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Abstract. Aberrant glycosylation is a universal feature of 
cancer cells and there is now overwhelming evidence that 
glycans can modulate pathways intrinsic to tumour cell 
biology. Glycans are important in all of the cancer hallmarks 
and there is a renewed interest in the glycomic profiling of 
tumours to improve early diagnosis, determine patient prog-
nosis and identify targets for therapeutic intervention. One of 
the most widely occurring cancer associated changes in glyco-
sylation is abnormal sialylation which is often accompanied by 
changes in sialyltransferase activity. Several sialyltransferases 
are implicated in cancer, but in recent years ST6 β-galactoside 
α-2,6-sialyltransferase 1 (ST6GAL1) has become increasingly 
dominant in the literature. ST6GAL1 catalyses the addition of 
α2,6-linked sialic acids to terminal N-glycans and can modify 
glycoproteins and/or glycolipids. ST6GAL1 is upregulated 
in numerous types of cancer (including pancreatic, prostate, 
breast and ovarian cancer) and can promote growth, survival 
and metastasis. The present review discusses ST6GAL in rela-
tion to the hallmarks of cancer, and highlights its key role in 
multiple mechanisms intrinsic to tumour cell biology.
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1. Introduction

Glycosylation is an enzymatic process that links glycan sugars 
to other glycans, lipids or proteins and is essential to virtually 
every biological process (1). The complete pattern of glycan 

modifications in a cell or tissue (known as ‘the glycome’) is 
assembled by the synchronised action of numerous glycosyla-
tion enzymes on glycoproteins and/or lipids (2). Changes to 
the glycome are well documented in cancer, and aberrant 
glycosylation is not just a consequence, but also a driver of 
a malignant phenotype (3). The hallmarks of cancer were 
originally described in 2000 and refer to capabilities acquired 
during the multi-step development of cancer to enable cancer 
cells to survive, proliferate and metastasise (4). They include 
sustaining proliferative signalling, evading growth suppres-
sors, resisting cell death, enabling replicative immortality, 
inducing angiogenesis, and activating invasion and metastasis. 
Underpinning these hallmarks are genome instability and 
inflammation which contribute to multiple hallmark capa-
bilities (4). In 2011 two next generation cancer hallmarks were 
proposed (reprogramming of energy metabolism and evading 
immune destruction) and the ‘tumour microenvironment’ 
was recognised as contributing to the acquisition of hallmark 
traits (5). 

Although not included in the original and next genera-
tion hallmarks, aberrant glycosylation is now also widely 
recognised as a new hallmark of cancer causally associated 
with all of the hallmark capabilities (2,3,6). One of the most 
widely occurring cancer associated changes in glycosylation 
is abnormal sialylation, which is often driven by the altered 
expression of sialyltranserase enzymes (7-9) and is linked to 
poor patient prognosis and metastasis (10-13). Several sialyl-
transferase enzymes are implicated in cancer, but in recent 
years ST6GAL1 (which catalyses the addition of α2,6-linked 
sialic acids onto terminal N-glycans) has become increas-
ingly dominant in the literature. ST6GAL1 is upregulated 
in numerous types of cancer, including pancreatic, prostate, 
breast and ovarian cancer, and is has key roles in tumour 
aggression and metastasis (14-18). Here, we discuss ST6GAL 
in the context of the original and emerging hallmarks of 
cancer, and highlight its role in pathways intrinsic to tumour 
cell biology (Fig. 1).

2. Altered ST6GAL1 in cancer

ST6GAL1 levels are upregulated in several carcinomas, as is the 
degree of α2,6-sialylation (15-17,19-26) (Table I). In particular, 
elevated ST6GAL1 is often correlated with high tumour grade, 
metastasis and reduced patient prognosis. In both prostate and 
breast cancer, ST6GAL1 expression correlates with a more 
aggressive tumour grade (16,27), and in ovarian cancer levels 
increase in advanced stage disease (18). Tumours with elevated 
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ST6GAL1 expression are thought to be more invasive and 
metastatic, evidenced by increased lymphovascular invasion, 
deep stromal invasion, distant metastasis and neighbouring 
vesicle invasion (16,28,29). ST6GAL1 is also associated with 
reduced recurrence-free intervals and a poorer overall survival 
in ovarian, prostate and pancreatic cancer (16,18,28,30). The 
only exception is bladder cancer, where ST6GAL1 is believed 
to have a tumour suppressive role (31).

3. ST6GAL1 in the hallmarks of cancer

Activating invasion and metastasis. The ability of cancer cells 
to invade and spread is central to the development of an inva-
sive, malignant tumour. This development, which promotes 
local invasion and distant metastasis is a multistep process 
referred to as the invasion-metastasis cascade (5). The process 
is regulated via complex crosstalk across several signalling 
pathways and transcription factors, resulting in an epithelial 
to mesenchymal transition (EMT) of cancer cells (32). EMT is 
an example of cellular phenotype switching, characterised by a 
loss of epithelial markers in favour of the migratory phenotype 
of mesenchymal cells (33,34). The literature demonstrating a 
relationship between sialylation and the acquisition of invasive 
and metastatic phenotypes is extensive (13,35-41). Further to 
this, ST6GAL1 upregulation has been shown to induce a more 
invasive, migratory cell phenotype in gastric, colon, liver, 
prostate, ovarian, breast and cervical cancers (16,17,42,43). 
ST6GAL1 gene knockdown and over expression experiments 
in vitro have demonstrated its capacity to regulate the inva-
sive and metastatic features of cancer cells in several cell 
types (16,24,35,42-44). In 2017, a prominent glyco-oncology 
study identified elevated ST6GAL1 as part of a pro-metastatic 
gene signature in melanoma tumours (29). ST6GAL1 is also 
increased in patients with metastatic cervical cancer (7,43), 
where levels correlate with stromal invasion, metastatic spread 
to the lymph nodes and poor patient prognosis (43). Similarly, 
in triple-negative breast cancer, ST6GAL1 levels are linked to 
metastasis and reduced survival times (19), and high ST6Gal1 
in ovarian cancer is associated with lymphovascular invasion 
and distant metastasis (7). In breast cancer cells, overexpression 
of ST6GAL increases the turnover of cell surface E-cadherin 
and promotes TGF-β-induced EMT providing a potential 
mechanistic link between ST6GAL1-mediated sialylation and 
metastasis (17).

Sustained proliferative signalling. Central to cancer cell 
biology is the excessive capacity to proliferate, and to do so in 
the absence of proliferative stimuli (4,45). Sialylation has been 
shown to alter proliferative signalling cascades in different 
cancers (24,46). ST6GAL1 in particular can regulate cellular 
proliferation in hepatocellular carcinoma (HCC), as shown 
through gene knockdown and overexpression studies carried 
out in the MHCC97L HCC cell line. The HCC in vitro studies 
suggested that overexpression of ST6GAL1 in HCC cells 
increased activation of the PI3K/Akt signalling pathway (42). 
Hyper-activation of the PI3K signalling cascade is well docu-
mented in several different cancer subtypes as regulating 
and promoting hyper-proliferation of oncogenic cells (47-50). 
If ST6GAL1 can activate PI3K/Akt signalling, as suggested 
by Zhao et al (42) this may point towards mechanistic link 

between ST6GAL1 upregulation and increased cellular 
proliferation. Similar effects on proliferation and PI3K/Akt 
signalling have also been observed following ST6GAL1 gene 
silencing in the DU145 and PC-3 prostate cancer cell lines. 
Wei et al (16) observed approximately a two-fold decrease in 
cancer cell proliferation following ST6GAL1 gene silencing. 
It is important to note that this relationship has only been 
observed in HCC and prostate cancer, and is contradicted 
by findings generated using glioma cells, assessing the rela-
tionship between ST6GAL1 and proliferative capacity. In 
this instance, ST6GAL1 overexpression did not perpetuate 
hyper-proliferation (23). This contradiction could suggest that 
the effect of ST6GAL1 on proliferative signalling may be 
exclusive to specific cancer subtypes.

Enabling replicative immortality. In the seminal 2000 
‘hallmarks of cancer’ paper, replicative immortality was 
outlined as being essential to develop and sustain macroscopic 
tumours (4,5). This innate replicative potential, without the 
threat of cellular senescence has been termed immortalization 
and is underpinned by telomere abnormalities or oncogenic 
induced cellular senescence. Several key oncogene or tumour 
suppressor genes have a role in promoting oncogenic induced 
cellular senescence (including Tp53, RAS, c‑MYC and PTEN) 
and some have been shown to be targets for glycosyla-
tion (51-56). As outlined previously, ST6GAL1 can regulate 
PI3K/AKT signalling, a known RAS effector cascade (16,57). 
ST6GAL1 gene knockdown in prostate cancer cells results 
in decreased levels of PI3K/AKT/GSK‑3β and β-catenin 
signalling molecules (16). Β-catenin, a member of the Wnt 
signalling pathway, has a well-defined oncogenic activity 
and has been well characterised as an enabler of replicative 
immortality through direct activation of telomerase reverse 
transcriptase (TERT) (58,59). Sialylation by ST6GAL1 
upregulates several oncogenes crucial for the immortaliza-
tion of cancer cells, interacting with RAS effector pathways, 
and Wnt/β-catenin signalling. Known downstream effects of 
these pathways result in telomerase repression and oncogenic 
induced stress, thereby indicating a role for ST6GAL1 in 
enabling replicative immortality (52). 

Sustained angiogenesis. For a cancer to sustain macroscopic 
tumour development and promote metastasis, the formation 
of neovasculature is necessary for the supply of nutrients 
and oxygen. This process, known as angiogenesis, is tightly 
regulated by opposing factors; stimulating and inhibiting 
the receptors displayed on the surface of vascular endothe-
lial cells (4,5,60,61). Although key molecular regulators of 
angiogenesis have been identified, such as VEGF and TSP‑1, 
it is now widely accepted that regulation of angiogenesis is 
a highly complex process, heavily influenced by the tumour 
microenvironment, gaining influence from things such as 
tumour metabolism, immune infiltrate and cancer‑associated 
fibroblasts (CAFs) (62). Abnormal glycosylation changes have 
been identified throughout several pro‑angiogenic pathways 
in cancers, and recently it was found that VEGF-induced 
angiogenesis was dependent upon sialylation of the 
VEGF-receptor 2 (VEGFR2) (63-68). A high profile Cell 
paper, published in 2014, concluded that cancer cells can 
undergo hypoxia induced glycan remodelling which can 
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confer tumour resistance to anti-VEGF treatment. Levels of 
ST6GAL1 were elevated in tumours sensitive to anti-VEGF 
treatment, and ST6GAL1 knockdown protected tumours from 
anti-VEGF treatment (22,67). In line with this, knockdown of 
ST6GAL1 in an osteosarcoma cell line also reduced levels of 
VEGF (22), suggesting a major role for ST6GAL1 in cancer 
associated angiogenesis.

Tumour metabolism and hypoxia play a key part in 
promoting the formation of new blood vessels through the 
activation of several pro-angiogenic factors (62,69). The 
major determinant of hypoxia mediated angiogenesis is 
HIF1, a protein capable of upregulating VEGF and PI3K 
signalling in the absence of oxygen to promote the growth 
of new vessels (69,70). Hypoxia experiments carried out in 
ovarian and pancreatic cancer cell lines indicate increased 
ST6GAL1 expression can lead to an accumulation of HIF1α 
under hypoxic conditions, as well as increases in HIF1α tran-
scriptional targets (20). These increases suggest upregulated 
ST6GAL1 confers pro-survival characteristics under hypoxic 
conditions. Taken alongside evidence of ST6GAL1 as a major 
regulator of VEGF signalling, this suggests ST6GAL1 is an 
important sialyltransferase critical for angiogenesis.

Resisting cell death. It is well established that for a cancer to 
develop it must evade and overcome cellular apoptosis (71-73). 
Apoptosis is the programmed death of a cell, central for 
ensuring the correct cell turnover and development, so much 
so that aberrant apoptosis has been implicated in several 
human diseases, including cancer (74). For this reason, 
research into the mechanisms which underpin cell death has 

exploded over the past two decades, and we now have a fair 
understanding of the prominent molecular processes which 
regulate apoptosis (75). Glycan changes have been linked 
to apoptosis since the late 1990s (76-80), and sialylation 
(including ST6GAL1 mediated sialylation) has been function-
ally associated with the programmed cell death of several 
different cell types (21,81-83). The TNF family of death recep-
tors regulate programmed cell death, and include proteins such 
as DR4, DR5 and FAS. In a colon cancer model, ST6GAL1 
upregulation can decrease levels of FAS mediated cell death 
(independent of both DR4 and DR5) through direct sialylation 
of the FAS protein (84). As mentioned earlier, elevated levels 
of ST6GAL1 drive hyper-activated AKT signalling in several 
cancer models, a key pathway which can be upregulated to 
enable tumour cells to evade apoptosis (85,86). Due to the 
large number of downstream targets of PI3K signalling, the 
effect of ST6GAL sialylation on this pathway may result in 
changes in both cell survival and cellular proliferation. This, 
taken with evidence that a key TNF death receptor is a direct 
target of ST6GAL1, indicates that ST6GAL1 upregulation can 
confer anti-apoptotic characteristics. 

Evading growth suppressors. Tumour suppressor genes 
negatively regulate cell proliferation and tumour growth and 
are vital ‘gate‑keepers’ of the genome (87). A key feature of 
cancer cells is their ability to inactivate or avoid these growth 
suppressing signals to continue hyper-proliferation (4,5). 
Several known tumour suppressor genes have been identi-
fied as targets of abnormal glycosylation, thereby promoting 
tumourigenesis (2,88). Although in all other cancers sialylation 

Figure 1. The role of ST6 β-galactoside α-2,6-sialyltransferase 1 in the hallmarks of cancer. Image created using BioRender.
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by ST6GAL1 appears to be a pro-oncogenic event, upregula-
tion of the sialyltransferase in bladder cancer appears to have a 
tumour suppressive role, with low ST6GAL1 expression being 
a feature of more advanced invasive disease, and upregulation 
of ST6GAL1 a hallmark of non-invasive disease (31). This 
obvious contradiction with evidence from other cancer types 
highlights the heterogeneous role of ST6GAL1 activity in 
cancer. It is useful to note the functional association between 
ST6GAL1 directed sialylation and TGFβ signalling, as TGFβ 
has been identified as both a tumour suppressor gene and a 
cytokine capable of promoting oncogenic events (89). The 
complex nature of cancer disease biology and of sialylation 
may mean that ST6GAL1 has dual roles in both promoting and 
inhibiting cancer progression.

The enabling characteristics and emerging hallmarks of 
cancer. In 2011, Hanahan and Weinberg revisited their original 
hallmarks of cancer and proposed two emerging hallmarks, 
‘deregulating cellular energetics’ and ‘avoiding immune 
destruction’. They also identified two enabling characteristics, 
‘promoting inflammation’ and ‘genome instability and muta-
tion’ as crucial in the acquisition of the cancer hallmarks (5). 
Consistent with the previous hallmarks of cancer, ST6GAL1 
appears to have important interactions with pathways impor-
tant in the ‘next generation’ hallmarks of cancer. An anomaly 
of cancer cell biology is that even in the presence of oxygen, 
cancer cells will fuel themselves using aerobic glycolysis-a 
phenomenon now termed the ‘Warburg effect’ (90). This meta-
bolic reprograming allows cancer cells to thrive and meet the 

energetic demands of their proliferative capacity, and has been 
shown to be associated with changes in glycosylation (91,92). 
This need to proliferative often leaves cells in a glucose deficit, 
at which point other sugar substrates are utilised to sustain 
tumour growth (93). High dietary intake of fructose has 
been linked to increased risk of pancreatic cancer, and also 
linked to metastatic pancreatic cancer (15). In the same study, 
ST6GAL1 was found to be increased in metastatic disease, in 
a fructose dependant manner and through regulation by the 
GLUT5 fructose receptor. This link with GLUT5 suggests 
a possible link to sialylation by ST6GAL1 and metabolic 
reprogramming of cancer cells. 

The ability of cancer cells to avoid immune destruction, 
through activation of immune suppressors allows for uninter-
rupted tumour growth and progression (94). As mentioned 
earlier, there is a mechanistic link between TGF-β signalling 
and ST6GAL1 directed sialylation. TGF-β is a known immu-
nosuppresor gene, important in the regulation of helper T-cells 
and regulatory T-cells, inhibiting cytokine production and 
suppressing macrophages, dendritic cells and natural killer 
cells (95,96). Although the association between TGF-β and 
ST6GAL1 is better understood in the context of EMT, there 
may be a role for sialylation in allowing cancer cells to evade 
immune destruction through this TGF-β interaction. At odds 
with the idea that immune cells seek to destroy cancer cells, 
the evidence now suggests that some infiltrating immune cells 
promote tumourigenesis, contributing growth factors, survival 
factors and pro-angiogenic factors which all help to sustain 
the tumour microenvironment (97-99). Glycosylation, and in 

Table I. Studies on ST6GAL1 in cancer.

Author, year Cancer Role of ST6GAL1 Characteristics (Refs.)

Antony et al, 2014 Bladder Downregulated Invasive, high grade tumours with metastasis (31)
Lu et al, 2014  Breast Upregulated Metastatic disease (17)
Wang et al, 2003  Cervical Upregulated Stromal invasion with malignant disease (43)
Swindall et al, 2011;  Colon Upregulated Invasive, aggressive disease with (84,107,108)
Chiricolo et al, 2006;   chemoresistance
Schultz et al, 2016
Gretschel et al, 2003 Gastric Upregulated Metastatic disease (109)
Yamamoto et al, 2001 Glioma Upregulated More advanced invasive disease linked (23)
   to metastasis
Ma et al, 2015 Leukemia Upregulated Increased chemoresistance (110)
Zhao et al, 2014;  Liver Upregulated More aggressive, invasive disease with (42,111)
Pousset et al, 1997   chemoresistance
Agrawal et al, 2017 Melanoma Upregulated Metastatic disease (29)
Wang et al, 2005;  Ovarian Upregulated Advanced invasive (7,18)
Wichert et al, 2018
Hsieh et al, 2017 Pancreatic disease with Upregulated Advanced metastatic disease (15)
 distant metastasis
Wei et al, 2016;  Prostate Upregulated Poor patient prognosis and metastatic disease (16,26)
Munkley et al, 2016

ST6GAL1, ST6 β-galactoside α-2,6-sialyltransferase 1.
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particular sialylation is known to play an important role in 
regulation of the immune response (100,101). ST6GAL1-null 
mice exhibit a widespread immunodeficient phenotype, indi-
cating that ST6GAL1 sialylation is integral to regulation of the 
immune system (102). ST6GAL1 has been shown to promote 
B cell activation. IgG has also been shown to be a direct target 
for ST6GAL1 sialylation in an estrogen dependant manner in 
rheumatoid arthritis (103). It is evident that immune signalling 
is a substrate for regulation by sialylation, however much more 
needs to be done to characterise the effect of ST6GAL1 on 
the immune system (104). Regulation of the immune response 
through aberrant sialylation could result in tumour promoting 
inflammation.

Genomic instability and an accumulation of genomic 
mutations underpin carcinogenesis in all cancer subsets. In 
an attempt to avoid instability, DNA damage sensors actively 
survey the genome for DNA damage, and upon recognition 
of mutations activate DNA repair pathways. Mutation or inac-
tivation of these repair pathways, such as the p53 signalling 
pathway, will inevitably result in mutational accumulation. 
An upstream regulator of DNA repair pathways is EGFR, 
known to regulate DNA repair, DNA replication and main-
tenance of genome stability when found in the nucleus (105). 
A study of ST6GAL1 sialylation in ovarian cancer, suggested 
that increased ST6GAL1 sialylation confers resistance to 
chemotherapeutic intervention (106). Of interest, they postu-
lated that this chemoresistance was through direct sialylation 
of EGFR by ST6GAL1, resulting in heightened activation 
of EGFR. This suggests a direct mechanistic link between 
ST6GAL1-sialylation and DNA damage repair and implicates 
ST6GAL1 in the maintenance of genome stability.

4. Conclusions and future perspectives

The hallmarks of cancer are crucial to our understanding of 
cancer cell biology, and in guiding our efforts to identify novel 
biomarkers and develop new therapeutic strategies. Aberrant 
glycosylation is a universal feature of cancer cells, and glycans 
can modulate several of the pathways intrinsic to tumour cell 
biology. Here, we suggest that the sialyltransferase enzyme 
ST6GAL1 has widespread applications in the study of cancer, 
and importantly is implicated in all of the recognised cancer 
hallmarks (Fig. 1). Given the widespread impact of sialylation 
in cancer, and the evident prognostic value of ST6GAL1 
levels, an improved understanding of how ST6GAL1 mediated 
sialylation sustains cancer cell biology may open the door to a 
new range of cancer therapeutics. 
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