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A B S T R A C T   

Objective: Investigate the effect of surface on frontal plane knee angle, knee moment and muscle activity. 
Design: Randomised cross over. 
Setting: University Laboratory. 
Methods: Twenty females performed single-leg hop-landings onto sand, grass and firm surfaces. Kinematic, ki
netic and muscle activity data were obtained. Compatibility curves were used to visualise parameter estimates 
alongside P- values, and S-value transforms. 
Results: Knee angle for firm-sand (mean difference (d) = − 2.2◦; 95% compatibility interval (CI): − 4.6 to 0.28, p 
= 0.083, s = 3.6) and firm-grass (d = − 1.9; 95% CI: − 4.3 to 0.5, p = 0.125, S = 3) yielded <4 bits of repu
tational information against the null hypothesis (H). 5 bits (p = 0.025) of information against H were observed 
for knee moment between firm-sand (d = 0.17 N m/kg-1. m-1; 95% CI: 0.02 to 0.31) with similar effects for firm- 
grass (d = 0.14 N m/kg-1. m-1; 95% CI: − 0.02 to 0.29, p = 0.055, S = 4). Muscle activity across surfaces ranged 
from almost no (S = 1) reputational evidence against H (Quadriceps and Hamstrings) to 10–13 ‘bits’ against H for 
lateral gastrocnemius (lower on sand). 
Conclusions: Our study provides valuable information for practitioners of the observed effect sizes for lower-limb 
landing mechanics across surfaces in asymptomatic females.   

1. Introduction 

Anterior Cruciate Ligament (ACL) tear is a serious injury most 
prevalent in sports that include jump-landing (Agel et al., 2005). 
Approximately 70% of ACL tears are non-contact injuries (Boden et al., 
2000), often involving a unilateral landing (Bisciotti et al., 2019) 
occurring ~ 50ms post-impact (Koga et al., 2010; Krosshaug et al., 
2007). Female athletes appear to have increased susceptibility to ACL 
injury, with a 2–3 times increased risk compared to their male coun
terparts (Montalvo et al., 2019). Whilst anatomical differences and 
hormonal changes have been cited as potential causative mechanisms 
(Wojtys et al., 2002), an excessive valgus position of the knee upon 
landing is frequently proposed (Decker et al., 2003; Ford et al., 2003; 
Koga et al., 2010; Olsen et al., 2004). The increased (mal)alignment of 
the lower extremity on landing is associated with increased knee 

abduction moment (KAbM) (Miyamoto et al., 2023; Sigurðsson et al., 
2021), predicting ACL injury risk with 73% specificity and 78% sensi
tivity (Hewett et al., 2005). 

Effective muscle control and subsequent increases in co-ordination 
and stability are crucial for preventing excessive KAbM and protecting 
the ACL (Donnell-Fink et al., 2015; Hewett et al., 2005; Morgan et al., 
2014). Females have been shown to activate the quadriceps more than 
males during the landing phase (Hughes & Dally, 2015), which may 
cause significant anterior tibial translation and subsequent ACL strain 
(DeMorat et al., 2004). Preferential activation of the lateral over medial 
quadriceps, hamstrings and gastrocnemius has also been noted in fe
males (Palmieri-Smith et al., 2009; Landry et al., 2007) and may limit 
their ability to resist abduction loads, increasing KAbM, knee valgus and 
subsequent ACL injury risk (Letafatkar et al., 2015). 

Interventions aiming to improve muscle control and reduce landing 
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knee valgus and KAbM are integral to ACL injury prevention and reha
bilitation programmes. Jump training programmes in isolation have 
been shown to be as effective at reducing landing knee valgus, and po
tential ACL injury risk, as those with additional balance and strength 
training components (Herrington, 2010; Petushek et al., 2019). How
ever, these programmes are frequently performed on firm surfaces 
which exacerbate musculoskeletal loading, potentially increasing injury 
risk (Pereira et al., 2021). The use of sand as an alternative training 
surface has been advocated (Binnie et al., 2014; Rago et al., 2018), with 
jumping and plyometric tasks on sand during injury prevention and 
rehabilitation programmes highlighted as one of the main uses in pro
fessional sport (Richardson et al., 2022). The absorption qualities of 
sand reduce peak deceleration forces encountered upon impact with the 
training surface (Gaudino et al. 2013). A significant reduction in peak 
vertical ground reaction force (vGRF) has also been demonstrated dur
ing jumping tasks on a sand compared to firm surface (Giatsis et al., 
2022) highlighting the potential for the use of sand in jumping programs 
aimed at both injury prevention and rehabilitation in the lower limb. 

Empirical evidence for sand-based training has revealed a plethora of 
advantages when compared to a firm surface including; reductions in 
muscle soreness, exercise induced muscle damage, recovery time 
(Impellizzeri et al., 2008; Miyama & Nosaka, 2004; Singh et al. 2014), 
improved muscle control strategies (Pinnington et al., 2005; Panebianco 
et al., 2021; Sebastia-Amat et al., 2020; Sharma & Chaubey, 2013) and 
improvements in a range of firm ground performance measures (Mirzaei 
et al., 2014; Arazi et al., 2014; Ozen et al., 2020; Hammami et al., 2020). 

The acute effects of surface on landing mechanics during jump- 
landing tasks hold the potential to advance our understanding, partic
ularly in the context of applying this knowledge to jump-based training 
programs on sand surfaces. However, it is important to acknowledge 
that the existing evidence in this area is limited and requires further 
replication. Reductions in KAbM have been reported previously 
(Richardson, Murphy, et al., 2020) during single-leg jump tasks on sand 
compared to firm surfaces. Furthermore, decreased knee valgus in fe
males specifically during a single-leg landing task on sand compared to 
firm has been demonstrated (Richardson, Wilkinson, et al., 2020). 
However, neither study included a comparison with an additional con
trol surface (e.g., artificial grass) which might also be used during jump 
training in (p)rehabilitation scenarios (Impellizzeri et al., 2008) and 
could offer equally effective alternatives to sand. Further, the use of a 
detailed 6 degrees of freedom lower body model, to assess kinematic and 
kinetic responses on the different surfaces may overcome limitations 
noted for two-dimensional (2D) approaches (Richardson, Wilkinson, 
et al., 2020) and the limited (Plug-in-gait) marker-set used in the earlier 
study. Finally, identifying the magnitude of change in muscle activation 
of lower limb muscles would provide insight into the muscle activation 
strategies evoked when the lower limbs are challenged by various sur
faces. Taking the limitations into consideration and sparsity of evidence; 
Further information is required to ascertain the magnitude and direction 
of effect of surface on lower body landing mechanics. 

Therefore, the purpose of our study was to investigate the influence 
of landing surface on frontal plane knee angle (FPKA), KAbM, peak 
vGRF and muscle activity (hamstrings, quadriceps, gastrocnemius) 
during a single-leg hop (SLH) onto sand, pliable grass and firm ground. 
Our research hypothesis was that KAbM, FPKA (valgus) and vGRF would 
reduce, and muscle activation would increase when landing in sand 
compared to the other surfaces. 

2. Materials and methods 

2.1. Participants 

Twenty-three females who participated in a minimum of 3 h of 
sporting activity per week and were involved in jump-related sports (e. 
g., basketball, soccer, volleyball, rugby) were recruited from a university 
population. Three females were excluded, two for previous ACL injury 

and one for a lower limb injury within the last six months. Subsequently, 
twenty participants (age: 23.4 ± 4.8 years; body mass: 65.3 ± 12.7 kg; 
height: 1.63 ± 0.08m) undertook testing on one occasion repeating all 
conditions in a randomised order. All participants had no history of ACL 
injury or other knee pathology, previous significant lower limb fracture 
or surgery, and were injury-free for six months prior to data collection. 
All participants provided written informed consent, with the study 
approved by the University’s ethics committee (No. 035/19), in accor
dance with the Declaration of Helsinki. 

2.2. Procedures 

Prior to data collection, the participant’s age (years), height (m), and 
mass (kg), were collected. To standardise jump-landings, participants 
were fitted with standard plimsoll shoes to control shoe-surface interface 
and were instructed to refrain from caffeine use at least 24h prior, and 
strenuous muscular exercise 48h prior to testing. A sub-maximal warm- 
up was performed which included 5-min on a stationary bike at a self- 
selected pace of 25% of the participants perceived maximum at a 
moderate resistance (5/10) (Walsh et al., 2012) followed by a super
vised and standardised dynamic stretching protocol, consisting of the 
following exercises (light jog across 10 m, leg cross-overs, high 
knee-pull, high lunge-pull, high knees-to-chest, quadriceps pull, hip 
cradle, lunge with twist, reverse kick, high kicks/reach, spiderman, 
skip-hop, back pedal and high kicks), each performed for approximately 
30 s (Avedesian et al., 2018). 

Subsequently, participants performed five familiarisation trials of 
the SLH on each of the surfaces, followed by a series of five SLH’s (from a 
30 cm height) on firm, sand and pliable grass surfaces performed in a 
randomised order (generated via a computer randomiser). The SLH 
landing was chosen due to its test-retest reliability during 3D measure
ment of knee kinematics and kinetics (Myer, Bates, et al., 2015). Five 
successful trials were recorded for each participant on each surface, with 
the requirement for success being; 1) the landing was controlled 
whereby the participant kept their balance when landing on the domi
nant leg (defined as the leg used to kick a ball for maximum distance), 
ensuring the contralateral leg made no contact with the ground on 
landing, 2) the impact phase of the movement occurred on a precisely 
located force platform, and, 3) participants landed with a ‘stop and hold’ 
for several seconds. No instructions were given for their arm or hand 
position to mimic a natural SLH. Participants were instructed to hop 
forward and down onto the floor, sand, or grass from a 30 cm height. A 
predetermined floor marker 30 cm from the participants’ starting posi
tion was used to standardise the landing position (Fig. 1). Trials where 
the subjects hopped in an upward direction prior landing were discarded 
and subsequently repeated. 

The sand (particle size 0.02–0.2 mm) (Building Sand; Wickes, United 
Kingdom) was placed in a purpose-built pit allowing for lateral 
displacement of the sand and transmission of forces onto and from the 
force plate. Previous testing within our laboratory indicated that the 
participants mass recorded by the force plate was the same with and 
without the sandpit, and the centre of pressure also remained accurate 
with a sand covering, so inverse dynamics could be performed 
(Richardson et al., 2020a). The sand was at a depth of 10 cm and placed 
directly on top of the force plate (Kistler, Model 9281CA, Kistler Group, 
Winterthur, Switzerland). The stiffness of each surface was assessed via 
ten repetitions of a 4.5 kg clegg-hammer (SD instrumentation, Wiltshire, 
England) dropped from a height of 0.457m in line with previously used 
methods (Pinnington & Dawson, 2001; Binnie et al., 2013). This device 
measures the peak impact deceleration force exerted by the surface. The 
stiffnesses were; sand (368.5 ± 41.3N), grass (1182.5 ± 151.8N) and 
firm (1587 ± 191.4N). The sand was stored in the lab at a controlled 
ambient temperature of 20.5 ◦C. 

When hopping onto the sand from a 30 cm height, a 40 cm box was 
used to account for the change in height. The pliable grass surface 
(Sherwood 30 mm, Artificial Grass Direct Ltd, UK) which was 3 cm in 
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depth was placed directly over the force plate. When hopping onto the 
pliable grass surface from a 30 cm height a 33 cm high box was used to 
account for the change in height. For the SLH, participants were 
instructed to stand on their dominant leg and position their toes as close 
as possible to a predetermined marker at the edge of the box. After each 
landing on the sand surface, the sand was raked before the next jump to 
ensure an evenly distributed surface and consistent 10 cm depth. Par
ticipants were given 1-min rest between each repetition and a stand
ardised 3-min rest between surface conditions to avoid the effects of 
fatigue. Following completion of 5 successful jumps on each surface 
participants were asked to perform a cool down consisting of 5-min on a 
stationary bike at a self-directed pace and 3 × 60 s static stretches of the 
following muscles: gluteus maximus, quadriceps, hamstrings, and 
gastrocnemii. 

2.3. 3D motion capture and electromyography 

Three-dimensional kinematics were captured with twelve Vicon MX 
cameras sampling at 200 Hz (Vicon Nexus v12, Vicon Motion Systems 
Ltd, Oxford, UK). These were synchronised with a Kistler force plate and 
Delsys electromyography (EMG) system (Delsys Trigno, Delsys Inc, 
Boston, USA) both sampling at 2000 Hz for kinetic and muscle activity 
data respectively. For each trial, the Vicon software sent a digital pulse 
to the Delsys and Kistler systems, beginning the data acquisition across 
all systems at the same time. The cameras were calibrated the morning 
of data capture following procedures outlined as per the user manual. 
Forty-four, 14 mm retro-reflective markers were attached to the over
laying skin of each participant to create a lower body 6-degrees of 
freedom model including pelvis, thigh, shank, and foot segments. 
Markers were placed over the following landmarks: anterior superior 
iliac spines, posterior superior iliac spines, iliac crests, greater tro
chanters, medial and lateral femoral condyles, medial and lateral mal
leoli, posterior calcanei, and the head of the 1st, 2nd and 5th metatarsals 
(Alahmari et al., 2020). Tracking markers were mounted on technical 
clusters on the thigh and shank. The same individual (primary author) 
placed the markers on all participants. A static trial was taken for each 
participant in a neutral (standing) position, with each foot on the force 
plate, following marker placement. Following skin preparation, surface 
EMG electrodes were placed on the overlaying skin of the vastus lateralis 
(VL), vastus medialis (VM), lateral hamstring (LH), medial hamstring 
(MH) and lateral gastrocnemius (LG) and secured with double-sided 

tape and additional micropore tape. We followed SENIAM guidelines 
described by Hermens et al. (1999) to standardise EMG electrode 
placement. 

2.4. Data processing and reduction 

Marker trajectories were processed in Vicon Nexus (version 2.2) and 
exported (via.C3D file) alongside the GRF data to Visual 3D (Version 5, 
C-motion, MD, USA) for subsequent calculation of inverse dynamics. 
Trajectory and GRF data were filtered using a zero-lag fourth order 
Butterworth filter (10 Hz) (Kristianslund et al., 2012; Ford et al., 2003). 
A biomechanical model was defined within Visual 3D to determine joint 
angles and moments. For the knee joint, we created a virtual shank 
segment to align precisely with the segment coordinate system for the 
thigh to set the knee angle to zero degrees in the standing trial effectively 
normalising the knee angle to the static pose. The knee moment was 
resolved into local coordinate system of the thigh segment (Mizner et al., 
2012). In Visual3D, positive frontal (y) plane knee angles and moments 
reflect knee adduction (varus) in the right knee, and negative values 
reflect knee abduction (valgus) for angles and moments, this is reversed 
in the left knee. Two out of the twenty participants landed on their left 
leg. Therefore, to compare changes in knee adduction/abduction in our 
cohort, we reversed the sign so right and left knee data were compara
ble. External knee moments are described in this article. 

Raw GRF and EMG signals alongside the modelled outputs (from 
Visual3D) were imported in MATLAB (MathWorks, 2021, version 
2019b) and processed via a custom-designed programme. The vGRF 
data were low-pass filtered using a zero-lag second order (50 Hz) But
terworth filter (Brown et al., 2014) and used to determine point of 
impact. Initial contact (IC) was determined as the first point above 20 N 
using a descending for-loop from the peak vGRF. Fifty milliseconds 
post-landing (i.e., IC) was used to extract our outcome measures of in
terest, with non-contact ACL injuries often occurring at this approximate 
time point (Koga et al., 2010; Krosshaug et al., 2007). The EMG signal 
was high-pass filtered (20 Hz) to remove the DC offset followed by a 
linear envelope which included full wave rectification and a 2nd order 
low-pass (3 Hz) Butterworth filter (Winter, 2009). EMG signals were 
normalised to the peak EMG amplitude observed during the landing 
phase (from initial contact to peak knee flexion) for each participant, 
from all trials, across all conditions. This normalisation approach 
allowed for the comparison of muscle activity across different tasks 

Fig. 1. An illustration of the experimental set up.  
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(Cronin et al., 2015) and has been shown to reduce inter-individual 
variation (Cronin et al., 2015). 

2.5. Statistical analyses 

We used a frequentist framework to analyse our data. Our selected 
response variables of interest were differences in discrete local optima 
for the frontal plane knee angle, knee moment, peak vGRF and EMG 
activity of lower limb muscles on landing from a SLH task on firm, grass 
and sand surfaces (pre-specified in ClinicalTrials.gov). We did not 
perform formal sample size (n) calculations a priori, our sample size 
justification is based upon resource limitations (Lakens, 2022). To 
reflect on the power of our study to detect a range of effect sizes and 
improve the informational value of our work we performed sensitivity 
power analysis (based on fixed n, and α-level = 0.05). (Analysis outlined 
in Supplementary material 1; Section 1). 

Data were analysed in RStudio (version 2022.12.0.353). To answer 
our research question, differences in outcome measures were analysed 
using a random-intercepts model (mixed approach) via the lme4 pack
age (Bates et al., 2015) which accounts for individual differences in the 
data. For our model Surface was specified as a fixed factor (categorical) 
and participant ID as the random effect allowing each participant’s 
intercept to vary. Satterthwaite’s approximation method was used for 
the calculation of t-tests and subsequent p-value via the lmerTest 
package. The behaviour of the residuals were checked visually and were 
acceptable for the assumptions of normality (via QQ plots), constant 
variance (residuals vs. predicted), and independence (auto-correlation 
of residuals). The random variance of participant ID, expressed as an SD 
(0.95 CI via parametric bootstrapping), is reported as supplementary 
material (Supplementary material 1; Section B) for the main outcomes to 
demonstrate the between-participant variance in the response variable. 

We have approached our analysis cautiously aiming to provide a 
nuanced interpretation of our data and have attempted to replace 
‘confidence with compatibility and surprise’ (Rafi & Greenland, 2020). To 
avoid dichotomising our inferences, our observations are based on the 
magnitude and uncertainty of each outcome whether it is close to zero or 
not and reporting the observed p-value as a measure of the degree of 
compatibility between the target hypothesis and background model 
(Greenland, 2017) which encompasses all auxiliary assumptions. Thus, 
we make no reference to α-levels or decisions per se (Greenland, 2019). 
Our primary analysis involved using estimates from the model to obtain 
compatibility curves via the concurve package (Rafi & Vigotsky, 2020) 
for the estimated mean response between the reference surface (e.g., 
firm) and the other two surfaces. The compatibility curve contains 
horizontally stacked compatibility intervals (CI), estimated via the 
profile likelihood method, at every possible level (e.g., 95%, 90%, 75%) 
to visualise estimates consistent with model and all background as
sumptions used to compute the test statistic. Thus, we present relevant 
information for alternative hypotheses (non-nil effect sizes within the 
region of high compatibility for a given CI) as well as the nil-null (target) 
hypothesis (H). To preserve space, only curves for frontal plane knee 
angle and moment at 50ms are presented. We visualised the curves for 
all our outcomes to inform our inferences. The point estimate and 95% 
CI alongside the exact p-value (to 3 decimal places) and corresponding 
S-value transform is presented for all interactions. The S-values provide 
a measure of ‘surprise’ or amount of reputational information in the 
form of ‘bits’ or binary digits (e.g., p = 0.05 provides 4.3 bits of infor
mation) the P value supplies against our model, calculated by taking the 
negative base-2 logarithm of the P value (-log2(p)) (Rafi & Greenland, 
2020). 

3. Results 

Descriptive statistics (mean and SD) for the dependent variables are 
displayed in Table 1, Ensembled average waveforms for knee angle (y), 
knee moment (y) and EMG between IC and 50 ms (loading phase) are 

presented to further aid interpretation (Fig. 2a and b). Model outcomes 
for comparisons of dependent variables between surfaces are displayed 
in Table 2. 

3.1. Frontal plane knee angle and moment 

For FPKA, there was ≤4 bits of reputational information against the 
target hypothesis for firm vs. sand and firm vs grass. We observed almost 
no information (S = <1 bit) against the null hypothesis of no effect for 
grass vs. sand. Whilst zero (nil effect) was one of the possible effect sizes 
compatible with our background model data, the compatibility curves 
(Fig. 3a and b) shows negative effect sizes as large as − 4.6◦ difference for 
sand, and − 4.3◦ difference for grass are also compatible with the data, 
given the background model and contain the same information (4 bits) 
against the model as positive effect sizes of 0.5◦ and 0.3◦ which could be 
considered less practically important (Table 2). For knee abduction 
moment, we observed 5 bits of reputational information against the 
target hypothesis for firm vs. sand which would be as surprising as 
seeing five heads in a row conditioned on a fair coin toss. Similar effect 
sizes were observed in the region of high compatibility for firm-grass 
(Fig. 4a and b). 

3.2. EMG 

Almost no reputational information (S-value ≤1 for nearly all com
parisons) against the target hypothesis was observed for VM, VL, MH 
and LH (Table 2) for firm vs. sand vs. grass. However mean muscle ac
tivity of the LG muscle was 15%–19% lower on sand compared to firm 
and grass surfaces which constituted 10–13 bits of reputational infor
mation against the target hypothesis (Table 2). 

3.3. vGRF 

The comparison of vGRF on firm vs sand (MD = 862.1N; 95% CI: 
715.2 to 1011, p < 0.00001, S = 52) and grass vs. sand (MD = 938.7N; 
95% CI: 790.8 to 1086.6, p < 0.00001, S = 49) yielded substantial 
reputational evidence against the target hypothesis whilst only 2 bits of 
information against H were observed for firm vs. grass (see Table 2 for 
body weight adjusted). 

Table 1 
Mean ± SD for primary outcomes across the three surfaces (n = 20).  

Surface Firm Sand Grass 

Outcome (at 50ms unless stated) 
Knee moment (y) (Nm.kg− 1.m− 1) − 0.2 (0.2) − 0.1 (0.3) − 0.1 (0.3) 
Knee angle (y) (deg) 3.4 (8.7) 1.5 (7.7) 1.2 (6.6) 
Peak vGRF (N) 2791.1 

(544.5) 
1927.9 
(270.0) 

2866.7 
(477.2) 

vGRF(BW) 4.6 (1.2) 3.2 (0.7) 4.8 (1.0)  

VM_EMG ratio (relative to peak 
during landing phase) 

0.65 (0.22) 0.59 (0.25) 0.62 (0.22) 

VL_EMG ratio (relative to peak 
during landing phase) 

0.59 (0.22) 0.57 (0.27) 0.61 (0.23) 

LG_EMG ratio (relative to peak 
during landing phase) 

0.65 (0.20) 0.50 (0.13) 0.69 (0.21) 

MH_EMG ratio (relative to peak 
during landing phase) 

0.69 (0.19) 0.70 (0.19) 0.70 (0.17) 

LH_EMG ratio (relative to peak 
during landing phase) 

0.58 (0.23) 0.57 (0.20) 0.65 (0.26) 

Abbreviations: vGRF, vertical ground reaction force; BW, body weights; EMG, 
electromyography; VM, vastus medialis; VL, vastus lateralis; LG, lateral 
gastrocnemius; MH, medial hamstrings; LH, lateral hamstring. For knee moment 
and angle negative values reflect abduction and positive values reflect 
adduction. 

M.C. Richardson et al.                                                                                                                                                                                                                         

http://ClinicalTrials.gov


Physical Therapy in Sport 69 (2024) 22–32

26

4. Discussion 

The aim of our study was to investigate the influence of different 
surfaces (sand, grass and firm) on frontal plane knee angle, KAbM, vGRF 
and muscle activity (hamstrings, quadriceps, gastrocnemius) upon 
landing from a SLH in females. The main findings were, 1) Comparisons 
between surfaces for knee angle yielded ≤4 bits of information against 
the target hypothesis. Though effects as large as − 4.6 and − 4.3 were 
observed in the 95% compatibility interval. 2) Effect sizes in line with a 
reduction in KAbM (~0.3Nm.kg− 1. m− 1) on sand and grass compared to 
firm were more compatible and less surprising as seeing no effect, with 
approximately 5 bits of reputational information against the target hy
pothesis observed. 3) Almost no reputational information against the 
target hypothesis in muscle activation across the surfaces for VM, VL, 
MH, LH was observed though CI were wide and more data is required. 
LG activation on the sand surface was reduced compared to grass and 
firm and yielded substantial information against the target hypothesis, 
and 4) Substantial reputational information against the target hypoth
esis for comparisons in peak vGRF for sand compared to grass and firm 
were observed. Effect sizes (alternative hypothesis) in favour of lower 
peak vGRF on sand constituted to ≤ 4.3 bits of reputational information 
against them. 

To the authors’ knowledge, this is the first study to provide detailed 
evidence for the magnitude of change and associated levels of compat
ibility in frontal plane angle, KAbM, vGRF, and lower limb muscle 
activation during a SLH landing on a firm, sand and grass surface for 
female (recreationally trained) athletes. As such, there is limited evi
dence with which to directly compare findings. Our cohort generally 
landed with healthy landing patterns and could be considered ‘good 
landers’ with 85% of participants landing below the knee abduction 
angle (KAA) thresholds (4.6◦–6.3◦) for ACL injury risk set previously for 
females (Bates et al., 2020; Hewett et al., 2005) (Fig. 2a), and the mean 
frontal plane knee angle across surfaces reflect knee varus. Thus, any 
observable adjustments in knee landing mechanics because of surface 
might be smaller with our current cohort. This is inconsistent with 
previous work which demonstrated reductions in knee valgus (~5◦) 
when landing on a sand compared to firm surface, with females landing 
in ~12◦ of valgus on a firm surface, and thus could be considered an ‘at 
risk’ population (Richardson, Wilkinson, et al., 2020) with greater scope 
to improve. It should be noted that we used 3D motion capture, whereas 
the aforementioned authors calculated the frontal plane projection angle 
via a 2D approach which is susceptible to perspective and parallax er
rors. As such, the two approaches only show moderate correlation and 
are not interchangeable (Alahmari et al., 2020), making direct com
parison difficult. The compatibility curve (Fig. 3b) shows the range of 
compatible effect sizes for firm vs. sand and thus effect sizes where p >
0.05. Whilst zero is one of the plausible effect sizes, an effect size of ~ 
− 4.6 (counter-null) would have the same p value as no effect and shares 
the same bits of information against the statistical model. It is interesting 

to note that the range of effect sizes we observed are smaller than pre
vious work (Richardson, Wilkinson, et al., 2020) and point in the 
opposite direction. It is not clear whether this means that sand (or grass) 
might have exacerbated the amount of valgus an individual landed in 
with our cohort, or allows individuals who land in adduction, to land 
closer to the midline when landing on these surfaces. It is feasible to 
suggest that the range of effect sizes we observed in our cohort may not 
be practically meaningful and therefore the landing patterns between 
surfaces, when the individuals are generally ‘good landers’, are practi
cally equivalent to each other, though at this time there is not consensus 
on the smallest effect size of interest. We suggest researchers should now 
compare surfaces on participants who land consistently with KAA >5◦

(Bates et al., 2020; Hewett et al., 2005) on firm surfaces, or compare 
landing mechanics across surfaces between ‘good’ and ‘poor’ landers. 

Knee abduction moments were observed (Table 1, Fig. 2a) at 50ms 
post impact across surfaces. Frontal plane moments during landing have 
been demonstrably associated with ACL injury/injury risk in athletes 
(Boden et al., 2000; Hewett et al., 2005; Krosshaug et al., 2016; Myer, 
Bates, et al., 2015). Higher loads are likely to have greater influence on 
ligament strain, which is supported by cadaveric impact simulations, 
with only the highest risk and rupture loading profiles demonstrating 
increases in ACL strain (Bates et al., 2019a; Bates, Schilaty, Nagelli, 
et al., 2019). Myer et al. (2011) reported that female athletes who 
exceeded a threshold of 25.3 N m during landing had a 6.8% risk for 
subsequent ACL injury compared with a 0.4% risk in athletes who were 
below this threshold. Richardson, Murphy, et al. (2020) previously re
ported KAbM values of 17.3 (5.9) N.m during the landing of a SLH task 
from a 30 cm height in a predominantly female cohort, which reduced to 
14.8 (5.2) N.m (or by approximately 0.04 Nm. kg− 1. m− 1) when landing 
on a sand surface compared to firm. We also observed effect sizes in line 
with a reduction in KAbM (~0.3Nm.kg− 1. m− 1) on sand and additionally 
grass compared to firm, which were more compatible and less surprising 
as seeing no effect, with approximately 5 bits of reputational informa
tion against the target hypothesis observed (Table 2). It is possible that 
the observed changes in KAbM, despite landing in knee varus, were a 
result of differences at the foot/ankle (Dempsey et al., 2012; Tait et al., 
2022; Teng et al., 2017), hip (Pollard et al., 2010), and trunk (Shimo
kochi et al., 2013; Chijimatsu et al., 2020; Taniguchi et al., 2022). 
Furthermore, when landing on a soft compared to firm surface, the 
compliance of the surface allows the body to sink into it resulting in 
lower vGRF (Gaudino et al., 2013; Giatsis et al., 2022), which was 
evident in our study for sand specifically (Tables 1 and 2) and might 
contribute to a decreased KAbM. Given the importance placed on 
reducing KAbM during landing to help prevent ACL injuries (Sugimoto 
et al., 2015), practitioners may wish to consider the use of sand or grass 
surfaces when planning ACL injury prevention or rehabilitation pro
grams with females, which involve a single leg jump landing component. 
Whilst the reduced KabM on sand and grass may have the potential to 
reduce ACL injury risk, it may also enable an accelerated rehabilitation 

Fig. 2a. Ensembled average waveforms for knee angle (y), knee moment (y) between IC and 50 ms (loading phase).  
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program because jumping activities could potentially be implemented 
more safely at an earlier stage in the process. However, this is specula
tive, and the magnitude of reduction in KAbM that is practically 
meaningful is currently unknown and thus our data should be inter
preted cautiously. To develop our preliminary findings, future research 
should look to establish whether jump training on these surfaces pro
vides the stimulus needed to reduce KAbM on landing during firm 
ground performance, and whether the differences exceed minimally 
detectable or clinically important differences. 

Minimal differences were noted in the normalised sEMG activity of 
the VM, VL, MH, LH muscles at 50 ms post-landing across the firm, grass 
and sand surfaces, with almost no reputational information (less than 
one heads) against the target hypothesis (Table 2). Larger differences 
(and more precision) in the EMG activity of the LG muscle (~15–19%) 
were found and were lower on the sand compared to both the firm and 
grass surface (Table 2). The gastrocnemius may play an elevated role in 
supporting the knee during single-leg landing (Nyland et al., 2010) 
working in conjunction with or replacing the forces required by the 
hamstrings to counter quadriceps force and stabilise the knee through 
joint compression, reducing subsequent ACL strain and valgus loading 
(Morgan et al., 2014). The substantial decrease in vGRF noted on sand 
compared to firm and grass, may indicate a lower requirement to absorb 

Fig. 2b. Ensembled average waveforms for EMG (VM, VL, LG, MH, LH – top to 
bottom) between IC and 50 ms (loading phase). 

Table 2 
Between surface differences for selected response variables.   

Firm-Sand Firm-Grass Grass-Sand 

Outcome (at 50ms unless stated) 
Knee angle (y) (deg) − 2.2 (− 4.6 to 

0.28) 
− 1.9; (− 4.3 
to 0.5) 

− 0.26; (− 2.17 to 
2.70) 

P = 0.083 P = 0.125 P = 0.829 
S = 4 S = 3 S = 0.3 

Knee moment (y) (N.m/ 
kg− 1.m− 1) 

0.17 (0.02–0.31), 0.14 (− 0.02 
to 0.29) 

− 0.03; (− 0.17 to 
0.12) 

P = 0.025 P = 0.055 P = 0.724 
S = 5 S = 4 S = 0.5 

Peak vGRF (N) 862.1 
(715.2–1011.0) 

− 75.6 
(− 223.5 to 
72.3) 

938.7 
(790.8–1086.6) 

P = <0.00001 P = 0.311 P = <0.00001 
S = 52 S = 2 S = 49 

vGRF (BWs) 1.4 (1.7–1.2) − 0.1 (-0.4 to 
0.1) 

1.6 (1.3–1.8) 

P = <0.00001 P = 0.378 P = <0.00001 
S = 42 S = 2 S = 45 

VM_EMG ratio (relative 
to peak during 
landing phase) 

0.06 (− 0.02 to 
0.14) 

0.03 (− 0.05 
to 0.10) 

0.03 (− 0.04 to 
0.11) 

P = 0.118 P = 0.487 P = 0.375 
S = 3 S = 1 S = 1 

VL_EMG ratio (relative 
to peak during 
landing phase) 

0.02 (− 0.08 to 
0.12) 

− 0.02 
(− 0.11 to 
0.08) 

0.03 (− 0.06 to 
0.13) 

P = 0.609 P = 0.755 P = 0.478 
S = 1 S = 0.4 S = 1 

LG_EMG ratio (relative 
to peak during 
landing phase) 

0.15 (0.07–0.24) − 0.03 
(− 0.12 to 
0.05) 

0.19 (0.10–0.27) 

P = 0.001 P = 0.437 P = 0.0001 
S = 10 S = 1 S = 13 

MH_EMG ratio (relative 
to peak during 
landing phase) 

− 0.01 (− 0.08 to 
0.06) 

− 0.01 (-0.08 
to 0.07) 

1.0 (− 0.07 to 
0.07) 

P = 0.796 P = 0.853 P = 0.941 
S = 0.4 S = 0.1 S = 0.1 

LH_EMG ratio (relative 
to peak during 
landing phase) 

0.02 (− 0.07 to 
0.10) 

− 0.07 
(− 0.15 to 
0.01) 

0.09 (0.00–0.20) 

P = 0.697 P = 0.097 P = 0.043 
S = 0.5 S = 3 S = 5 

Abbreviations: vGRF, vertical ground reaction force; BW, body weights; EMG, 
electromyography; VM, vastus medialis; VL, vastus lateralis; LG, lateral 
gastrocnemius; MH, medial hamstrings; LH, lateral hamstring. For knee moment 
and angle negative values reflect abduction and positive values reflect 
adduction. 
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these forces and stabilise the knee on this surface. However, this alone 
does not explain the observed range of effect sizes for other lower limb 
muscles when landing on sand compared to firm and grass surfaces. 
Kinematic changes at the ankle in addition to the knee on landing may 
also be responsible for the reductions noted in LG on the sand surface 
and warrants future investigation. 

Previous authors (Panebianco et al. 2021; Sebastia-Amat et al., 2020; 
Smith, 2006) have suggested that the deformation of sand increases the 
requirements for dynamic stability upon contact with the surface, 
compared to firm ground, and has been demonstrated in walking, 
running and balance tasks. During drop jump tasks, Peng et al. (2023) 
demonstrated increases in lower limb muscle activation (quadriceps, 
hamstrings and gastrocnemius) 30–60ms post landing on sand 
compared to firm surfaces, across a range of drop heights (30–60 cm). It 
is proposed that the increased muscle activation patterns noted on sand 
help an individual cope with the unstable nature of the surface and could 
improve stability if repeatedly exposed to the surface (Pinnington et al., 
2005; Rafols Parellada et al., 2020). However, the nature of the SLH task 
differs to running and change of direction tasks, where a backward 

movement of the foot due to the deformation of sand may require further 
stabilisation to prevent slippage (Gaudino et al., 2013) compared to a 
‘land and hold’ action during the SLH. Further, a lower degree of muscle 
activation has also been reported for drop-landing compared to coun
termovement jump and drop-jump tasks (Ambegaonkar et al., 2011; 
Arianasab et al., 2017) where stability is likely required in the eccentric 
phase of the task in preparation for an immediate explosive forward (and 
upward) movement. Therefore, the ‘land and hold’ nature of the SLH 
with the addition of the shock absorption qualities of sand (reduced 
vGRF) may reduce the perturbations to the postural system, and any 
observable difference in EMG between surfaces may be trivial, as we 
observed. The reduced mechanical demand as surface stiffness decreases 
has been noted previously in single-leg landing tasks (Hollville et al., 
2020). From a practical standpoint, if the mechanical demands on the 
musculoskeletal system are reduced in jump-landing compared to 
countermovement jump and drop-jump tasks on sand, this may limit 
muscular adaptations following training interventions that involve only 
jump-land activities on this surface. Furthermore, the greatest differ
ences in terms of muscle activation during running and change-of- 

Fig. 3a. (A, B), shows the p value function, and corresponding S- value for frontal plane angle (firm-grass). The red line denotes the null (zero) hypothesis. The 
horizontal black line provides the effect sizes for p = 0.05 (95% CI). (For interpretation of the references to colour in this figure legend, the reader is referred to the 
Web version of this article.) 

Fig. 3b. (C, D) shows the p value function, and corresponding S-value for frontal plane angle (firm-sand). The red line denotes the null (zero) hypothesis. The 
horizontal black line provides the effect sizes for p = 0.05 (95% CI). (For interpretation of the references to colour in this figure legend, the reader is referred to the 
Web version of this article.) 
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direction tasks on sand compared to firm surfaces were found in the 
glutei muscles and tensor fascia latae (Rafols Parellada et al., 2020; 
Pinnington et al., 2005), which were not investigated in our study. 
Investigating muscle activation in these muscles when landing on 
different surfaces, would be beneficial, given the proposed contribution 
of gluteal muscle activity to reduced frontal plane landing angle and 
moments during single leg landing tasks (Llurda-Almuzara et al., 2021; 
Dix et al., 2019; Maniar, Schache, Pizzolato, & Opar, 2022; Neamatallah 
et al., 2020). 

Our study is not without its limitations. We acknowledge that our 
observations are specific to a healthy recreationally active female 
cohort. This research paves the way for comparisons in poorer landers 
and across pathologic populations to allow wider generalisation. We 
appreciate that using a discrete time point for our outcomes may limit 
the ability to capture nuanced variations throughout the entire landing 
phase, which might be seen with other analysis techniques (e.g., sta
tistical parametric mapping) which assess the continuous waveform. 
Additionally, EMG is prone to large between-participant variation, does 
not directly measure muscle force and evidence of a practically mean
ingful difference is lacking in the literature which would be useful to 

inform our inferences. It is possible that the characteristics of the sand 
surface such as granulation, moisture content, and depth contributed to 
different levels of stiffness between testing days which may have 
affected results (Pinnington & Dawson, 2001). Although we quantified 
surface stiffness and ensured a consistent depth of 10 cm for each SLH on 
the surface, we only used one type of sand, under single 
laboratory-controlled conditions. Future work should quantify the ef
fects of different sand conditions (i.e., depth and stiffness) on lower limb 
kinematics, kinetics and muscle activity during jump landing tasks. 
Finally, whilst we have made every attempt to standardise our proced
ures and address background assumptions, we accept that there are 
uncertainties not captured in the statistical models which could explain 
our findings. We also acknowledge that values just outside the 95% CI 
also have limited information against them and could be considered 
compatible. As such, advice on the role of sand for (p)rehabilitation 
should acknowledge and quantify these uncontrolled biases with 
consideration of cost to benefit ratios. 

Fig. 4a. (A, B) shows the p value function, and corresponding S- value for Knee Abduction Moment (firm-grass). The red line denotes the null (zero) hypothesis. The 
horizontal black line provides the effect sizes for p = 0.05 (95% CI). (For interpretation of the references to colour in this figure legend, the reader is referred to the 
Web version of this article.) 

Fig. 4b. (C, D) shows the p value function, and corresponding S-value for Knee Abduction Moment (firm-sand). The red line denotes the null (zero) hypothesis. The 
horizontal black line provides the effect sizes for p = 0.05 (95% CI). (For interpretation of the references to colour in this figure legend, the reader is referred to the 
Web version of this article.) 
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5. Conclusion 

Our study provides valuable information on the magnitude of 
changes in KAbM when landing on sand compared with a firm surface, 
and additionally a pliable grass surface. Observed differences in FPKA 
on sand compared to other surfaces were smaller in magnitude, less 
precise and pointed in the opposite direction to previous literature and 
our research hypothesis. This could be partially explained by the healthy 
landing strategies adopted by our participants across surfaces. It is not 
clear if the magnitude of differences we observed in KAbM and FPKA 
were of practical importance, and further work is required to establish 
these thresholds for both practitioners and researchers alike. Although 
larger effects for reduced LG on sand compared to grass and firm sur
faces were observed, we found almost no reputational information 
against ‘no effect’ hypothesis in muscle activity for VM, VL, LH, and MH. 
Estimates of changes in vGRF were lower when landing on sand 
compared to firm and grass surfaces. Our findings are of interest to 
practitioners who consider the use of different surfaces in training, 
injury prevention or rehabilitation programmes with female athletes, 
which involve a jump landing component. 
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