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ABSTRACT There are many metrics defined for the analysis of swarm coordination algorithms. These
metrics are usually based upon the distances between agents, the distance between agents and a fixed
point, or the resultant vectors that potential field effects produce. This paper examines a distance-based
metric that measures a swarm’s overall structure using inter-agent distances. More importantly, it introduces
a new metric that identifies a swarm’s state based upon the resultant magnitude of the vectors produced by
the agent interactions that create the agent distribution within the swarm’s structure. The algorithms used to
implement the swarming feature are based upon cohesion and repulsion vectors between an agent and its
neighbors. In comparing and contrasting the two metrics, we find that the cohesion/repulsion metric offers
a number of advantages over the distance metric. In particular, the cohesion/repulsion metric allows the
identification of the essential characteristic of a swarm as ‘‘expanding,’’ ‘‘stable,’’ or ‘‘contracting.’’ These
states cannot be identified using a distance-based metric. Practical swarming applications where the new
metric can be applied advantageously include area-filling and reconnaissance.

INDEX TERMS Swarming, swarm dynamics, swarm metric.

I. INTRODUCTION
Swarming in the animal kingdom of ants, bees, fish and birds,
for instance, has long been studied by scientists. From these
studies, mathematical models and algorithms have evolved,
such as those produced by Reynolds [24]. The models and
algorithms have in turn captured the interest of comput-
ing scientists, who are interested in applying them to large
groups of autonomous mobile agents (‘robots’). The coop-
erative coordination of these agents can take many forms,
such as following a set path [17], existing in a static space
[9], [11], [12] or foraging as a colony [15], [16]. One of
the attributes of swarms that has captured the interest of
scientists is that the models and algorithms used to coordinate
them are generally sets of simple rules. These simple rules
cause the agents to appear to work cooperatively. Often,
the rules can also generate movement that does not con-
tribute to the goal of the swarm. This movement is a direct
result of the agents attempting to move towards an optimum
position within the structure. This internal movement can
be identified by analyzing the changes in the inter-agent
interactions. Measuring this unnecessary movement allows
the effectiveness of a swarming algorithm to be evaluated.
If the internal movement can be reduced, then the stability
of the swarm is improved and more of the swarm’s energy

is focused on the goal. Reducing the internal movement
also provides a more stable platform for the deployment of
sensor arrays. Both metrics, presented in this paper, allow
this evaluation to be carried out when all the sensor ranges
are the same. However, the distance metric is not able to
identify the internal movement accurately when the sensor
ranges of each agent vary, producing irregular inter-agent
distances, even though the interactions at the vector level
indicate that the agents are in fact stable and optimum. This
paper discusses the two metrics and how they differ in their
approach to identifying these changes. Distance-based met-
rics use variations in the inter-agent spaces, as discussed
by many research teams including Navarro and Matía [22],
Gazi and Passino [11], [12], Barnes et al. [6], and Schneider
and Wildermuth [26]. The new metric uses the resultant
magnitudes of the agents’ inter-agent vectors that are defined
by interactions of an agent with its neighbors. This allows
the ‘‘degree’’ of a relationship to be evaluated globally and
therefore allows a swarm to be identified as ‘‘expanding’’,
‘‘stable’’ or ‘‘contracting’’.

Many coordination algorithms exist to control the move-
ment of agents within a swarm. The primary goal of these
algorithms is to maintain a stable swarm structure. A stable
structure is one where the agents in the swarm ‘‘act’’ as a
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single entity. The main focus of this paper is on metrics
that can be applied to any coordination algorithms that use
potential fields to produce a swarming effect. Most swarming
algorithms define a set of equations that calculate the repul-
sion and cohesion effects. These equations are the basis of the
new metric.

To facilitate the analysis of the new metric, a basic swarm
model is introduced and then two metrics are applied to this
model to present a comparison of the information provided
by a distance-based and the new cohesion/repulsion-based
metric. The analysis includes the identification of a swarm’s
‘‘state’’. The metric is then applied to an area-filling scenario
to highlight a possible use of the new metric.

The remainder of this paper is structured as follows:
Section II discusses different metrics that are currently used
to analyses swarms; Section III introduces a model of swarm
behavior, using potential fields, that can be analyzed and
evaluated using the two metrics; Section IV shows exam-
ples of the typical dynamic behavior of swarms under the
potential field model; Section V discusses a distance-based
metric for swarm analysis; Section VI introduces the new
cohesion/repulsion-based metric, showing how it is calcu-
lated and applied; SectionVII compares the twometrics using
an area-filling scenario; Section VIII discusses the results
of experiments, and, finally, Section IX discusses additional
work that needs to be carried out to exploit the additional
information that the new metric provides.

II. RELATED WORK
Many metrics exist for the analysis of swarms. These met-
rics can be categorized as centroidal-based, agent/inter-agent
distance-based and magnitude-based. The common denomi-
nator of centroidal and agent/inter-agent distance metrics is
that theymeasure the agent distribution within a swarm based
upon distances. Magnitude-based metrics analyses a swarm
based upon inter-agent interaction.
Centroidal analysis involves identifying the centroid of

a swarm, also referred to as the center of mass, as shown
in Figure 1 as a red cross and defined in Equation 1.

r̄ =
1
|S|

∑
b∈S

rb (1)

Here, r̄ denotes the position vector of the swarm’s centroid;
rb is the position of each agent, b, and S is the set of agents
that make up the swarm.

Navarro and Matía [22] use the centroid to produce a
‘‘Mean Distance from the Boundary to the Center of the
Group’’ metric. This metric takes the distance of each agent
from the centroid and calculates the mean and deviation to
produce their measure. Gazi and Passino [14] use this tech-
nique when analyzing the stability of a swarm based on agent
distribution. The centroid is also used as a reference point to
determine the path of a swarm. Gazi and Passino [12] use
the centroid when analyzing the stability of a swarm which is
designed to maintain its position, by analyzing the changes in
the centroid’s position over time. Gazi and Passino [11] also

FIGURE 1. Swarm Centre of Mass.

use a centroid-based analysis to identify directional changes
in agentmovement by creating a ‘‘map’’ of the potential fields
of a swarm in its entirety and overlaying that to the ‘‘centre’’
of the swarm. Barnes et al. [5], [6] use the centroid to analyses
the effects of using bivariate normal functions in their work
on using potential fields.
Inter-agent distance analysis is a basic mechanism for ana-

lyzing a swarm in terms of separation of all of the agents with
respect to each agent’s visible neighbors. This technique is
the most popular approach to analyzing a swarm’s structure.
Gazi and Passino [12], [14] use a distance-based analysis to
identify optimum distribution of agents based upon different
cohesion and repulsion applications. Wu et al. [27] discuss
using distance-based metrics to evaluate emergent behaviors
in swarms based on a Viscsek model. These include cal-
culating the average number of neighbors for each agent,
grouping agents based on numbers of neighbors (to iden-
tify clusters), and calculating the average distance between
agents [27]. Schneider and Wildermuth [26] use a slightly
different approach to measuring performance. They identify
the difference in the paths of robots in a simulated versus
a physical implementation and calculate a distance variance
between them.
Magnitude-based analysis uses the potential fields to

calculate the ‘‘degree’’ of interaction between agents.
Bennet and McInnes [8] use the resultant relationship
between agents to identify equilibrium states when creating
structures such as rings and controlling the direction of agents
to create specific transformations. Wu et al. [27] introduce
the concept of a rejection potential in an attempt to generate
a ‘‘kinetic energy’’ score for a swarm.

This paper builds upon the work relating to themagnitude-
based metric analysis, as discussed by Bennet and McInnes,
and Wu et al., by expanding the analysis to the entire swarm
and deriving a scalar value that can be used in the analysis of
swarm behavior.

III. SWARM MODELLING WITH POTENTIAL FIELDS
Currently, much swarm research uses field effects as the
method of modeling inter-agent interactions [3], [5], [6], [8],
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[10]–[14], [21]. The models usually use two field effects
to implement the swarming characteristic. These effects are
cohesion, to draw agents closer, and repulsion to prevent
agents colliding. Potential fields are ranges around an agent
that determine the effect other agents have upon its move-
ment (Fig. 2). It is usual for the cohesion field to have a
radius Cb which is larger than the repulsion radius Rb. When
an agent b′ moves into the cohesion field of an agent b, then
b′ is said to be a neighbor of b, and b is subject to cohesion.
When an agent b′ moves into the repulsion field of b, then b is
subject to repulsion. When the repulsion magnitude exceeds
the cohesion magnitude, the agent b will have a tendency
to move away from b′, i.e. to be repelled. Obstacles can be
introduced into the model. When an agent b moves too close
to an obstacle, i.e. within the obstacle repulsion range Ob,
it has a repulsion vector applied, giving it a tendency to move
away from the obstacle.

FIGURE 2. Agent field effects.

Figure 3 shows the cohesion and repulsion vector con-
tributions of neighbor b′ to vc(b) and vr (b), as given in
Equations 2 and 3. Notice that the vectors are along the line
of separation bb′.

Equation 2 identifies the resultant cohesion effect of all the
neighbors of b. Here, nbr(b) defines the set of all the agents

FIGURE 3. Vectors on line of separation.

in the swarm that are a neighbor of b; a neighbor is any agent
that falls within the cohesion field.

vc(b) =
1

|nbr(b)|

 ∑
b′∈nbr(b)

bb′

 (2)

Equation 3 identifies the resultant repulsion effect of all the
neighbors of b, where rep(b) returns the set of all agents that
are within the repulsion field of b.

vr (b) =
1

|rep(b)|

 ∑
b′∈rep(b)

(
1−
|bb′|
Rb

)
bb′

 (3)

Using the cohesion and repulsion vectors generated by the
relationship of b to its neighbors, a resultant vector can be
calculated that summarizes the effects to which the agent is
being subjected, and provides the direction in which the agent
will move, based on this relationship. This is the inter-agent
vector. Equation 4 identifies the inter-agent vector for agent b
with respect to its neighbors.

v(b) = vc(b)+ vr (b) (4)

If a weighted model is used then Equation 4 is replaced
by Equation 5, where kc and kr are weightings to change the
effect of each vector, as exemplified in Table 1.

v(b) = kcvc(b)+ krvr (b) (5)

TABLE 1. Swarm model parameters.

When the two vectors (cohesion and repulsion) have mag-
nitudes that are equal and opposite they produce a null vector,
indicating that two agents are optimally spaced for a given
set of conditions. Although the agents are at an optimum
position when resultants are zero it does not mean the swarm
is optimally distributed. If a swarm is in a confined space it
is possible for an optimum position to be created where the
vector magnitude is affected by a compression effect. This
phenomenon is used in the identification of the emergent
behavior of area filling.

If we consider the equilibrium state, the resultant v(b) =
(0, 0). A null vector cannot be normalized to produce a direc-
tional vector (v̂ = v

|v| if v 6= 0; 0 if v = 0) The effect is that
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FIGURE 4. Equilibrium with null vectors.

the agent will remain stationary. If all agent pairs are in this
condition the swarm will stop moving (Fig. 4).

Due to the movement of agents being based only on
neighbor interactions, this situation is very rare. The resid-
ual motion that persists in a swarm is the background
‘noise’ or ‘jitter’ that an algorithm creates.

A swarm can also have a goal. This is modelled simply by
the addition of a directional vector, as shown in Equation 6.

v(b) = kcvc(b)+ krvr (b)+ kdvd (b) (6)

Here, kdvd (b) is the calculated directional vector to be applied
to an agent.

Goal-based swarms tend to prevent all agents simultane-
ously producing null vectors, as suggested by Fig. 5 and 6.

FIGURE 5. Equilibrium with directional vector (t).

FIGURE 6. Equilibrium with directional vector (t+ 1).

IV. SWARM DYNAMICS
Each agent within a swarm calculates its movement-direction
vector based on its inter-agent and directional vectors.
The movement vector (bpos) is calculated using the unit
movement-direction vector (Equation 6), multiplied by the
time elapsed (t) in the system, and the speed characteristic
of the agent (sb).
This process is carried out for every agent in the swarm to

generate the swarm’s next position.

bpos = sbt v̂(b) (7)

The change in the location of agent b, over time interval t ,
is shown in Equation 7, where sb is the speed of agent b. Note
that ^ is the equivalent of v̂ = v

|v| , the normalized vector.
The repulsion and cohesion vectors are generated for an

agent through the interaction of its field effects (Fig. 2). There
are a limited number of interactions that can occur. These are
illustrated in Fig. 7, 8, 9 and 10.

TABLE 2. Data extract (|kr vr | = 0).

Following repeated experiments in the initial deployment
of a swarm, it was found that, using the same parameters for
a swarm’s environment and cohesion and repulsion ranges,
always produced very similar behavior. The results shown in
this section are an example set typical of the results obtained.
The data extracts shown in Tables 2, 3, 4 and 5 are the
simulation results that are produced by the parameters listed
in Table 1. The simulation consists of 200 agents over a
20 second period. The cohesion of an agent pair is shown as
kcvc and the repulsion as krvr .

Figure 7 shows two agents within each other’s cohesion
fields but sufficiently distant to be outside of the repulsion
fields. In this case |kcvc| > 0 and |krvr | = 0: the result is that
the agent’s resultant magnitude v(b) causes the agent to move
towards its neighbor b′. Likewise the neighbor’s resultant
magnitude v(b′) will cause it to move towards b. Table 2
shows the repulsion magnitude with a value of 0. The only
influence on the agent pair are cohesive vectors.

FIGURE 7. Internal movement cohesion (no repulsion).

Figure 8 shows two agents close together with repulsion
dominating cohesion: |kcvc| < |krvr |. The resultant vector
directs the agents away from each other.

Table 3 shows the repulsion magnitude with a value greater
than the cohesion magnitude.
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FIGURE 8. Internal movement repulsion.

TABLE 3. Data extract (|kc vc | < |kr vr |).

FIGURE 9. Internal movement cohesion and repulsion.

Figure 9 shows two agents close together but with cohe-
sion vector magnitudes greater than the repulsion magnitudes
|kcvc| > |krvr |. The resultant vector draws the agents
together. The magnitude of the resultant cohesion vector
reduces due to the cancelling effect of the repulsion vector.
Table 4 shows a data extract with the cohesion magnitude
greater than repulsion.

TABLE 4. Data extract (|kc vc | > |kr vr |).

Figure 10 shows two agents close together with
|kcvc| = |krvr |. The resultant vector is a null vector and the
agents have no overall influence upon each other, since the

FIGURE 10. Internal movement equilibrium.

TABLE 5. Data extract (|kc vc | ≈ |kr vr |).

magnitude of the resultant vector is zero. Table 5 is an extract
of data from the simulator. The data shows near equilibrium,
but due to the dynamic nature of a swarm system, no agents
meet the condition fully.

V. INTER-AGENT DISTANCE METRIC
The inter-agent distance metric considers a swarm in terms of
how the agents are physically distributed: i.e. only the inter-
agent distances and their standard deviation are considered.
The standard deviation indicates the extent to which the
swarm is out of balance and therefore the degree of movement
required to rebalance the swarm structure. If the standard
deviation is zero then all the agents are evenly spaced.

Navarro and Fernando describe a mean distance error
metric that is based on the variations in distances between
agents [22]. This is the same as the standard deviation of
the distance-based internal movement metric described in this
section.

Equation 8 calculates the mean distance of an agent b to its
neighbors nbr(b).

µd (b) =
1

|nbr(b)|

 ∑
b′∈nbr(b)

|bb′|

 (8)

The mean distance for a swarm is given by Equation 9. All
the inter-agent distances are included for the swarm (S).

µd (S) =

∑
b∈S

∑
b′∈nbr(b)

|bb′|∑
b∈S
|nbr(b)|

(9)

The mean distance provides an indication of the large
scale structure of the swarm. However it is not sufficient to
give an indication of the internal distribution of the agents.
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FIGURE 11. Baseline internal movement - distance.

FIGURE 12. Baseline internal movement - cohesion/repulsion.

The standard deviation clarifies the distribution within the
swarm as shown in Equation 10.

σd (S) =

√√√√√√√
∑
b∈S

∑
b′∈nbr(b)

(
|bb′| − µd (S)

)2
∑
b∈S
|nbr(b)|

(10)

The distance-based metric for the internal distribution of
the agents is therefore µd (S) and σd (S). This can be written
informally as:

ψd (S) = µd (S)± σd (S) (11)

Figure 11 shows a short example of the evolution of the
metric over time.

VI. COHESION/REPULSION METRIC
This paper defines the cohesion/repulsion metric for an agent
as the length of v(b), as defined in Equation 5: that is the

size of the weighted effects of cohesion and repulsion caused
by neighbors of the agent. This number carries a negative
sign if repulsion dominates and a positive sign if cohesion
dominates. This is summarized in Equation 12.

If the overall cohesion/repulsion metric of the swarm is
negative, the swarm’s tendency is to expand, as the repulsion
is greater than cohesion. This is seen in the disorganized
stage of a swarm (Fig. 12). The disorganized stage is the
initial random deployment of the agents. If the overall cohe-
sion/repulsion metric is positive, the swarm’s tendency is to
contract, and suggests that the swarm is a cohesive entity. This
could also be described as the swarm being ‘sticky’, as the
agents’ tendency is to ‘pull’ towards each other.

The cohesion/repulsion metric on its own does not give a
complete measure of a swarm’s internal state. There needs
to be a qualifying component to the metric that identifies
the degree of deviation in the resultant magnitudes; this is
the jitter. The smaller the deviation, the more uniform the

VOLUME 6, 2018 63263



N. Eliot et al.: New Metric for the Analysis of Swarms Using Potential Fields

structure of the swarm. These two components identify the
degree to which a swarm has progressed towards a stable
state.

The cohesion/repulsion metric provides a view of the
swarm’s state through the balance between the repulsive and
the cohesive vectors that are being applied to each agent. The
deviation component identifies the degree towhich the swarm
has stabilized. The ideal status for inter-agent interactions
would be for the agents to have a cohesion/repulsion metric
of zero or above. This would indicate that the agents are
distributed such that they are at their distribution limit (outer
most range of the cohesion field) or at a level that causes
the agents to ‘pull’ together. The ideal degree of deviation
is zero as this indicates an even distribution of agents. These
two aspects of a swarm’s features are not considered by Gazi
and Passino [14] or Barnes et al. [7] as a means of quantifying
the structure of a swarm in terms of stability.

Section III discussed calculation of resultant cohesion
(Equation 2) and resultant repulsion (Equation 3) vectors for
each agent, deriving a combined cohesion/repulsion vector,
as shown in Equation 5.

Now, we define for each agent b a cohesion/repulsion
scalar, P(b), to measure the influence of the neighbors
of b as cohesive (positive) or repulsive (negative); shown in
Equation 12.

P(b) =

{
|v(b)| if |kcvc(b)| > |krvr (b)|
−|v(b)| otherwise

(12)

Although it is possible for v(b) to be null there could still
be variation in the constituent components. The variation
calculation (standard deviation) is shown in Equation 14.

The mean cohesion/repulsion scalar for the swarm is now
given by Equation 13.

µp(S) =

∑
b∈S

P(b)∑
b∈S
|nbr(b)| +

∑
b∈S
|rep(b)|

(13)

The standard deviation associated with this mean is calcu-
lated as Equation 14.

σp(S) =

√√√√√√√
∑
b∈S

(
P(b)− µp(S)

)2
∑
b∈S
|nbr(b)| +

∑
b∈S
|rep(b)|

(14)

The metric for the internal movement is this pair of num-
bers, the mean and standard deviation of the swarm’s internal
cohesion/repulsion. The pair µp(S), σp(S) may be written
informally as:

ψp(S) = µp(S)± σp(S) (15)

Figure 12 shows a short example of the evolution of the
metric over time.

VII. APPLICATION: AREA FILLING
Area filling is a technique used to fill an enclosed area with
agents such that they are distributed as ‘effectively’ as possi-
ble throughout the area.

Filling an area can be applied to tasks that require an
unknown environment to be analyzed or surveyed. Consider a
disaster area following a landslide or a building collapse fol-
lowing an earthquake; themovement in the land and buildings
will produce areas that are unmapped. The unmapped areas
may require investigation to locate people, or resources, or to
create some form of sensor network to analyses the conditions
within the area, such as creating a heat map or identifying the
location of toxic gases.

The concept of using a swarm to provide cover-
age over unknown areas is a current area of research.
Alvissalim et al. [2] discuss the application of commercially
available drones to provide a communication infrastructure
across an unmapped disaster area. Scheutz and Bauer [25]
(2006) use both cohesion and repulsion as a mechanism to
create coverage of an area that requires protection in an
adversarial environment.

The concept behind the area filling is to increase both the
repulsion and cohesion fields over a period of time. This
increase in the field effects makes the agents increase the
distance between each other, expanding the swarm as awhole.
The expansion increases until, due to boundary compression,
the swarm is unable to expand further. In an extreme case
the expansion will result in a set of field effects that create a
mesh-based swarm structure rather than the desired hexago-
nal structure that the field effects should create. Identifying
the cohesion/repulsion metric falling below zero indicates
area saturation has occurred.

To test this hypothesis a swarm is modelled in the sim-
ulator. The model consists of an obstacle-based enclosed
space and a swarm consisting of 60 agents. The experimental
parameters for the simulation are shown in Table 6

The field effects are incremented in turn, cohesion range
followed by repulsion range. After each pair of increments,

FIGURE 13. Flood fill Start.
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FIGURE 14. Data Capture Start.

FIGURE 15. Flood fill End.

the swarm is allowed to redistribute itself and stabilize.
Table 7 shows the field effect settings that are used for the
simulation. The field effects are selected so as to ensure the

TABLE 6. Swarm parameters.

TABLE 7. Field effect expansion sequence.

swarm parameters have the potential to create a hexagonal
swarm. Figure 13 shows the initial swarm deployment.

Figure 14 shows the point at which data logging starts. The
swarm at this stage has expanded into the space but is not
filling it. This presents itself as a positive cohesion/repulsion
metric value, which indicates the swarm is cohesive and
the agents are still ‘‘pulling’’ together. Fig. 15 shows the
final swarm distribution for the simulation. At this point the
cohesion/repulsion metric has fallen below zero, indicating
the swarm is trying to expand.

Figure 16 shows the cohesion/repulsion metric for the
swarm for the entire simulation. Between 100 seconds and
105 seconds there is a significant change in the magnitude
where the value becomes negative. This indicates that there
is a compression effect on the swarm and, hence, that the area
has been filled.

Figure 17 shows the distance metric for the same simula-
tion. The initial deployment is shown at 0 seconds, followed
by incremental changes in the distances, and variance of the
distances, as each increment is made in the field effects. The
simulation terminates after 120 seconds. There is no feature
of this graph which indicates that the area is filled. The
cohesion/repulsion metric clearly tells us more.

FIGURE 16. Cohesion/Repulsion metric 0-120 seconds.

VOLUME 6, 2018 63265



N. Eliot et al.: New Metric for the Analysis of Swarms Using Potential Fields

FIGURE 17. Distance metric 0-120 seconds.

VIII. CONCLUSION
Distance-based metrics measure a swarm’s structure in terms
of the position of agents. This is independent of the algorithm
that produces the swarm’s structure. It provides an analysis
of agent distribution at a point in time but does not allow the
identification of the future behavior of a swarm as ‘expand-
ing’, ‘stable’ or ‘contracting’.

The new cohesion/repulsionmetric is based upon the algo-
rithms that have produced the structure and is therefore an
analysis of how the algorithms are performing rather than
the structure presented. The new metric also provides an
indication of a swarm’s potential future movement. This is
independent of the physical distribution of the agents within
the swarm. The metric also provides the same information as
the distance metric in terms of agent distribution when the
field effects are consistent across all agents i.e. monolithic
field effects. This is shown in Fig. 16 and 17, where the
profiles of the two graphs are the same. In addition, the new
metric provides a mechanism for evaluating swarms that use
different algorithms to create a swarming effect and allows
the algorithms’ inter-agent interactions to be compared rather
than the resultant structures that the algorithms create.

The two metrics can be used together to provide a deeper
evaluation of a swarm’s structure and ‘potential’. Consider
the following scenario: the repulsion field is increased but
the internal distances do not change; as a result the cohesion/
repulsion metric falls below zero. This indicates ‘something’
is confining the swarm’s distribution as discussed in Section
VII. This analysis could be used in identifying effective
swarm distribution for the coverage of a sensor array as
discussed by Ramaithitima et al. [23]

IX. FUTURE WORK
The newmetric can be applied to the analysis of the effects of
coordination algorithms upon a swarm’s structure. An appli-
cation to area filling has been discussed (Section VII). The
metric can also be applied to identifying the effects of
‘healing’ algorithms, e.g. to remove ‘voids’ from a swarm.

FIGURE 18. Heterogeneous field effects.

We plan to investigate this, and other, practical applications
of the metric.

The detection of a swarm’s perimeter [18]–[20], [28] iden-
tifies a subset of a swarm which can be used for coordination.
Perimeter detection is widely used in swarm coordination [1],
[3], [4], [29]. A possible adaptation of this area of research
is to investigate the reduction of the field effects (cohesion
and repulsion) on the perimeter so as to increase the agent
density in this region of the swam. This change in the swarm’s
structure could improve the granularity of analysis, e.g. when
using sensor arrays at the frontier of the swarm. However,
this approach leads to swarms of agents having heterogeneous
field effects, as shown in Fig. 18. Clearly, the distance-based
metric is not useful in the analysis of such swarms.We believe
that the cohesion/repulsion metric introduced in this paper
can identify a swarm’s structure even when the swarm is
heterogeneous, since the metric is based directly upon inter-
agent field effects rather than the physical distribution of
agents. This will also be the subject of forthcoming work.
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