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Abstract—Human behavior recognition is a key research 

area in the field of computer vision. With the flourishing 

development of computer vision technology, a large number of 

new embedded vision devices such as VR/AR helmets and 

mobile visual robots have emerged. Deploying human behavior 

recognition models on these devices with limited storage and 

computational resources has become a challenge. Existing 

behavior recognition methods struggle to simultaneously 

balance algorithm accuracy and complexity. In order to 

significantly reduce the amount of model parameter and 

computational complexity while maintaining high accuracy 

recognition, this paper proposes a multi-feature enhancement 

and adaption model for lightweight human behavior recognition. 

Firstly, efficient multi-scale attention modules are added to the 

self-attention graph convolution and multi-scale temporal 

convolution modules to enhance the features of human skeleton 

data. Secondly, a multi-feature fusion adaptive module is 

employed to enhance feature fusion and generalization 

capabilities. Finally, comparative experiments are conducted on 

a large-scale skeleton dataset. The results demonstrate that the 

proposed algorithm outperforms recent SOTA methods in 

terms of parameters, floating-point operations, and recognition 

accuracy, providing a lightweight method for accurate human 

behavior recognition. 

Keywords—human skeleton; behavior recognition; 
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I. INTRODUCTION 

Human behavior recognition [1] is a key research area in 
the field of computer vision, which is dedicated to realizing 
automatic recognition of human behavior by studying human 
body movements and postures. It has been widely used in 
virtual reality, intelligent security, medical assistance, gesture 
recognition [2] and human-computer interaction, gradually 
changing people's lifestyles. According to the different 
modalities of input data, human behavior recognition can be 
roughly divided into three forms, i.e., RGB video-based, depth 
video-based and skeleton data-based [3]. Among these 
modalities, skeleton data is less susceptible to interference 
from factors such as light brightness, observation angle, and 
body occlusion. Therefore, skeleton data-based behavior 
recognition methods are more robust and popular [4]. 

In the initial stage of the field of skeleton action 
recognition, convolutional neural networks and recurrent 
neural networks were used as normal models. However, these 
methods have limitations and do not fully utilize the 
topological information of the skeleton structure. With the 
introduction of graph convolutional network, various methods 
began to exploit external topological graph structures[5][6]. 
Spatial temporal graph convolution network (ST-GCN) 
[7][8][9][10][11] models the human skeleton as a 
spatiotemporal graph, using nodes to represent joints and 

edges to represent the relationship between node connections 
and time frames. It learns spatiotemporal information and 
improves the feature expression and generalization ability of 
the model. Addressing the lack of flexibility in the ST-GCN 
model and failure to utilize skeletal features, Shi et al. 
proposed a two-stream adaptive graph convolutional network 
(2s-AGCN) [12], which uses a two-stream framework to 
process joint features and skeletal features respectively, while 
designing an adaptive topological graph to improve the 
model's flexibility. However, this method only focuses on the 
natural connections of adjacent joint points but does not 
consider the impact of certain behaviors on non-directly 
adjacent nodes. In this regard, Cheng et al. proposed a shift 
graph convolutional network (Shift-GCN) [13], which 
extends the expression of spatial adjacency by introducing 
translation operations and enhances the model’s feature 
representation capability and computational efficiency. This 
method can effectively handle complex physical constraints 
and intent relationships. Although Shift-GCN broadens the 
data flow, it still fails to fully exploit the impact of correlations 
between physically disconnected nodes on behavior 
recognition. Therefore, a new action recognition learning 
framework that combines learning goal of information 
bottleneck and attention-based graph convolution was 
proposed [14], which achieves a concise but informative latent 
representation and captures contextually relevant intrinsic 
topologies of human behavior. Although GCN-based behavior 
recognition methods have made significant progress in 
recognition accuracy, most models have suffered from high 
complexity, large parameter size, and long running time. In 
order to solve this problem, graph convolutional neural 
networks based on lightweight methods have been proposed, 
such as the semantics-guided neural networks (SGN) [15], 
which uses a single layer of temporal convolutional network 
(TCN ) [16] to extract time domain features from skeleton data, 
and ends the training after extracting features once. Although 
this method reduces the computational cost to some extent, its 
simple network structure leads to inferior accuracy compared 
to other models. 

In summary, current skeleton behavior recognition 
network models based on deep learning algorithms often 
suffer from  problems such as high structural complexity, deep 
layers, and large parameter sizes, heavily reliant on 
computational resources. Due to limitations in memory 
resources, processor performance and power consumption, it 
is difficult to deploy complex models on mobile/embedded 
devices. In this context, from the perspective of lightweight, 
we proposes a lightweight behavior recognition model with 
multi-dimensional feature enhancement and adaption, by 
introducing two lightweight coding blocks, i.e., multi-
dimensional feature enhancement (MDFE) and multi-feature 
fusion adaptive (MFFA). Specifically, the MDFE coding 



block provides rich data features, while the MFFA coding 
block enhances feature fusion and expression capabilities. 
This design not only solves the problem of excessive 
parameter size, but also provides excellent performance in 
recognition accuracy. 

II. METHODOLOGY 

A. Lightweight Network Model 

We propose a lightweight network model, which is 
committed to taking into account both lightweight 
computation and high-precision recognition, as shown in 
Figure 1.  

First, the human skeleton is represented as a graph 
structure, serving as the input data for the human behavior 
recognition network model. The joint feature tensors and 
positional embeddings are used to effectively capture joint 
features and position information. This process includes 
specific operations such as data reshaping, adjacency matrix 
multiplication, feature embedding, position encoding, and 
batch normalization processing. 

Then, we interweave the use of multi-dimensional feature 
enhancement (MDFE) encoding block and the multi-feature 
fusion adaptive (MFFA) encoding block to process the 
extracted features. The MDFE is proposed to provide richer 
data features, while the MFFA enhance the ability of feature 
fusion and expression. After the second and third layers of the 
MDFE block, we apply the unit temporal convolutional 
network (UnitTCN) and channel attention mechanism 
(squeeze-and-excitation layer, SELayer) to effectively adjust 
and enhance the expression capabilities of new feature 
channels, addressing the mismatch between input and output 
features caused by the expansion of channel numbers, thereby 
ensuring effective information transmission and learning 
between network layers. The combination of these lightweight 
encoding blocks facilitates the superposition of diverse 
functional layers, and further improving the model's 
performance.  

Further, by using an auxiliary independent random noise,  
𝜀 ∼ 𝑁(0, 𝐼), we sample z as 𝑧 = 𝜇 + ∑ 𝜀, where 𝜇 is the mean 
and 𝜀 is a diagonal covariance matrix that inferred from the 
output of the encoder. In this way, the model can be trained 
end-to-end through gradient optimization, thus estimating 
unbiased gradients.  

Finally, we use a classifier composed of a single linear 
layer and SoftMax function to transform the latent variable z 
into the model parameters of a classification distribution. 

B. MDFE Coding Block  

The lightweight encoding block of MDFE is designed to 
provide rich data features for subsequent operations, as shown 
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Figure 1  Lightweight Network Structure 
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Figure 2  MDFE coding block 



in Figure 2. It consists of three core modules, including the 
self-attention based graph convolution (SA-GC) module for 
spatial modeling, the multi-scale temporal convolution (MS-
TC) module for temporal modeling, and the efficient multi-
scale attention (EMA) module [17]. 

Specifically, SA-GC infers intrinsic topology by self-
attention of joint features, and this topology is used as vertex 
information of graph convolution. MS-TC employs 
convolution branches with three different kernel sizes and 
dilation rates to perform multi-branch convolution operations 
on temporal features. While SA-GC mainly focuses on local 
relationships of skeletal connections, inferring correlations 
between bones through self-attention mechanism, it may 
ignore global information. MS-TC is utilized for extracting 
multi-scale temporal features, but in some cases, key features 
at various scales may not be fully captured. Therefore, the 
EMA module is introduced to adaptively process and weight 
input features, enabling a more comprehensive extraction of 
multi-scale feature information. 

Further, the EMA module divides input features into 
multiple groups according to the number of channels, and 
performs various operations on the features in each channel 
group, including global adaptive pooling, 1x1 and 3x3 
convolution operations, and a SoftMax weighting mechanism. 
First, the feature information within each channel is integrated 
through 1x1 and 3x3 convolution operations. Subsequently, 
global adaptive pooling and the SoftMax weighting 
mechanism are employed to weight the features within each 
channel, generating a feature representation with an attention 
mechanism, thereby improving feature consistency and 
expression capability. The EMA module aims to extract 
features from a more global and detailed perspective, focusing 
on operations within channels. It emphasizes weighted 
processing of features to acquire more comprehensive multi-
scale information. This approach enhances the global-local 
expression and consistency of features, thereby improving the 
capture of local relationships and multi-scale features by the 
SA-GC and MS-TC modules. 

C. MFFA Coding Block 

Due to the consecutive use of MDFE, there might be an 
issue of over-extraction of multi-dimensional features, 
making it challenging to effectively fully integrate these 
features. Therefore, an encoding block called MFFA, as 
shown in Figure 3, is introduced. It performs adaptive feature 
fusion on the already extracted multi-dimensional features, 
thereby utilizing the multi-dimensional feature information 
more effectively. By using MDFE and MFFA alternately, a 
balance can be established between feature extraction and 
feature integration. This alternating approach helps enhance 
the model's comprehensive utilization of feature information 
from different scales and sources, thereby strengthening the 
model's feature representation and fusion capabilities. 

Specifically, the MFFA block is designed based on SA-
GC, and incorporates a residual attention feature fusion 
(RAFF) module and a channel attention module, squeeze-and-
excitation layer (SELayer) [18]. The SELayer is introduced to 
enable better matching between input and output features 
while expanding the number of channels, and can adaptively 
learn the weights and importance between feature channels, 
effectively adjusting and enhancing the expressive capability 
of new feature channels. The RAFF module consists of 
residual connection operation and a multi-scale channel 
attention module (MS-CAM) [19], serving as a crucial module 

for feature fusion. Its objective is to merge local and global 
features through residual connections and attention 
mechanisms. The calculation process of the RAFF module is 
as shown in formula (1), (2), and (3), 

( ) (1 ( ))Z MS Y X MS Y Y=  + −                     (1) 

Re ( )Y X s X= +                                                  (2) 

( ) ( ( ) ( ))MS Y l Y g Y=                                       (3) 

First, in order to prevent the issues of vanishing or exploding 
gradients, the residual connection (ResidualConnection) is 
used to add the original input features and the features 
processed by convolution, batch normalization and ReLU 
activation function. Then, feature fusion is performed through 
two branches. One is the local feature attention branch , which 
extracts local information of the input features, and the other 
is the global feature attention branch, which maps the features 
to the global perspective through global average pooling and 
extracts the global information. Finally, using the Sigmoid 
function, weighting coefficients are computed, and these 
coefficients are utilized to perform weighted fusion of the 
original features and the processed features, generating a new 
feature representation. This weighted fusion strategy helps the 
model better learn and utilize the correlation between different 
features, thereby improving the model's feature representation 
capability and consistency. 

III. EXPERIMENTAL RESULTS AND ANALYSIS 

A. Dataset 

In this study, we validated our experimental model using 
the NTU-RGB+D [20] dataset, which contains over 56,000 
video samples from 40 different subjects, totaling 4 million 
frames. It encompasses 60 action classes, divided into three 
categories, i.e., daily life (40 actions, such as drinking and 
eating), health-related (9 actions, such as sneezing and falling), 
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Figure 3  MFFA module 



and mutual interaction (11 actions, such as punching and 
kicking).  The dataset was collected from 40 different subjects, 
aged  between 10 to 35 years old. An example of the video 
sample is shown in Figure 4. The dataset is divided into 
training and test sets according to their IDs to conduct 
evaluation experiment, with the training set being 
approximately 2.5 times the test set data. 

B. Experimental setup 

In this study, the initial feature channel number is set to 16, 
and each sample is adjusted to 64 frames [21], and the 
batch_size is set to 128. The optimizer with a momentum 
coefficient of 0.9 is used to update the model to minimize the 
total loss. To normalize the learned latent features, the mean 
of the variational distribution is set to zero. Additionally, the 
mean of the conditional variational distribution for each action 
category is set to a randomly generated orthogonal vector, and 
appropriately scaled to triple its original size. During the 
training stage,  the averages of latent features and the 
conditional latent features are estimated by averaging the 
latent vectors in small batch data, respectively. The label 
smoothing technique [22] is adopted and the value is set to 0.1 
to prevent the model from being overconfident in predictions. 
Then the loss function is as defined in formula (4), 

𝐿𝑇𝑂𝑇𝐴𝐿 = 𝐿𝐶𝐿𝑆 + 𝜆1𝐿𝑚𝑀𝑀𝐷 + 𝜆2𝐿𝑐𝑚𝑀𝑀𝐷                     (4) 
Here, 𝐿𝐶𝐿𝑆 quantifies the empirical loss between the output of 
the prediction network and the true labels, 𝐿𝑚𝑀𝑀𝐷 represents 
the marginal maximum mean discrepancy loss, and 𝐿𝑐𝑚𝑀𝑀𝐷 
represents the conditional marginal maximum mean 
discrepancy loss. 𝜆1  and  𝜆2 are the weight coefficients of 
𝐿𝑚𝑀𝑀𝐷  and 𝐿𝑐𝑚𝑀𝑀𝐷 , and were set to 0.0001 and 0.05, 
respectively. The experimental environment is listed in Table 
1. 

TABLE I.  EXPERIMENTAL SETUP 

Environment name Specific Configuration 

Memory 6 4GB 

Operating system Ubuntu18.0.4 

GPU NVIDIA RTX 3090 

CPU Intel(R) Xeon(R) W-2245 

Python/Pytorch 3.7/1.8.0 

CUDA 11.1 

C. Experimental results and analysis 

In order to verify the effectiveness of our proposed method, 
experiments and comparisons were conducted on the NTU 
RGB+D dataset with other seven SOTA methods for skeleton-

based behavior recognition. The experimental results are 
presented in Table 2.  

TABLE II.  RECOGNITION ACCURACY AND COMPLEXITY OF NTU-
RGB+D DATASET 

Method Year 
Parameters 

(×106) 

Flops 

(×109 ) 

Accuracy 

(%) 

Shift-GCN [13] 2020 4.54 10 90.7 

MS-G3D [5] 2020 6.4 48.88 91.5 

MST-GCN [9] 2021 2.82 16.03 89.0 

HST-GCNS [10] 2022 2.00 - 89.5 

STF-Net [7] 2023 6.8 - 91.1 

LST-GCN [8] 2023 1.62 17.54 90.8 

TFC-GCN [11] 2023 0.18 1.9 87.9 

Ours 2024 0.64 0.57 90.9 

The results demonstrate that our model is highly 
competitive in terms of accuracy, parameter number, and 
computational complexity compared to recent SOTA methods. 
The proposed method achieve the fastest computation speed, 
and the flop is only 0.57×109. Specifically, compared to the 
TFC-GCN method, although our method has 3.5 times more 
parameters, its computational complexity is only 30%, while 
achieving a higher accuracy by 3.0%. Then, compared to LST-
GCN, our method's parameter size is only 2/5 of LST-GCN, 
with computational complexity at only its 1/30, and a 
recognition accuracy improvement of 0.1%. Moreover, in 
comparison to the remaining five comparison methods, i.e., 
Shift-GCN, MS-G3D, MST-GCN, HST-GCNS, and STF-Net, 
our approach achieves a parameter reduction of 3 to 10 times 
and computational complexity decrease of 17 to 85 times, 
while maintaining similar accuracy. 

In general, our proposed method achieves an excellent 
performance among these SOTA methods. It obtains 
competitive performance in recognition accuracy while 
significantly reducing both network parameter size and 
computational complexity. The scatter plots comparing our 
algorithm with recent methods in terms of parameter size and 
computational complexity are presented in Figures 5 and 6, 
respectively. These figures provide a more intuitive and clear 
demonstration that our algorithm exhibits significant 
advantages in terms of parameter size, computational 
complexity, and recognition accuracy. 

 

Figure 4  An example of the NTU-RGB+D dataset 

 

Figure 5  Recognition accuracy and parameter size  
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IV. CONCLUSION 

This paper proposed a lightweight human behavior 
recognition model that achieves comprehensive feature 
extraction, detailed spatial modeling, channel-level 
information integration, and residual iterative attention feature 
fusion through the cross combination of multidimensional 
feature enhancement and adaptive multi-feature fusion. While 
improving recognition accuracy, the model effectively 
controls the temporal and spatial complexity. However, to 
make the model as lightweight as possible, we reduce the 
number of feature channels and perform lightweight design on 
network structure. In future work, further research could focus 
on enhancing the model's ability to extract deep features while 
maintaining model complexity. Additionally, continuous 
lightweight improvements to the network model could be 
studied without affecting the recognition accuracy as much as 
possible. 
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Figure 6  Recognition accuracy and computational complexity 
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