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Abstract—Recent advances in attention-based machine learn-
ing models have significantly enhanced performance in various
classification tasks, including emotion recognition. In this work,
we introduce two novel multimodal architectures that leverage
attention-based techniques for emotion classification. We intro-
duce a state-of-the-art attention-based multimodal architecture
and a baseline architecture. Qur state-of-the-art architecture
utilises attention-based unimodal models to extract contextualised
embeddings from each modality and an attention-based fusion
technique. Performance metrics and rigorous error analysis
indicate that unimodal systems trained solely on text or speech
data underperform compared to our multimodal system, which
integrates both modalities. Furthermore, our system significantly
outperforms existing state-of-the-art multimodal systems using
the same modalities by nearly 4%.

Index Terms—emotion classification, emotion recognition, mul-
timodal emotion classification, multimodal fusion, multimodal
classification.

I. INTRODUCTION

Recognising human emotions automatically from text is a
challenging task. Textual data lacks emotional cues, such as
speech tone, pitch, vocal expression, and facial expression,
which are helpful in accurately determining a person’s emo-
tion. Therefore, approaches to automated emotion recognition
that rely only on text are inherently limited. Recent attempts
at emotion recognition have focused on using additional types
of information such as audio, image, and video along with
text to enrich the information needed for accurately classifying
human emotions.

With advances in machine learning applications for various
tasks (such as image processing, computer vision, and natural
language processing), it is now possible to design homo-
geneous multimodal classification systems that incorporate
state-of-the-art machine learning unimodal models trained on
labelled datasets containing multiple types of data modalities
such as text, images, audio, and video. Training a multimodal
emotion classifier can involve using one or more machine
learning algorithms that are best suited for learning from
different types of data. For example, we could train algorithm
x on text data, y on audio data, and z on visual data, and
then integrate their outputs to perform the classification task.
In this paper, we propose a novel deep-learning architecture

that uses text and audio information for the task of emotion
classification. Our contributions are as follows:

o We fine-tune two unimodal transformer-based models for
text and audio emotion recognition.

o We propose a novel baseline deep-learning multimodal
architecture to extract and utilise important features from
different types of data (text and audio) to classify the
input into one of several emotion classes.

o We propose a new state-of-the-art multimodal emotion
classifier.

The rest of the paper is organised as follows: Section II
outlines key related work relevant to our proposed system. We
describe our methodology in Section III and in Section IV we
present the performance of the proposed system and compare
it against several published works. In Section V we analyse
the system’s performance through several confusion matrices.
We conclude the paper in Section VI.

II. RELATED WORK

The advances in deep learning methods for audio and
text processing have motivated researchers to develop var-
ious approaches to emotion classification. Generally, these
approaches involve training deep learning models on audio and
text data, and incorporating a fusion mechanism to combine
both modalities. Early feature extraction methods from text,
such as word2vec, focused on learning information from text
based on word features. Subsequent advancements in feature
extraction from text include bidirectional long short-term
memory networks (Bi-LSTM), gated recurrent units (GRU),
and transformers. Additionally, advanced language models that
capture multilingual and contextual information around words
have been developed such as Bidirectional Encoder Repre-
sentations from Transformers (BERT) [1], Robustly optimized
BERT (RoBERTa) [2], and GPT [3].

Methods to combine multiple data modalities (e.g., text,
audio, and images) have proven effective in emotion classifica-
tion [4]. Multimodal transformers, which enable the concate-
nation of feature representations from various data types have
replaced previous methods [5] [6]. Further advances include
multi-view sequential learning models [7] and dynamic fusion
graphs [8]



Dutta et al [9] proposed a hierarchical cross-attention model
approach using recurrent and co-attention neural network
models trained on text and audio data. Their first stage
involved training an utterance-level embedding extractor from
the input data (text and audio), which trains the model to
classify individual utterances without accounting for the inter-
utterance conversational context. The second stage involves
feeding the utterance-level embeddings from the first stage into
a bidirectional gated recurrent unit (Bi-GRU) to incorporate
inter-utterance context into the model. This stage enriches
the model with conversational context information. The final
stage involves fusing the embeddings from different modalities
using self-attention and cross-attention mechanisms. These
attention mechanisms allow for capturing relationships and
dependencies within input sequences (sentences or speech
utterances).

[10] proposed a hierarchical transformer-based model (Hi-
Trans) consisting of a transformer-based content model and
a speaker-sensitive model for emotion classification. Their
method uses two hierarchical transformers: a BERT model
is used as the low-level transformer for generating local
utterance representations, and a high-level transformer takes
the output of the low-level transformer as input to make the
model sensitive to the global context of the conversation. They
integrate a “pairwise utterance speaker verification” (PUSV)
method to detect whether two utterances belong to the same
speaker.

[11] proposed the Dialogue Graph Convolutional Network
(DialogueGCN) model utilising a graph neural network ap-
proach to emotion classification. It leverages self and inter-
speaker dependencies among interlocutors to model conver-
sational context. One of the main advantages of this method
is its ability to address context propagation issues present in
current RNN-based methods.

[12] proposed a learning-based system for emotion clas-
sification using multiple input modalities that combine infor-
mation from text, facial cues, and speech. Their system seems
to pay more attention to reliable cues while suppressing less
helpful cues on a per-sample basis by using Canonical Cor-
relation Analysis, which differentiates between effective and
ineffective modalities. The major strength of their proposed
system is its robustness to sensor noise in any of the individual
modalities.

III. PROPOSED METHOD

We propose a supervised machine-learning approach for
emotion classification. We utilise a public dataset containing
various data types (text, speech, and video) to train and eval-
uate a multimodal emotion classifier. The benefit of using dif-
ferent types of data is to extract different levels of details and
cues for identifying emotions. Each data type provides unique
information for training machine learning algorithms. Due to
limited computational resources, we only use text and speech
data in this study. For text, we utilise BERT contextualised
embeddings [1] and for speech, we utilise Audio Spectogram
Transformer (AST) contextualised embeddings [13].
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Fig. 1: Baseline multimodal classification architecture.
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Fig. 2: Multi-head attention-based multimodal architecture.

A. System Design

Our system design is based on fine-tuning attention-based
models as well as the reliance on attention-based feature
fusion. We believe that two main problems should be ad-
dressed when building any multimodal architecture: i) the
data representation for each modality in the system (i.e., data
representation), and ii) the data concatenation from different
modalities (i.e., data fusion).

Our proposed multimodal system for emotion classification
relies on the fusion of extracted features from the data through
two unimodal models: a BERT-based model for text data, and
an AST-based model for speech data. The last hidden layer
from both BERT and AST models is known to have the most
contextualised representation of the input sequence. Thus, we
specifically use the output of the last hidden layer of fine-tuned
versions of BERT and AST to represent the text and audio
modalities, respectively. In our attention-based architecture, we
adjust the size of the output of the last hidden layer from
the text model through a padding layer to match the size of
the output of the last hidden layer for the audio model, as
in Fig. 2. Similar to late-fusion-based multimodal systems,
relying on fine-tuning pre-trained transformer-based models
gives the capability of utilising powerful and highly efficient
models to represent the multimodal data with a relatively small
dataset size and limited hardware resources in the training
process.

To address the feature fusion problem, we rely on a multi-
head cross-attention layer as a concatenation technique. Using
a method such as averaging or voting after the unimodal
classifier layers would prevent the multimodal system from
benefiting from potential interactions between different modal-
ities.

Instead of merging both modalities at a classifier level,
as done in late feature fusion techniques, we decided to



merge them at a data representation layer, which is similar to
early fusion techniques, to be able to capture the interactions
between audio and text. Our proposed system leverages the
best from both early and late fusion techniques. We use
powerful pre-trained unimodal models while merging the data
before the classifier layer using a simple concatenation layer
(as shown in Fig. 1 for the baseline system) and cross-attention
fusion technique, as presented in Fig. 2. We believe that
cross-attention fusion is capable of capturing the interactions
between different modalities. It may also be able to make sense
of confusing and contradicting data.

To perform the cross-attention fusion, we feed the output
from the last hidden layer of the audio model as the key
tensor to the multi-head attention layer while feeding the
padded output from the last hidden layer of the text model
as the query and the value tensors of the multi-head attention
layer, as shown in Fig. 2. The multi-head cross-attention layer
is followed by a multi-head self-attention layer which we
added in the pursuit of enriching the combined audio and
text representation. The combined feature vector is fed as the
query, key, and value for the multi-head self-attention layer, as
in Fig. 2. After combining the features from the different data
modalities, the combined feature vector undergoes flattening
along the first dimension. Then, the combined feature vector is
passed to a linear layer with a 10% dropout, which is followed
by the classification layer, as in Fig. 1 and 2.

1) Selecting the unimodal models: Since the presented
architectures in this work rely on unimodal systems to create
feature representations for each modality, the selection of
the unimodal system is critical to optimise our system’s
performance. We believe that the various unimodal models
utilised within a multimodal classification architecture should
rely on similar feature representation algorithms to reach a
homogeneous feature vector when combining them in the sys-
tem. We choose attention-based unimodal approaches to build
the feature vector for each modality since they are proven to
achieve state-of-the-art results in many benchmarks and most
importantly to maintain homogeneous feature representations
between modalities. Attention-based models are popular in
various unimodal classification domains, such as text, speech,
video, and image, which enable our multimodal systems to
easily scale to include another modality. The selected unimodal
systems are mainly based on transformer-encoder and only
rely on attention to keep the models as homogeneous as
possible. In addition, the selected systems are simple and fast
to fine-tune.

The last hidden layer from each of the transformers (BERT
and AST) contains the most comprehensive and contextualised
representation of the input sequence; therefore, it is logical to
use it as the feature vector for each modality.

2) Baseline system: For our baseline model, as depicted
in Fig. 1, the information derived from the last hidden layer
of BERT and AST is fed into a simple concatenation layer
as the fusion layer. This was followed by a flattening layer,
then a linear layer with dropout (10% dropout rate) as the
classification layer.

TABLE I: The learning rate and the batch size used in each
experiment

Model Learning Rate | Batch Size
BERT Se-6 2
AST Se-6 2
Baseline Se-8 2
Attention-based | 5e-8 2

3) Attention-based system: For this system, we rely on
feeding the feature vector from BERT and AST models to
a multi-head cross-attention layer, as in Fig. 2, which acts
as a fusion layer that is capable of capturing the interac-
tions between modalities and developing a comprehensive
understanding of the multimodal data. The multi-head cross-
attention layer is followed by a multi-head self-attention layer
to enrich the combined feature vector before classification.
Next, a flattening layer and a linear layer with a 10% dropout
rate serve as the classification layer.

B. dataset

We use Multimodal EmotionLines Dataset (MELD) [14] for
the evaluation of the proposed systems. The dataset contains
more than 13000 utterances derived from multi-party con-
versations. it is divided into three parts: training, validation,
and testing. The training set consists of 9,988 utterances,
the validation set 1,108 utterances, and the test set 2,610
utterances. We use these partitions unchanged for training,
validation, and testing.

C. Hyperparameters

The MELD dataset suffers from imbalance class distribu-
tion which impacted our decision to rely on AdamW as an
optimizer, the weighted cross-entropy as the loss function,
and the weighted F1 score as our main evaluation metric. We
integrated early stopping in all of our experiments to stop the
training once the weighted F1 score started to decrease.

Some hyperparameters were only shared across the multi-
modal experiments such as using a 10% dropout rate in the
last linear layer. Also, both multi-head attention layers used in
this work were configured to consist of 128 attention heads.
We performed limited experiments to reduce the number of
attention heads, although the weighted F1 score was negatively
impacted.

Despite the fact that we managed to achieve state-of-the-
art performance, the selected hyperparameters still might not
be perfect since we were only aiming to get an acceptable
learning curve. Also, some hyperparameters, such as learning
rate and batch size in table Table I, were configured due to
hardware limitations as we only depended on a 12GB NVIDIA
GeForce GPU to carry out the experiments in this work.

1) evaluation metric: Some of the most robust and widely
used performance measures for classification tasks are: (i)
recall, (ii) precision, and (iii) F1 score. The recall metric
measures the proportion of actual positives that the model is
able to classify. Precision, on the other hand, measures the
proportion of predicted positives that are correctly identified.



TABLE II: Performance of text and audio unimodal models
by emotion class.

text speech

Categories precision | recall | F1 score | precision | recall | FI score
Anger 0.497 0.487 | 0.492 0.387 0.249 | 0.303
Disgust 0 0 0 0 0 0
Fear 0.5 0.02 0.038 0 0 0
Joy 0.602 0.627 | 0.615 0.228 0.192 | 0.208
Neutral 0.741 0.847 | 0.790 0.577 0.757 | 0.655
Sadness 0.376 0.337 | 0.355 0.175 0.154 | 0.164
Surprise 0.654 0.537 | 0.590 0.314 0.231 | 0.266
Macro Avg. 0.481 0.408 | 0.412 0.240 0.226 | 0.228
Weighted Avg. | 0.623 0.654 | 0.633 0.411 0.464 | 0.429

Individually, these metrics do not offer a complete view of
model performance. The F1 score computes the harmonic
mean of the recall and precision offering a robust evaluation.
Since the data are imbalanced, we use a weighted F1 score
to account for each class’s contribution based on its support,
which considers the number of actual occurrences of the
class in the dataset. Moreover, we compute and present the
macro average and weighted average performances of the
models to show the overall system performance. We present
the macro average to assess precision, recall, and F1 score
across individual classes, treating all classes equally. We
also use the weighted average performance to account for
the importance/weight of each category when calculating the
overall system performance.

IV. RESULT AND DISCUSSION

The proposed deep learning systems consist of appropriate
deep learning algorithms for each data type. They are trained
and tested on two types of data: text and speech data.

We present several performance aspects of the proposed
systems for recognising different types of emotions. We use
several standard evaluation metrics for each category: preci-
sion, recall and F1 score, macro average and weighted average
F1 score. These performance measures allow us to identify the
model’s performance at the category level. In the following
subsections, we outline the performance of the systems when
trained and tested for emotion classification.

A. Model evaluation result at category level

1) Text unimodal performance: Table II shows the per-
formance of the text-based unimodal system in classifying
emotions when trained and tested on text data. The second,
third, and fourth columns show the precision, recall and F1
score for each type of emotion. The text-based unimodal model
failed to classify the “disgust” emotion. Although it scores a
recall of 50% when classifying the “fear” category, it has a
very poor precision of 0.02 (2%), resulting in a very poor
F1 score of 0.038. The text-based unimodal model classifies
the “neutral” category more accurately than other categories,
achieving an F1 score of 0.790. This is followed by the
“joy” category (with an F1 score of 0.615) and the “surprise”
category (with an F1 score of 0.590). The performance in
classifying “anger” and “sadness” categories are F1 scores of
0.492 and 0.355, respectively.

TABLE III: Performance of the baseline multimodal model by
emotion class.

Categories precision | recall | F1 score
Anger 0.577 0.435 | 0.496
Disgust 0.5 0.012 | 0.029
Fear 0.154 0.08 0.105
Joy 0.568 0.657 | 0.609
Neutral 0.793 0.766 | 0.779
Sadness 0.333 0.375 | 0.353
Surprise 0.483 0.705 | 0.573
Macro Avg. 0.487 0.433 | 0.421
Weighted Avg. | 0.640 0.635 | 0.627

2) Speech unimodal performance: The speech-based uni-
modal system performance is relatively similar to that of the
text-based unimodal system. It performs better in classifying
the “neutral” emotion than any other type of emotion and per-
forms very poorly in classifying “disgust” and “fear” emotions.
As presented in Table II, the speech-based unimodal system
fails to classify “disgust” and “fear” categories while achieving
an F1 score of over 0.655 for the “neutral” category. Similar
to the text-based unimodal system, following the “neutral”
category, the speech unimodal system achieves an F1 score
of 0.303, 0.266, and 0.208 for the “anger”, “surprise”, and
“joy” categories, respectively.

3) Baseline multimodal performance: We evaluated the
proposed multimodal baseline system to assess its performance
at classifying different types of emotions. Table III presents the
performance of the baseline system. The system produced the
highest F1 score in classifying the “neutral” emotion (0.779),
followed by “joy” (0.609). The system produced the lowest F1
scores in classifying the ’ disgust” and ‘fear” categories with
0.029 and 0.105, respectively. The overall F1 score across all
the emotion categories is 0.627. The baseline system has a
reasonable overall weighted average of precision and recall
across all emotion categories, producing scores of 0.640 and
0.635, respectively.

4) Attention-based multimodal performance: Table 1V
presents the performance of the attention-based system. The
system produced the highest weighted F1 score, recall, and
precision compared to other models in this work, with scores
of 0.693, 0.706, and 0.689, respectively. It also produced the
highest macro average F1 score, with 0.467. Although it was
unable to classify any instances from the least represented
classes “fear” and “disgust”, the system produced the highest
F1 score in classifying the “neutral” emotion (0.824), followed
by “surprise” (0.721), and then “joy” (0.692).

B. System performance comparison with previous works

Table V presents the weighted F1 score performance of our
proposed systems (baseline and attention-based) and several
previously published works on unimodal and multimodal
emotion classification. Our proposed unimodal systems lagged
behind some previously published systems, while our proposed
multimodal systems have performed better than most of the
other systems.
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Fig. 3: Confusion matrix graphs in the emotion classification task.

TABLE 1IV: Performance of the attention-based multimodal
model by emotion class.

Categories precision | recall | FI score
Anger 0.516 0.672 | 0.584
Disgust 0 0 0

Fear 0 0 0

Joy 0.675 0.709 | 0.692
Neutral 0.858 0.792 | 0.824
Sadness 0.478 0.418 | 0.446
Surprise 0.616 0.868 | 0.721
Macro Avg. 0.449 0.494 | 0.467
Weighted Avg. | 0.689 0.706 | 0.693

TABLE V: Comparative result. Weighted F1 score (in %)

Models Speech | Text Speech+Text
Majumder et al [15] 41.80 57.00 | 60.30

Ho et al [16] 45.30 59.00 | 60.50

Lian et al [17] 38.20 58.30 | 60.50

Baijun et al [18] 32.10 61.20 | 64.00

Dutta et al [9] 50.10 65.60 | 65.80
Proposed baseline model 42.90 63.3 62.7
Proposed attention-based model | 42.90 63.3 69.7

Our proposed attention-based system significantly outper-
formed state-of-the-art systems by achieving a 69.7% F1 score,
nearly 5% higher than the reported state-of-the-art system
proposed by [9]. This is despite the low performance of our
unimodal systems compared to the unimodal systems proposed
by [9]. This indicates the strength of our novel method of
combining the last hidden layers of attention-based text and
speech unimodal models using a multi-head cross-attention
layer followed by a multi-head self-attention layer for fusing
text and audio modalities.

C. Multimodal performance discussion

Our proposed speech-based unimodal emotion classifier
underperforms compared to those classifiers proposed by Dutta
et al [9] and Ho et al [16]. Our text-based unimodal model is
only outperformed by the model proposed by Dutta et al [9].
However, our multimodal classifier outperforms the state-of-
the-art. We anticipate that the superior performance of our
multimodal system results from our homogeneous attention-
based model which includes an attention-based fusion method
that merges the learned information from attention-based

unimodal models, which are fine-tuned versions of BERT
and AST. In comparison to several other published works,
our speech-based unimodal performance is on par with many
other systems and better than others in some cases. Our
text-based unimodal model performs better than almost all
other published works, as shown in Table V. Furthermore,
our multimodal attention-based system outperforms all other
published works, making it the state-of-the-art multimodal
emotion classifier.

V. ERROR ANALYSES: CONFUSION MATRIX

Machine learning applications for supervised classification
tasks require a set of labelled data that represents the classes.
Labelled datasets often contain errors (annotation errors),
where some data samples are labelled with incorrect emotions.
Annotation errors impact machine learning algorithms’ perfor-
mance because the algorithms learn from the errors present in
the annotated dataset.

In addition to annotation errors, other causes for misclassifi-
cation include class imbalance, an issue that is highly present
in the MELD dataset, which might lead to a biased model
performance favouring the most represented class, “neutral”
in our case. Furthermore, we believe the MELD dataset might
have insufficient training data for the least represented classes,
which could lead to the absence of core class characteristics.
Our model might be able to overcome the class imbalance
issue through our hyperparameter selection, such as our use
of AdamW as an optimizer and a weighted cross-entropy
as the loss function. However, it is extremely difficult to
overcome insufficient training data solely by tweaking the
hyperparameters without enriching the data quality.

Confusion matrix graphs are helpful for highlighting clas-
sification errors by identifying misclassified classes and the
classes they are confused with. We present several confusion
matrices to outline the classification errors of our proposed
unimodal and multimodal systems in classifying different
types of emotions.

A. Emotion misclassification errors

Fig. 3 presents the misclassifications of our attention-based
multimodal system when evaluated on the MELD dataset.



As presented in Fig. 3(a), the “anger” class is misclassified
as “neutral” 26.1%, “disgust” is misclassified as ‘“neutral”
39.7% of the time, “fear” is misclassified as “neutral” 40%
of the time, and topped by “sadness” with 41.8%. Contrary
to the “neutral” class, which is the most represented class in
the dataset, the text-based unimodal system does not confuse
any class (except for “joy” confused with “fear”, though
negligibly) with the “disgust” and “fear” classes, which are
the least represented classes.

The speech-based unimodal system seems to misclassify
most classes as “neutral”, as shown in Fig. 3(b). The misclas-
sification error rates between “neutral” and all other classes
range from 44.8%, where “surprise” is misclassified as “neu-
tral”, to 60.0%, where “sadness” is misclassified as “neutral”.
The “neutral” class appears to have the least misclassification.
It has 75.7% accuracy., with its highest misclassified rate of
9.7% as “joy” followed by “sadness” (5.7%) and “surprised”
(4.6%).

The attention-based multimodal system, as presented in
Fig. 3(c), confused the “disgust” class with “anger” (58.8%
error rate), “neutral” (11.8% error rate), “sadness” (17.6%
error rate), and “surprised 8.8% error rate). The attention-
based multimodal has improved the accuracy of classifying the
“anger” emotion by reducing the error rate of misclassification
with “neutral” to 9.9% compared to the error rate recorded in
the unimodal systems. However, the “anger” emotion is mis-
classified as “joy” 8.7%, as “sadness” 2.3%, and as “surprise”
11.1%. The “sadness” class has been predominantly confused
by the attention-based multimodal system with “neutral” with
an error rate of 27.4%, followed by 17.3% misclassification as
“anger”, 4.8% as “joy”, and 8.7% as “surprise”. Other classes
(“joy” and “surprise”) are mostly confused with “neutral” and
the ” neutral” class is largely confused with “joy” (6.4%
error rate). It appears our proposed attention-based system
performed best in classifying “surprise” emotion with 86.8%
accuracy.

VI. CONCLUSION AND FUTURE WORK

Recent advances in automated data classification of emotion
involve the application of machine learning algorithms to
automate the process of classifying certain types of emotions
(e.g., anger, happiness, surprise, etc.). The focus of this study
was to design and evaluate novel deep-learning architectures
that learn from different types of data (text and speech) to
classify several types of emotions. We proposed two unimodal
models, a fine-tuned BERT and AST, and two multimodal
models, a baseline and an attention-based model. Our novel
attention-based multimodal system fuses the contextualised
embeddings from attention-based unimodal models, BERT and
AST, using an attention-based fusion technique. We measured
the performance of each of the proposed architectures using
various performance metrics. We conducted a rigorous error
analysis of the classification performance. Our finding suggests
that deep learning architectures trained only on text or speech
data could underperform compared to architectures trained on
both text and speech, thus, proving that multimodal systems

can perform better than unimodal systems for emotion classi-
fication. Our future work involves extending our multimodal
system to evaluate it on sentiment analyses and to include
more modalities, such as video. We believe this is feasible
while still using the same dataset because MELD contains
both sentiment classes and videos. Additionally, our current
architecture is designed to be simple and scalable, allowing us
to easily extend it to include information learned from video
contextualised embeddings.
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