣𝑔(𝑏), have a non-null value only for perime-
ter agents, and are defined as in (9).

We also extend the basic model with rotation vectors, 𝑣𝑎(𝑏), which,
for the purposes of this paper, we restrict to simple rotations of the
direction vectors.

Let 𝐴(𝛼) denote the matrix that rotates a point by angle 𝛼 by
pre-multiplication of its column position vector, i.e.

𝐴(𝛼) =
[

𝑐𝑜𝑠(𝛼) −𝑠𝑖𝑛(𝛼)
]

5

𝑠𝑖𝑛(𝛼) 𝑐𝑜𝑠(𝛼)
Table 1
Baseline parameters.

Parameter Value

𝐶 3.0
𝑅 [[2.0, 2.0], [2.0, 2.0]]
𝑘𝑐 [[0.15, 0.15], [0.15, 0.15]]
𝑘𝑟 [[50.0, 50.0], [50.0, 50.0]]
𝑘𝑑 [0.0, 0.0]
𝑘𝑔 0.0
𝑘𝑎 [0.0, 0.0]
𝑟𝑎 [0.0, 0.0]
𝗋𝗀𝖿 𝖥𝖺𝗅𝗌𝖾

Then, the rotation vectors, 𝑣𝑎(𝑏), are defined by (15).

𝑣𝑎(𝑏) = 𝑘𝑎[𝑠]𝐴(𝑟𝑎[𝑠])
𝑣𝑑 (𝑏)

‖𝑣𝑑 (𝑏)‖
(15)

here 𝑠 = 𝗉𝗋𝗆(𝑏), and 𝑘𝑎 and 𝑟𝑎 are 1-D, boolean-indexed arrays
f constants giving the weights and rotation angles, respectively, for
nternal and perimeter agents.

As a simple example of rotation vectors, consider Fig. 3 which
hows a small swarm of 10 agents that has evolved to a stable state
n which all agents are perimeter agents and the rotation vectors have
een derived from the direction vectors, according to (15), using the
arameters 𝑘𝑎 = [0, 1] and 𝑟𝑎 = [0, 𝜋∕2].

Notice that a counter-clockwise rotation of the direction vectors
about each agent will produce rotation vectors that tend to rotate the
agents clockwise around the goal, and vice-versa.

These changes to a basic model, of the sort that has been used for
many years, may appear simple but their effect on swarm evolution can
be very significant, as is demonstrated in Section 5.

5. Experimental results

The results in this section are derived from a discrete time simulator
that implements directly the model outlined in Section 4. This new
model allows for highly configurable swarms, with good control over
perimeter and overall swarm structure. We illustrate this with a number
of examples and analyse the resulting structures using a variety of
metrics.

5.1. Experiments

5.1.1. Baseline
The baseline parameters for all the experiments in this section

are shown in Table 1, where 𝐶 is the cohesion field radius, 𝑅 is
he repulsion field radius, 𝑘𝑐 , 𝑘𝑟, 𝑘𝑑 , 𝑘𝑔 and 𝑘𝑎 are the weightings

of the cohesion, repulsion, direction, gap-filling and rotation vectors
that contribute to the resultant vector for each agent, 𝑟𝑎 specifies the
angles of rotation for the rotation vectors, and 𝗋𝗀𝖿 determines whether
the flattening of reflex angles in the gap-filling algorithm is turned
on or off. It can be assumed that any parameter values that are not
mentioned explicitly in each experiment take their values from this
table. These parameters are a typical set that would give a reasonable
swarm structure if translated into the framework of the basic model of
Section 3.

The baseline swarm consists of 400 agents which are distributed
randomly over an area of 20 × 20 units (−10 → +10), as shown in
Fig. 4(a). One can imagine that this simulates a randomised drop of
agents into an area of interest, with an average density of 1 agent
per square unit. Hundreds of other random distributions have been
simulated and the results presented in this section are typical. The
resultant position of each agent after 2000 simulation steps is shown
in Fig. 4(b). This is the structure that the baseline swarm reaches
under the control of the basic model and serves as a useful point of
comparison with the structures that can be achieved using the new
model. Note that a simulation step consists of calculating the resultant
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Fig. 4. Baseline swarm configurations.
ector for each agent, as described in Section 4, deriving a unit vector
rom the resultant by normalisation, and then scaling this vector by a
speed’ factor to represent the number of distance units moved per step.
ll of the examples in this section use a speed factor of 0.05. The choice
f 2000 steps for each simulation allows each example experiment to
each a ‘stable’ state.

.1.2. Void reduction
This set of simulations demonstrates the effectiveness of the new

odel in creating self-healing, evolutionary swarms that exhibit signif-
cantly improved control over swarm perimeter and overall structure
han any other comparable approach. The method is an extension of the
ne described in Eliot et al. (2019). The importance of the extension of
he method to include the flattening of reflex angles is illustrated.

We begin by taking the expanded baseline swarm of Fig. 4(b) and
reating a ‘hole’ in it by removing 30 agents. One can imagine that
his represents the simultaneous, catastrophic failure of a cluster of
gents. The resulting swarm is shown in Fig. 5(a). The ineffectiveness
f the basic model in removing the void is illustrated in Fig. 5(b) which
hows the resulting swarm structure after 2000 simulation steps using
he baseline parameters.

By contrast, Fig. 5(c) shows the structure of the swarm after 2000
teps with 𝑘𝑔 = 150, i.e. applying the method of Eliot et al. (2019). We
an see that the void has been removed successfully but the swarm has
ecome distended.

Finally, Fig. 5(d) shows the structure of the swarm after 2000 steps
ith 𝑘𝑔 = 150 and the flattening of reflex angles turned on (𝗋𝗀𝖿 = 𝖳𝗋𝗎𝖾).

The improvement in the swarm structure at this point is striking and
illustrates the effectiveness of the new approach. The swarm is almost
perfectly circular, agents are evenly spaced and the perimeter is stable.

5.1.3. Compact perimeter
The utility of the array-valued parameters, introduced in the new

model, is illustrated with the creation of a swarm that has a densely
packed perimeter and by default exhibits a self-healing behaviour.
The key idea here is to use the perimeter status of agents to select
appropriate values for the cohesion and repulsion weights, 𝑘𝑐 and 𝑘𝑟.
By reducing the repulsion weight of agent pairs in the 𝑆𝑖𝑝 class, more
internal agents are able to join the perimeter, and by increasing the
cohesion weight of the agent pairs in the 𝑆𝑝𝑝 class, the perimeter agents
become more densely packed.
6

Fig. 6(a) shows the effect of using the array-valued parameter
values:

𝑘𝑐 = [[0.15, 0.15], [0.15, 150.0]], and

𝑘𝑟 = [[50.0, 10.0], [50.0, 50.0]]

The cohesion weight for agent pairs in 𝑆𝑝𝑝 is given by 𝑘𝑐 [1, 1] = 150.0
and the repulsion weight for agent pairs in 𝑆𝑖𝑝 is given by 𝑘𝑟[0, 1] = 10.0.
In addition, gap-filling is applied with weight 𝑘𝑔 = 150 and reflex angles
are flattened (𝗋𝗀𝖿 = 𝖳𝗋𝗎𝖾) to smooth the perimeter. This also induces a
compression effect on the swarm, ensuring that any voids are filled.
The use of a high 𝑘𝑔 value helps to create a stable, circular swarm
structure. Starting from the agent positions shown in Fig. 4(a), these
parameters lead to the structure of Fig. 6(a) within 2000 steps. In fact,
a similar regular structure, with a tightly packed perimeter, is obtained
from the baseline swarm with a void (Fig. 5(a)) using exactly the same
parameters, illustrating the self-healing properties of the model. This is
a significant advance over other comparable approaches.

5.1.4. Expanded perimeter
This simulation shows a different example of the use of array-valued

parameters in the new model. It illustrates how a significantly different
swarm can be made to evolve simply by changing the values of the
parameters 𝑘𝑐 , 𝑘𝑟, and 𝑘𝑔 . In this case, we generate a swarm that
expands from the compact configuration of the base state (Fig. 4(a)),
increasing the distance between perimeter agents, while maintaining a
dense core. This kind of evolution may be useful for a swarm moving
into a hostile environment where the perimeter agents can act as an
early warning system, while a sufficient number of internal agents
is preserved for mission completion. As in the previous example, the
swarm exhibits a self-healing property due to internal compression and,
so, remains robust in the presence of agent failure.

The parameters shown below achieve this effect by creating a high
degree of repulsion between agent pairs in 𝑆𝑖𝑝 (𝑘𝑟[0, 1] = 1000.0),
i.e. the internal agents nearest to the perimeter strongly repel the
perimeter agents. The cohesion weight between perimeter agents is set
just high enough to maintain a stable perimeter (𝑘𝑐 [1, 1] = 15.0).

𝑘𝑐 = [[0.15, 0.15], [0.15, 15.0]], and

𝑘𝑟 = [[50.0, 1000.0], [50.0, 50.0]]

Gap-filling (𝑘𝑔 = 50), with flattening of reflex angles (𝗋𝗀𝖿 = 𝖳𝗋𝗎𝖾),
controls the perimeter to create a circular shape, as shown in Fig. 6(b).
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Fig. 5. Void reduction: (a) Expanded baseline swarm with void (b) No self-healing with baseline parameters (c) Swarm structure after 2000 steps with gap-filling (d) Swarm
tructure after 2000 steps with gap-filling and flattening of reflex angles.
Table 2
Rotating perimeter parameters.

Parameter Small, goal-seeking Large, low density

𝐶 144 20
𝑅 [[96, 96], [96, 108]] [[16, 16], [16, 16]]
𝑘𝑐 [[0.15, 0.15], [0.15, 0.15]] [[0.25, 0.075], [0.15, 0.15]]
𝑘𝑟 [[150, 50], [150.0, 50.0]] [[120, 50], [120, 50]]
𝑘𝑑 [0.15, 0.15] [0.2, 0.2]
𝑘𝑔 200 150
𝑘𝑎 [0, 5] [0, 15]
𝑟𝑎 [0, 𝜋∕2] [0, 𝜋∕2]
𝗋𝗀𝖿 𝖳𝗋𝗎𝖾 𝖳𝗋𝗎𝖾

5.1.5. Rotating perimeter
The final two simulations illustrate the use of direction and rotation

vectors to control the movement of agents: the first shows a small
7

swarm of agents seeking a goal and forming a rotating perimeter
around it; the second shows a much larger swarm expanding to a
relatively low density compared to its initial state, again with a rotating
perimeter. Fedele et al. (2022) discuss swarm rotation behaviours. This
section shows the capabilities of a much simpler model. Table 2 gives
the parameters for both simulations.

The diagram seen earlier in Fig. 3 shows the state of a swarm of
10 agents after evolving for 10,000 steps from an initial state in which
the agents are distributed uniformly at random in a square of 10 sq.
units, centred on position (0,0). Within 10,000 steps the agents have
dispersed to cover an area of 5095 sq. units, the centroid of the swarm
is directly over the goal, at (100,100), and the agents are rotating
clockwise about the goal. A video animation showing the evolution
of the swarm is available here in the online supplementary material.
The potential of this behaviour to offer a low-cost solution to the basic
border control problem (Marino et al., 2013; Pan et al., 2021) is clear.

Fig. 7(a) shows the evolution for 10,000 steps from the initial state

of the baseline swarm, shown in Fig. 4(a), using the parameters in the

https://ars.els-cdn.com/content/image/1-s2.0-S0957417423006851-mmc1.mp4
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rightmost column of Table 2. The initial state covers an area of 400 sq.
units. The state shown in Fig. 7(a) covers an area of 54,344 sq. units, an
expansion factor of about 136. The agents are evenly dispersed and the
swarm maintains an essentially circular shape. The perimeter agents
rotate clockwise around the centroid of the swarm. Fig. 7(b) simulates
a total failure of 10% of the agents of the swarm and Fig. 7(c) shows the
recovery of the swarm structure within 5000 steps. The perimeter is re-
paired and continues to rotate as before. A video animation showing the
evolution of the swarm is available here in the online supplementary
material.

5.2. Analysis

Distance metrics of various sorts have been used by many re-
searchers for swarm structure analysis (Barnes et al., 2006a, 2006b;
Elamvazhuthi & Berman, 2015; Gazi, 2005; Schneider & Wildermuth,
2003). In this paper, we use a k-nearest neighbours metric on each of
the perimeter relationship classes. This approach gives a good overview
of the evolution of a swarm in respect of its perimeter and internal core.

A set of k-nearest neighbours of an agent 𝑏, taken from any set 𝑇
of agents, is a set of size 𝑘 such that any agent in that set is a cohesion
neighbour of 𝑏 and is closer to 𝑏 than any other cohesion neighbour
of 𝑏 that is also in 𝑇 but is not one of the k-nearest neighbours. If the
size of the set of cohesion neighbours of 𝑏 that are also in 𝑇 is smaller
than 𝑘, then we just take the whole set of cohesion neighbours as the
k-nearest neighbours.

Formally, for any natural number 𝑘 > 0, a set of k-nearest neigh-
bours (k-NN) of an agent 𝑏 ∈ 𝑆, with respect to any set 𝑇 ⊆ 𝑆, is a set
𝑛𝑘(𝑏, 𝑇 ) that satisfies:

𝑘(𝑏, 𝑇 ) ⊆ 𝐾 where

∧ 𝐾 = 𝑛𝑐 (𝑏) ∩ 𝑇

∧ (|𝐾| ≤ 𝑘 ⟹ 𝑛𝑘(𝑏, 𝑇 ) = 𝐾)

∧ (|𝐾| > 𝑘 ⟹ (|𝑛𝑘(𝑏, 𝑇 )| = 𝑘

∧ ∀𝑏′ ∈ 𝑛𝑘(𝑏, 𝑇 ) ∶

‖𝑏′ − 𝑏‖ ≤ min
𝑏′′∈(𝐾⧵𝑛𝑘(𝑏,𝑇 ))

‖𝑏′′ − 𝑏‖)) (16)

Our k-NN metric computes the mean and standard deviation of agent
8

distances for each of the perimeter classes: 𝑆𝑖𝑖, 𝑆𝑝𝑖 and 𝑆𝑝𝑝. The mean
s calculated as shown in (17) where 𝜇𝑑 (𝑆1, 𝑆2, 𝑘) is the mean distance
etween specified agent pairs in 𝑆1×𝑆2, based on k-nearest neighbours.

𝑑 (𝑆1, 𝑆2, 𝑘) =

∑

𝑏∈𝑆1
∑

𝑏′∈𝑛𝑘(𝑏,𝑆2) ‖𝑏
′ − 𝑏‖

∑

𝑏∈𝑆1 |𝑛𝑘(𝑏, 𝑆2)|
(17)

The standard deviation is calculated as shown in (18), where 𝜎𝑑 (𝑆1, 𝑆2,
𝑘) is the standard deviation from the mean of the distance between
specified agent pairs in 𝑆1 × 𝑆2, based on k-nearest neighbours.

𝜎𝑑 (𝑆1, 𝑆2, 𝑘) =

√

√

√

√

√

√

∑

𝑏∈𝑆1
∑

𝑏′∈𝑛𝑘(𝑏,𝑆2)

(

‖𝑏′ − 𝑏‖ − 𝜇𝑑 (𝑆1, 𝑆2, 𝑘)
)2

∑

𝑏∈𝑆1 |𝑛𝑘(𝑏, 𝑆2)|
(18)

ote, 𝜇𝑑 (𝑆1, 𝑆2, 𝑘) and 𝜎𝑑 (𝑆1, 𝑆2, 𝑘) are defined only if ∑𝑏∈𝑆1 |𝑛𝑘(𝑏, 𝑆2)|
0.
Now, the k-NN mean distances for the 𝑆𝑖𝑖, 𝑆𝑝𝑖 and 𝑆𝑝𝑝 classes

re given simply by 𝜇𝑑 (𝑆𝑖, 𝑆𝑖, 𝑘), 𝜇𝑑 (𝑆𝑝, 𝑆𝑖, 𝑘), and 𝜇𝑑 (𝑆𝑝, 𝑆𝑝, 𝑘). The
tandard deviations are given similarly in the obvious way. In our
xperience, 𝜇𝑑 (𝑆𝑖, 𝑆𝑝, 𝑘) and 𝜎𝑑 (𝑆𝑖, 𝑆𝑝, 𝑘) are less helpful indicators of
warm structure than 𝜇𝑑 (𝑆𝑝, 𝑆𝑖, 𝑘) and 𝜎𝑑 (𝑆𝑝, 𝑆𝑖, 𝑘) and are disregarded
n the rest of this paper.

We use the notation 𝜓𝑑 (𝑆1, 𝑆2, 𝑘) to refer to the mean plus or minus
ne standard deviation, where these are defined.

𝑑 (𝑆1, 𝑆2, 𝑘) = [𝜇𝑑 (𝑆1, 𝑆2, 𝑘) − 𝜎𝑑 (𝑆1, 𝑆2, 𝑘),

𝜇𝑑 (𝑆1, 𝑆2, 𝑘) + 𝜎𝑑 (𝑆1, 𝑆2, 𝑘)] (19)

A plot of the distance metric over the evolution of a swarm gives
useful overview of the swarm’s behaviour. Fig. 8 shows plots of the
eans of each perimeter class for some of the simulations considered

bove. Typically, a simulation run would be analysed using a variety
f values of 𝑘, in order to get a clear understanding of the swarm’s
ehaviour. In this paper, for reasons of space, the results of only one
hoice of 𝑘 value for each perimeter class are presented. Fig. 5(d) shows

swarm structure in which inter-agent distances for all perimeter
lasses are roughly equal. Fig. 8(d) shows that a choice of 𝑘 = 2
or the 𝑆𝑖𝑖 and 𝑆𝑝𝑝 classes and 𝑘 = 1 for the 𝑆𝑝𝑖 class gives results
hat correspond with this observation, and these values of 𝑘 are used
hroughout.

Fig. 8(a) shows the distance plot for the evolution of the baseline
warm. It can be seen that the swarm expands within 200–300 steps

https://ars.els-cdn.com/content/image/1-s2.0-S0957417423006851-mmc2.mp4
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Fig. 7. Low density swarm with rotating perimeter: (a) swarm state after 10000 steps (b) swarm state after 10% of agents lost following step 10000 (c) swarm state after 5000
more steps showing recovery.
from its initial compact configuration to a stable expanded configura-
tion in which agents have settled at a distance that is roughly equal
to the radius of the repulsion field. There is a small difference in the
mean distances for the different perimeter classes. The behaviour of the
baseline swarm is typical of that produced by conventional swarming
algorithms using single-valued potential fields and weights.

Fig. 8(b) shows the evolution of the expanded base swarm with a
‘hole’ near the centre. It shows a run of the swarm that exhibits very
little change over the course of 2000 steps, as we can confirm by com-
paring the start and end structures in Fig. 5(a) and 5(b), respectively.
The roughly constant higher distances between agents in the 𝑆𝑝𝑝 and
𝑝𝑖 classes are caused by the presence of the holes in the swarm and

he failure of the use of the base parameters to close them.
Fig. 8(c) shows a run of a swarm starting from the same initial

onfiguration but with gap-filling turned on (𝑘𝑔 = 150). The swarm
s more compressed and still exhibits small differences in the mean
istances between agents in different perimeter classes — between
9

approximately 1.64 and 1.75 units. This causes the hole in the swarm
to be closed but the degree of compression is not sufficient to create a
circular swarm. In contrast, Fig. 8(d) shows a run of the swarm again
starting from the same initial configuration but with both gap-filling
(𝑘𝑔 = 150) and flattening of reflex angles (𝗋𝗀𝖿 = 𝖳𝗋𝗎𝖾). This produces
very similar mean distances between agent pairs in different classes
and the degree of compression is now sufficiently high to produce a
remarkably regular, circular swarm structure (Fig. 5(d)).

A striking feature of the new potential field model with array-valued
parameters, gap-filling, and flattening of reflex angles, is the degree
of control over both the internal swarm structure and the perimeter
that can be achieved simply by varying these parameter values. For
example, the distance graph of Fig. 9 shows the run of a swarm,
starting from the initial distribution of Fig. 4(a), that uses a set of
parameters to produce a swarm with a compact internal core and a
relatively expanded perimeter (Fig. 6(b)). The mean distance between
agent pairs in the 𝑆 class settles at about 0.56 units, whereas the
𝑖𝑖
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m

Fig. 8. Distance metrics: (a) Baseline swarm (b) Swarm with hole: base parameters (c) Swarm with hole: gap-filling without flattening of reflex angles (d) Swarm with hole:
gap-filling with flattening of reflex angles.
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Fig. 9. Distance metric: Expanded stable perimeter.

ean distance between agent pairs in the 𝑆𝑝𝑝 class settles at about 1.27
units, giving a relative expansion factor for perimeter agents of about
2.27. The perimeter agents are established very quickly and remain
stable throughout the run. This leads to very little variability in the
mean distances for each perimeter class. The expansion factor can be
controlled by varying the parameter values.

In contrast, Fig. 10(a) shows the run of a swarm from the same
initial distribution of agents to the structure of Fig. 6(a). In this case,
the perimeter is compressed relative to the internal core. The variability
10

in the distance metric shows that the structure is volatile. In particular,
the classification of agents into 𝑆𝑝 or 𝑆𝑖 changes from step to step, as a
subset of agents oscillate between the perimeter and the internal core
throughout the run. This volatility leads to a counter-intuitive distance
metric graph. Fig. 6(a) shows a structure in which the perimeter agents
are clearly closer together than the internal agents and there is a
significant distance between the perimeter and the internal core. So we
expect 𝜇𝑑 (𝑆𝑝, 𝑆𝑝, 𝑘)≪ 𝜇𝑑 (𝑆𝑝, 𝑆𝑖, 𝑘) but the graph of Fig. 10(a) indicates
hat these values are roughly equal. This discrepancy is caused by the
olatility of 𝑆𝑝 over the course of the run. As agents move out of
he perimeter, gaps appear between the remaining perimeter agents,
ncreasing 𝜇𝑑 (𝑆𝑝, 𝑆𝑝, 𝑘). At the same time, the agents that have moved
ut of the perimeter are now very close to a perimeter agent, decreasing
𝑑 (𝑆𝑝, 𝑆𝑖, 𝑘), thus the two means are seen to converge. A glance at
he outer ring of agents in Fig. 6(a) shows most agents coloured red,
ndicating that they are classed in 𝑆𝑝 at step 2000, but a significant
umber of agents in the outer ring are coloured black, indicating that
hey are classed in 𝑆𝑖 at step 2000. A dynamic view of the structure
hroughout the run shows that the subsets of agents, 𝑆𝑝 and 𝑆𝑖, change
t every step. However, it is possible to identify a core set of agents
hat are predominantly in 𝑆𝑝. In this case, there is a set of 131 out
f 400 agents that are classed in 𝑆𝑝 in more than 60% of the steps of
he run. Only 4 of the agents outside this set are classed in 𝑆𝑝 in more
han 0.3% of steps and of these none is in 𝑆𝑝 in more than 24% of
teps. It is interesting to pre-compute this core set of 131 agents and
reat them as the perimeter agents in calculating the distance metric.
ig. 10(b) shows the metric in this case. This graph accords much more
losely with our observations about the relative distances of agent pairs
n 𝑆 , 𝑆 , and 𝑆 . It can be seen here that the mean distance between
𝑖𝑖 𝑝𝑖 𝑝𝑝
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Fig. 10. Distance metrics: Compact volatile perimeter - (a) k-NN metric (b) k-NN metric with pre-computation of perimeter.
Fig. 11. Distance metrics: Rotating perimeter - (a) Goal-seeking, ‘border patrol’ (b) Low density with self-healing.
agent pairs in the 𝑆𝑖𝑖 class settles at about 1.56 units, whereas the mean
distance between agent pairs in the 𝑆𝑝𝑝 class settles at about 0.72 units,
giving a relative compression factor of 0.46. Again, the compression
factor can be controlled by varying the parameter values.

Fig. 11(a) shows the distance metric for the first 1000 steps only of
the border control example. It can be seen that within about 150 steps
the swarm has expanded so that all agents are perimeter agents and the
distance between the agents continues to expand until it reaches stabil-
ity. The distance remains stable throughout the run, despite movement
towards the goal and rotation.

Fig. 11(b) shows the distance metric for the evolution for 15000
steps of a low density swarm with a rotating perimeter, starting from
the initial state of Fig. 4(a) (see Table 2 for parameters) and suffering
agent failure at step 10,000, as illustrated in Fig. 7(b). The swarm
begins to expand immediately – the minimum distance between agents
never falls below the minimum distance seen in the initial state – and
the disruption to the swarm caused by the agent failure at step 10,000
is seen to be only slight. It can be seen that the rotation of the perimeter
agents does not cause instability in the mean distance between them.

6. Conclusions and future work

This paper proposes a new model for swarm evolution in the tradi-
tion of discrete-time, Boid-like, potential field models. The key ideas
are simple but significant for the control over swarm structure that
is made possible for large swarms of homogeneous agents, which can
be implemented with very low computation and communication costs.
The new model distinguishes four equivalence classes on the set of
11
agent pairs, defined on the basis of the perimeter status of each agent.
Array-valued parameters allow each equivalence class to have its own
parameter values, leading to highly configurable swarm structures. An
extension to our previous work on gap-filling adds a further level
of control over swarm shape and perimeter. The use of array-valued
parameters is shown to be applicable also to the case of direction
and rotation vectors, allowing fine-grained control over the movement
of perimeter and internal agents. Extensive experimental simulations
demonstrate the effectiveness of the new model, exhibiting regular
swarm structures with control over the perimeter and internal spacing
of agents that could not be achieved with earlier models of this type.

Future work will include more detailed investigations to explore
further the use of the new model in scenarios with obstacles and
multiple goals. The tuning of model parameters remains a significant
challenge: as Brambilla et al. (2013) observe, ‘‘The intuition of the
human designer is still the main ingredient in the development of
swarm robotics systems’’. So an important area for further work is the
exploration of the use of machine learning techniques for automatically
learning good parameter values for various objectives related to swarm
structure. Finally, it is likely that the main contribution of this work will
be found in real, practical applications and, therefore, the main focus of
our future research will be on the use of our models for the control of
swarms of physical robots and their application to real-world scenarios.
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