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Abstract: Neurodegenerative diseases present a progressive loss of neuronal structure and function,
leading to cell death and irrecoverable brain atrophy. Most have disease-modifying therapies, in part
because the mechanisms of neurodegeneration are yet to be defined, preventing the development of
targeted therapies. To overcome this, there is a need for tools that enable a quantitative assessment of
how cellular mechanisms and diverse environmental conditions contribute to disease. One such tool
is genetically encodable fluorescent biosensors (GEFBs), engineered constructs encoding proteins with
novel functions capable of sensing spatiotemporal changes in specific pathways, enzyme functions,
or metabolite levels. GEFB technology therefore presents a plethora of unique sensing capabilities
that, when coupled with induced pluripotent stem cells (iPSCs), present a powerful tool for exploring
disease mechanisms and identifying novel therapeutics. In this review, we discuss different GEFBs
relevant to neurodegenerative disease and how they can be used with iPSCs to illuminate unresolved
questions about causes and risks for neurodegenerative disease.

Keywords: neurodegeneration; dementia; high-throughput screens; biosensors; gene-environment
interaction

1. Introduction

Neurodegenerative diseases present with heterogeneous clinical and pathological
traits, affecting different neuronal subtypes, non-neuronal cell types such as astrocytes, and
diverse anatomical regions. For instance, movement is affected in both amyotrophic lateral
sclerosis (ALS) and spinal muscular atrophy (SMA); whilst motor neurons are primarily
affected in each disease, each have their own unique pathological mechanisms and, subse-
quently, the age of onset, clinical profile, and regions affected differ. The complexity of the
nervous system and cell types within it are reflected in the heterogeneity of mechanisms
leading to disease, and this has hampered the identification of treatments to slow, reverse,
or halt disease progression. Consequently, neurodegenerative diseases impart a growing
socioeconomic burden.

Neurodegeneration may affect individuals at every stage of life; for example, the
prevalence and incidence of the two of the most common neurodegenerative diseases—
Alzheimer’s disease (AD) and Parkinson’s disease (PD)—are associated with an advanced
age, whereas SMA is usually diagnosed at infancy. Chemotherapy-induced peripheral
neuropathy (CIPN) is also a prevalent neurological side effect of cancer survivors (affecting
30–40%), and may affect individuals at any age, albeit a recent study reported the mean
age to be 60.9 years [1–3]. With ageing populations, many nations are expected to see a
significant rise in age-associated neurodegenerative diseases, and filling the mechanistic
gap between epidemiological evidence and disease will help to prevent this increase [4].

Research into the complexities of neurodegeneration is challenging due to varied
aetiologies, the wide range of age at presentation, and the involvement of different central
and peripheral nervous system cell types. Genetics is the key factor causing familial cases
of neurodegeneration. For examples, SMA is one of the most frequent autosomal recessive
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diseases and most common genetic causes of childhood mortality [5], and Huntington’s dis-
ease (HD) is a autosomal dominant neurodegenerative disease primarily affecting adults [6].
Even though environmental factors may contribute to varied clinical phenotypes [7], it is
understood that the disease is purely genetic in aetiology. However, many neurodegenera-
tive diseases, and particularly many associated with older age, such as AD, ALS, and PD,
are more complex in aetiology and are most commonly a result of a combination of different
factors, although rarer, fully penetrant familial forms do occur. For these diseases, age is
a key risk factor, but one which is challenging to model in a laboratory setting. However,
other factors, such as common gene variants or exposure to neurotoxic agents, and the
potential for interactions to occur between these, can also modify the risk of disease and
are more amenable to testing in a laboratory. For example, zoonotic transmission leading
to variant Creutzfeldt–Jakob disease is due to the dietary exposure of bovine spongiform
encephalopathy agent, but most individuals are homozygous for methionine at codon 129
on PRNP, leading to a higher susceptibility of the disease. For other causes of neurodegen-
eration such as trauma, genetics may influence the recovery rather than contribute to the
initial insult [8].

Despite these varied aetiologies, neurodegeneration is characterised by a loss of
function and structure of neurons, and frequently involves glial cells. However, the mech-
anisms leading to these changes are diverse and, in many instances, remain unresolved.
To address this, there is a need to develop our understanding of complex aetiologies via
ascertaining the temporal relationship between cell changes and then testing if these are
mechanistically sequential or occur in parallel from an otherwise common upstream trigger.
Answering these questions requires cost-effective, quantitative approaches amenable to
high-throughput data acquisition. Live-cell imaging offers a robust tool for monitoring
cell behaviours and, compared to the ‘snapshot’ provided in endpoint assays, enables the
continual quantitation of cell changes and reduces artefacts produced via cell fixation or
immunocytochemistry. However, live-imaging studies often utilise dyes, stains, and indica-
tors that are transient, with long-term exposure to exogenous dyes increasing the toxicity
to the cell and negating their ability to noninvasively monitor cellular health [9]. Advances
in the field of fluorescent protein (FP) engineering has revolutionised ways of monitoring
complex cellular processes that allow for stable genetic expression, high specificity, and
spatiotemporal reporting in live cells. Here, we discuss the potential of these genetically
encoded fluorescent biosensors (GEFBs) when expressed in human induced pluripotent
stem cell (iPSC)-derived cell types to provide novel insights into the various genetic and
environmental risks associated with neurodegenerative disease, and as platforms for the
identification and pre-clinical testing of new therapeutic strategies.

2. Genetically Encoded Fluorescent Biosensor Advantages

Genetically encoded fluorescent biosensors are rationally designed chimeric FP-based
molecular probes utilised for visualising cellular events [10]. There are varied GEFB designs
(Figure 1) that have been reviewed extensively elsewhere [11]; in essence, GEFBs have a
sensor that, for example, can be target sites of specific enzymes (e.g., caspase-3 proteolysis),
causing an increase in the fluorescence of the reporting unit, which can be quantified in
live cells over extended time periods. GEFBs may also have specific localisation tags that
enable targeting to a desired cellular organelle such as the lysosome or mitochondria or for
the quantitation of extracellular [12–14] and intracellular [15–17] analytes. Thus, GEFBs
provide a quantitative measure of analyte levels, enzymatic activity, or specific pathway
activity via high-throughput image acquisition and a subsequent analysis [18,19].
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Figure 1. Eight different GEFB design concept examples. (A) Translocation of FP. (B) Fluorescence-
resonance-energy-transfer-based biosensor. (C) Dimer-dependent GEFB. (D) Biomolecular fluores-
cence complementation. (E) A circularly permuted FP biosensor. (F) Oxidation-dependent fluores-
cent timer biosensor. (G) pH-sensitive FP. (H) Photo-transformable design. Each design is further 
elucidated in Sections 3.1–3.7. 

A key advantage of GEFBs is that they can be integrated into the genome of cell lines 
using CRISPR/Cas, notably the AAVS1 ‘safe harbor’ locus of iPSCs, with minimal off-tar-
get effects [20–23]. Such approaches enable the GEFB to be expressed in a ubiquitous man-
ner in all derived cell types. Alternatively, GEFBs can be positioned under the control of 
cell-type-specific promoters, thereby restricting expression to certain cell types. Such an 
approach can be used in organoid models, where one wishes to determine the effects of a 
specific perturbation in neurons separately from astrocytes, for example. Another ad-
vantage of GEFB-based approaches is that they allow continuous data to be sourced from 
a single culture, thereby providing a temporal quantitation of cell changes from the same 
culture, ablating the need for multiple, cell-destructive end-point assays (Table 1). This is 
advantageous as it involves a high spatiotemporal resolution of cellular processes in spe-
cific culture mediums/treatment conditions, high data output, and less labour/time, and 
reduces the culture heterogeneity when compared to other methods that involve cell lysis 
or fixation, necessitating multiple cultures for collecting data from each timepoint.  

Figure 1. Eight different GEFB design concept examples. (A) Translocation of FP. (B) Fluorescence-
resonance-energy-transfer-based biosensor. (C) Dimer-dependent GEFB. (D) Biomolecular fluores-
cence complementation. (E) A circularly permuted FP biosensor. (F) Oxidation-dependent fluorescent
timer biosensor. (G) pH-sensitive FP. (H) Photo-transformable design. Each design is further eluci-
dated in Sections 3.1–3.7.

A key advantage of GEFBs is that they can be integrated into the genome of cell
lines using CRISPR/Cas, notably the AAVS1 ‘safe harbor’ locus of iPSCs, with minimal
off-target effects [20–23]. Such approaches enable the GEFB to be expressed in a ubiquitous
manner in all derived cell types. Alternatively, GEFBs can be positioned under the control
of cell-type-specific promoters, thereby restricting expression to certain cell types. Such
an approach can be used in organoid models, where one wishes to determine the effects
of a specific perturbation in neurons separately from astrocytes, for example. Another
advantage of GEFB-based approaches is that they allow continuous data to be sourced
from a single culture, thereby providing a temporal quantitation of cell changes from the
same culture, ablating the need for multiple, cell-destructive end-point assays (Table 1).
This is advantageous as it involves a high spatiotemporal resolution of cellular processes in
specific culture mediums/treatment conditions, high data output, and less labour/time,
and reduces the culture heterogeneity when compared to other methods that involve cell
lysis or fixation, necessitating multiple cultures for collecting data from each timepoint.
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Table 1. Comparative analysis of other methods to GEFBs.

Technique Example(s) Advantages Disadvantages Compared to GEFBs Reference

Specialised
analytical
devices

Seahorse XF HS Mini
Analyzer (Agilent);

Multi-electrode arrays

Allows for real-time
data acquisition and

continuous monitoring.

Usually, samples small areas near the
sensor and measurements are indirect

calculations. Does not allow for
visualisation of

cellular compartments.

[24,25]

Endpoint assay
Many cell-based assay

kits from various
companies

Quantitative
measurements,

high-throughput, with
convenient and

economic kits available.

Does not allow for continuous high
spatiotemporal visualisation in living

cells or tracking at
single-cell resolution.

[26,27]

Organic dyes Calcium indicators
(e.g., FURA-2)

Quick to use; little
preparation needed.

Relatively more invasive,
long-exposure can lead to

accumulated toxicity. Extended
excitation can lead to more

photobleaching. Short-term imaging.
Dye leakage significantly contributes

to accuracy. Difficulty monitoring
activity in specific cell types and

specific subcellular compartments.

[28,29]

Fluorescent pH
probes

HPTS, SNARF-1,
Lysotracker

High spatiotemporal
resolution, long-term

fluorescent and
structural stability.

Difficulty in penetrating the cell
membrane, and targeting methods to
subcellular locations can perturb the

cell and affect pH in the long run. May
exhibit rapid photobleaching.

[30,31]

These advantages of GEFBs make them particularly well-suited tools for investigating
pathological mechanisms in human cell-based models of neurodegenerative diseases. For
example, iPSCs can be edited using CRISPR/Cas technology, allowing for the generation
of disease-causing mutations and reversion to a consensus sequence to generate isogenic
models of the genetic disease or to model the genetic risk of disease (e.g., APOE4 and risk of
AD) [32–35]. Furthermore, GEFBs would be powerful tools for evaluating the pre-clinical
safety of emerging small molecular and genetic therapies before progressing to clinical
trial [36–38].

3. GEFB Designs

GEFB technology offers innovative ways to measure various cellular interests; how-
ever, the development of novel GEFBs is time-intensive due to the need for rigorous testing
and optimisation to ensure sensitivity and specificity for the targeted analyte [39,40]. The
ease of use, kinetics, signal location, spectral overlap, and quantification need to be consid-
ered [41]. There is a range of GEFBs published in the literature and available from academic
repositories (Table 2), including sensors for many processes and analytes relevant to neuro-
science and neurodegenerative disease. Here, we briefly discuss various GEFBs designs
most commonly used, which can be grouped into eight main categories [11], and highlight
how they have been or could be useful to advance the knowledge of neurodegeneration.
There are of course many additional GEFBs reported in the literature that enable the quan-
titation of other analytes and activities, and readers are pointed to reviews (e.g., [10,11])
that focus more broadly on GEFBs and that include a discussion of optimisation for many
GEFB designs.
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Table 2. Selected GEFBs relevant to neurodegenerative disease.

Design GEFB Sensing FP Reference Addgene Plasmid
Number

Turnover and
translocation of FP GFP-LC3-RFP-LC3∆F Autophagy GFP and RFP [42] 84572

Turnover and
translocation of FP NLS-tdTomato-NES Nucleocytoplasmic

transport defects tdTomato [43] 112579

FRET LSSmOrange-DEVD-
mKate2 Caspase 3 LSSmOrange and

mKate2 [44] 37132

FRET FLIPT Thiamine CFP and YFP [45] N.A. *

BiFC Tau-BiFC Tau–tau interaction Venus [46] N.A. *

cpFP GACh2.0 Acetylcholine cpGFP [47] 106073

cpFP MatryoshCaMP6s Calcium signalling LSSmOrange and
cpEGFP [48] 100025

cpFP GRABDA Dopamine cpEGFP [49] 113050 and 113049

cpFP iGABASnFR GABA cpSFGFP [50] 112176

cpFP iGluSnFR Glutamate cpGFP [51] 41732

cpFP GRABNE1M Norepinephrine cpEGFP [52] 123309 and 123308

cpFP iSeroSnFR Serotonin cpSFGFP [53] 128484

Oxidation-
dependent MitoTimer Mitochondrial

health GFP and DsRed1 [54] 52659

Ion-sensitive RpH-LAMP1-3xFLAG Lysosomal pH pHlourin and
mCherry [55] 163018

* N.A. = not available from AddGene at time of writing.

3.1. Turnover and Translocation-Based GEFBs

The translocation of proteins from one compartment to another is central to cell
homeostasis. One specific form of protein translocation, nucleocytoplasmic transport, is
well-documented to be disrupted in some neurodegenerative diseases and involves the
altered subcellular localisation of nuclear transcription factors and related proteins [56,57].
Nucleocytoplasmic transport activity can be quantified using the NLS-tdTomato-NES
GEFB [43], which involves tdTomato fluorescent protein with an N-terminal nuclear locali-
sation signal (NLS) and a C-terminal nuclear export signal (NES). This GEFB makes use of
fluorescence recovery after photobleaching (FRAP), wherein a small region within a larger
volume (i.e., cell nucleus) is illuminated for a short period at a high laser intensity, causing
the photobleaching of NLS-tdTomato-NES, which is recovered through the diffusion of
unbleached NLS-tdTomato-NES into the region of interest [58,59]. When nucleocytoplasmic
transport is disrupted, there is a reduced nuclear localisation of unbleached NLS-tdTomato-
NES (Figure 1A). NLS-tdTomato-NES has been useful for nucleocytoplasmic transport
defects in models of ALS [43,60,61], deficient nuclear import in a model of HD [62], im-
paired nuclear import in a model of AD [63], and for showing that the global disruption
of nucleocytoplasmic transport is not observed in models of spinal and bulbar muscular
atrophy [64].

3.2. FRET-Based GEFBs

Fluorescence resonance energy transfer (FRET) GEFBs (Figure 1B) utilise two or more
FPs that enable a shift in fluorescence from one fluorophore to another when the analyte
of interest is bound to the sensor, producing a shift in the fluorescence emission spectrum
that can be quantified [65–67]. Fluorescent indicator protein for thiamine (FLIPT) is a FRET-
based GEFB consisting of thiamine binding protein sandwiched between cyan fluorescent
protein and yellow fluorescent protein for the measurement of thiamine [45]. A recent
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study found a decreased protein content of SLC19A3 (or thiamine transporter-2, ThTr2)
and decreased thiamine in the cerebrospinal fluid (CSF) of HD patients [68]. Thiamine is
an essential vitamin that plays a key role in maintaining brain function, including but not
limited to: glucose metabolism, neuronal membrane conductance, and signal transmission,
as well as nerve tissue repair [69]. Thiamine deficiency may be due to a multitude of reasons,
such as malnutrition, gastrointestinal disorders, and chronic alcoholism [70–72], and leads
to impaired energy metabolism due to mitochondrial dysfunction in focal regions of the
brain, resulting in cerebral vulnerability [73]. High-dose biotin and thiamine treatment has
been shown to ameliorate neuropathology in HD and biotin–thiamine-responsive basal
ganglia disease [68,74]. FLIPT would prove to be a useful non-invasive real-time monitoring
tool of thiamine in HD models. Moreover, FLIPT may be used to investigate thiamine
deficiency’s role in astrocyte and synapse dysfunction [75–77] in neurodegeneration.

3.3. Dimerisation-Dependent GEFBs

Dimerisation-dependent GEFBs (Figure 1C) involve a pair of non-fluorescing FP-
derived monomers (copy A and B); copy A contains a quenched chromophore and copy B
does not, although it serves to considerably increase the fluorescence of copy A upon AB
heterodimer formation [78]. The AB heterodimer may be the starting point, fused together
by a protease cleavable linker, with nonfluorescence therefore reporting the activity of a
specific protease [79]. Dimerisation-dependent GEFB designs have previously been utilised
for real-time monitoring applications of phosphoinositide (PI) signaling [80]. The diverse
role of PIs in various processes such as signal transduction, membrane trafficking, and
the regulation of the cytoskeleton make them important targets for furthering knowledge
of their associations in disease, particularly the early-onset of AD associated with Down
syndrome [81,82].

A second type of dimerisation-dependent GEFB uses biomolecular fluorescence com-
plementation (BiFC), involving two non-fluorescent components that, when combined,
fluoresce; however, unlike the design just discussed, each component is derived from a
single FP (Figure 1D). As a result, two fragments from a single FP are each conjugated to
proteins of interest and, when reconstituted, either via a protein/protein interaction or by
an intermediary [83], are able to fluoresce. This design has been useful in generating BiFC
GEFBs for detecting TAU aggregation [46] and alpha-synuclein cell-to-cell transmission [84].
In TAU-BiFC, full-length human TAU was fused to the N-terminal fragment of Venus and
the C-terminal fragment of Venus. Under basal conditions, TAU-BiFC showed that the ma-
jority of TAU proteins exist as monomers, with cells exhibiting little fluorescence; however,
chemically induced tau hyperphosphorylation increased the fluorescence intensity, there-
fore indicating higher TAU-TAU interactions. The alpha-synuclein cell-to-cell transmission
GEFB also makes use of the Venus-based BiFC system. In this instance, however, one cell
line stably expresses human alpha-synuclein conjugated to the Venus N-terminal fragment
whereas another cell line stably expresses human alpha-synuclein conjugated to the Venus
C-terminal fragment. In this way, the reconstitution of each fragment can only be visualised
via the transmission of either fragment from one cell line to the other. It should, however,
be noted that, when using GEFBs for studying protein–protein interactions, analysis should
be accompanied by biochemical characterisation with complementary techniques [85].

3.4. cpFP GEFBs

The advent of circularly permuted (cp) FP has enabled the generation of another
class of GEFBs, with the detection of analytes occurring as a result of the FP modification.
In cpFP, the N- and C- termini are connected via a peptide linker that allows for a new
terminus to be formed near the chromophore. In contrast to FP, cpFP has a diminished
fluorescence intensity due to weak folding near the chromophore [11]; however, upon
ligand binding, a conformational change in the sensory domain produces a measurable
enhancement in the fluorescent intensity of the cpFP (Figure 1E) [86]. This concept has
been extended using superfolder GFP (sfGFP), a modified GFP with an improved tolerance
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to circular permutation, increased thermodynamic stability, improved folding kinetics, and
greater resistance to chemical denaturants [87,88]. In addition, through the introduction
of chromophore-modifying mutations to change emission wavelengths, the GEFB could
be altered to blue, cyan, and yellow for multi-colour imaging experiments [88,89]. Cur-
rently, this design has been successfully implemented in detecting calcium and multiple
neurotransmitters, including glutamate, GABA, serotonin, dopamine, acetylcholine, and
norepinephrine [47,49–53,90]. Neurotransmitter imbalances are common in neurodegener-
ation, notably the glutamatergic/GABAergic imbalance associated with excitotoxicity in
AD, HD, and PD [91–93], as well as traumatic brain injury, a risk factor for neurodegenera-
tion [94,95].

3.5. Oxidation-Dependent GEFBs

Another design strategy for GEFB is via a fluorescent timer [96]. For example, DsRed
mutant (DsRed-E5) exhibits a green-to-red conversion over time following oxidation (dehy-
drogenation) of the Tyr-67 residue [54,97], thus proving useful for analysing time-dependent
changes in the redox state (Figure 1F). A previous utilisation of this design includes Mi-
toTimer [54], used to assess mitochondrial health. MitoTimer exhibits a GFP targeted to
the mitochondria that shifts irreversibly to red upon oxidation. A significant shift towards
red fluorescence, accompanied by an accumulation of red fluorescent puncta, signals mi-
tochondrial stress and therefore would be useful in assessing mitochondrial dysfunction
in neurodegeneration [98]. For example, MitoTimer has been used for investigating how
excess alpha-synuclein affects mitochondrial homeostasis in PD [99].

3.6. Ion-Sensitive GEFBs

Ion-sensitive GEFBs are able to sense ionic changes (Figure 1G), including pH, using
pH-sensitive FPs [30,55,100], a feature ideal for studying lysosome biology. Lysosomes are
acidic organelles responsible for the degradation of both extracellular and intracellular
macromolecules from endocytosis and autophagy, respectively [101]. Lysosomal storage
disorders (LSDs) are characterised by lysosomal dysfunction and consist of over 70 diseases,
most having a progressive neurodegenerative clinical course [102]. The lysosomal localised,
pH-sensitive GEFB, RpH-LAMP1-3xFLAG, allows for the visualisation and measurement
of intra-lysosomal pH, and, due to the presence of a FLAG tag, enables the isolation of
lysosomes for subsequent analyses. Lysosomal acidification defects are implicated in the
aetiology of LSDs and dementias [103–106] and are an important target for the treatment of
these diseases [107]. pH-sensitive FPs are also useful for reporting events such as vesicle
docking and fusion [108], and may be applicable to investigate the functions of acid-sensing
ion channels that are widely expressed in the human brain, where its activation via acidosis
may lead to neurodegeneration [109,110] by predisposing individuals to amyloid beta
(Aβ) aggregation or inflammation [111]. These pH-sensitive GEFBs would therefore suit
investigating differences in enzymatic activity or cellular processes associated with acidosis.

3.7. Photo-Transformable GEFBs

Other FP properties, such as those in PA-GFP [112], mEos [113], or Dronpa [114],
allow for GEFBs to be photoactivatable (Figure 1H), photoconvertible, or photoswitchable,
respectively. These collective properties have been termed photo-transformable probes
and are gaining traction for studying neuronal structure, connectivity, and function [115].
PA-GFP for example, has been used for neural tracing [116] and the measurement of protein
diffusion across cellular compartments [117]. Attaching PA-GFP to a protein localisation
signal for a particular organelle allows for the quantitation of intracellular protein trafficking
between membranes [112,118]. Moreover, there is also a photoswitchable GEFB for the deep-
tissue monitoring of cells, RpBphP1 [119], and photoactivatable Optopatch3, a genetically
encoded voltage indicator [120].
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4. Leveraging GEFB and iPSC Technologies for Pre-Clinical Applications

As described above, the aetiology of neurodegenerative diseases varies considerably,
and there is much that remains unknown about how genetic and environmental factors,
either singularly or in combination, prime cells for neurodegeneration. Whilst technolo-
gies such as CRISPR/Cas gene editing have made modelling genetic variants relatively
straightforward [121,122], not all environmental factors will be able to be modelled using
iPSC-derived cell types. However, there are many where such an approach is possible and
is likely to provide new clues regarding neurodegenerative mechanisms. In this section,
we will describe approaches to how GEFBs and iPSCs can be used in combination to
better understand neurodegenerative mechanisms, test for the pre-clinical toxicity of novel
therapies, and identify lead molecules in screening applications. It is important to note
here that whilst we discuss the applications of GEFBs to pre-clinical research in discrete
sections, there is significant potential for overlap in the experimental design, especially
with regard to gene–environment interactions (Figure 2).
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4.1. Industrial and Lifestyle Exposures

One of the most immediate uses of GEFBs in iPSC-derived cell types is for investigating
the effects of exogenous agents, and, in particular, the multitude of neurotoxic industrial
and agricultural chemicals, antineoplastic and illicit drugs, and more widespread exposures,
such as cigarette smoking, air pollution, or bushfire smoke [123]. Most of these agents
are amenable to high-throughput applications, and thus quantifying the concentration
and time of exposure effects of each using GEFBs on specific cell functions is relatively
straightforward. Such an experiment would be expected to produce baseline data for use
in subsequent experiments focused on mitigating the toxic effects. Other exposures, such
as pathogens, are likely to require more sophisticated experimental designs to overcome,
for example, the potential for bacterial growth when seeded into the iPSC-derived cultures.

4.1.1. Pesticides

Although used as insecticides, herbicides, and fungicides, some pesticides present
significant risks for neurodegenerative diseases in people. For example, chronic exposure to
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non-toxic levels of organophosphate pesticides such as tri-o-cresyl-phosphate, chlorpyrifos,
and triphenyl phosphite are considered risk factors for ALS [124–127]. Indeed, people
exposed to acute, higher levels of organophosphate pesticides acquire a condition called
organophosphate-induced delayed neuropathy, which has many pathological similarities
to ALS [128]. Other pesticides, such as paraquat and rotenone, are associated with PD [129].

Some agents have well-described modes of action. Rotenone, for example, inhibits
the mitochondrial respiratory chain, leading to the production of reactive oxygen species
via the release of inflammatory cytokines and autophagy inhibition [130–132]. However,
the cellular consequences of many other pesticides have not been as extensively studied.
A further understanding of how these pesticides affect brain cell types and elicit changes
associated with neurodegenerative disease may yield new clues about disease mecha-
nisms. Such studies could include quantifying the impact of specific pesticides on cell
functions known to be disrupted in neurodegenerative disease, such as autophagy and
mitochondrial health.

iPSC-derived models of the blood–brain barrier (BBB) are also relevant to studying
the contribution of pollutants to neurodegeneration. The BBB functions to prevent toxic
substances entering the brain from the blood, filter harmful compounds from the brain
to the blood, and supply the brain with nutrients [133]. Compromised BBB integrity may
arise from pathogens, diesel exhaust inhalation, and diet via microglial activation and
excitotoxic mechanisms that increase BBB permeability [134–136].

4.1.2. Chemotherapy-Induced Peripheral Neuropathy

One of the most frequent side effects of antineoplastic drugs is CIPN, with the avail-
ability of treatments for this syndrome being very limited. This debilitating condition
often presents in a ‘socks and gloves’ manner due to drug-induced neurotoxicity in the
sensory neurons of dorsal root ganglia, such that the feet and hands are affected by pain and
numbness [137–139]. Complicating our understanding of CIPN, and developing treatments
for CIPN, is that different antineoplastic agents used for specific cancers have different
mechanisms of action [140,141]. Although molecular mechanisms of CIPN are incompletely
understood, common pathogenic mechanisms include altered calcium homeostasis and
mitochondrial dysfunction [140], two parameters for which GEFBs have been characterised
(Table 2). Thus, a toxicity screen testing different antineoplastic drugs on iPSC-derived
neurons expressing these GEFBs could help to identify sensitivity thresholds for drug
concentration or the duration of exposure. A subsequent molecular analysis of cells ex-
posed to antineoplastic agents at the threshold may identify biomarkers of CIPN or reveal
pathways critical to preserving the neuron structure or function. With regard to the latter,
preventative treatments that are currently undergoing trial or have demonstrated a reduced
frequency and intensity of CIPN include oral cannabidiol, lithium, and zinc [142–144],
which could be pre-administered as part of combinatorial therapy.

4.1.3. Pathogens and Pathogen-Derived Toxins

Multiple pathogens, including bacteria, viruses, fungi, and parasites, have been impli-
cated in neurodegenerative diseases [145–150], ultimately contributing to disease pathology
via neuroinflammation and other mechanisms. Recently, it has been shown that Toxoplasma
gondii (T. gondii) has pathologically conserved mechanisms of infection in iPSC-derived
glutamatergic neurons [151]. Infection with T. gondii is capable of causing signs of AD
and has demonstrated an induction of Aβ immunoreactivity, hyperphosphorylated tau,
elevated glutamate, autophagy, mitochondrial damage, and neuronal death [152–155]. The
replication of these pathological mechanisms using GEFB expressed in iPSC-derived neural
lineages would further elucidate the significant pathological mechanisms, especially as
seroprevalence (the frequency of individuals in a population who test positive for T. gondii
antibodies based on blood serum) is global and rates are reported anywhere from 0.5% to
as high as 87.7% in some geographical regions [156–160].
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Although less established as a risk factor than pesticides, exposure to cyanotoxins
from cyanobacteria present in both aquatic and terrestrial ecosystems [161] may increase
the risk for ALS [162], as well as other neurodegenerative diseases [163]. As with pesticides,
cyanotoxin exposure causes a neurodegenerative condition in people that has features in
common with ALS, including TDP-43 inclusions [163,164]. There are several molecules that
may mediate these effects, including L-BMAA and its isomers 2,4-DAB and AEG [165], all
of which are non-standard amino acids. L-BMAA is the most characterised of these and
may act as an excitotoxin on AMPA/kainate receptors [166], but also may impart toxicity
via incorporation into proteins [167,168]. How 2,4-DAB and AEG exert a neurotoxic effect,
and if this differs from that of L-BMAA, is not yet established, but there is evidence that
these are toxic to neural stem cells and that 2,4-DAB is the most potent neurotoxin [163].
Using iPSC-derived neural cells that express a range of GEFBs will add to our under-
standing of how cyanotoxins are neurotoxic and may provide insight into mechanisms
of neurodegeneration.

4.2. Genetics

Molecular genetics has advanced our understanding of aetiology and risk of develop-
ing neurodegenerative disease. Whilst advances in genetic technologies have accelerated
identifying causal or predisposing risk variants, there remains a bottleneck associated with
defining how each variant affects the biology of affected cell types. This is especially evi-
dent for ubiquitously expressed genes, such as those associated with multi-tissue diseases
such as neuronal ceroid lipofuscinosis (Batten disease), where the brain and eyes can be
affected [169].

4.2.1. Isogenic Disease Models

The generation of human isogenic disease models allows for the in vitro culturing of
two populations of cells that have a shared genetic background, but which differ at disease-
associated loci. This provides a means to minimise the effect of gene variants inherent to
distinct donors that may otherwise have a significant influence on disease-relevant cell
phenotypes. Recent years have seen CRISPR/Cas technology become widely used for
this purpose, and there are now many examples of isogenic models of neurodegenerative
disease in the literature [170–172]. Large-scale projects combining CRISPR/Cas and iPSC
technology, such as that of the Neurodegenerative Disease Initiative (iNDI), are produc-
ing dozens of isogenic cell lines modelling many variants associated with age-related
neurodegenerative diseases [173,174].

Used in tandem with GEFBs, isogenic iPSC-derived cell types would enable unique
comparisons between cells with or without pathological variants, offering a novel insight
into disease progression. Such an approach may be particularly useful for gene mutations of
unknown effects, such as private mutations seen in many families that cause rare and ultra-
rare diseases or variants of uncertain significance (VUS), to ascertain whether they impact
known targets to a greater or lesser extent than more prevalent variants. For example, in a
Belgian AD cohort, a patient carried the VUS PSEN1 p.P355S and APP p.G625_S628del, with
limited knowledge of how these specific mutations in causal genes interact [175]. Such data
are likely to be important for precision medicine applications, where knowledge of variant
effects is needed to predict the safety and outcome of emerging therapeutic strategies.
However, this approach relies on prior knowledge of which pathway(s) a specific disease-
associated gene functions in and the availability of an appropriate GEFB, and therefore will
not be a suitable approach for all gene variants associated with neurodegeneration.

4.2.2. CRISPR-Based Genetic Screens

Where gene function is not well understood, an alternative approach would be to
screen the effects of gene perturbation in a targeted manner using iPSC-derived cell types
expressing a specific GEFB. This concept has been used to investigate C9ORF72 repeat
expansion’s role in nucleocytoplasmic transport disruption using ALS patient iPSC-derived
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neurons; a reduced nuclear recovery of NLS-tdTomato-NES was observed in C9-ALS
neurons compared to control lines [43]. Further expanding on this concept, researchers
could investigate subtle or significant differences between different pathogenic alleles or
gene–gene interactions that may additively or synergistically increase the disease risk. For
example, rare variants of high-to-intermediate penetrance, in combination with common
risk variants, may contribute to the genetic complexity of neurodegenerative diseases
and lead to less/more severe disease phenotypes [176]. An area of particular interest
would be furthering the knowledge of common variants and VUS that may interplay
between different cell types, such as neurons and glia. Rare variants in microglia-expressed
TREM2 have been associated with an increased risk of AD by two to four-fold, whilst
other variants reduce microglia-mediated neurodegeneration [177]. Understanding the
genetic complexities driving pathogenicity across different brain cell populations will help
to develop more informed combinatorial therapies.

4.3. Cell–Cell and Cell–Environment Interactions

For many neurodegenerative diseases, cell types other than neurons are involved in the
pathological process and, in some instances, may be the primary trigger for the disease. For
example, vanishing white matter disease is one of many astrocytopathies wherein astrocytes
play a central role in driving brain pathology [178,179]. Relatedly, there is potential for the
transmission of pathology from affected cells, as seen in prion diseases [180]. Thus, there
are clearly cell-autonomous and non-cell-autonomous mechanisms of neurodegeneration
that occur in specific disease contexts, which remains an important issue to resolve because
it may be that different interventions are needed for diverse cell types. For example, CLN3
disease, one form of neuronal ceroid lipofuscinosis, is caused by variants in the ubiquitously
expressed CLN3 gene [181]. CLN3 is expressed in neurons, astrocytes, and microglia, with
each cell type exhibiting pathology [182–184]. Therefore, neurons in CLN3 disease may
(i) be intrinsically vulnerable to CLN3 variants, (ii) have an altered ability to respond to
signals from glial cells, or (iii) be directly impacted by disease-promoting actions caused by
CLN3 mutation effects in glial cells. It may also be that these scenarios combine in a yet
undefined manner to promote neurodegeneration.

Here, we will highlight how GEFBs expressed in iPSC-derived cell types could be
used to explore non-cell autonomous contributions arising from astrocytes and microglia to
cause the degeneration of neurons. There are, of course, other cell–cell interactions relevant
to neurodegeneration, such as those acting between cell types of the blood–brain barrier,
which is beyond the scope of this review, but we note that iPSC-derived cell types expressing
GEFBs can provide valuable information in paradigms beyond glial–neuron interactions.

4.3.1. Neuroinflammation

Astrocytes and microglia have neuroprotective functions through the provision of
trophic factors and removal of waste products; however, each of these cell types may acquire
a pro-degenerative phenotype that can drive neurodegeneration. These pro-degenerative
‘reactive’ astrocytes and microglia are found in post-mortem tissue of many neurodegenera-
tive diseases [185–188]. Neuroinflammation is the production by reactive astrocytes and/or
microglia of pro-inflammatory mediators such as reactive oxygen species (ROS), cytokines,
chemokines, and secondary messengers, which have a detrimental effect on neuronal
viability and a central role in the pathophysiology of neurodegenerative diseases [189,190].

The contribution of non-neuronal cells to neurodegeneration can be explored using
GEFB-expressing iPSC-derived cell types. In particular, the co-culture of neuronal and
non-neuronal cells provides an opportunity to examine activities of specific pathways
occurring in specific cell types (see also the discussion of Challenges and Caveats with
using GEFBs below). One example of where this could be applied is to resolve the pro-
neurodegenerative mechanism of alpha-synuclein in PD. Alpha-synuclein can act as a
pro-inflammatory stressor that upregulates protein kinase C delta (PKCδ) in microglia,
leading to the activation of NFκB, subsequent neuroinflammation, and dopaminergic
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neurodegeneration [191,192]. However, it is debated whether endogenous alpha-synuclein
expressed by microglia triggers glial pathogeneses and phagocytic exhaustion, leading to
neurodegeneration, or if neuronally derived alpha-synuclein accumulation is sufficient to
cause PD [193,194]. Using a variety of different GEFBs, including those available to monitor
autophagy and mitochondria dysfunction that are known to be impaired in PD [194,195], it
would be possible to assess how microglia co-cultured with a healthy control or with PD
iPSC-derived neurons impact cell health.

4.3.2. Neurotransmitter Clearance, Hyperexcitability, and Excitotoxicity

Pathogenic events involving the dysregulation of neurotransmitters have been impli-
cated in neurodegeneration. In PD, an in vivo study has shown that chronic unregulated
cytosolic dopamine alone is enough to cause neurodegeneration [196]. Glutamate is an
excitatory neurotransmitter implicated in the regulation of neurogenesis, synaptogenesis,
memory, and neuronal plasticity [197–200]. This is especially true of the action of glutamate
at synaptic NMDARs; however, glutamate activity at extrasynaptic NMDARs can lead
to neurotoxicity and cell death [201–203]. Extrasynaptic NMDARs have been found to
often be concentrated at points of contact with adjacent processes such as axons, axon
terminals, and glia [204]. Similar to NMDARs, the overactivation of AMPA receptors
induces excitotoxicity and is a target for future neuroprotective drugs [205]. Experimentally,
R-iGluSnFR1, a red fluorescent indicator alternative to iGluSnFR, created via the replace-
ment of cpEGFP with cpmApple [206], could be utilised in neurons exhibiting excitotoxic
pathological features. In addition, a co-culture with iGluSnFR astrocytes and microglia
would help to visualise loss of homeostatic function in glia [207], when exposed to various
pathological hallmarks such as alpha-synuclein oligomers [208]. Glutamate dynamics mon-
itored in real-time using fluorescent imaging could then be juxtaposed upon the targeted
delivery of exosomes expressing beneficial microRNA, e.g., miR-124-3p and antioxidants
such as catalase [209–213]. A further characterisation of this targeted therapy could also be
performed using multielectrode array analysis.

Microglia may also contribute to excitotoxicity: in sporadic ALS, it has been found
that microglia release glutamate into the extracellular space in response to soluble iron
accumulation in the spinal cord [185,214–216]. Intriguingly, a form of neurodegeneration
with brain iron accumulation (NBIA)—pantothenate kinase-associated neurodegeneration
(PKAN) [217]—has characteristic iron accumulation mainly in the globus pallidus. PKAN
exhibits cognitive decline and dementia, which are are features of NBIA, with psychiatric
and behavioural symptoms resembling frontotemporal dementia, and motor symptoms
presenting a clinical mimicry of ALS [218,219]. Excess glutamate would overstimulate
glutamate receptors on neurons, leading to the dysregulation of intracellular calcium
homeostasis, aberrant organelle function, elevated nitric oxide and free radicals, and
activation of proteases and kinases, as well as pro-death transcription factors [220]. Given
the association between iron accumulation and microglial glutamate release, it would be
interesting to investigate the role of other heavy metals that have been associated with
dyshomeostasis and as environmental neurotoxicants in ALS [221,222].

4.3.3. Amyloid and Amyloid Plaques

The accumulation of amyloid plaques is considered a hallmark of AD, with many
recent clinical trials seeking to reduce the plaque load using immunotherapy [223,224].
However, that plaque removal may not improve clinical scores and that plaques are also
observed in healthy individuals imply that a more detailed understanding of the cellular
consequences of exposure to amyloid oligomers and plaques is needed [225]. Recent
studies have sought to define how different forms of amyloid affect iPSC-derived neurons
more clearly, revealing an increased vulnerability of cells carrying familial AD-causing
gene variants [226]. Others have reported transcriptomic [227], proteomic [228], and
electrophysiological [229] changes in iPSC-derived neurons when exposed to oligomeric
amyloid. Similar experimental paradigms using iPSC-derived cell types expressing GEFBs
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will further refine what is known about how amyloid affects not only the neuron function
but also other brain cell types, such as microglia, that are implicated in amyloid plaque
clearance [230].

4.4. Development and Testing of Novel Therapeutics

Using iPSCs for neurodegenerative disease modelling allows researchers to model
Mendelian and complex human genetic signatures, with derived cell types retaining disease-
associated phenotypes. That this can be performed using standardised conditions with
good reproducibility makes iPSCs well-suited for therapeutic screening using GEFBs to
report disease-relevant cellular responses [231].

The real-time monitoring of various neural lineages and specific cellular compartments,
with a single-cell resolution and avoidance of false-positives from a low drug bioavailability
(in vivo experiments), gives several advantages for utilising GEFB for drug screening [232].
Cell seeding into multiwell tissue culture plates, drug-culture medium distribution, and
automated fluorescent imaging are also highly flexible and scalable, allowing for the
accelerated development of clinically relevant data from in vitro iPSC-derived cells that
are patient-specific [233]. Demonstrable beneficial effects in vitro are a bottleneck that
GEFB ameliorates via high-throughput screening so that a reduction in in vivo models
is achieved. Fluorescent assays are also less time and labor-intensive than radiolabeling
and immunochemical staining [232]. Moreover, in some GEFB drug screen applications
where a high resolution is not needed, a fluorescence microplate reader can be utilised to
ascertain EC50 or IC50 values. Various GEFB approaches have shown great utility in drug
discovery [232], including the use of an automated high-throughput calcium imaging assay
with FRET-based calcium indicator, Yellow Cameleon 3.6, to screen compounds capable
of treating endoplasmic reticulum calcium homeostasis disruption linked to familial AD,
mutant PSEN1 [234].

Patient-specific iPSC-derived neuronal cells can be used for assessing cell-based traits
associated with disease-related mutations. Previously, an open-source cloud-based image
processing and analysis platform (CELLXPEDITE) was used to screen compounds that re-
vert the multiparametric disease profile of ALS back to that of healthy motor neurons [235].
This is advantageous when compared to the unidimensional characterisation of other
screening methods for diseases such as ALS [236], as it allows for a simultaneous mea-
surement of multiple parameters that would be more reflective of a complex disease. The
CELLXPEDITE platform is available for neuroscience applications wherein iPSC-derived
neurons, fluorescent reporters, high-throughput live cell imaging data, and potential drugs
are used to assess even subtle activity perturbations and identify therapeutics that revert
these disease phenotypes to that of healthy cells. Used in conjunction with a calcium
GEFB, the platform was able to compensate for imaging artefacts, execute photobleaching
corrections, identify single neurons, and extract and de-noise calcium transients [235]. Such
a platform paves the way for identifying novel therapeutic molecules for the treatment of
genetically perturbed and multifaceted neurodegenerative diseases.

5. Challenges and Caveats of Using GEFBs

The main challenges to the wide-spread characterisation and adoption of GEFB-based
iPSC models are the development of novel GEFBs that increase the range of pathways and
analyses that can be quantified, improvement of multiplexing abilities, and availability of
deep learning tools for high-throughput screening. Of these, the multiplexing of GEFBs
and image analysis tools are of relevance regardless of which GEFBs are used, and advance-
ments in each of these areas have been made, broadening the applicability of GEFBs to
neurodegenerative disease research.

Multiplexing different GEFBs has been difficult due to the spectral overlap that can
occur between different FPs used [80,237]. Such experiments are desirable because mapping
whether certain processes happen in parallel or in series will refine our understanding
of neuronal biology. Relatedly, identifying the temporal relationships between different
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perturbations may reveal if one or several interventions are needed to effectively halt
pro-degenerative pathways. Past attempts to multiplex employed near-infrared GEFBs
with common visible FP GEFBs and the generation of single fluorophore GEFB designs to
avoid spectral overlap [238–240]. More recently, a method of ‘barcoding’ cells and using
deep learning for image analysis was developed [241]. This involves labelling cells with
different barcoding proteins, which ultimately consist of various red fluorophores attached
to specific proteins with discrete subcellular localisations (e.g., nucleus versus cytoplasm;
cell membrane versus cytoplasm; see Figure 3A). The barcoded proteins then enable a
unique identification of cells, which would also express specific GEFBs (Figure 3B–D)
with emission wavelengths between 450 nm and 550 nm (typically cyan-yellow-green
fluorophore-based biosensors). Imaging of the resulting iPSCs or derivative cell types
then enables a discrete identification of cells expressing barcoding proteins based upon the
localisation of fluorescent signals to discrete compartments, which co-express particular
GEFBs. For example, using two barcoding proteins and two GEFBs, four cell populations
are potentially obtainable and able to be distinguished based on fluorescence intensities and
localisations of the exogenous proteins (Figure 3E). For example, if placed under the control
of appropriate promoters, barcoding proteins could be used to label specific neuronal
cell types in genetically homogenous cultures or organoids. Alternatively, barcoding
proteins could be used to label cells of a distinct genotype in pooled cultures, as used
in larger-scale iPSC-based studies, where cell/donor identity is inferred using single-cell
sequencing technologies [242–244], thereby increasing the throughput, decreasing the cost,
and minimising potential artefacts from handling multiple cultures in parallel.
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Figure 3. Overview of GEFB and barcoding protein knock-in to iPSCs for attaining multiplexed
biosensor cell populations. iPSCs are modified to express barcoding proteins (A) or GEFBs (B) in
pre-defined combinations, which following standard quality control steps for gene edited pluripotent
stem cells (C), yielding cell populations for downstream experimentation (D). Imaging of barcoding
proteins and GEFBs in iPSC-derived cell types can produce distinct patterns of fluorescence intensity
and localization (E).

Barcoding proteins potentially allow for a live-cell recording of GEFB-based mea-
sures in different cell populations, utilizing, for example, pooled cultures of barcoded
neurons, where cell identities are inferred via the unmixing of cells expressing discrete
protein barcodes in images obtained using fluorescent microscopy (Figure 4A), enabling a
quantitation of GEFB-based assays in each cell population (Figure 4B). Such models would
enable the quantitation of changes occurring in cells of one genotype compared to another,
or could, for example, assess how genotypes influence susceptibility to neurotoxins or
other insults [245,246]. For example, using the four cell populations defined in Figure 3
and assuming that the localisation of red-fluorescent barcoding proteins represents the
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genotype, from one pooled culture, it is theoretically possible to determine that, over time,
the genotype influences one GEFB responsive to a specific analyte or process, but not the
other. Other approaches could include the perturbation of homeostasis in defined cell types,
such as astrocytes that are co-cultured with neurons expressing GEFBs, or cultures where
pooled cells of the same genotype are exposed to the same stimulus (for examples, see
Figure 2) but express different GEFBs, thereby enabling the acquisition of multiple readouts
from a single culture.
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plexed cultures. In pooled cultures of neurons expressing barcoding proteins and GEFBs, barcoding
protein expression would remain stable over time, whereas GEFB expression changes (A). Quantita-
tion of GEFB imaging can reveal changes occurring at different or the same rate in specific barcoded
cell populations (B).

In addition to the considerations relating to each specific GEFB, a major drawback of
this approach is the number of discrete genetic modifications needed to generate libraries
of barcoded iPSC lines that also express specific GEFBs; each cell line to be used requires
two manipulations: one to barcode the cell line and one to deliver the GEFB. Clearly then,
such models will only be developed with specific goals in mind, and will likely need to
be developed for each specific application. A second limitation for GEFBs is that they rely
on the expression of an exogenous protein, often of a considerable molecular weight, and
potentially at a level that impacts negatively on cell homeostasis. Thus, for each GEFB, it
is imperative to implement a considered approach that compares the engineered cells to
those of the parental cell line, and that, where possible, employs positive control reagents
to confirm similar responses between them. This may include comparisons of canonical
cell functions, such as using electrophysiology for neuronal activity, glutamate clearance
by astrocytes, and phagocytosis by microglia. For organelle-specific GEFBs such as those
targeted to lysosomes or mitochondria, ensuring that organelle functions are not perturbed
may also be appropriate. Other useful control experiments could employ small molecule
activators/inhibitors of the pathway(s) being studied to ensure similar kinetics of response,
such as staurosporine to induce apoptosis or rapamycin to induce autophagy.

A further caveat to studying neurodegeneration using GEFBs is that, for some ap-
plications, their use relies on a priori knowledge of which molecules, signaling events,
and pathways are associated with the disease, and thus a limitation of this approach is
that it is biased relative to techniques such as single-cell RNAseq. Relatedly, the choice of
promoter used to control the expression of the GEFB may be a limitation in some experi-
mental designs and should be an early consideration when planning gene-editing steps.
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However, the multitude of GEFBs available [10] could be used in various paradigms (see
Figure 2 and related text) to reveal new associations of particular analytes or signaling
events to specific neurodegenerative disease-associated genes or stressors, thereby seeding
new research directions.

6. Conclusions

The advent of GEFB technology allows us to quantify live-cell spatiotemporal data in
a high-throughput manner, such that sequences of pathological events can be time course
identified and made genetically relevant to any individual using patient-derived iPSC lines.
As neurodegenerative diseases are complex multifactorial enigmas, this combination of
GEFBs and iPSC technology will help to reveal an unseen world and unravel how each
factor interplays with one another. Notwithstanding the limitation of complex and time-
consuming novel GEFB generation, as global research efforts continue to develop and share
designs, the arsenal of investigative tools will lead us to more effective therapies.
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