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Abstract 

Social distancing in public spaces plays a crucial role in controlling or slowing down 

the spread of coronavirus during the COVID-19 pandemic. The Visual Social 

Distancing (VSD) offers an opportunity for real-time measuring and analysing the 

physical distance between pedestrians using surveillance videos in public spaces. It can 

provide evidence for implementing effective prevention measures of the epidemic. The 

existing VSD methods developed in the literature are primarily based on frame-by-

frame pedestrian detection, which addresses the VSD problem from a static and local 

perspective. In this paper, we propose a new online multi-pedestrian tracking approach 

for spatio-temporal trajectory and its application to multi-scale social distancing 

measuring and analysis. Firstly, an online multi-pedestrian tracking method is proposed 

to obtain the trajectories of pedestrians in public spaces, based on hierarchical data 

association. Then, a new VSD method based on sptatio-temporal trajectories is 

proposed. The proposed method not only considers the Euclidean distance between 

tracking objects frame by frame but also takes into account the discrete Fréchet distance 

between trajectories, hence forms a comprehensive solution from both static and 

dynamic, local and holistic perspectives. We evaluated the performance of the proposed 

tracking method using the public dataset MOT16 benchmark. We also collected our 

own pedestrian dataset “SCU-VSD” and designed a multi-scale VSD analysis scheme 

for benchmarking the performance of the social distancing monitoring in the crowd. 

Experiments have demonstrated that the proposed method achieved outstanding 

performance on the analysis of social distancing. 

Keywords: Visual Social Distancing; Hierarchical Data Association; Multi-Pedestrian 

Tracking; Spatio-Temporal Trajectory; Discrete Fréchet Distance; Crowd Gathering 

1. Introduction 

 



The COVID-19 pandemic is ravaging the world, which has sadly caused a significant 

loss to human life, and a great negative impact on society and the economy. On 30 

January 2020, the World Health Organization (WHO) declared that the outbreak of 

COVID-19 constitutes a Public Health Emergency of International Concern (PHEIC) 

[1]. On 6 January 2021, it reported that there have been  84,780,171 confirmed cases 

of COVID-19, including over 1,853,525 deaths globally [2]. The rapid spread of 

COVID-19 is mainly through close contact from people to people, and asymptomatic 

carriers can also spread the virus to others [3]. Due to the high density and mobility of 

the urban population and the complexity of the urban environment, the spread of the 

pandemic has been exacerbated to some extent, which brings to severe challenges to 

construction, governance and sustainable development of cities. 

 

For the epidemic diseases, measures are taken to prevent and control infections include 

vaccination, treatment, quarantine, isolation, and prophylaxis [4]. However, the vaccine 

for COVID-19 has not yet entered the promotion stage, and the more contagious 

coronavirus variant has been detected. In this scenario, one effective way to control or 

slow down the spread of coronavirus is to make sure people maintain social distancing 

in public places. There exists some work in the literature studying the impact of social 

distancing on the progression of the coronavirus [4-7][8][9]. Using Wuhan as a case 

study, Prem et al. [5] stated that physical distancing based non-pharmacological 

interventions have a high potential for flattening the peak of COVID-19 and reducing 

the overall number of cases. Cacciapaglia et al. [7] demonstrated that social distancing 

measures are more efficient than border control in delaying the epidemic peak. Sun et 

al. [8] researched the efficacy of social distancing and ventilation effectiveness in 

preventing COVID-19 transmission. With the current epidemic unlikely to end in the 

short term, keeping a safe social distancing 1  from others in public spaces and 

workplaces is one of the key measures for maintaining a low risk of infection. 

 

In recent years, with the deepening of the concept of “smart sustainable cities” [10][11], 

countries around the world have deeply integrated information technologies with the 

various needs of urban development. In this context, some research work has explored 

ways to prevent and respond to the ongoing COVID-19 pandemic by using urban 

 
1 The World Health Organisation advises maintaining at least 1 metre (3 feet) distance between yourself and others 
(https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public). In this paper, the safe 
distance threshold is set to 2 metres (6 feet). 



infrastructures and emerging technologies [12][13][14][15][16][17], especially in the 

aspect of automatic social distancing monitoring in public places [17][18][19] 

[20][21][22][23][24]. This helps to enhance the resilience and sustainability of cities. 

The construction of smart cities has also resulted in an explosive growth in video data 

taken from public spaces. Compared with other big data utilised in existing researches, 

the video data contains wealthy spatial and temporal information about human. 

Exploiting video data to study and analyse human trajectories can more precisely mine 

human activities in various complex scenes, which is an excellent supplement to non-

visual big data and has unique advantages. Therefore, during the pandemic, it is of great 

theoretical significance and research value to measure and analyse the social distancing 

between pedestrians based on their spatio-temporal trajectories using surveillance 

videos in public places and take appropriate epidemic prevention measures according 

to the crowd gathering situations. This research topic is called Visual Social Distancing 

(VSD), which refers to approaches relying on video cameras and other imaging sensors 

to analyse the proxemic behaviour of people [18]. 

 

In this paper, a new VSD method based on the human spatio-temporal trajectory has 

been proposed to quantify and analyse the social distancing between pedestrians in 

public spaces. The contributions of our work are summarised as follows： 

1) A new hierarchical association based online and real-time multi-pedestrian 

tracking method is proposed to obtain pedestrians’ trajectories, which can 

effectively reduce the number of identity switches while achieving overall 

competitive performance. 

2) A new VSD method based on spatio-temporal trajectories is proposed considering 

both the Euclidean distance between sampling points of trajectories from a local 

perspective and the Fréchet distance between trajectories from a holistic view. 

3) A multi-scale social distancing analysis scheme is proposed, including four 

evaluation metrics, which can evaluate the crowd gathering situation from 

various time scales respectively. 

The rest of the paper is organised as follows. Section 2 gives the related work of VSD 

and multiple-object tracking, xxxxx  

2. Related Work 

2.1 VSD Problem 



Some new research work has been conducted to study the VSD problom for COVID-

19 [18][19][17][20][21][22][23][24]. For instance, Cristani et al. [18] proposed a VSD 

method based on body pose estimation. In each frame, the body pose detector is used 

to detect visible people. In the corresponding bird’s eye view (top view), each detected 

pedestrian is regarded as the centre of the circle, and the safe distance as the radius. 

Then the VSD issue is converted to a sphere collision problem. Yang et al. [20] proposed 

a VSD and critical social density detection system to avoid overcrowding by 

modulating inflow to the region-of-intrest (ROI). Shorfuzzaman et al. [21] used deep 

learning-based object detection models to detect individuals and implement social 

distancing monitoring. The Landing AI Company 2  developed a social distancing 

detection tool by detecting pedestrians in real-time video streams and measuring the 

distance between pedestrians in the corresponding bird’s eye view frames. These 

methods have made some useful contributions to VSD in the pandemic, but most of 

them are based on frame-by-frame pedestrian detection rather than pedestrian tracking 

over a period of time. Although there existed some VSD studies leveraging both 

detection and tracking approaches [23][24], the tracking algorithms in these methods 

were employed for tracking already identified people and assign IDs rather than for 

trajectory-based social distancing measuring. As a consequence, these frame-by-frame 

distance metric based VSD methods fall in the category of detection-based VSD, while 

the proposed VSD method based on spatio-temporal trajectories distance metric is a 

trajectory-based VSD. To the best of our knowledge, this research work is the first 

attempt to address the VSD issue in a dynamic and spatio-temporal manner.  

 

The distinction between the detection-based VSD and the trajectory-based VSD is 

shown in Figure 1. The detection-based VSD detects and calibrates the positions of 

pedestrians, and measures the distance between them frame-by-frame in the bird’s eye 

view. The trajectory-based VSD tracks pedestrians and calibrates trajectories, and 

metrics the distance between corresponding calibrated trajectories in the three-

dimensional spatio-temporal coordinate (adding a time axis t). The detection-based 

VSD method is from a static and local perspective, while the trajectory-based VSD 

method is from a dynamic and spatio-temporal perspective. However, during the 

pandemic, the issue that should be considered is the continuous measurement and 

analysis of social distancing rather than a specific moment. Therefore, it is more 

 
2 https://landing.ai/landing-ai-creates-an-ai-tool-to-help-customers-monitor-social-distancing-in-the-workplace/  



sensible to investigate the VSD problem based on the spatio-temporal trajectory over 

a time period.  

 

 
Figure 1 The Difference between the Detection-Based VSD and the Trajectory-Based VSD 

 

2.2 Multi-Object Tracking 

The Multi-Object Tracking (MOT) is a fundamental research topic in the field of 

computer vision, which is widely applied to smart surveillance, autonomous driving, 

security and other areas. MOT is also an underpinning technique for trajectory-based 

VSD. In recent years, with the dramatical improvement of detectors [25][26][27], 

Tracking-by-Detection [28][29][30][31][32][33] has become the mainstream paradigm 

of the MOT. For Tracking-by-Detection, objects are detected and localised in each 

frame firstly, and then tracking is conducted by using data association to link detections 

into trajectories. Therefore, the tracking performance is highly dependent on the 

performance of the detector and the data association method. Also, MOT can be divided 

into online tracking [28][29][30][31][32][33] and offline tracking [34] [35][36][37]. 

Online tracking refers to data association based only on the past and the current frames, 

while offline tracking refers to data processing by exploiting all the frames or batch 

frames. Because offline tracking methods demand the entire set of videos to be obtained 

in advance, they are less favored by real-time tasks compared to their online 

counterparts.  

 

With regard to online Tracking-by-Detection, the traditional methods include Multiple 

Hypothesis Tracking (MHT) [38], the Joint Probabilistic Data Association Filter 

(JPFAF) [39]. Recently, deep learning based methods enchance the tracking 

performance in complex scences drastically. The Person of Interest (POI) [40] method 
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introducd the high-performance detection and deep learning based appearance feature 

into the context of MOT. Depending on Convolutional Neural Network (CNN) based 

detection, the Simple Online and Realtime Tracking (SORT) [29] method utilised the 

Kalman filter for frame-by-frame prediction and the Hungarian method for data 

association, by calculating intersection-over-union (IOU) distance as the assignment 

cost. The Deep SORT [32] method further introduced deep appearance features and 

motion features on the basis of SORT [29] for assigenmet costs calculation. Also, some 

research work in the literature focuses on researching hierarchical data association to 

improve the reliability of association. Bae et al. [30] proposed a hierarchical association 

method based on the tracklet confidence, which built optimal tracklets by sequentially 

linking tracklets and detections using the high and low confidence association. 

Alshakarji et al. [33] proposed a three-step cascade scheme for efficient data association.  

3. The Proposed Approach 

The proposed approach consists of two main steps: (1) a hierarchical association based 

online multi-pedestrian tracking method to obtain trajectories of pedestrians; (2) a 

trajectory-based social distancing measurement and analysis method to evaluate social 

distancing situations between pedestrians in public spaces. 

3.1 Hierarchical Association Based Online Multi-Pedestrian Tracking 

Considering the real-time requirement of the trajectory-based VSD task, it is 

necessary to design a simple and highly real-time tracking method. Inspired by SORT 

[29] and Deep SORT [32] method, we utilise the Kalman filter and the Hungarian 

algorithm [42] to address the MOT task. Besides, we design a new hierarchical data 

association scheme to ensure tracking performance and fewer ID switches.  

3.1.1 The States of the Tracklets and the Transition Mechanism 

For online Tracking-by-Detection, the essence is a frame-by-frame data association 

based on detection responses pre-generated by the detector. The detection responses in 

the current frame are assigned to the existing tracklets (the tracklet is a part of the 

trajectory formed during the tracking process) according to the data association method. 

However, the issues of misdetection, occlusion, the appearance and the disappearance 

of tracking objects lead to many challenges of the MOT task. To tackle these challenges, 

we adopt a hierarchical data association method based on the states of the tracklets to 

address multi-pedestrian tracking. According to the number of consecutive associated 



frames, the states of the tracklets are classified into four categories, namely initial, 

tentative, stable and deleted. The transition mechanism of the four states of the tracklets 

is shown in Figure 2. 

 
Figure 2 The Transition Mechanism of the Four States of the Tracklets 

① The Initial-State 

The initial-state is defined for a new detection that cannot be associated with any 

existing tracklet. In this state, it is regarded as a new tracklet. If it is associated 

successfully in the next frame, its state will become as tentative. Otherwise, it will be 

deleted. 

② The Tentative-State 

The tentative-state is a state when the tracklet in initial-state is successfully associated 

in the next frame. In this scenario, if the tracklet in tentative-state continues to be 

successfully associated for over  consecutive frames (the threshold  is a small 

positive integer), its state will progress to stable. Otherwise, it will be deleted. 

③ The Stable-State 

The stable-state is defined as a state when the tracklet in tentative-state is successfully 

associated for over  consecutive frames. Once the state of the tracklet becomes 

stable, it can only be deemed to be finished and deleted when it fails to be associated 

for over  consecutive frames (The threshold is a positive integer significantly 

greater than ). Besides, the stable-state can be further divided into two stages, the 

first association stage and the second association stage. These two stages employ 

different feature metrics for assignment cost calculation during the association ( Section 

3.1.3). 

④ The Deleted-State 

Under the following conditions, the state of the tracklet will be defined as deleted-state: 
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(1) when the tracklet is in initial-state or tentative-state, and it fails to be associated in 

the next frame; (2) when the stable-state tracklet fails to be associated for over  

consecutive frames. 

The setting of the initial-state and the tentative-state can effectively address the 

misdetection issue. This is because the tracklet of the misdetected object in an initial or 

tentative state will be deleted once the association fails. The stable-state setting takes 

into account the impact of occlusion during tracking. The tracklet may fail to be 

associated during the tracking process due to occlusions. Under this situation, the object 

could not be considered to have disappeared, nor should the tracklet be deleted 

immediately. The setting of the threshold  is beneficial to improve the continuity 

completeness of tracking. And the two association stages of the stable-state helps to 

improve the reliability of data association. The deleted-state setting is to reduce 

unnecessary calculations. 

3.1.2 The AAM-Softmax Appearance Feature Descriptor 

The distance between appearance features is taken into account in the analysis of data 

association. Inspired by the Cosine Softmax methods [32][43] and the Additive Angular 

Margin Softmax (AAM-Softmax) methods [44][45], an AAM-Softmax appearance 

feature descriptor is designed to obtain well-discriminative appearance features of 

pedestrians. Before being applied in the online tracking task, the descriptor is trained 

offline by using a large-scale person re-ID dataset Market1501 [46] with 12,936 

training images of 751 identities, which facilitates deep metric learning in a pedestrian 

tracking context.  

 

We mainly use convolutional layers and residual blocks [47] to consturct the 

architecture of the proposed descriptor network network (shown in Figure 3). The 

pedestrian images with size 128×64×3 are input into the CNN based architecture, 

including two convolutional layers (each layer has 32 kernels with size 3×3 and stride 

1), a max-pooling layer (pooling size is 3×3 and stride is 2) and six residual blocks with 

two stacked layers. Through the CNN architecture, the feature maps with size 

16×8×128 can be obtained. Then after a Global Average Pooling (GAP) layer, a Batch 

Normalisation (BN) layer and a  Normalisation layer, the descriptor finally outputs 

a feature vector with 128 dimensions. In the training phase, the ID of each sample is 

utilised as a training label, and each embedded feature is input into the fully connected 

2t

2t
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layer followed by the AAM-Softmax classifier, performing supervised learning by the 

AAM-Softmax loss. 

 
Figure 3 The Architecture of the AAM-Softmax Appearance Feature Descriptor Network  

 

The Softmax classifier is widely used in deep classification tasks, with loss function as 

Eq. (1): 

             (1) 

where 𝑥! ∈ ℝ" 	is the input feature (due to the 	𝑙# Normalisation layer in the discriptor, 
‖𝑥!‖ is equal to 1), 𝑦! is the class label of 𝑥!. 𝑊$ is the j-th column of the weight 

matrix 	𝑊 ∈ ℝ"×&  and 𝑏$ ∈ ℝ&  is the bias. The target logit term is presented as 

𝑊'!
(𝑥! + 𝑏'!. 𝑁 is the batch size and 𝑛 is the number of classes. Based on the Softmax 

loss, the improvement can boost the ability to learning discriminative features 

effectively. Specifically, the bias 𝑏$ is set to 0, and 	𝑙# normalisation is imposed on 

𝑊$ 	(-𝑊$- = 1) to project it onto the unit sphere. So the term 𝑊$(𝑥! + 𝑏$ is equal to 

𝑊$(𝑥! = -𝑊$-‖𝑥!‖cos𝜃$ = cos𝜃$ , where 𝜃$  is the angle between 𝑊$  and 𝑥! . The 

𝑙#-normalised Softmax loss is presented as Eq. (2): 

	 	 	 	 	 	 	 	 	 	 	 	 	       (2) 

where the is target logit, is the feature scale hyper-parameter. Then by 

imposing an additive angular margin	𝑚	to the target logit, the AAM-Softmax loss[44] 

formulation can be written as Eq. (3): 
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   (3) 

The additive angular margin penalty makes the decision boundaries more stringent and 

separated, enhancing the similarity of intra-class features and the disparity of inter-class 

features simultaneously, which facilitates to improve the discriminative capability of 

features effectively. Since the AAM-Softmax loss only imposes an additive angular 

margin constraint in the angular space, it neither increases the structural complexity of 

the network nor the number of trainable parameters. When performing the online MOT 

task, the pre-trained descriptor network is exploited as the feature encoder to obtain 

discriminative features of pedestrians for the appearance distance metric in the 

subsequent data association process. 

3.1.3 Assignment Problem 

During the data association process, the assignment costs between tracklets and 

detections are the basis of association. In this paper, based on different states of the 

tracklets, different metric methods are utilised to calculate the assignment costs and 

hierarchical associations are conducted. For each tracklet, except the initial-state 

tracklet, an appearance feature gallery will be generated, containing the 

historical appearance features backtracking from the current frame, where

is the k-th -normalised historical appearance feature,  denotes 

the current frame and  is the maximum capacity of the gallery. The appearance 

metric between the tracklet and the detection forms an important part of the distance 

metric. It can be derived by calculating the cosine distance between all historical 

appearance features of the tracklets and those of the detections one by one 

and selecting the minimum value, written as Eq. (4): 

                     (4) 

where is the i-th tracklet (except for the initial-state tracklet), is the j-th detection 

and  is the appearance feature of .  represents the appearance metric 

between and . Due to the nomalisation operation ( , ), the 

cosine similarity can be written as the inner product form .  

①  Assignment Cost Calculation Based on the State 

The Initial-State: For the initial-state tracklet, since there is no appearance feature 

gallery, only position information can be used for data association. Firstly, the 
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standard Kalman filter is used to predict its moving state. Then the inverse of the 

intersection-over-union (IOU) between the prediction bounding box and the detection 

bounding box, defined as the IOU distance, is calculated as the motion metrics, 

presented as Eq. (5): 

        	 	 	 	 	 	 	       (5)	

where denotes the i-th initial-state tracklet and is the prediction bounding 

box of ; denotes the j-th detection and is the bounding box of . 

and  represent the distance metrics and IoU value between
and . 

The Tentative-state: The tentative-state tracklet already generates an appearance 

feature gallery , but at this time the features in the gallery are limited. So, at this 

stage, the IOU distance between the prediction and the detection is still used as the 

motion metric for association, whilst the appearance metric is only used as a threshold 

for filtering and discarding infeasible detections. If the appearance metric is greater 

than the threshold, the candidate detection will be excluded, with no possibility of being 

associated. The assignment cost is expressed as Eq. (6): 

              (6) 

where and denote the i-th tentative-state tracklet and the j-th detection 

respectively. , and represent the metric 

distance, the appearance metric (obtained by Eq. (4)) and the IoU value between 

and respectively. is the appearance threshold.  

The Stable-State: For the stable-state tracklet, the data association process contains 

two stages. In the first association stage, the Mahalanobis distance is utilised as the 

motion metrics, written as Eq. (7) 

                    (7) 
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metrics is greater than the threshold, the candidate detection will be discarded.The 

assignment cost is written as Eq. (8): 

             (8) 

where , (calculated by Eq.(4)) and (calculated by 

Eq.(7)) denote the metirc distance, the appearance metrics and the motion metrics 

between and respectively.  is the Mahalanobis threshold. For the stationary 

situation, the motion metrics and the appearance metrics are both taken as the joint 

metrics, which are integrated into a unified form through the hyper-parameter , 

presented as Eq. (9): 

            (9) 

Due to occlusions or other reasons, the appearance features of the object may change 

dramatically, causing the stable-state tracklet to fail to be associated in the first 

association stage. Hence, the second association stage is added for this situation. Instead 

of considering the appearance metrics, only the motion metrics calculated by IoU 

distance is utilised for data association in the second stage. 

②  Hierarchical Data Association and the States’ Update 

The stability of the tracklet determines its confidence. Therefore, according to the order 

of confidence from high to low, the corresponding states are the stable-state, the 

tentative state and the initial state, respectively. Based on this confidence order, a 

hierarchical association method is designed to divide the entire data association stage 

into three levels. The flow chart of the proposed hierarchical data association is shown 

in Figure 4. Specifically, the first association of stable-state tracklets is performed. Then, 

those tracklets that fail to be associated subsequently enter the second association stage. 

After that, the tracklets in the initial-state or the tentative-state are considered to be 

associated with the remaining detections. According to the state of the tracklet, the 

corresponding metrics is calculated, and the association between the tracklets and the 

detections is conducted by using the Hungarian algorithm [42]. For the tracklet in the 

initial-state or the tentative-state, if it fails to be associated, it will be deleted. This way 

of dealing with unstable objects can facilitate the tracker to filter the incorrectly 

detected objects to a certain extent thus to improve the performance efficiency. For the 

tracklet in the stable-state, if it fails to be associated for over consecutive  frames, 

it will be deleted, which can increase the completeness of the trajectory. For 
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unassociated detection, it will be considered as a new tracklet and will be assigned with 

a new ID. 

 
Figure 4 The Flow Chart of the Proposed Hierarchical Data Association 

 

The description of a tracklet includes the ID, the position information (the coordinates 

of the bounding box), the appearance feature and its state. After each association, the 

tracklets will be updated. For the successfully associated tracklet, the coordinates of the 

tracking bounding box are updated according to its new position; the new appearance 

feature in the current frame will be added to the appearance feature gallery. But when 

occlusions occur, the confidence of the appearance feature decreases due to the 

introduced noise. To tackle this issue, the IoU values between the prediction bounding 

box of the tracklet with all detection bounding boxes are calculated and a threshold 

𝜏)*+ is set. If there exists an IoU value greater than 𝜏)*+, the appearance feature gallery 

is not updated. Besides, the state of the tracklet should be updated as well according to 

its current state and the transition mechanism (Section 3.1.1). 

 

As a summary, the entire process of online multi-object tracking based on hierarchical 

data association is illustrated in Figure 5. For the k-th frame, firstly the detector is used 

to conduct multi-object detection. Then, according to different states of the tracklets, 

different assignment cost calculation methods are adopted to associate the tracklets with 

the detections hierarchically. After data association, it is required to update the 
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appearance feature galleries and the states of the tracklets. Then the updated tracklets 

will be associated with the candidate detections in the k+1-th frame. 

  
Figure 5 The Entire Process of Online Multi-Object Tracking Based on Hierarchical Data 

Association 

3.2 Trajectory-Based Social Distancing Measurement and Analysis 

The surveillance videos are taken from arbitrary perspective views, it is necessary to 

transform the original perspective videos into the bird’s eye view to perform distance 

measurement. This is carried out by utilising the perspective transformation matrix. 

As the calibration is conducted for the transformation of the ground plane, the bottom-

centre point of tracking bounding box of every trajectory in each frame is transformed 

into the bird’s eye view as the sampling point of the trajectory. Then, the re-

parameterization time information is added to ensure t cannot be backtracked, and the 

spatio-temporal trajectories of pedestrians are represented in the three-dimensional 

coordinates space (𝑥,, 𝑦,and t). For addressing the VSD problem, the discrete Fréchet 

distance [48] is utilised to measure the distance between each spatio-temporal 

trajectory pair. Finally, the social distancing between pedestrians in the real world can 

be estimated by multiplying the metric distance with the scaling factor. 

3.2.1 Trajectory Transformation and Distance Metrics 

The essence of calibration is to map the original video into the bird’s eye view by 

performing the perspective transformation. 

 

 

 

 

The formula of the perspective transformation is presented as Eq. (10): 
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where (𝑢, 𝑣)  and (𝑢, 𝑣, 1)  are the Cartesian coordinate and the homogeneous 

coordinate of every trajectory respectively in each original frame. 𝐌 is the perspective 

transformation matrix.(𝑥, 𝑦, 𝑧) is the calibrated homogeneous coordinate in the bird’s 

eye frame. Its corresponding Cartesian coordinate (𝑥,, 𝑦,) can be obtained as Eq. (11): 

B
𝑥, = /

0
= 1""231"#431"$

1$"231$#431$$

𝑦, = '
0
= 1#"231##431#$

1$"231$#431$$

                       (11) 

 
For calibration, we first need to select a rectangular reference area in the shooting 

scene. Due to the arbitrary angle of the camera, the reference area appears as a 

quadrilateral in the original perspective view. Since the video is captured by a single 

camera (monocular camera), the calibration method is to map the quadrilateral in the 

original video to the bird’s eye view to re-form a rectangle. Using the four pairs of 

vertex coordinates of the quadrilateral and the rectangle, the perspective 

transformation matrix 𝐌  can be calculated by Eq. (10). Then, the mapping 

coordinates in the bird’s eye view of each trajectory’s sampling points can be 

calculated through Eq. (11). 
 
The Fréchet distance [48] is to determine the distance between each spatio-temporal 

trajectory pairs P and Q in the calibrated space S by taking into account location and 

time ordering. Fréchet distance is defined as Eq. (12): 

                   (12) 

where is the distance function of the space S. and represent the spatial 

position of the P and Q at time t respectively.  and  are continuous and non-

decreasing reparameterization. The discrete Fréchet distance [48] is an approximation 

of the continuous Fréchet distance. Firstly, the two trajectory curves P and Q are 

discretized and are represented as the sequences with p and q sampling points, namely 

the specific positions of the trajectories in each frame, presented with

and respectively. Because the distance metrics is 

performed in the bird’s eye view, the corresponding transformed sequences 

and need to be obtained by Eq. (11). A coupling 

 between  and  is a sequence of distinct pairs from and , written 

as Eq. (13): 
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                  (13) 

where  and ,  and , and for all , we have 

or ,  or . The length of the coupling is the 

length of the longest link in : 

                         (14) 

We use Euclidean distance to calculate . The discrete Fréchet distance 

between  and  in the bird’s eye view is defined as Eq. (15): 

                        (15) 

By Multipling the metric distance in the bird’s eye view by the scaling factor s, the 

social distancing in the real world can be estimated. On the one hand, the Euclidean 

distance is used to measure the distance between each sampling point pairs of 

trajectories from a local perspective, presented as Eq. (16):  

                        (16) 

On the other hand, from a holistic view, the discrete Fréchet distance is exploited to 

measure the distance between trajectory pairs, presented as Eq. (17):   

                         (17) 

3.2.2 Social Distancing Analysis 

Here we design a multi-scale social distancing analysis scheme to evaluate the social 

distancing situations in public spaces from multiple time scales. The scheme includes 

the following four evaluation metrics: 

The Average Ratio of Pedestrians with Unsafe Social Distancing (ARP-USD): If the 

distance between pedestrians, calculated by Eq. (16), is below the minimum acceptable 

distance, we believe that the pedestrians are at an unsafe distance at this moment. The 

ARP-USD metric is the mean proportion of the number of pedestrians with an unsafe 

distance in respect to the total number of people over a period of time in the public 

space. Given a video with M frames, for the frame, is the total number of tracking 

persons, is the position point of the  pedestrian. The set of 

pedestrians with unsafe social distancing in the frame is represented as Eq. (18): 

                       (18) 

where are the mapping points of in the bird’s eye 

view,  is the Euclidean distance, is the scaling factor, is the safe distance 

threshold, and  is the number of the elements in . If , the ratio of 
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pedestrians with an unsafe distance in the frame can be written as , so the ARP-

USD is calculated as Eq. (19): 

                          (19) 

where  is the number of the frames with . 

 

The Number of Trajectory Pairs with Unsafe Social Distancing (NTP-USD): 

If the distance between the trajectory pair, calculated by Eq. (17), is below the safe 

distance threshold , we consider the trajectory pair to be at an unsafe distance. The 

NTP-USD metric is the number of the stable-state trajectory pairs with unsafe social 

distancing. Assuming that the number of the stable-state trajectories is  (  is 

dynamically updated) and the stable-state trajectory is represented as 

, the set of the stable-state trajectory pairs with unsafe social 

distancing can be formulated as Eq. (20): 

                   (20) 

where are the mapped trajectories of in 

the bird’s eye view, where  is the discrete Fréchet distance and  is the scaling 

factor.  is the number of the elements in , indicating the value of the NTP-USD.  

If the Fréchet distance of the trajectory pair is less than the safe distance threshold, it 

means that the distance of each sampling point pair of the two trajectories has been less 

than the safe distance for the entire measurement process. In another word, the two 

pedestrians have continuely violated social distancing for a period of time.Therefore, 

based on spatio-temporal trajectories, the NTP-USD metrics measures the overall 

number of trajectory pairs with an unsafe distance in public spaces, which reflects the 

situation of social distancing violations in the public area over a period of time. 

 

The Number of Pedestrian Pairs with Continuous Unsafe Social Distancing 

(NPPC-USD): Concerning the spread of pandemics, the longer people stay at an unsafe 

distance, the higher the risk of infection. Therefore, the duration of pedestrians staying 

within an unsafe distance is an essential factor that should be taken into account. The 

NTP-USD Fréchet distance is to measure the similarity of trajectories for a given 

duration holistically. But for two dissimilar trajectories, for example, two trajectories 

facing each other with opposite directions, their Fréchet distance can be very large. 

Hence NTP-USD is unable to spot the infection risk when pedestrians are very close 
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for a certain amount of time but facing back to each other. So, for a trajectory pair, if 

the number of their sampling point pairs with an unsafe distance is more than the 

threshold , it is considered as the pedestrian pair with continuous unsafe social 

distancing. The NPPC-USD is designed to count the number of the above pedestrian 

pairs, which can reflect the concept of the unsafe distance for a period of time. 

 

The Average Gathering Degree (AGD): To describe the degree of pedestrians 

gathering in public spaces, the concept of Gathering Group is defined. As shown in 

Figure 6, pedestrians in one gathering group have social distancing with one or more 

people in the same group less than the safe distance. The social distancing between any 

two people in different Gathering Groups is larger than the safe distance. According to 

the number of pedestrians in a group, the Gathering degree is divided into six levels, 

from 0 to 5 (illustratied in Figure 6). In order to facilitate unified grading, a single 

person is also regarded as a Gathering Group with Gathering degree 0. For each frame, 

the maximum Gathering degree is taken as the Gathering degree of this frame . The 

Average Gathering degree of a video with M frames is formulated as Eq. (21): 

                         (21) 

 
During the pandemic, the larger the number of people in the Gathering Group, the 

higher the risk of cross-infection. Therefore, the AGD can reflect the gathering situation 

of people in a period of time, which is a useful metric for assessing the risk of infection 

in public spaces. 

 
Figure 6 The Gathering Group and Corresponding Gathering degree 
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4. Experiments and Discussion 

4.1 Datasets  

MOT16: We evaluate the performance of the proposed tracking method on the MOT16 

benchmark dataset [49]. It consists of 14 video sequences, where 7 videos are used as 

training and verification sets, and another 7 are employed as test sets. The input sizes 

of the MOT16 are1920×1080 and 640×480. There are front-view scenes taken from 

moving camera and top-down view scenes captured from surveillance camera. The 

complex scenes, the large number of pedestrians and the varying laminations have 

imposed great challenges in analysing this MOT16 benchmark dataset. 

 

SCU-VSD: we conduct social distancing measurment and analysis experiments on our 

own datasets, called as SCU-VSD. It includes 8 pedestrian video sequences, which were 

taken from a pedestrian street with different scenes and perspective views. For each 

video sequence, the size is 1920×1080, the duration is 60 seconds, and the frame rate 

is 25 fps (each video gives 1500 consecutive frames). 

 

4.2 Implementation Details  

4.2.1 Hierarchical Association Based Online Multi-Pedestrian Tracking 

The detection results of the MOT16 benchmark used in the paper are provided by the 

POI method [40]. The detector in the POI is Faster R-CNN [25] fine-tuned by additional 

training datasets (including ETHZ pedestrian dataset [50], Caltech pedestrian dataset 

[51] and their surveillance dataset [40]). The AAM-Softmax appearance feature 

descriptor is trained using a large-scale person re-ID dataset Market-1501 [46] captured 

by six cameras. It contains 12,936 images of 751 identities for training, 3,368 images 

of another 750 identities as the query set, and 19,732 images as the gallery set. The 

input images are resized to 128×64. For the AAM-Softmax loss, the hyper-parameters 

𝑠 and 𝑚 in Eq. (3) are 30 and 0.006 respectively. The Optimizer is Adam and the 

batch size is 128. During the training, the learning rate is set to  with the first 

55,000 interactions, and it decays to  in the last 10,000 interactions. For the 

transition mechanism of the states, the thresholds  and  are set to 3 and 30 

respectively. For the data association, the appearance threshold  in Eq. (6) is set to 

0.8 and Mahalanobis threshold  in Eq. (8) is set to 9.49, the hyper-parameter  in 

Eq. (9) is set to 0.2. For the states’ update, the threshold is set to 0.5. 
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4.2.2 Trajectory-Based Social Distancing Measurement and Analysis 

For each scene, a rectangular reference area on the ground is selected and its actual 

length and width are measured. Due to the arbitrary angle of the camera, the rectangular 

reference area is presented as a quadrilateral in the original perspective video. 

According to the aspect ratio of the reference area, a reference rectangle is drawn with 

scaling factor  = 0.1 in the bird’s eye view (500×500), which corresponds to the 

calibrated rectangle of the quadrilateral in the original video. Through the coordinates 

of the four vertex pairs of the quadrilateral and the calibrated rectangle, the perspective 

transformation matrix M of each video can be obtained by using the Eq. (10). By using 

M, the transformed trajectory of each pedestrian in the bird’s eye view can be calculated. 

The information of the selected rectangular reference area of each SCU-VSD video is 

shown in Table 1.  

Table 1 The Information of the Selected Rectangular Reference Areas for SCU-VSD 

Videos 

SCU-VSD 01 02 03 04 05 06 07 08 

In Real World Width (m) 6 6 7.8 6 6 6 6 7.2 

Length (m) 14.7 12 11 24.5 18 12 15 12.6 

In Bird’s Eye View 

 

Width (pixel) 60 60 78 60 60 60 60 72 

Length (pixel) 147 120 110 245 180 120 150 126 

 

For social distancing measurement, the safe distance threshold  is set to 2 m, the 

threshold  is set to 250, and the scaling factor  is set to 0.1. Based on the varying 

scales of time, the experiments of multi-scale social distancing measurement and 

analysis in public spaces are performed as follow: (1) for 1/25 second (one frame as a 

unit), the Euclidean distance between tracking objects in the bird’s eye view is 

measured to calculate the real-time social distancing between pedestrians, the real-time 

ratio of pedestrians with unsafe social distancing and the real-time gathering degree; (2) 

for 10 seconds (250 consecutive frames as a unit), the ARP-USD and AGD are 

calculated; (3) for 60 seconds (1500 frames, this is the entire video duration), the ARP-
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USD and AGD are calculated; for pedestrians’ trajectories, the NTP-USD and the NPP-

CUSD are calculated. 

4.3 Experiments Results and Discussion 

4.3.1 Hierarchical Data Association Based Online Multi-Pedestrian Tracking 

The results shown in Table 2 are obtained based on MOT16 Benchmark dataset. 

Compared with other online MOT methods, our proposed hierarchical data association 

based multi-pedestrian tracking method has achieved overall advanced performance. 

While maintaining high tracking accuracy and precision, the IDS of our proposed 

method decreases to 710, which effectively reduces the number of trajectory ID 

switches and improves the ability to maintain trajectory ID. The reduction of FM 

indicates the decrement of the number of trajectory interruptions. 

 
Table 2 Comparisons of Different Online Algorithms on MOT16 Benchmark (with Private 

Detectors) 
Method MOTA (%)↑ MOTP (%)↑ IDS ↓ FM ↓ MT (%)↑ ML (%)↓ 

Config-MOT[30]  43.9 76.0 1030 1795 17.4 30.2 

MOTDT[52] 47.6 50.9 792 — 15.2 15.2 

STRN[53]  48.5 73.7 747 — 17.0 34.9 

Deep Sort[32] 61.4 79.1 781 2008 32.8 18.2 

EAMTT [28] 52.5 78.8 910 — 19.0 34.9 

The proposed 
method 

61.4 79.1 710 1913 30.3 19.9 

4.3.2 Trajectory-Based Social Distancing Measurement and Analysis 

The comparisons between the original perspective view and the calibrated bird’ s eye 

view for SCU-VSD dataset are shown in the figure 7. The rectangular reference area in 

each video is marked as a purple box. Due to the different perspective views of the 

videos, the reference areas in original videos are presented as different quadrilaterals.  
 

(a) VSD-01 (b) VSD-02



 

 

 

Figure 7 The Comparisons between the Original Perspective View and the Calibrated Bird’ s Eye 
View for SCU-VSD 

 
In the calibration process, we use four corresponding vertex coordinate pairs of the 

reference area in the original video and the bird’s eye view to calculate the perspective 

transformation matrix M of each video by Eq. (10), shown in Table 3. The numerical 

values of each matrix are expressed using scientific notation. 
	
Table 3 The Coordinates of the Four Vertex Pairs and the Perspective Transformation 
Matrix for SCU-VSD 

Dataset in the original video in bird’s eye view M 

SCU-

VSD-01 

P1 = (695, 183), P2 = (328, 899) 

P3 = (1300, 940), P4 = (1129, 193) 

P’1 = (225, 325), P’2 = (225, 472) 

P’3 = (285, 472), P’4 = (285, 325) 
 

(c) VSD-03 (d) VSD-04

(e) VSD-05 (f) VSD-06

(g) VSD-07 (h) VSD-08
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SCU-

VSD-02 

P1 = (409, 317), P2 = (113, 776) 

P3 = (1199, 765), P4 = (1095,310) 

P’1 = (225, 325), P’2 = (225, 445) 

P’3 = (285, 445), P’4 = (285, 325)  

SCU-

VSD-03 

P1 = (397, 153), P2 = (51, 712) 

P3 = (1771, l715), P4 = (1510, 163) 

P’1 = (225, 300), P’2 = (225, 410) 

P’3 = (303, 410), P’4 = (303, 300)  

SCU-

VSD-04 

P1 = (781, 129), P2 = (320, 891), 

P3 = (1515, 940), P4 = (1295, 140) 

P’1 = (225, 225), P’2 = (225, 470), 

P’3 = (285, 470), P’4 = (285, 225)  

SCU-

VSD-05 

P1 = (677, 155), P2 = (436, 788) 

P3 = (1529, 788), P4 = (1225, 155) 

P’1 = (225, 250), P’2 = (225, 430) 

P’3 = (285, 430), P’4 = (285, 250)  

SCU-

VSD-06 

P1 = (190, 355), P2 = (250, 913) 

P3 = (1679, 768), P4 = (1146, 272) 

P’1 = (225, 325), P’2 = (225, 445), 

P’3 = (285, 445), P’4 = (285, 325)   

SCU-

VSD-07 

P1 = (666, 247), P2 = (211, 909) 

P3 = (1613, 961), P4 = (1472, 263) 

P’1 = (225, 300), P’2 = (225, 450) 

P’3 = (285, 450), P’4 = (285, 300)   

SCU-

VSD-08 

P1 = (665, 187), P2 = (461, 634) 

P3 = (1569, 631), P4 = (1328, 186) 

P’1 = (225, 300), P’2 = (225, 426) 

P’3 = (297, 426), P’4 = (297, 300)   

The real-time social distancing mesurement and analysis for SCU-VSD dataset are 

shown in Figure 8. The figure on the left is the original video, and the one on the right 

is the corresponding bird’s eye view. The tracking pedestrians in the original video are 

transformed to trajectory points in the bird’s eye view. The Euclidean distance between 

tracking object pairs in the bird’s eye view are measured frame-by-frame to estimate 

the real-time social distances between the pedestrians. If the social distances between 

the pedestrian pair is less than the safe distance, the tracking bounding boxes in the left 

figure will change from blue to red, and the corresponding trajectory points in the right 

figure will change from green to red, with a red line linking pedestrians. The real-time 

ratio of pedestrians with unsafe social distancing and the real-time gathering degree are 

calculated, and the results are displayed in the top-left corner of the right figure. 
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(a) SCU-VSD-01

 

(b) SCU-VSD-02

 

(c) SCU-VSD-03

 

(d) SCU-VSD-04



 

(e) SCU-VSD-05

 

(f) SCU-VSD-06

 

(g) SCU-VSD-07

 

(h) SCU-VSD-08 

Figure 8 The Real-Time Social Distancing measurement and Analysis for SCU-VSD Dataset  



Taking 10s (250 consecutive frames) as a unit, each video is divided into 6 periods. For 

each period, the ARP-USD and AGD metrics are calculated, and the results are drawn 

using colormaps. The colormaps of ARP-USD (on the left) and AGD (on the right) for 

every 10s of each video clip are shown in Figure 9.  
 

Figure 9 The Colormaps of ARP-USD and AGD for Every 10s 

From Figure 9, each row of the colormaps can reflect the changing trend of metrics in 

different time units of the same video, while each column of the colormaps can reflect 

the metrics’ changing tendency of different videos in the same time unit. These trends 

can be displayed intuitively through colour gradients of the corresponding colorbar. We 

take the first row and the first column of colourmaps as the examples for analysis. The 

first row of data represents the APR-USD and AGD metrics of VSD-01 clip in different 

time units. It can be seen that the changing trends of the two metrics of VSD-01 are 

roughly identical, rising and then falling, reaching their peaks (80.4% and 1.81 

respectively) at the second time unit. The first column of the data represents the 

comparisons of the two metrics of the 8 video clips in the first time unit. It also can be 

observed that in this period, the two metric values of VSD-03 are minimum (7.07% and 

0.06 respectively), while the APR-USD of VSD-04 and the AGD of VSD-01 are the 

maximum (84.83% and 1.32 respectively). In practical applications, the duration of the 

time window can be adjusted according to the actual requirement, so that APR-USD 

and AGD at different time scales can be obtained.  

 

From the global perspective, the four metrics ARP-USD, NTP-USD, NPP-CUSD and 

AGD for each entire video are calculated, shown in Table 4. 

Table 4 The Four Metrics ARP-USD, NTP-USD, NPP-CUSD and AGD for Each Entire 

video. 



Metrics 

Datasets 

ARP-USD 

(%) 

NTP-USD NPP-CUSD AGD 

SCU-VSD-01 67.01 32 11 1.2 

SCU-VSD-02 75.90 10 9 1.0 

SCU-VSD-03 47.62 3 2 0.57 

SCU-VSD-04 63.84 22 11 1.03 

SCU-VSD-05 64.48 14 10 0.98 

SCU-VSD-06 49.59 5 4 0.76 

SCU-VSD-07 67.64 19 6 0.99 

SCU-VSD-08 61.60 6 6 0.92 

As shown in Table 4, the NTP-USD, NPP-CUSD and AGD of SCU-VSD-01 achieve 

the maximum values, which are 32, 11 and 1.2 respectively, while the four metrics of 

SCU-VSD-03 are the minimum, 47.62%, 3, 2 and 0.57 respectively. Comprehensively, 

it can be concluded that SCU-VSD-01 video has the largest number of pedestrian pairs 

with unsafe social distancing and the highest average gathering degree. In contrast, 

SCU-VSD-03 video has the smallest number of pedestrians with unsafe distancing and 

the lowest average gathering degree.  

5. Conclusion 

In this paper, in response to the VSD problem in public places during the pandemic, we 

first proposed a hierarchical association based online multi-pedestrian tracking method 

to obtain pedestrians’ trajectories. Then we proposed a spatio-temporal trajectory based 

multi-scale social distancing measurement and analysis method. The proposed VSD 

method considers both Euclidean distance from a static perspective and Fréchet 

distance from a spatio-temporal perspective to estimate the social distancing and 

analyse the crowd gathering situations based on a variety of time scales. The multi-

scale metrics obtained by the proposed VSD approach can provide the local authorities 



with guiding information to help them monitor the real-time and overall situations of 

the social distancing of crowds in public spaces, so as to formulate and take 

corresponding prevention measures. In addition, for the areas where the pandemic has 

outbroken, the proposed VSD and analysis scheme can be used to provide useful 

supporting data for the subsequent epidemiological investigation, such as locating and 

search of the infection chain. 
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