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DPHANet: Discriminative Parallel and Hierarchical
Attention Network for Natural Language Video

Localization
Ruihan Chen†, Junpeng Tan†, Zhijing Yang∗, Xiaojun Yang, Qingyun Dai, Yongqiang Cheng, and Liang Lin

Abstract—Natural Language Video Localization (NLVL) has
recently attracted much attention because of its practical signif-
icance. However, the existing methods still face the following
challenges: 1) When the models learn intra-modal semantic
association, the temporal causal interaction information and con-
textual semantic discriminative information are ignored, resulting
in the lack of intra-modal semantic context connection; 2) When
learning fusion representations, existing cross-modal interaction
modules lack hierarchical attention function to extract inter-
modal similarity information and intra-modal self-correlation
information, resulting in insufficient cross-modal information
interaction; 3) When the loss function is optimized, the existing
models ignore the correlation of causal inference between the
start and end boundaries, resulting in inaccurate start and end
boundary calibrations. To conquer the above challenges, we
proposed a novel NLVL model, called Discriminative Parallel
and Hierarchical Attention Network (DPHANet). Specifically,
we emphasized the importance of temporal causal interaction
information and contextual semantic discriminative information
and correspondingly proposed a Discriminative Parallel Attention
Encoder (DPAE) module to infer and encode the above critical
information. Besides, to overcome the shortcomings of the existing
cross-modal interaction modules, we designed a Video-Query
Hierarchical Attention (VQHA) module, which can perform
cross-modal interaction and intra-modal self-correlation model-
ing in a hierarchical manner. Furthermore, a novel deviation
loss function was proposed to capture the correlation of causal
inference between the start and end boundaries and force the
model to focus on the continuity and temporal causality in
the video. Finally, extensive experiments on three benchmark
datasets demonstrated the superiority of our proposed DPHANet
model, which has achieved about 1.5% and 3.5% average
performance improvement and about 2.5% and 7.5% maximum
performance improvement on the Charades-STA and TACoS
datasets respectively.

Index Terms—Cross-modal retrieval, natural language video
localization, video moment localization, video understanding.
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Query: A person is sitting down on a sofa drinking a glass of water and watching television. 
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Fig. 1. Visualization of multiple critical information in the modality encoding
and interaction stages of the NLVL task. (a) Temporal causal interaction
information: Common-sense causal interaction relationships exist in the self-
modal contexts of both video and text, e.g., there exist dependencies between
“sitting down on a sofa” and “watching television”. (b) Discriminative
information: The key objects in the video such as sofa, glass, television,
and the key words in the sentence such as “sofa”, “glass” and “television”,
are often distinctive from the background. (c) Intra-modal self-correlation
information: There are correlations between different video frames for the
same objects in the video, and there are also certain dependencies between
different words in the sentences.

I. INTRODUCTION

V IDEO content analysis has received increasing attention
from both academia and industry, which has stimulated

the research and application of novel video understanding
tasks, such as video retrieval [1], [2] and video question
answering [3], [4]. As a classic example of cross-modal infor-
mation retrieval, video retrieval retrieves the semantically most
relevant videos in the trimmed video dataset based on textual
sentence queries. However, videos often contain redundant
and irrelevant content, that is, only a small fraction of the
video clips are semantically relevant to the query [5], [6]. For
example, for a long untrimmed surveillance video, only a few
short key clips are of interest. To localize these clips, we have
to spend several hours manually browsing through the entire
video. This process is inefficient and labor-intensive [7].
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In view of this, the Temporal Action Localization (TAL) [8]
task has been proposed to address the aforementioned problem,
which aims to localize video segments (i.e., start and end
timestamps) that are semantically relevant to the predefined
limited human action query in untrimmed videos. Neverthe-
less, it is only able to localize within a set of predefined action
categories and cannot cover the rich and complex scenarios of
the real-world. Therefore, Natural Language Video Localiza-
tion (NLVL) [9], [10] has garnered significant attention due to
its flexibility and practical value. The objective of NLVL is to
accurately localize video segments within untrimmed videos
that semantically match an arbitrary given natural language
query. The main difference between NLVL and TAL is that
the query of NLVL can be arbitrary free natural language
sentences, whereas the query of TAL can only be predefined
lists of a limited number of human action categories. In other
words, NLVL can cover more complex and diverse real-world
scenarios than TAL and has a higher application value.

Inspired by the TAL, most of the early NLVL works adopted
a two-stage ranking approach [9], i.e., sampling candidate
video segments by sliding windows in the first stage, and
then matching and ranking the query with each candidate
segment for relevance in the second stage. Obviously, since
the locations and durations of the target moments are unknown
and diverse, intensive and overlapping sampling is necessary
to achieve high localization performance, which results in
inefficiency and high computation resource consumption.

Therefore, proposal-free NLVL methods [11], [12] have
been proposed to directly localize the target moments with-
out generating candidate proposals. Specifically, proposal-free
NLVL methods focus on cross-modal interactions between
text queries and video frames. It can directly compute the
probabilities that each frame becomes the start and end bound-
aries of the target moment. According to the format of mo-
ment boundaries, proposal-free NLVL methods can be further
divided into regression-based [13] and span-based methods
[11], both essentially replace the inefficient two-stage ranking
strategy with fine-grained cross-modal interaction. Although
the above methods have achieved good performance, there are
still following limitations that need to be further addressed.

As shown in Fig. 1, there are some key information in
the videos and texts that affect the performance of NLVL,
which are neglected in most existing NLVL methods. On one
hand, in the analysis of the characteristics of the original
multi-modal data, the text description often contains causal
interaction. This causal interaction is manifested in the video
as long-range semantic association dependence. On the other
hand, both video and text modalities contain rich contextual
semantic discriminative information, which is very impor-
tant for distinguishing the foreground from the background.
In other words, the role of discriminative information in
distinguishing between foreground and background can be
seen as a coarse categorization. Moreover, in the cross-
modal interaction stage, many existing methods directly and
simply capture fine-grained cross-modal interactions and thus
learn fusion representations. However, adequate interaction
between video and text requires a hierarchical relationship,
which includes both inter-modal similarity information and

intra-modal self-correlation information. i.e., the hierarchical
relationship between video and text is essentially the com-
plementary and collaborative relationship between their intra-
modal self-correlation and cross-modal interaction informa-
tion, which are stacked together to build this hierarchy. This
hierarchical information facilitates modalities to complement
each other. In addition, many previous cross-modal interaction
modules focus only on fine-grained modeling and ignore the
importance of coarse-grained interactions. However, only per-
forming coarse-grained modeling would ignore the semantic
correlation between key video frames and key words, while
only performing fine-grained modeling may bury meaningful
global video-text interaction into trivial details, and both
schemes would affect the quality of the learned cross-modal
fusion representations. Finally, the previous loss functions
focus only on the localization information of the two frames
at the target moment and overlook the correlation of causal
inference between the boundaries. Due to the continuity and
long duration of the video, focusing only on two frames at
the target moment can be severely affected by the sparsity of
the positive samples (i.e., the two frames corresponding to the
target moment), resulting in a large localization bias.

In this paper, we propose a novel NLVL framework called
Discriminative Parallel and Hierarchical Attention Network
(DPHANet) as shown in Fig. 2, where Discriminative Parallel
Attention represents parallel extraction and encoding of two
key information using the Discriminative Parallel Attention
Encoder (DPAE) module, and Hierarchical Attention repre-
sents hierarchical cross-modal interaction and self-modal mod-
eling using the Video-Query Hierarchical Attention (VQHA)
module. More specifically, it first models the temporal causal
interaction information and encodes discriminative informa-
tion by our proposed DPAE module. Then, a VQHA module
is designed to hierarchically perform cross-modal interaction
and intra-modal self-correlation modeling with different sub-
modules in our proposed hierarchical structure. Moreover, we
propose a novel deviation loss function that forces the model
to focus on continuity and temporal causality in the video
and to capture the correlation of causal inference between
the start and end boundaries. Finally, extensive experiments
on three benchmark datasets demonstrate the superiority of
our proposed DPHANet model, which has achieved about
1.5% and 3.5% average performance improvement and about
2.5% and 7.5% maximum performance improvement on the
Charades-STA and TACoS datasets respectively.

In summary, the main contributions of our proposed method
are as follows:

• We highlight the importance of temporal causal inter-
action information and discriminative information in the
encoding stage for high-precision NLVL, and correspond-
ingly propose a DPAE module to fully capture and exploit
the above-mentioned critical information.

• We design a VQHA module to hierarchically perform
cross-modal interaction and intra-modal self-correlation
modeling, and finally learn high-quality cross-modal fu-
sion representations.

• In view of the severe sparsity of the positive samples of
the localization loss, we propose a novel deviation loss
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Ldev , to force the model to focus on the continuity and
temporal causality in the video.

• We conducted extensive experiments on three benchmark
datasets to demonstrate the superiority of our proposed
DPHANet framework, which outperforms many state-of-
the-art NLVL methods.

II. RELATED WORK

In this section, we first briefly review related work on video
retrieval and temporal action localization, which are closely
related to NLVL. Then, we describe in detail the tasks and
recent research progress of NLVL.

A. Video Retrieval

As a typical example of cross-modal retrieval, video re-
trieval aims to search for the semantically most relevant
videos in the trimmed video dataset based on textual sentence
queries. Most early video retrieval methods projected textual
sentences and videos into a common subspace and then ranked
the similarity [14]. However, these methods obviously ignore
the characteristic of video modality that is rich in temporal
information. To address this problem, recent methods focus
on high-quality video encoding and multi-modal fusion to take
full advantage of the unique characteristics of video modality.
Mithun et al. [15] improved the performance of cross-modal
retrieval by fully mining and fusing the multi-modal cues
available in the video, such as different visual characteristics,
audio, etc. In addition, Liang et al. [16] designed a Local-
Global Context Aware Transformer (LOCATER) to solve the
problems of missing long-term context capture and visual-
linguistic misalignment, thus improving performance. More-
over, Xu et al. [17] developed a Spatiotemporal Decouple-
and-Squeeze Contrastive Learning (SDS-CL) framework to
contrast multi-level features to learn more abundant repre-
sentations and capture spatiotemporal specific information.
Although video retrieval can only retrieve the whole trimmed
videos, its advanced ideas on multi-modal learning and fusion
are still very enlightening to NLVL.

B. Temporal Action Localization

Different from video retrieval, temporal action localization
requires localizing the exact moments of action instances in
the untrimmed videos. Early works used sliding window strat-
egy and hand-crafted features to perform action localization.
However, these methods are inefficient and crude when facing
complex actions or variable videos. To solve this problem, re-
cent methods follow a two-stage pipeline. For example, Gao et
al. [8] proposed a Temporal Unit Regression Network (TURN)
model for jointly predicting action proposals and refining tem-
poral boundaries through temporal coordinate regression with
contextual information. In addition, Wu et al. [18] designed
a transformer-based architecture called TransRMOT to utilize
text queries as a semantic cue to guide the prediction of multi-
object tracking. Besides, Hui et al. [19] proposed a language-
aware spatial-temporal collaboration framework to simultane-
ously recognize the described actions and provide undisturbed

spatial features, better facilitating spatial-temporal collabora-
tion. Moreover, Xu et al. [20] proposed a novel Pyramid Self-
attention Polymerization Learning (PSPL) framework to learn
multi-level action representations that contain abundant and
complementary semantic information via contrastive learning
covering coarse-to-fine granularity. Although temporal action
localization has achieved good performance, its predefined
query list leads to its inability to cover complex scenarios in
the real-world.

C. Natural Language Video Localization
Due to the inherent limitations of video retrieval and tem-

poral action localization, NLVL methods have gained lots
of attention. Specifically, NLVL can localize semantically
relevant target moments in untrimmed videos based on natural
language text queries. Early NLVL works primarily employed
a two-stage ranking manner, i.e., proposal-based manner.
They sample candidate segments and then match them to the
queries to retrieve the most relevant segments. For example,
Gao et al. [9] proposed a Cross-modal Temporal Regression
Localizer (CTRL), which generates candidate segments by
sliding windows and jointly models text queries and video
candidates. Although these pioneering methods can perform
NLVL, they must densely and overlappingly sample to obtain
the desired localization results. In view of this, proposal-
free methods have been proposed to eliminate the need to
generate candidate proposals and directly localize them to the
target moment. Depending on the form of the boundaries, it
can be further divided into regression-based and span-based
methods. The regression-based methods directly calculate the
timestamps of the predicted moments and compare them with
the target moments for optimization. For example, Ghosh et al.
[13] designed three different predictors to directly regress the
target moments. The span-based methods aim at calculating
the probabilities of each frame being the target moment
boundaries. For example, Zhang et al. [11] addressed NLVL
from a span-based Question Answering (QA) perspective, and
reduced the gap between QA and NLVL with a Query-Guided
Highlighting (QGH) strategy.

Furthermore, in the task of NLVL, the quality of the cross-
modal interaction module is critical to the performance of
NLVL, and many previous methods have been devoted to
designing and improving this module. However, most existing
methods focus only on fine-grained interactions and ignore the
importance of coarse-grained interactions. For example, Zhang
et al. [6] proposed a bi-directional attention mechanism to
build bi-directional fine-grained information interaction. Only
performing fine-grained modeling and lacking coarse-grained
modeling may bury meaningful global video-text interaction
into trivial details, thus limiting NLVL performance. In ad-
dition, many previous methods only perform the cross-modal
interactions and lack intra-modal self-correlation modeling to
construct a hierarchical structure. For instance, Zhang et al.
[11] used a Context-Query Attention (CQA) module to capture
the cross-modal interactions between visual and textural fea-
tures. Focusing only on cross-modal interactions would miss
some intra-modal self-correlation information, thus resulting
in inadequate interaction and limited performance.
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Fig. 2. Our proposed DPHANet framework. It comprises four components: 1) the Feature extraction module employs two independent extraction networks to
extract features; 2) the DPAE module utilizes two parallel streams to model temporal causal interaction information and encode discriminative information;
3) the VQHA module performs cross-modal interaction and intra-modal self-correlation modeling in a hierarchical manner; 4) Moment localization module
predicts the probabilities of frames to start and end points.

Although the above methods have achieved good perfor-
mance, they still have some shortcomings that need to be
addressed as follows: 1) The existing methods ignore the
temporal causal interaction information and contextual se-
mantic discriminative information. 2) The previous methods
lack a hierarchical mechanism for cross-modal interaction and
intra-modal self-correlation information. 3) The previous loss
functions ignore the causal inference between the start and
end boundaries of the target moment. In this work, we will
design our method to address these issues aiming to achieve
high-performance NLVL.

III. THE PROPOSED MODEL

In this section, we first introduce the preliminary of our
NLVL work. After that, we describe the components of our
proposed DPHANet framework in detail.

A. Preliminaries

As mentioned earlier, the goal of the NLVL is to lo-
calize a temporal segment (i.e., start and end timestamps)
that semantically corresponds to the specific natural language
description query, in the given untrimmed video. Concretely,
we denote the untrimmed video as V = {vt}Tt=1, and the
natural language query as Q = {qj}mj=1, where vt and

T represent the t-th image frame and the total number of
frames in V , qj and m indicate the j-th word and the total
number of words in Q , respectively. For the above purpose, we
describe each training instance as a video-query-timestamps
tuple {V,Q, τs, τe}, where τs and τe represent the ground-
truth start and end timestamps. And then, by representing the
desired start and end timestamps as (ts, te), we can formulate
the above task as follows:

MNLVL (V,Q) → (ts, te) , ts < te, (1)

where MNLVL is the NLVL model. During the training stage,
our proposed model follows an end-to-end manner. In the
evaluation stage, our objective is to predict the correct (ts, te)
that is as close as possible to (τs, τe).

B. Our Proposed Model

In this section, we give details of our proposed DPHANet
model, as shown in Fig. 2, which consists of the following
components: 1) Feature extraction module employs two
independent extraction networks to efficiently extract features
from the raw video frame data and text data. 2) Discriminative
Parallel Attention Encoder utilizes two parallel streams to
model temporal causal interaction information and encode
contextual semantic discriminative information for enhancing
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representation learning. 3) Video-Query Hierarchical Atten-
tion module hierarchically performs cross-modal interaction
and intra-modal self-correlation modeling to learn high-quality
video-query fusion representations. 4) Moment localization
module predicts the probabilities of frames belonging to start
or end points, and localizes the target moments directly. Next,
we introduce the compositions and roles of these components
in detail.

1) Feature Extraction: For the original untrimmed video
V and the raw text query Q , we utilize two independent
extraction networks to extract features.

Video feature extraction: We cut the untrimmed video V
into n fixed-length clips, and extract its features V ∈ Rn×dv

directly using an off-the-shelf pre-trained 3D ConvNet [21],
where dv denotes the visual feature dimension.

Query feature extraction: For each text query Q, we can
transform it into the word embeddings Q ∈ Rm×dq with the
off-the-shelf pre-trained GloVe [22], where dq indicates the
word embedding dimension.

2) Discriminative Parallel Attention Encoder: In order to
improve the accuracy of localization, we need to further
encode the features of the video and query to fully capture
the underlying information and model the temporal infor-
mation. More specifically, the critical step to high-precision
localization is to sufficiently extract the contextual semantic
discriminative information and capture the long-range causal
interactions between the contexts. Some examples of these two
key pieces of information are shown in Fig. 1. For example,
considering the query “A person is sitting down on a sofa
drinking a glass of water and watching television” and the
corresponding video shown in Fig. 1, the desired moment
in the video is the entire process of the person performing
these behaviors. To achieve high precision localization, on
one hand, we should model the causal interaction behavior
in contexts, e.g., there exist dependencies between “sitting
down on a sofa” and “watching television”, and we should
capture the latent semantic correlation between them to en-
hance context interaction. On the other hand, we should also
focus on the discriminative information within self-modality,
e.g., for video, we should focus on those key frames when
key objects appear such as sofa and TV, which are often
distinctive from background moments and have a great impact
on the localization performance. Although this discriminative
information can help us to distinguish between foreground and
background, it is unable to identify the start and end points for
an action accurately and independently based on discriminative
information alone. The role of discriminative information in
distinguishing between foreground and background can be
seen as a coarse categorization. For example, moments in
which key objects are not present can be directly considered
as background, while the remaining moments can be coarsely
considered as foreground, but that coarse foreground needs to
be further distinguished in a fine-grained way. More specif-
ically, this fine-grained distinguishing can be accomplished
with the temporal causal interaction information. In summary,
discriminative information and temporal causal interaction in-
formation can complement each other to accomplish accurate
moment localization.

However, the existing methods, e.g., BiLSTM [23], model
the context interactions inadequately and ignore the impor-
tance of discriminative information inevitably, which limits
the performance of localization. Furthermore, the multi-head
attention mechanism [24] has been widely used in the field of
machine translation and has demonstrated that it is effective for
capturing long-range dependencies of video and text. However,
the classical multi-head attention module cannot satisfy our
need for more adequate temporal causal interaction modeling
and contextual semantic discriminative information extraction.
In view of this, we propose a novel two-stream encoder mod-
ule named Discriminative Parallel Attention Encoder (DPAE),
as shown in Fig 2.

Specifically, we design two parallel streams to capture
adequate temporal causal interaction and contextual semantic
discriminative information, respectively. We first employ two
linear layers to map video features V and text features Q to
the same dimension d, i.e, V ′ ∈ Rn×d and Q′ ∈ Rm×d. Taking
video modality as an example, for the first stream, which
captures the contextual semantic discriminative information,
we first employ a position encoding to encode the position
information in the video frame sequences, i.e.,

F pe
s1 = PE (V ′) , (2)

where PE(·) denotes the learnable position encoding function,
and F pe

s1 ∈ Rn×d is the video feature representation with en-
coded position information. After that, in order for the model
to focus on the objects or local locations with discriminative
information in the video, we employ a stacked convolutional
block, and each layer of the convolutional block utilizes layer
normalization and residual connection. Specifically, each layer
is formulated as follows:

F cb
s1 = Convblock (F pe

s1 )

= Conv1D (Conv1D (LN (F pe
s1 )) + F pe

s1 )

+ Conv1D (LN (F pe
s1 )) ,

(3)

where F cb
s1 represents the features with rich contextual se-

mantic discriminative information after passing through the
stacked convolutional block, and LN (·) denotes the layer
normalization. Specifically, by stacking multiple convolutional
blocks, the model can gradually extract increasingly abstract,
high-level features from the data. This enables the model
to understand features such as shape, texture, and high-level
semantics of objects, and improves its ability to perceive
specific objects or specific local features, thus making it easier
to focus on key objects and specific local regions in the video
that are rich in discriminative information.

In order to maintain the consistency of temporal information
in both streams and considering the difference in the tasks of
these two streams, we design different improved multi-head
attention modules for each stream to capture the temporal
context information and fit their respective tasks. Specifically,
for the first stream, after the convolutional block, a discrim-
inative multi-head attention block (DMHA) is employed to
capture the temporal context information. In particular, we
replace QV

i with QV
i +KV

i in the classic multi-head attention
to force the model to focus on the contextual relevance
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information within a modality. In other words, it is essentially
equivalent to improving the projection space collaboration of
QV

i and KV
i while using KV

i to enhance the extraction of self-
modal special information, so as to enhance the ability of the
model to capture long-range dependence and discriminative
information. It can be formulated as follows:

hs1
i = DMHAttn

(
QV

i ,K
V
i , V V

i

)
= Softmax

((
QV

i +KV
i

) (
KV

i

)T
√
dK

)
V V
i ,

(4)

where QV
i ,K

V
i and V V

i denote the i-th linear projections of
query, key, and value of video samples, dK is the dimension of
key, and hs1

i represents the i-th head attention in the DMHA.
Finally, by adding layer normalization and residual connection,
the output of the DMHA Fmha

s1 and the output of the first
stream F out

s1 are respectively as follows:

Fmha
s1 = DiscMultiHead

(
LN
(
F cb
s1

))
+ F cb

s1

=
[
hs1
1 ;hs1

2 ; · · ·hs1
H

]
+ F cb

s1 ,
(5)

F out
s1 = FFN

(
LN
(
Fmha
s1

))
+ Fmha

s1 . (6)

For the second stream, which aims at modeling the causal
interaction behavior in temporal contexts, we design a causal
multi-head attention block (CMHA) for construction but
no position encoding and convolutional block. CMHA and
DMHA are similar but slightly different. Specifically, on the
basis of DMHA, CMHA further normalizes the V V

i as follows:

Φ
(
V V
i

)
=

(
V V
i

)e
1 + log

(∥∥(V V
i

)e∥∥
F

) , (7)

hs2
i = CMHAttn

(
QV

i ,K
V
i , V V

i

)
= Softmax

((
QV

i +KV
i

) (
KV

i

)T
√
dK

)
Φ
(
V V
i

)
,

(8)

where Φ (·) is our proposed novel normalization function for
the value linear projections, and ∥ · ∥F denotes the Frobenius
norm of a matrix. In this way, it can reduce the interfer-
ence of abnormal sample data, and is essentially equivalent
to reconstructing the projected feature space of V V

i , thus
enhancing the intra-modal representation learning with quality
and robustness. More specifically, CMHA allows the model to
focus on different locations and features at the same time, thus
capturing the complex spatio-temporal correlations between
video frames. In addition, each attention head can focus on
different aspects, such as motion direction, spatial location,
etc., thus modeling behaviors in multiple dimensions and
enabling the model to understand the causal relationships
between different behaviors in a more comprehensive way.
Furthermore, our proposed novel normalization function can
reconstruct the projected feature space, allowing the model to
focus more on semantic continuity and causality. After that,
similar to the first stream, the output of the CMHA Fmha

s2

and the output of the second stream F out
s2 are respectively as

follows:
Fmha
s2 = CausMultiHead (LN (V ′)) + V ′

=
[
hs2
1 ;hs2

2 ; · · · ;hs2
H

]
+ V ′,

(9)

F out
s2 = FFN

(
LN
(
Fmha
s2

))
+ Fmha

s2 . (10)

Finally, by weighted addition between the results of the
two-stream outputs, we can obtain high-quality video modality
representations Ṽ with rich contextual semantic discriminative
information and causal interaction information, i.e.,

Ṽ = λs1F
out
s1 + λs2F

out
s2 , (11)

where λs1 and λs2 are the balancing parameters.
It is worth noting that the text modality representations

Q̃ can also be obtained by the same module above. As
mentioned before, this two-stream structure can adequately
capture temporal causal interaction and contextual semantic
discriminative information, respectively. It can solve the prob-
lem of inadequate extraction and modeling for key information
by single-stream structure. To further verify this conclusion,
we performed the corresponding ablation experiments in sub-
section IV-C.

3) Video-Query Hierarchical Attention: After feature en-
coding, we need to model the cross-modal interaction to
learn video-query fusion representations. To this end, context-
query attention (CQA) [25] is a simple yet effective method,
which captures the fine-grained visual-text interaction directly.
However, the classic CQA module suffers from the following
two major shortcomings: 1) It focuses only on the fine-grained
modeling and ignores the importance of coarse-grained inter-
actions; 2) the fusion representations learned by CQA lack
hierarchical relationship for inter-modal similarity informa-
tion and intra-modal self-correlation information. Specifically,
both fine-grained and coarse-grained modeling are important
for cross-modal interactions. Only performing coarse-grained
modeling would ignore the semantic correlation between key
video frames and key words, while only performing fine-
grained modeling may bury meaningful global video-text
interaction into trivial details, and both schemes would affect
the quality of the learned cross-modal fusion representations,
thus reducing NLVL performance. On the contrary, performing
joint coarse- and fine-grained two-level interaction can well
overcome the above problems to learn high-quality fusion
representations enriched with cross-modal detail information
and global clues, thus improving NLVL performance.

In view of this, we propose a novel cross-modal interaction
module, named Video-Query Hierarchical Attention (VQHA),
which contains Video-Query Fusion, Video Context Attention,
and Query Self-Attention. Specifically, inspired by CQA, the
Video-Query Fusion sub-module first calculates the similarity
scores S ∈ Rn×m between fine-grained cross-modal features
by our proposed multi-residual trilinear attention, i.e.,

S = MultiResTriAttn
(
Ṽ , Q̃

)
= Ṽ W1 +W2Q̃

T + Ṽ Q̃T + (W2Q̃
T )⊙ (Ṽ Q̃T )

, (12)

where MultiResTriAttn(·) is our proposed multi-residual
trilinear attention, W1 and W2 are the learnable weights, and
⊙ is the element-wise multiplication. This method is different
from trilinear attention by adding more residual connections
and a more fine-grained attention item. Specifically, the main



IEEE TRANSACTIONS ON MULTIMEDIA 7

reason for adding more residual connections is that it allows
the model to learn more fine-grained similarity information
while retaining the previously learned similarity information,
enabling the model to learn more comprehensive similarity
information. In addition, this more fine-grained similarity
information is obtained through (W2Q̃

T )⊙(Ṽ Q̃T ). It can cap-
ture the fine-grained attention between query projection and
cross-modal similarity and merge it into the learned similarity
information, thus enhancing the fine-grained of similarity.
Then the video-to-query (AV 2Q) and query-to-video (AQ2V )
attention weights can be computed as:

AV 2Q = Sr · Q̃ ∈ Rn×d,

AQ2V = Sr · ST
c · Ṽ ∈ Rn×d,

(13)

where Sr and Sc denote the row- and column-wise normal-
ization of S. In addition, in order to further encode both fine-
grained and coarse-grained interactions, we further construct
the following two items:

G = AV 2Q +AQ2V +AV 2Q ⊙AQ2V ,

L = G − Ṽ ,
(14)

where G and L are the fine-grained and coarse-grained interac-
tion information, respectively. This coarse-grained interaction
information represents a global or large-scale cross-modal
interaction clue, i.e., the interactions between the segment-
level and the phrase-level. Finally, the output of Video-Query
Fusion sub-module V Q ∈ Rn×d can be written as:

V q = FFN
([

Ṽ ;AV 2Q; Ṽ ⊙AV 2Q; Ṽ ⊙AQ2V ;G
])

,

V Q = FFN
([

Ṽ ;L;V q
])

,
(15)

where ⊙ is the element-wise multiplication. In this way, we
can obtain high-quality representations with fine-grained and
coarse-grained interaction information, thus achieving efficient
and adequate cross-modal interaction. However, we still need
to model the intra-modal self-correlation information in order
to obtain a higher-quality hierarchical fusion representation.
Although the 3D ConvNet has modeled the video represen-
tations, it lacks the extraction of intra-modal self-correlation
information to obtain more adequate self-modal modeling,
which limits its performance. In view of this, we further
propose two sub-modules Video Context Attention and Query
Self-Attention to extract intra-modal self-correlation informa-
tion, while forming a hierarchical structure with Video-Query
Fusion to construct the VQHA module.

Specifically, for convenience, our proposed Video Context
Attention sub-module uses the same module structure as the
Video-Query Fusion sub-module, changing only the inputs, to
obtain the video context self-modal representations V V . Then
we fuse the V Q and V V by weighted addition, and denote it
as V QV = V Q + µV V , where µ is the trade-off parameter.

Notably, unlike video modality, most of the natural language
queries in NLVL datasets are relatively simple and short,
so they carry relatively limited semantic information. In this
case, intra-modal self-correlation information within the text
modality can be well captured using only the self-attention
mechanism, which has been demonstrated to be simple and

effective in many previous works. In contrast, due to the
limitations of the semantic information carried by natural
language queries, the use of the same sub-module as the
Video-Query Fusion for Query Self-Attention sub-module
does not bring significant performance gains but increases
the computational consumption of the model. Therefore, for
the Query Self-Attention sub-module, we directly encode Q̃
into sentence representations hq by self-attention mechanism.
Then hq is concatenated with each element in V QV to ob-
tain the final high-quality cross-modal fusion representations
Ṽ Q = [ṽq1, · · · , ṽqn], where ṽqi = [vqvi ;hq].

In fact, the hierarchical relationship between video and text
is essentially the complementary and collaborative relationship
between their intra-modal self-correlation and cross-modal
interaction information, which are stacked together to build
this hierarchy. Stacking these complementary features with
each other constructs a hierarchical structure that helps to
improve the quality of the fusion representations. It is worth
noting that these three types of information are of equal
importance, so the hierarchical structure constructed has no
sorting requirements or level of ranking.

4) Moment Localization Module: Finally, we present a
moment localization module to predict the start and end
boundaries directly. It is worth noting that we adopt a proposal-
free strategy, which overcomes the high complexity and inef-
ficiency of the proposal-based methods. Firstly, inspired by
Ref. [10], we employ a Query-Guided Highlighting (QGH)
strategy to enhance our cross-modal fusion representations,
which regards the target moment as the foreground and the
rest as the background and further extends the boundary. It
can be expressed as follows:

S′ = σ
(
FFN

(
Ṽ Q
))

,

V̂ Q = S′ · Ṽ Q,
(16)

where σ(·) denotes the Sigmoid activation function, S′ ∈ Rn

indicates the highlight score, and V̂ Q ∈ Rn×d represents
the final fusion representations after QGH processing. Cor-
respondingly, the QGH loss function can be calculated as
follows:

Lqgh = fCE (S′, Yh) , (17)

where Yh ∈ Rn denotes a binary sequence vector, whose
elements are equal to 1 if the moment belongs to the fore-
ground and 0 otherwise. After that, we construct the moment
localization module with two Transformer blocks and two
FFNs to calculate the start (Ps) and end (Pe) probability
distributions for every frame as follows:

V̂ Q
s = TRMs

(
V̂ Q

)
, Ps = Softmax

(
Ws

[
V̂ Q
s ; V̂ Q

]
+ bs

)
,

V̂ Q
e = TRMe

(
V̂ Q
s

)
, Pe = Softmax

(
We

[
V̂ Q
e ; V̂ Q

]
+ be

)
,

(18)
where V̂ Q

s and V̂ Q
e denote the outputs of Transformer blocks,

while TRMs(·) and TRMe(·) are two Transformer blocks. Ws

and We are the learnable weights of FFNs, and bs and be are
the corresponding bias.
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TABLE I
THE STATISTICS OF NLVL BENCHMARK DATASETS.

WHERE Nq , N̄q , L̄v , AND L̄m DENOTE VOCABULARY SIZE, WORD
AVERAGE NUMBER, VIDEO AVERAGE LENGTH, AND MOMENT AVERAGE

LENGTH, RESPECTIVELY.

Dataset Division Videos Annotations Nq N̄q L̄v L̄m

Charades-STA
train 5,338 12,408

1,303 7.22 30.59s 8.22sval - -
test 1,334 3,720

ActivityNet
train 10,009 37,421

12,460 14.78 117.61s 36.18sval - -
test 4,917 17,505

TACoS
train 75 10,146

2,033 10.05 287.14s 5.45sval 27 4,589
test 25 4,083

C. Loss Function

The total loss function of our model consists of three parts,
i.e., localization loss Lloc, QGH loss Lqgh, and our proposed
deviation loss Ldev , where QGH loss is shown in Eq. (17).

The localization loss Lloc is the frequently-used and critical
loss for proposal-free localization. Following the previous
methods, we compare the probability distributions Ps and Pe

obtained by the moment localization module with the one-
hot label vectors Ys and Ye of start and end boundaries,
and calculate the cross-entropy between them, which can be
calculated as follows:

Lloc =
1

2
[fCE (Ps, Ys) + fCE (Pe, Ye)] , (19)

where fCE(·) denotes the cross-entropy loss function. How-
ever, the above localization loss function still has a limitation,
i.e., it focuses only on the localization information at the
start and end timestamp positions, but ignores the correlation
of causal inference between the start and end boundaries of
the target moment. This may cause the localization results
for some samples to have significantly deviated from the
start or end boundaries, thus resulting in inaccurate start and
end boundary calibrations. To overcome the above problem,
we propose a novel deviation loss Ldev , which forces the
deviations of the start and end boundaries to be as close
as possible to capture the causal inference between them.
Therefore, the above deviation loss Ldev can be formulated
as follows:

Ldev = fCE (Pe − Ps, Ye − Ys) . (20)

Finally, by combining the above three loss functions in Eqs.
(17), (19), and (20), we can train our model in an end-to-end
manner by the following overall objective function:

L = Lloc + Lqgh + ωLdev, (21)

where ω is the balancing parameter.
In the inference stage, the predicted boundaries are deter-

mined by maximizing the joint probability as follows:

ts, te = argmax
ts,te

Ps (ts)Pe (te) , s.t. ts ≤ te. (22)

IV. EXPERIMENTS

A. Experiment Setup

1) Dataset: We conducted experiments and analyses on
three public datasets, i.e., Charades-STA [9], ActivityNet
Captions [26], and TACoS [27], which have been widely used
in the NLVL domain. Therefore, we summarize the statistics
of the three datasets in Table I, and describe the specific
information as follows:

Charades-STA: It contains 6,672 videos of indoor activities
and 16,128 corresponding natural language temporal annota-
tions, which was extended from the original Charades dataset
[28] by Gao et al. [9]. Specifically, the average length of
the videos and the average length of the temporal moments
are 30.59 seconds and 8.22 seconds, respectively. Correspond-
ingly, the vocabulary size of words and the average number of
words in the natural language temporal annotations are 1,303
and 7.22. Following the setup of the previous methods, the
training set consists of 12,408 moment-annotation pairs and
the remaining 3,720 pairs form the test set.

ActivityNet Captions: It is a large dataset and widely used
in previous NLVL works, which contains about 20,000 open
videos collected from ActivityNet [29] and their corresponding
temporal annotations. The average length of each video is
117.61 seconds, while the average length of each moment is
40.18 seconds. Similarly, the vocabulary size of words and the
average number of words in sentence annotations are 12,460
and 14.78, respectively. Following Ref. [30], 37,421 moment-
annotation pairs are selected to construct the training set, while
the other 17,505 pairs are for testing.

TACoS: It contains 127 long videos constructed from Max
Planck Institute for Informatics (MPII) cooking composite ac-
tivities [31], all of which are cooking activities, and the lengths
of the videos (287.14 seconds on average) are long while
the lengths of target moments are short, making it a difficult
dataset. In addition, there are two versions of TACoS available
for experiments, i.e., TACoSorg and TACoStan . Specifically,
the training set, validation set, and test set of TACoSorg from
Gao et al. [9] contain 10,146, 4,589, and 4,083 moment-
annotation pairs, respectively. While the TACoStan from
Zhang et al. [32] utilizes 9,790, 4,436, and 4,001 moment-
annotation pairs to construct the training set, validation set,
and test set, respectively. We followed the above setup and
conducted the experiments separately.

2) Implementation Details: Following the previous meth-
ods, for the untrimmed video V , we first downsample or zero-
pad it into fixed-length n, and then extract its features using an
off-the-shelf 3D ConvNet pre-trained on Kinetics dataset [21].
Specifically, the parameter size of 3D ConvNet is 79M, and the
Kinetics dataset has 400 human action classes with more than
400 examples for each class. Moreover, the maximal feature
lengths n are set to 100, 256, and 300 for Charades-STA,
ActivityNet Captions, and TACoS, respectively. Where down-
sampling is performed when the video length is longer than n,
and otherwise zero-padding is performed. For the textual query
Q, we lowercase all its words and then initialize them with a
fixed 300-dimensional GloVe embedding (840B tokens, 2.2M
vocab, cased, 300d vectors trained on the Common Crawl). For
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the model parameters, the dimension of hidden layers is set to
128, while the kernel size of the convolution layer and the head
size of multi-head attention are set to 7 and 16, respectively. In
addition, the balancing parameters λs1 and λs2 in Eq. (11) are
set to 0.7 and 0.9 respectively according to subsection IV-D.
Similarly, the balancing parameter ω for the loss function in
Eq. (21) is set to 0.001 according to the experimental analysis.
Furthermore, we set the trade-off parameter µ as 0.01. During
the training stage, for all datasets, the batch size and epoch
are set to 16 and 100 with an early stopping strategy. Adam
optimizer [33] is employed to optimize parameters, with the
linear decay of learning rate with an initial 0.001 and gradient
clipping of 1.0. To prevent over-fitting, we adopt Dropout [34]
with a dropout ratio of 0.2. All our experiments are conducted
on a server equipped with four NVIDIA TITAN RTX GPUs.

3) Evaluation Metrics: In this paper, we adopt the standard
evaluation metrics in NLVL, i.e., “Rank@n, IoU=µ” and
“mIoU”, which are widely used in this field, to evaluate
the localization performance. Specifically, IoU denotes the
Intersection over Union between the predicted moment and
ground truth, n denotes the top-n samples and µ denotes
the threshold, respectively. Therefore, the “Rank@n, IoU=µ”
represents the percentage of queries in which at least one of
the IoU between the top-n localization moments and ground-
true is greater than µ, while mIoU denotes the average IoU of
all test samples. More specifically, for all datasets, we set the
n as 1 and use µ ∈ {0.3, 0.5, 0.7}.

B. Comparison With State-of-The-Arts

1) Baselines: To verify the performance of our proposed
method, we compare it experimentally with several state-of-
the-art methods on the above three datasets, which include
seven proposal-based methods, seven proposal-free methods,
and two other methods. Specifically, these methods are as
follows:

• Proposal-Based Methods: Cross-modal Temporal Regres-
sion Localizer (CTRL) [9], Interaction-Integrated Net-
work (I2N) [35], Semantic Conditioned Dynamic Modu-
lation (SCDM) [36], Contextual Boundary-aware Predic-
tion (CBP) [37], Fast Video Moment Retrieval (FVMR)
[38], Cross-modal Dynamic Networks (CDN) [39], Pro-
gressive Localization Network (PLN) [40].

• Proposal-free Methods: Dense Regression Network
(DRN) [41], Boundary Proposal Network (BPNet)
[42], Graph-FPN with Dense Predictions (GDP) [43],
Cross Interaction Multi-Head Attention (CI-MHA) [12],
Query-Controlled Temporal Convolution (PEARL) [44],
Video Span Localizing Network (VSLNet) [10], Mul-
timodal, Multichannel, and Dual-step Capsule Network
(M2DCapsN) [45].

• Other Methods: Multi-Agent Boundary-Aware Network
(MABAN) [46], Text-Visual Prompting (TVP) [47].

It is worth noting that our proposed DPHANet model
belongs to the proposal-free method, but we compare it with
different types of NLVL methods to fully demonstrate its
superior performance.

TABLE II
PERFORMANCE EVALUATION RESULTS ON CHARADES-STA USING

C3D/VGG/I3D FEATURES.

Feature Methods Rank@1, IoU=µ mIoU

µ=0.3 µ=0.5 µ=0.7

C3D
CTRL [9] (ICCV’17) - 23.63 8.89 -
CBP [37] (AAAI’20) - 36.80 18.87 35.74
GDP [43] (AAAI’20) 54.54 39.47 18.49 -

VGG
TVP [47] (CVPR’23) 65.92 44.39 21.51 -
CDN [39] (TMM’22) - 45.24 26.99 -
PLN [40] (TOMM’23) 68.60 56.02 35.16 49.09

I3D

DRN [41] (CVPR’20) - 53.09 31.75 -
VSLNet [10] (ACL’20) 70.46 54.19 35.22 -
BPNet [42] (AAAI’21) 65.48 50.75 31.64 46.34
SCDM [36] (TPAMI’22) - 54.44 33.43 -
FVMR [38] (ICCV’21) - 55.01 33.74 -
CI-MHA [12] (SIGIR’21) 69.87 54.68 35.27 -
PEARL [44] (WACV’22) 71.90 53.50 35.40 51.20
I2N [35] (TIP’21) - 56.61 34.14 -
MABAN [46] (TIP’21) - 56.29 32.26 -
M2DCapsN [45] (TNNLS’23) - 55.03 31.61 -
Ours 72.07 58.17 37.77 52.47

Note: The experimental result data for our comparison
methods are taken from the original papers. For convenience
and accuracy, if the original papers of some methods did not
perform experiments on specific datasets, we will omit the
results of the corresponding experiments.

2) Performance Analysis: Tables II, III, and IV report
the localization performance evaluation results of our pro-
posed method and the above state-of-the-art methods on the
Charades-STA, ActivityNet Captions, and TACoS datasets, re-
spectively, which are expressed in terms of “Rank@1, IoU=µ”
and “mIoU”. For clarity, the best result for each item is shown
in bold, while the second-best result is underlined. Specifically,
according to the results shown in the tables, we have the
following conclusions:

For the Charades-STA dataset, our proposed DPHANet
model consistently outperforms all the baseline methods in
all metrics, especially in the high-precision strict metric
“Rank@1, IoU=0.7”, which is about 2.5% higher than the
best baseline. In particular, our proposed DPHANet framework
belongs to the proposal-free method, but compared with those
proposal-free baseline methods, i.e., DRN, BPNet, GDP, CI-
MHA, PEARL, VSLNet, and M2DCapsN, it still achieves a
significant improvement. One possible reason is that our pro-
posed DPAE module can encode temporal causal interaction
information and contextual semantic discriminative informa-
tion to enhance representation learning and further facilitate
the high-precision NLVL, demonstrating the superiority of our
proposed method.

For the ActivityNet Captions dataset, the superiority of our
proposed method on this dataset is less. One possible reason is
that the ActivityNet Captions dataset is open-world oriented
and also has a large standard deviation of the length of its
complex and variable target moments, which can introduce
more noise, indistinguishable clues, and subjective biases,
thus affecting the stability of NLVL. However, although our
proposed method exhibits less superiority on this dataset
compared to those on the other two datasets, it still shows
a competitive performance, demonstrating its excellent perfor-
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TABLE III
PERFORMANCE EVALUATION RESULTS ON ACTIVITYNET CAPTIONS

USING C3D FEATURES.

Methods Rank@1, IoU=µ mIoU
µ=0.3 µ=0.5 µ=0.7

SCDM [36] (TPAMI’22) 54.80 36.75 19.86 -
CBP [37] (AAAI’20) 54.30 35.76 17.80 36.85
FVMR [38] (ICCV’21) 60.63 45.00 26.85 -
PLN [40] (TOMM’23) 59.65 45.66 29.28 44.12
DRN [41] (CVPR’20) - 45.45 24.36 -
BPNet [42] (AAAI’21) 58.98 42.07 24.69 42.11
GDP [43] (AAAI’20) 56.17 39.27 - 39.80
CI-MHA [12] (SIGIR’21) 61.49 43.97 25.13 -
VSLNet [10] (ACL’20) 63.16 43.22 26.16 43.19
M2DCapsN [45] (TNNLS’23) 61.41 47.03 29.99 -
MABAN [46] (TIP’21) - 42.42 24.34 -
TVP [47] (CVPR’23) 60.71 43.44 25.03 -
Ours 59.87 43.29 27.37 43.78

TABLE IV
PERFORMANCE EVALUATION RESULTS ON TACOS USING C3D FEATURES.

Dataset Methods Rank@1, IoU=µ mIoU
µ=0.3 µ=0.5 µ=0.7

TACoSorg

CTRL [9] (ICCV’17) 18.32 13.30 - -
SCDM [36] (TPAMI’22) 26.11 21.17 - -
CBP [37] (AAAI’20) 27.31 24.79 19.10 21.59
DRN [41] (CVPR’20) - 23.17 - -
BPNet [42] (AAAI’21) 25.96 20.96 14.08 19.53
GDP [43] (AAAI’20) 24.14 - - 16.18
VSLNet [10] (ACL’20) 29.61 24.27 20.03 24.11
Ours 37.17 29.24 20.22 28.77

TACoStan

I2N [35] (TIP’21) 31.47 29.25 - -
FVMR [38] (ICCV’21) 41.48 29.12 - -
CDN [39] (TMM’22) 43.09 32.82 - -
PLN [40] (TOMM’23) 43.89 31.12 - 29.70
PEARL [44] (WACV’22) 42.94 32.07 18.37 31.08
M2DCapsN [45] (TNNLS’23) 46.41 32.58 - -
Ours 47.01 34.12 23.59 33.95

mance in NLVL.
For the TACoS dataset, its long video length, short duration

of the target moments, dense and indistinguishable activities
make this dataset a very challenging one. Therefore, consid-
ering the results on Charades-STA and ActivityNet Captions
together, most methods have poorer localization performance
on TACoS. However, in this case, our proposed method still
significantly outperforms all baseline methods in all metrics
on both TACoSorg and TACoStan , demonstrating that it can
understand the semantic information of the activities in the
videos well, and thus achieving excellent performance even
on very challenging datasets. More specifically, the “Rank@1,
IoU=0.3” result of our proposed method on TACoSorg is about
7.5% substantially higher than the best baseline, while the
results of other metrics on TACoSorg and TACoStan also
show a significant improvement ranging between 2% and
5% against the best baseline. One possible reason for this
excellent performance is that our proposed VQHA module can
hierarchically perform cross-modal interaction and intra-modal
self-correlation modeling to more fully capture the dense and
indistinguishable activities in the videos from this challenging
dataset and further learn the high-quality fusion representa-
tions, thus greatly enhancing the localization performance.

Overall, our proposed method outperforms the baseline
methods in most cases on benchmark datasets, which demon-
strates the superiority and outstanding performance of our

method in NLVL. Meanwhile, it also highlights the plausibility
and effectiveness of our designed modules and loss function,
and we will verify it further by the ablation experiments in
the next subsection.

C. Ablation Study

To validate the effectiveness of key modules of our proposed
framework, which includes DPAE, VQHA, and deviation loss
Ldev , etc., we conducted the ablation studies on the Charades-
STA, TACoS, and ActivityNet Captions datasets as follows.
Specifically, we have the following ablation models:

1) DPHAbase : It represents the baseline of our proposed
DPHANet framework. Concretely, we removed all the key
modules, i.e., DPAE, VQHA, and deviation loss Ldev , and
replaced them with some classic components from existing
methods to construct the most basic baseline for comparison.

2) DPAE: We discarded or replaced the submodules of the
DPAE module to verify whether the introduction of semantic
discriminative information and temporal causal interaction
information is effective, i.e., the effectiveness of the DPAE
module. The details are as follows:

• Single-stream TRM: We replaced the whole DPAE mod-
ule with a single-stream Transformer.

• TRM + CMHA: We kept the two-stream structure of
DPAE and replaced the DMHA with a standard Trans-
former.

• TRM + DMHA: We maintained the two-stream structure
of DPAE and replaced the CMHA with a standard Trans-
former.

• Two-stream TRM: We retained the two-stream structure
of DPAE and replaced the DMHA and CMHA with
two standard Transformer, i.e., the two-stream standard
Transformer.

3) VQHA: We discarded or replaced the submodules of
VQHA module to verify whether the introduction of hierar-
chical attention and the combination of coarse-grained and
fine-grained interactions are effective, i.e., the effectiveness of
VQHA module. The details are as follows:

• CQA + w/o. Hierarchical: We replaced the whole VQHA
module with a CQA module, and removed the hierar-
chical mechanism, i.e., discarding the intra-modal self-
correlation information.

• CQA + Hierarchical: We replaced the whole VQHA
module with a CQA module, and maintained the hier-
archical mechanism.

• w/o. Hierarchical: We removed the hierarchical mech-
anism, and kept the combination of coarse-grained and
fine-grained interactions.

• w/o. MultiResTriAttn: We only replaced the multi-residual
trilinear attention with the trilinear attention.

4) Loss: We analyzed the influence of our proposed Ldev

to the NLVL performance, to verify the effectiveness of our
loss function. The details are as follows:

• w/o. Ldev: We removed the Ldev in the overall objective
function and constructed the overall objective function
using only Lloc and Lqgh.
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3.1s                                           11.8s                                       

2.79s                                        8.22s                                       

2.92s                                               12.65s                                       

Query: A person sits in a chair.

24.3s               30.4s     

21.15s                             30.96s

23.67s                   30.96s

Query: Person flipped the light switch near the door.

7.93s                      25.85s

8.10s                               33.49s                                       

8.10s                     25.39s                                       

Query: The person gets out two glasses.

8.0s                                                 15.2s                

5.47s                                                         14.21s                                       

7.96s                                                 14.92s                                       

Query: Person opens a window.

: Ground-Truth : 𝐷𝑃𝐻𝐴𝑏𝑎𝑠𝑒 : 𝐷𝑃𝐻𝐴𝑓𝑢𝑙𝑙

Fig. 3. Visualization results of the NLVL by our proposed DPHANet model.

TABLE V
ABLATION STUDIES OF OUR PROPOSED DPHANET MODEL.

Ablation Method Charades-STA TACoS ActivityNet Captions

µ=0.3 µ=0.5 µ=0.7 mIoU µ=0.3 µ=0.5 µ=0.7 mIoU µ=0.3 µ=0.5 µ=0.7 mIoU

DPHAbase CQA+TRM 68.44 54.01 35.38 49.62 41.04 29.74 19.47 29.97 55.27 38.58 23.32 40.70

DPAE

Single-stream TRM 70.54 54.68 36.77 51.10 43.51 31.37 20.44 31.86 57.23 41.59 25.54 41.49
TRM + CMHA 71.72 54.76 37.12 51.52 45.46 33.49 22.57 33.19 58.76 42.16 26.54 43.23
TRM + DMHA 71.10 55.43 37.50 51.66 45.86 33.27 21.54 32.97 58.58 42.40 26.64 43.02

Two-stream TRM 70.43 54.46 36.69 51.00 43.81 31.89 20.74 31.69 58.00 41.36 25.86 42.80

VQHA

CQA + w/o.Hierarchical 70.40 53.82 36.02 50.86 42.66 31.72 20.84 31.09 57.70 41.31 25.23 41.54
CQA + Hierarchical 71.77 55.27 36.69 51.79 43.74 32.24 22.42 32.30 58.40 42.28 26.59 42.67

w/o. Hierarchical 70.86 54.84 36.99 51.10 44.91 31.77 21.57 32.64 58.57 42.01 26.65 43.06
w/o. MultiResTriAttn 71.51 56.16 37.28 51.95 45.36 32.34 20.29 32.15 58.60 42.39 26.92 43.04

Loss w/o. Ldev 70.70 53.95 36.37 50.87 43.79 31.62 21.42 32.12 58.02 41.55 25.87 42.67

DPHAfull DPHA 72.07 58.17 37.77 52.47 47.01 34.12 23.59 33.95 59.87 43.29 27.37 43.78

5) DPHAfull : This model represents our complete
DPHANet framework.

All the ablation study results on the Charades-STA, TACoS,
and ActivityNet Captions datasets are reported in Table V.
Based on these results, we have the following observations:

1) The DPHAfull model outperforms all the ablation mod-
els in all cases, demonstrating the rationality and ex-
cellent performance of the combination of different
components in our complete DPHANet framework.

2) All ablation models except DPHAbase have achieved
considerable improvements over the DPHAbase model,
demonstrating the excellent performance of our various
components.

3) For the DPAE module, we can find that DPHAfull

gains about 2% performance improvement over Single-
stream TRM on the Charades-STA dataset, and up to
about 3% on the TACoS dataset. In addition, TRM +
CMHA and TRM + DMHA both outperform Single-
stream TRM and Two-stream TRM. The main reason

is that the DMHA and CMHA sub-modules can re-
spectively capture and encode the contextual semantic
discriminative information and temporal causal interac-
tion information better compared to previous classical
encoder modules, thus improving both representation
quality and localization performance. The above ex-
perimental results demonstrate that the introduction of
semantic discriminative information and temporal causal
interaction information and the two-stream structure of
DPAE are effective.

4) For the VQHA module, we have similar observations to
those on the DPAE module. Specifically, for hierarchi-
cal mechanism, we can find that CQA + Hierarchical
outperforms CQA + w/o.Hierarchical, while DPHAfull

outperforms w/o.Hierarchical. Both of them demonstrate
the effectiveness of hierarchical mechanism, i.e., adding
brings performance improvement and removing reduces
performance. Similarly, for the combination of coarse-
grained and fine-grained interactions, we can find that
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w/o. Hierarchical outperforms CQA + w/o.Hierarchical,
while DPHAfull outperforms CQA + Hierarchical. Both
of them demonstrate the effectiveness of the combina-
tion of coarse-grained and fine-grained interactions. The
main reason is that the VQHA module can hierarchi-
cally perform cross-modal interaction and intra-modal
self-correlation modeling, and combine both coarse-
grained and fine-grained interactions, to obtain high-
quality fusion representations. Furthermore, compared
with w/o. MultiResTriAttn, DPHAfull gains about 1%
performance improvement, proving the effectiveness of
our proposed multi-residual trilinear attention.

5) For the deviation loss Ldev , its observations are similar
to those on the DPAE module and VQHA module,
demonstrating that Ldev can capture the correlation of
causal inference between the start and end boundaries
to enhance localization performance. More specifically,
to further demonstrate the role of Ldev , we analyzed the
impact of different values of ω on the localization results
in subsection IV-D. From the results, we can find that
the introduction of Ldev has a certain improvement on
the localization performance, especially at ω = 0.001,
where the localization achieves the best results.

Finally, to show the efficiency and performance of our
method in practical scenarios, we further recorded the model
parameter size and decoding time for our method and base-
line. Specifically, in terms of the model parameter size, our
proposed DPHAfull model is 4.8M, 5.8M and 18.5M on
the Charades-STA, TACoS and ActivityNet Captions datasets,
while DPHAbase model is 4.0M, 5.0M and 17.7M, respec-
tively. Moreover, in terms of the decoding time, our pro-
posed DPHAfull model is 21.7s, 28.2s and 69.6s on the
Charades-STA, TACoS and ActivityNet Captions datasets,
while DPHAbase model is 18.5s, 20.5s and 51.5s, respectively
in the same computing environment. From the results, we
can find that our proposed method is efficient, i.e., the model
parameter size is low and the decoding time is fast, which is
comparable to the baseline. In addition, we can observe from
Table V that our proposed method obtains a significant per-
formance improvement with similar efficiency as the baseline,
which further proves its superiority.

D. Hyperparameter Analysis

In this subsection, we analyze the impact of different hyper-
parameters on the NLVL performance. For the hyperparameter
ω, which balances the role of Ldev at the overall objective
function, we conducted the experiments on the Charades-STA
dataset by gradually adjusting its value from 0 to 1. The results
are shown in Fig. 6, from the results, we can find that the
introduction of Ldev has a certain boosting effect on the NLVL
performance, especially at ω = 0.001, where the localization
achieves the best results. In addition, it is worth noting that
there is a balance, i.e., the performance decreases when the
value of ω is too large.

Similarly, for the hyperparameters λs1 and λs2, which
balance the contributions of two different streams at DPAE
module, we conducted the experiments on the Charades-STA
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Fig. 4. Histogram of the number of localization results on the test set under
different IoUs, on the Charades-STA dataset.
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Fig. 5. Histogram of the number of localization results on the test set under
different IoUs, on the TACoS dataset.
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Fig. 6. The “Rank@1, IoU=µ” and “mIoU” results of our proposed method
with different ω on the Charades-STA dataset.

dataset by gradually adjusting their values from 0.1 to 1.
The results are shown in Fig. 7, which includes two metrics
“Rank@1, IoU=0.7” and “mIoU”. From the results, we can
find that the localization performance is insensitive to these
two parameters, demonstrating the stability of our model. In
addition, we can find that our method achieves the best results
when λs1 = 0.7 and λs2 = 0.9. Therefore, for convenience,
we set the values of these two parameters to 0.7 and 0.9 for
all experiments, respectively.
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with different λs1 and λs2 on the Charades-STA dataset.

E. Qualitative Results

To further demonstrate the effectiveness of our proposed
DPHANet model and to better understand it, we visualized
the experimental results of the NLVL process, IoU histograms,
and multi-residual trilinear attention scores on the benchmark
datasets, and performed the corresponding qualitative analysis.

First, we visualized four samples of the NLVL process of
our proposed model in Fig. 3, which contains two ablation
models, DPHAbase and DPHAfull , to demonstrate the effec-
tiveness of our proposed module. Where the blue and pink
curves represent the probability distributions of the start and
end moment boundaries, respectively. From Fig. 3, we can
observe that the probability distributions of the boundaries co-
incide well with ground-true, i.e., the probability distributions
are all clustered in the vicinity of the ground-true boundaries,
while the probability distributions at non-target moments are
all extremely small. More specifically, for the first video-query
pair, our proposed model understands the semantics of the
query and the video well and returns the precise moment
corresponding to the process of a man going from sitting to a
chair and then leaving, based on the focus on discriminative
information (i.e., objects: man and chair, action: sit). To some
extent, it can demonstrate that our proposed DPAE module
allows the model to focus on moments in the video that contain
discriminative information and ignore irrelevant and redundant
information, thus improving the performance in NLVL tasks.

Furthermore, to demonstrate the performance of our pro-
posed method on high-precision localization, we plotted the
IoU histograms of the predicted results on the Charades-
STA and TACoS datasets, which contain two ablation models,
DPHAbase and DPHAfull , as shown in Fig. 4 and Fig. 5,
respectively. From the results, we can observe that our pro-
posed method is more focused on high-precision localization
than baseline, i.e., it has more samples at high IoU, which
highlights the effectiveness of our model in high-precision
NLVL. In addition, we can observe that there are many test
samples with IoU scores between 0 and 0.1. The main reason
is that there are some high difficulty samples in the datasets.
Specifically, some of them have long total video length and
short target moment length, some of them have a lot of noise,
and some of them have low quality text query, which make
most of the methods perform poorly for these samples.

In addition, VQHA is a very critical component of our
model which learns high-quality fusion representations. There-
fore, in order to verify its effectiveness and analyze how it

works, we also visualized the proposed multi-residual trilinear
attention scores in VQHA through a heat map, and visualized
the trilinear attention scores in CQA as a comparison, as
shown in Fig. 8. Specifically, each small square in the heat
map represents the attention score between the corresponding
video frame and word, whereas darker colors represent higher
attention scores, i.e., more relevant. Our model also pays
more attention to those parts with high attention scores,
because they are rich in cross-modal similarity information
and are often where the potential boundaries are located. As
shown in Fig. 8, we can observe that “takes” and “pillow”
receive high attention scores in our model because the VQHA
module focuses on those objects or actions that are critical for
NLVL. Meanwhile, “takes” and “pillow” have higher attention
scores near the target moment than at non-target moments,
demonstrating that our model can perform well with the
bidirectional understanding of text and video modalities and
capture the cross-modal similarity between them. It is worth
noting that “person” and “bed” are present in most moments
of the video, but they both receive a low attention score. The
reason is that they are not discriminative information and have
less impact on localization, so our model classifies them as
redundant information and ignores their role in achieving more
accurate and efficient NLVL. However, for trilinear attention,
we can observe that it incorrectly focuses on the redundant
information “bed” and neglects the discriminative information
“pillow”, which leads to a lower localization performance.

F. Failure Cases Analysis

In this subsection, we show the representative failure cases
of our proposed DPHANet in Fig. 9, and further analyze its
regarding limitations. For the first case shown in Fig. 9, we
can find that our method cannot accurately localize the start
boundary. It ignores the subtle action of covering the face
with the hand during awakening, and focuses on the action
of rising up. The main reason is that our model considers
the rising up action as discriminative information and over-
amplifies the role of the rising up action in the awakening
procedure, while ignoring the detail of covering the face with
hand. For the second case shown in Fig. 9, we can find that
our model cannot correctly identify the accurate start point
of “washing the clothes”, which incorrectly encompasses the
process of a person undressing. One possible reason is that our
model focuses on temporal causal interaction information and
misinterprets undressing as a necessary antecedent to washing,
which ultimately leads to over-interpreted mislocalization. We
expect that in future work, we can improve our model to
obtain more controllable correlation information attention and
interaction capabilities, to address the above limitations and
further improve NLVL performance.

V. CONCLUSION

In this paper, we proposed a novel DPHANet framework
for NLVL. Firstly, we highlighted the importance of temporal
causal interaction information and contextual semantic dis-
criminative information in the encoding stage for NLVL and
correspondingly designed a DPAE module to fully capture
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Fig. 8. Visualization results of the proposed multi-residual trilinear attention and the previous trilinear attention.
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Fig. 9. Visualization results of two failure cases.

and exploit the above critical information. In addition, a
VQHA module was proposed to hierarchically perform cross-
modal interaction and intra-modal self-correlation modeling,
to obtain high-quality cross-modal fusion representations. Fur-
thermore, to overcome the shortcomings of the localization
loss, we proposed a novel deviation loss function, to force
the model to focus on the continuity and temporal causality
in the video. Finally, extensive experiments on three bench-
mark datasets demonstrated the superiority of our proposed
DPHANet model, which outperformed many state-of-the-art
methods.
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