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Abstract—Accurate transient stability assessment is a crucial 
prerequisite for proper power system operation and planning 
with various operational constraints. Transient stability 
assessment of modern power systems is becoming incredibly 
challenging due to rising uncertainty and continuous integration 
of renewable energy generation. The stringent requirements of 
exceedingly high accuracy and fast computation speed has 
further necessitated accurate transient stability assessment for 
power system planning and operation. The traditional 
approaches are unable to fulfil these requirements due to their 
shortcomings. In this regard, the popularity of prospective 
approaches based on big data and machine learning, such as 
support vector machines, is constantly on the rise as they have 
all the features required to fulfil important criteria for real-time 
TSA. Therefore, this paper aims to review the application of 
support vector machine for transient stability assessment of 
power systems. It is believed that this work will provide a solid 
foundation for researchers in the domain of machine learning 
and computational intelligence-based applications to power 
system stability and operation. 
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I. INTRODUCTION  
The growing load demand in power systems without 

accompanying investments in generation and transmission has 
impacted the evaluation of transient stability, demanding more 
reliable and faster tools. One of the most intriguing challenges 
in online operation of power systems is the evaluation of 
transient stability. Its significance has intensified due to the 
reduction of operational safety margins, increasing renewable 
generation and the introduction of competitive electricity 
market. Conventional analytical techniques such as time 
domain simulation and direct approaches do not allow to take 
preventive or corrective actions in appropriate time. 

The most common and simplest approach to compute the 
transient stability status of a power system is the time-domain 
simulation of the nonlinear differential equations which 
govern the power system [1]. This approach requires accurate 
information on the system topology during and after the 
disturbance and thereby, it is time consuming. Another 
method for determining the stability after a contingency is the 
Transient Energy Function (TEF) approaches based on 
Lyapunov stability or Energy Function theory [2]. In this 
technique, the stability assessment is performed by comparing 
the difference between the kinetic energy and potential energy 
against a reference value for a specific fault. However, there 
are obstacles in computing the levels of kinetic and potential 
Energy under particular disturbances for large scale power 
systems [2]. The Equal Area Criterion (EAC) approach is 
based on the same theory and offers a way to evaluate the 
transient stability of a multimachine system represented as a 
one machine connected to an infinite bus system without 

solving the cumbersome system of differential-algebraic 
equations. Although EAC is powerful graphic approach, it 
involves obtaining an equivalent machine and allows only the 
classical generator model that represents only the generator’s 
mechanical dynamics [3]. The Extended Equal Area Criterion 
(EEAC) is a fusion of the time-domain simulation and energy 
functions [4]. Although, this approach is computationally 
more efficient, but less accurate than time-domain simulation. 
A potential solution to conquer the flaws of the above-
mentioned approaches for transient stability assessment 
(TSA) is the application of novel soft computing approaches 
[5]. 

In recent times, various different Machine Learning (ML) 
approaches have been proposed for real-time TSA. For 
instance, Decision Tree (DT) [6- 7] is one of the pragmatic 
algorithms for predicting power system transient stability. 
Moreover, ensemble DT (Random Forest) has been 
considered for transient stability evaluation [8]. Artificial 
Neural Networks (ANNs) have also been considered to 
enhance the performance of transient stability status 
prediction [9- 10]. Support Vector Machine (SVM) is 
regarded one of the most useful approaches used in real-time 
TSA [11]. As mentioned there are various ML approaches for 
TSA; however, this paper specifically focuses on SVM. 

The rest of the paper is organized as follows. Section II 
discusses background and overview of ML. Section III 
elaborate various steps of ML. Section IV provides 
background and overview of SVM. Section V provides a 
summary of various work of SVM application to TSA. Section 
VI provides research gaps and suggestions for future work. 
Finally, Section VII concludes the paper. 

II. MACHINE LEARNING: BACKGROUND AND OVERVIEW 
ML is broadly regarded as the subset of artificial 

intelligence [12] (simulation of human intelligence in 
machines, which are programmed to think like humans and 
mimic their actions), as outlined by Fig. 1. ML basically is an 
application of artificial intelligence that provides systems the 
ability to automatically learn and enhance from experience 
without being explicitly programmed [12-13]. In fact, the ML 
performs data analysis, using a set of instructions, through a 
variety of algorithms, for decision making and/or predictions 
[14]. Laborious designing and programming of algorithms are 
essential to be conducted, for ML, to implement diverse 
functionalities, such as, classification, clustering, and 
regression. Deep Learning (DL) is a class of ML algorithms 
that uses multiple layers to progressively extract higher-level 
features from the raw input. For instance, in image processing, 
lower layers may identify edges, whereas higher layers may 
distinguish the concepts relevant to a human being, such as 
digits, letters or faces [15]. It is majorly used for speech 
recognition, computer vision (high-level understanding from 
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digital images or videos), medical image analysis, and natural 
language processing. There are numerous architectures used 
in DL such as deep neural networks, deep belief networks, 
recurrent neural networks, long short-term memory, and 
convolutional neural networks. The DL generally requires 
huge processing power and massive data [15]. The focus of 
this work is, however, on ML. 

 
Fig. 1.  ML as a subfield of artificial intelligence. 

ML differs from traditional programming, in a very 
distinct manner. In traditional programming, the input data 
and a well written and tested program is fed into a machine to 
produce output. When it comes to ML, input data along with 
the output is fed into the machine during the learning phase, 
and it works out a program for itself. This is illustrated in Fig. 
2 [16].  

During the last decade, ML, and DL has demonstrated 
promising contributions to many research and engineering 
areas, such as data mining [17], medical imaging [18], 
communication [19], multimedia [20], geoscience [21], 
remote sensing classification [22], real-time object tracking 
[23], computer vision-based fault detection [24], and so forth. 
The integration of advanced information and communication 
technologies, specifically Internet of Things (IoT), in the 
power grid infrastructures, is one of the main steps towards 
the smart grid. Since the vital capability of IoT devices is their 
capability to communicate data to other devices in a more 
pervasive fashion, and hence a massive amount of data is 
made available at the control centres. Such meaningfully 
enhanced system condition awareness and data availability 
necessitates ML-based solutions and tools to conduct efficient 
data processing and analysis, to encourage the system 
operational management and decision-making [25]. 
Therefore, ML has been applied in various fields of power 
system, such as load forecasting [26], fault diagnosis [27], 
substation monitoring [28], reactive power control [29], unit 
commitment [30], maintenance scheduling [31], wind power 
prediction [32], energy management [33], load restoration 
[34], solar power prediction [35], state estimation [36], TSA 
[37], economic dispatch [38], and electricity price forecasting 
[39]. 

 
Fig. 2.  Traditional programming vs ML. 

 

III. STEPS OF MACHINE LEARNING 
There are seven main steps of successfully implementing 

ML. They are outlined below and illustrated in Fig. 3 [40]. 

A. Gathering Data 
The first and the most significant step of ML is gathering 

data. This step is very critical, as the quality and quantity of 
data gathered will directly determine how good the predictive 
model will turn out to be. The data collected is then tabulated 
and is commonly called as the training or learning data. 

B. Data Preparation 
After the training data is gathered, the next step of ML is 

data preparation, where the data is loaded into a suitable place 
and then, prepared for use in ML training. Here, the data is 
first put all together and consequently, the order is randomized 
as the order of data should not affect what is learned. This is 
also a good chance to do any visualizations of the data, as this 
will help see if there are any pertinent relationships between 
the different variables, and presence of any data imbalances or 
anomalies. Also, at this stage, the data must be divided into 
two parts. The first part, which is used in training the model, 
will be most of the dataset and the second will be used for the 
evaluation (validation and testing) of the performance of the 
trained model. 

C. Model Selection 
The subsequent step that follows in the workflow is 

choosing a model among the many that researchers and data 
scientists have created over the years. There are different 
algorithms for different tasks. Some are appropriate for image 
data, others for sequences (such as text, or music), some for 
numerical data, others for text-based data. A selection should 
be made based on the task required. 

D. Training 
After the above-mentioned steps are completed, the next 

step involves training, where the data is used to incrementally 
improve the ability of the model to predict. The training 
process requires initializing some random values for the 
model, predicting the output with those values, then 
comparing it with the model’s prediction and eventually, 
adjusting the values such that they match the predictions that 
were made formerly. This process then replicates, and each 
cycle of updating is called one training step. 

E. Evaluation 
Once training is complete, evaluation is performed. This is 

where the testing dataset comes into play. Evaluation allows 
the testing of the model against data that has never been seen 
and used for training and is meant to be illustrative of how the 
model might perform in the real world. 

F. Hyperparameter Tuning 
Once the evaluation is over, any further improvement in 

the training process is possible by tuning the parameters. 
There were a few parameters that were implicitly assumed 
when the training was done. Another parameter included is the 
learning rate that defines how far the line is shifted during each 
step, based on the information from the previous training step. 
These values are significant in the accuracy of the training 
model, and how long the training will take. For complicated 
models, initial conditions play a significant role in the 
determination of the outcome of training. Differences can be 
seen depending on whether a model starts off training with 



values initialized to zeroes versus some distribution of values. 
These parameters are commonly referred to as 
hyperparameters. The tuning of these parameters depends on 
the dataset, model, and the training process. 

G. Prediction 
ML is fundamentally using data to answer questions. 

Prediction is the final step where you get to answer few 
questions. This is the point where the value of ML is realized. 
The model gains independence from human interference and 
thus, draws its own conclusion, based on its data sets and 
training process. Here, eventually, the trained model can be 
used to predict the outcome for any desired inputs. 

 
Fig. 3.  Seven steps of ML. 

IV. SVM: BACKGROUND AND OVERVIEW 
A SVM is a supervised learning algorithm that can use 

given data to solve certain problems by attempting to convert 
them into linearly separable problems [41]. It was first 
introduced by Vapnik [41-42] and was elaborated by 
Schölkopf et al. [43]. SVMs find a broad application in 
classification problems. They distinguish between two classes 
by finding the optimal hyperplane that maximizes the margin 
between the closest data points of opposite classes. The 
number of features in the input data determine if the 
hyperplane is a line in a two-dimensional space or a plane in a 
n-dimensional space. Since multiple hyperplanes can be found 
to differentiate classes, maximizing the margin between points 
enables the algorithm to find the best decision boundary 
between classes. The lines that are adjacent to the optimal 
hyperplane are known as support vectors as these vectors run 
through the data points that determine the maximal margin. 
The SVM algorithm is widely used in ML as it can handle 
both linear and nonlinear classification tasks. However, when 
the data is not linearly separable, kernel functions are used to 
transform the data higher-dimensional space to enable linear 
separation. The choice of kernel function, such as linear 
kernels, polynomial kernels, Radial Basis Function (RBF) 
kernels, or sigmoid kernels, highly depends on data 
characteristics. 

Although ANN is the most commonly used ML method 
for transient stability classification, it generally involves a 
broad training process and an intricate design procedure. 
Moreover, ANN usually performs well for interpolation but 
not so well for extrapolation, which reduces its generalization 
ability. They are more susceptible to becoming trapped in a 
local minimum. Although, majority of ML algorithms can 
overfit, if there is a dearth of training samples, but ANNs can 
also overfit if training goes on for a very long duration [42]. 
On the other hand, in the recent years, SVM classifiers have 
received a huge attention from power systems researchers 

because of producing single, optimum and automatic sparse 
solution by simultaneously minimizing both generalization 
and training error and unscrambling data by the large margin 
at high dimensional space [44-45]. Due to some of these 
downsides of ANN, it becomes essential to develop a more 
efficient classifier for transient stability status prediction. 
SVM does not suffer from these drawbacks and has the 
following advantages over ANN [11]: (1) less number of 
tuning parameters, (2) less susceptibility to overfitting, and (3) 
the complexity is dependent on number of support vectors 
(SVs) rather than dimensionality of transformed input space. 

There are some other algorithms which suffer from various 
limitations which make SVM a popular algorithm. For 
instance, decision tree has a tendency to overfit data. This 
algorithm can be unstable as small variations in data might 
lead to incorrect results. It can also generation a biased tree if 
some classes are dominant. Random forest does not explicitly 
optimise for margin. It can be computationally intensive, 
particularly for large data sets. Although, this algorithm is 
resistant to overfitting, it can still occur in the presence of 
noisy data. K-Nearest Neighbour (KNN) has some downsides 
such as computational expense, slow speed, memory and 
storage issues for large datasets, sensitivity to the choice of K 
and the distance metric, and vulnerability to the curse of 
dimensionality and noisy data [46-48] 

SVM classifiers depend on training points, which lie on 
the boundary of separation between different classes, where 
the evaluation of transient stability is important. A decent 
theoretical progress of the SVM, due to its basics built on the 
Statistical Learning Theory (SLT) [41], made it possible to 
develop fast training methods, even with large training sets 
and high input dimensions [49-51]. This useful characteristic 
can be applied to tackle the issue of high input dimension and 
large training datasets in the TSA problem. The basic 
implementation of an SVM, commonly known as a hard 
margin SVM, requires the binary classification problem to be 
linearly separable. This is frequently not the case in practical 
problems, and therefore, SVM provides a kernel trick to 
resolve this issue. The strength of the SVM algorithm is based 
on the use of this kernel trick to transform the input space into 
a higher dimensional feature space. This allows for defining a 
decision boundary that linearly separates the classes. The 
SVM algorithm attempts to find that decision boundary or 
hyperplane with the highest distance from each class [11]. 

V. LITERATURE REVIEW: APPLICATION OF SVM FOR TSA 
This section will review the application of SVM for 

problems involving TSA. Recently, SVM has been applied to 
power system transient stability classification problem. An 
SVM-based transient stability classifier was trained in [5] and 
its performance was compared with a Multi-layer Perceptron 
(MLP) classifier. Reference [52] devised a multiclass SVM 
classifier for TSA classification. Reference [53] 
recommended a SVM classifier to predict the transient 
stability status, using voltage variation trajectory templates. 
Reference [11] trained a binary SVM classifier, with 
combinatorial trajectories inputs, to assess the transient 
stability status. Reference [54] employed the SVM to rank the 
synchronous generators, based on transient stability severity, 
and consequently, classified them into vulnerable and 
nonvulnerable machines. Reference [55] proposed two SVMs, 
using Gaussian kernels, for classifying the post-fault transient 
stability status of the system. Reference [56] presented an 
SVM-based approach, for transient stability detection, using 



post-disturbance signals, from the optimally located 
distributed generations. Reference [57] proposed a multi-
SVM power system TSA method, based on relief algorithm. 
Firstly, the suggested approach selected numerous feature 
subsets, with various size based on relief algorithm; then, used 
these chosen feature subsets for SVM training, and eventually, 
these trained SVMs were integrated to evaluate the transient 
stability of power system. 

Reference [58] focused on the assessment of the transient 
stability of power systems, using pre-fault and fault duration 
data, measured by Wide Area Measurement System (WAMS). 
In the suggested approach, the time-synchronized values of 
voltage and current, created by synchronous generators, were 
measured using Phasor Measurement Units (PMUs), installed 
at generator buses, and given as input to the suggested 
algorithm, to obtain a proper feature set. Then, the devised 
feature set was applied to (SVM) classifier, to envisage the 
transient stability status. In [59], a different time series 
forecasting algorithm, using SVM, was proposed, which 
utilized synchronized phasor data, to provide fast transient 
stability swings prediction, for the use of emergency control. 
In [60], a conservative prediction model, for power system 
transient stability, was suggested, targeting at enhancing 
accuracy, for predicting the unstable cases. The model was 
recognized as an ensemble learning model, using multiple 
SVMs as sub-learning machines. 

In [61], a twin convolutional SVM as supervised 
trajectory-based deep neural classifier was presented, which 
can remove the computational intricacy of kernel trick. The 
results demonstrated that the classification accuracy of the 
presented approach with a larger size window for each test 
systems exceeded 87% and it outperformed kernel-based 
approaches on test cases. In [62], an online power system TSA 
problem was mapped as a two-class classification problem 
and a novel ML algorithm known as the Core Vector Machine 
(CVM) was suggested to solve the problem based on PMUs 
big data. Compared with other SVMs, the devised CVM based 
assessment technique had the higher precision. Also, it had the 
least time consumption and space complexity. Based on the 
data collected from the PMU, a TSA method merging Stacked 
Automatic Encoder (SAE) and SVM was presented in [63]. 
Multi-layer abstract learning was performed on the original 
features by the SAE, and the extracted feature was used to 
train and test the SVM model. 

Reference [64] proposed TSA of a large practical power 
system using two ANN approaches: Probabilistic Neural 
Network (PNN) and Least Squares SVM (LS-SVM). 
Transient stability of the power system was first evaluated 
based on the generator relative rotor angles (obtained using 
time domain simulations). Classification results demonstrated 
that the PNN gives faster, and more accurate results for TSA 
when compared to the LS- SVM. Considering the fact that the 
traditional SVM method cannot avoid false classification, [65] 
suggested a novel approach to solve the weaknesses of 
traditional SVM, which can enhance the interpretability of 
results, and avoid the problem of false alarms and missed 
alarms. In this approach, two enhanced SVMs, known as the 
Aggressive SVM (ASVM) and Conservative SVM (CSVM), 
were presented to increase the accuracy of the classification. 
Cases studies on IEEE 39-bus system and a real provincial 
power network illustrated the efficacy and viability of the 
suggested technique. 

In [66], a unique TSA algorithm was presented, where 
SVMs were employed as pattern classifiers. SVMs with 
different kernel functions and kernel parameters were 
constructed and trained to compute hyperplanes that split the 
stable and unstable states of power system for (n − 1) faults. 
The simulation results obtained using three benchmark 
systems demonstrated the good capacity for fuzzy combined 
SVM classifiers in TSA. Compared with traditional SVM, 
[67] devised an advanced TSA system using Multi-layer SVM 
(ML-SVM) approach. In the proposed method, a Genetic 
Algorithm (GA) was used in ML-SVM to identify the valued 
feature subsets with differing numbers of feature. Transient 
stability of the system was determined based on the generator 
relative rotor angles. The simulation results demonstrated that 
the presented approach could lessen the likelihood of 
misclassification. Reference [68] proposed a comparative 
analysis of two different ML algorithms, i.e., ANN and SVM, 
for online transient stability prediction, considering various 
uncertainties, such as load, network topology, fault type, fault 
location, and Fault Clearing Time (FCT). The results for the 
IEEE 14-bus system demonstrated that both ANN and SVM 
can rapidly estimate the transient stability; however, ANN 
outclassed SVM as its classification performance and 
computational performance were established to be greater. In 
[69], an improved SVM method was suggested for TSA of 
power system. Firstly, the original feature set was determined 
by a simple calculation of the original operating parameters of 
the power system, such as projection energy function feature 
and system-level feature. Then, the feature sets were used to 
the TSA problem of SVM with pinball loss (Pin-SVM). To 
reduce the computational burden, the sequential minimal 
optimization (SMO) was introduced to break a large Quadratic 
Programming (QP) problem into a series of small QP 
problems. The feasibility and validity of the proposed method 
were demonstrated using the IEEE 145-bus system and an 
actual power grid in China. 

 In [70], a power system evaluation model using improved 
SVM algorithm was proposed for the transient state evaluation 
system of power system. Firstly, the characteristic vector was 
extracted from the transient steady-state data of power system, 
and consequently, the traditional SVM algorithm was 
enhanced by adding Mahalanobis distance. Finally, the 
algorithm accuracy and precision were compared. Results 
obtained showed a higher accuracy and precision of the 
improved SVM algorithm, and its superior processing ability 
and evaluation ability of power system data. A SVM-
based Convolutional Neural Network (CNN) to assist the 
operation of the power system was proposed in [71]. The 
SVM-CNN was realized based on the parameters of time-
domain analysis, fault type, fault location, and system load 
fault clearing time. The suggested work minimized the 
workload of operational staff and improved efficiency and 
ability. 

VI. RESEARCH GAPS AND FUTURE RECOMMENDATIONS 
Based on the detailed literature review and to the best of 

author’s knowledge, there exists no research work on PTS 
which uses SVM-based ML approach, considering the 
uncertainties of load, faulted line, fault type, fault location (on 
the line), and FCT. Moreover, [72] specifically mentions the 
potential of SVM for online TSA. In addition, [73-77] strongly 
indicate that ML is a promising and upcoming approach for 
online Dynamic Security Assessment (DSA). Thus, one of the 
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main research gap is to predict PTS status using an SVM-
based ML approach. 

Also, there is a dearth of work which incorporates 
renewable energy in TSA prediction using SVM. As the 
amount of renewable energy is increasing continually in the 
power system, the dynamics of power system are becoming 
more intricate. More comprehensive studies and simulations 
are required to understand the behaviour of the system under 
renewable energy integration. Network topology changes are 
often ignored in the existing research work. It is significant to 
train the SVM model for changing topologies. In this regard, 
the network base topology can be investigated towards 
accomplishing an optimized network topology from the 
standpoint of transient stability of the whole system. Novel 
techniques must be researched and applied such that the SVM 
model can adapt to any topology of the power system. 

In future studies, it is also recommended to incorporate 
unobserved real-time operating conditions of power networks 
such as information lost due to the communication failure 
(unavailability) and absence of quality of power system 
dynamic responses (noisy data). As different feature subsets 
have different useful information of a power system; 
therefore, comprehensive use of this information for TSA 
must be made. Misclassification and missed classification 
have entirely dissimilar impact for the stability of the system. 
Therefore, using different feature subsets to train SVMs and 
consequently, integrating the result can considerably reduce 
the misclassified samples, which is of great significance for 
TSA in practical power systems. The performance of the 
SVM-based ML approach depends on the quality and quantity 
of the data. In power systems, the required data are either 
unavailable, unlabelled or have low quality. Hence, the 
necessary information is collected using equivalent system 
models. However, the design of the database generation 
process can produce biased models, which can cause an 
overestimation of its performance during assessment. 
Consequently, it is essential to research further into their 
robustness and reliability [78]. 

There are some potential challenges and limitations in the 
practical applications of SVM to TSA. The main challenge in 
this regard is acquiring accurate and precise amount of data 
for training the SVM. SVM models can overfit (overly 
complex) or underfit (too simplistic). Striking the right 
balance is critical for model performance. Overfitting occurs 
when a model fits the training data too closely, capturing noise 
instead of useful patterns. Underfitting, on the other hand, 
results from overly simplistic models that cannot capture 
complex relationships in the data. Addressing these issues 
often involves hyperparameter tuning and cross-validation (a 
resampling procedure used to evaluate ML models on a 
limited data sample). Realizing SVM frameworks for a large 
scale power system can be demanding due to constraints in 
resources as training intricate models requires substantial 
computational power and storage capabilities. Data quality is 
another critical factor in addressing the challenges of SVM 
models when applied to statistical power system data. Class 
imbalances, outliers and missing data points are key 
contributors in input data of the power system.  

Another key challenge is to incorporate changes of the 
network topology using SVM. The security of the power 
system is highly related to the topology of the system [79], and 
changes in the network topology can happen frequently for 
various reasons, such as for maintenance purposes or 

unexpected component failures [80]. The impact of changing 
topology on transient stability rules is a substantial challenge. 
This is because if topological changes are not considered and 
transient stability rules are trained only for one specific 
topology, the resulting assessment of the transient stability 
(and security) using these rules may provide erroneous 
predictions, which ultimately leads to incorrect decision-
making. Therefore, a key future direction is to enhance the  
SVM workflow, by considering changes in the system 
topology [81]. 

The present study provided a review of some major 
research works and potential future research avenues 
associated with SVM application to TSA. This can be a 
remarkable offset for researchers in the domain of ML, power 
system stability and operation, particularly in the presence of 
uncertainty. Recent research [82-91] reveals that there is a lot 
of scope in this domain, and its potential must be fully 
investigated. 

VII. CONCLUSION AND FUTURE WORK 
TSA of the power system is a critical issue with escalating 

demands and numerous operating restrictions. With the 
increasing uncertainty, renewable energy generation, and 
electricity market deregulation, its accurate evaluation cannot 
be overestimated. The constraints of online TSA for modern 
power systems have become quite strict. Moreover, inability 
to fulfil these requirements can cause instability which can 
result in cascading outages and blackouts, hence, causing 
economic, social, and technical losses. Novel soft computing 
approaches based on ML, such as SVM, can play a valuable 
part in ensuring that these requirements are met. Therefore, 
this paper provided a review of works related to application of 
SVM to TSA. It is believed that this review will provide a 
good basis for researchers in the field of SVM and power 
system transient stability, and consequently, help them 
understand the existing research status and questions.  

As a future work, numerous reviews can be conducted 
using other ML approaches and a comparative analysis can be 
drawn. Moreover, ensemble ML approaches can be explored 
for TSA which combine two or more ML approaches to 
achieve better performance. Merging quantum computing 
with ML for TSA is another open area of research. 
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