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Abstract—Quadrupedal robotics is an ever growing field with
a wide range of applications. However, developing controllers for
new behaviours can be challenging due to the complex nature
of these robots. Imitation learning algorithms can help overcome
some of these challenges, with robots learning from biological
counterparts through motion capture data. Robots could also po-
tentially use these techniques for copying behaviours from other
robots/animals of similar morphology. Acquiring the required
motion capture data from animals and remote locations can be
difficult due to the bulky expensive equipment required. However,
the use of pose estimation toolboxes such as DeepLabCut could
negate this issue. This paper covers the methodology and results
from initial proof of concept experiments for two key areas.
Firstly, testing the feasibility of DeepLabCut in the use of tracking
robotic quadrupeds. Secondly, if the data produced can be used
to generate trajectories for deployment on a target robot. This
will help to establish if the use of pose estimation toolboxes could
potentially be useful in future imitation learning experiments.

Index Terms—pose estimation, quadrupedal robotics, imitation
learning.

I. INTRODUCTION

In recent times, robotic quadrupedal platforms are being
deployed for an increasingly wider range of tasks, mainly
due to their ability to traverse a variety of environments.
They are currently deployed in areas such as inspection of
gas and oil rigs and nuclear power stations [1][2], and to
enter potentially dangerous rescue situations [3]. However,
as versatile as these platforms are, programming them to
perform new tasks and behaviours can be challenging [4].
Having the ability to learn from and imitate their biological
counterparts, or other robots with similar morphology could be
advantageous in overcoming some of these hurdles. Research
into imitation learning techniques for robotics is becoming
more prevalent. However, acquiring the motion capture data
for use with these algorithms can be tricky depending on
subject and location [5]. The development of markerless pose
estimation toolboxes increase the feasibility of tracking free
moving animals on location with their ability to use novel
videos taken from contactless cameras [6]. Toolboxes such
as SLEAP, DeepLabCut (DLC), and DeepPoseKit have had
excellent results in tracking animal behaviour without the need
of bulky equipment or restriction of environment [7][8][9].
The work conducted using these toolboxes has tracked a wide
variety of animals including horses, cows, dogs, and mice

[5], all of which would make good candidates for the use
in imitation learning for quadrupedal robotics.

II. BACKGROUND

A. Markerless Pose Estimation

Pose estimation toolboxes such as DLC are predominantly
used for tracking and analysis animal movements and beha-
viour. OkeyDogg3D, a mobile application developed using
DLC by Yu and Rim to track and recognise stress related
behaviours in dogs [10]. Lecomte et al. used DLC for the gait
analysis of cats, allowing them to study areas such as stride
and step length [11]. WiKA is a sign language recognition
tool proposed by Osorio et al. It uses DLC to recognise
joint positions of the hands and interpret their sign language
counterpart [12]. The work conducted in these areas helps
inform the use of pose estimation toolboxes for use in imitation
of animals. However, little work has been conducted with these
toolboxes being used to track biologically inspired robots.
Although, Youseff et al. has recently used DLC in conjunction
with reinforcement learning to track robotic fish, enabling the
robots to reach a specific target [13].

B. Imitation Learning

The purpose of the experiments discussed in this paper is to
determine whether using pose estimation toolboxes show po-
tential for future use in this area. By regarding the techniques
currently used in this field can help determine how the use of
pose estimation toolboxes could be beneficial.

The work conducted by Peng et al. proposed an imitation
learning framework where motion capture data is taken from
animals and deployed onto a Laikago quadrupedal robot using
reinforcement learning techniques, and using simulation to re-
target the motion capture data [4]. Grandia et al. presented
the Differentiable Optimal Control (DOC) framework, which
takes data from motion capture or animation and then re-
targets it onto simulated and real robotic quadrupeds of various
morphology. As DOC is applied to model predictive control
(MPC), there is no loss of dynamic stability [14]. Zhang et al.
used motion capture data from a Labrador performing dynamic
movements such as running and jumping, and transferred it to
a robotic quadruped. These actions were also triggered from
human interaction much like a real pet [15]. Li et al. proposed



Figure 1: Spot by Boston Dynamics (Bernard) and the Unitree
Go1 Edu (Rocky) stood side by side to demonstrate differences
in morphology.

an adversarial imitation learning algorithm named WASABI in
conjunction with partial hand held demonstrations of dynamic
movements. These movements (including a back flip) were
then deployed on their Solo8 quadrupedal robot [16]. The
area of imitation learning in legged robotics is not limited
to quadrupedal platforms. Recently Cheng et al. used motion
capture data and deployed it onto a Unitree H1 bipedal robot,
allowing the robot to imitate dynamic movements including
dancing and giving high fives [17].

III. METHODOLOGY

A. Robots

The experiments covered in this paper make use of two
robotic quadrupeds. The first being a Boston Dynamics’ Spot,
which we have named Bernard. The second is a Go1 EDU built
by Unitree, which we have called Rocky (Fig 1). Both of these
robots have a 12-Degree of Freedom (DoF) design, with 3-DoF
present at each leg. These robots have a similar morphology
but they have significant size, stability, and gait differences.
This allows the conducted experiments to test across different
platforms rather than have a single robot imitate itself.

Bernard is used as the demonstrator for tracking with
DLC. This platform is objectively far more stable that its
Go1 counterpart. This allows for better control when creating
and recording the target trajectory. The robot is controlled
manually using its controller to emulate discrepancies that
might be found while in the field.

Rocky is used as the target robot for the deployment of the
recorded trajectory. It was controlled via PC with the use of
ROS2 Humble, and makes use of the ROS2 packages provided
by Unitree. This includes their UDP connection protocol, and
ROS legged messages, which can be found on their GitHub1.

B. Method of Recording Video Footage

Training and test footage for DLC is collected via the use
of a single GoPro 9. This was mounted to a tripod in a single

1https://github.com/unitreerobotics/unitree ros2

fixed location at a height of 1.49m. Video footage of Bernard
is captured at a frame rate of 23.98 frames per second (fps).

C. DeepLabCut Setup

DLC’s markerless pose estimation toolbox uses manually
labelled frames extracted from videos to train a model capable
of locating points of interest in novel footage of animals
[18][8]. To prevent any conflict with ROS2 dependencies, DLC
is deployed in a Docker container with shared access to files
that were required by both ROS2 and DLC. All documentation
on using DLC can be found on their GitHub2.

D. Training DLC

Using the method discussed in III-B, a total of eight videos
of Bernard are created for the use of training the DLC model.
These videos range in length from 33 to 61 seconds (≈ 791 to
1458 frames), and contain a wide variety of Bernard’s motions.
This variety of movement helps increase robustness of the
trained model. Recorded walking patterns include straight line,
circular, and figure of eight trajectories. Other movements such
as strafing and turning in place are also recorded, along with
numerous static poses created by changing Bernard’s pitch,
roll and yaw angles. Although DLC documentation recom-
mends training with footage recorded in different settings and
lighting etc. For the purpose of these initial proof of concept
experiments, it was deemed that recordings set in a single
location would be sufficient. From each of the eight training
videos, forty individual frames are extracted automatically
using the DLC’s in-built k-means clustering frame extraction
algorithm. Points of interest are then manually located on each
of the extracted frames. As this preliminary work focused on
only recreating a generalised trajectory on the target robot,
it was decided that only two key points of interest would be
significant for marking at this stage. In each extracted frame
a marker is placed at the ”head” of Bernard, and one at the

2https://github.com/DeepLabCut/

Figure 2: Example evaluation image provided by DeepLabCut.

https://github.com/unitreerobotics/unitree_ros2
https://github.com/DeepLabCut/


Table I: DLC Model Combined Evaluation Results

Training Iterations Train Error (px) Test Error (px) p-cuttoff Used

50000 1.51 2.46 0.8

”tail”. Once all frames were manually labelled, the DLC model
can be trained.

The DLC model is trained using the default option of the
ResNet-50 convolutional neural network. Training takes place
over 50000 epochs, with the prediction cutoff (p-cutoff) being
raised from the default 0.6 to a value of 0.8. The model is then
evaluated by visually comparing the manually located points of
interest (ground truth) against their predicted location for each
training frame. The manually located points are marked in each
frame with ”+” and the predictions are marked with a ”•”. An
example evaluation frame can be seen in Fig. 2, with a small
discrepancy present between labeled and predicted locations.
DLC also tests itself using reserved none labelled frames from
the same set of videos, and provides error results for both
training and testing. These values can be seen in Table I.

E. Testing the DLC Model

Another five novel videos of Bernard are recorded for the
purpose of testing the trained model and obtaining data for
imitation. As before, these are created using the same method
as discussed in section III-B. These five novel videos each
contain footage of Bernard performing a unique trajectory. The
footage of Bernard includes walking in ”box”, ”egg timer”,
and ”block L” patterns as shown in Fig. 3. The final two
videos contain footage of Bernard walking in a straight line
with pauses, and turning in place. These new recordings are
then analysed with the trained model to evaluate how well
it performs when presented with new footage. After these
videos are analysed by the model using the DLC toolbox,
the results can be plotted, and labelled videos created. The
data extrapolated from these videos can then be tested by
being transferred to Rocky, and an attempt made to imitate
the generalised trajectory.

F. Calculating Trajectory

As the purpose of these initial experiments are to explore
whether data provided from DLC can be deployed in a
meaningful way to another robot, the decision was made that
attempting to copy general trajectory over time would be

(a) ”Box” Pattern (b) ”Egg Timer”
Pattern

(c) ”Block Capital
L” Pattern

Figure 3: The three trajectory patterns

applicable at this stage. The data extrapolated from the novel
videos provide the x/y co-ordinates in pixels of both points
of interest tracked by the model. These co-ordinates and their
relationship to each other are used to attempt to determine
four basic ”behaviours”. These are walking forward, rotating
left, rotating right, and remaining stationary.

To determine whether the Bernard is turning right or left,
the robot’s angle of orientation is calculated for each video
frame. This is achieved by determining the gradient from the
”head” to the ”tail” points relative to the x-axis within the
frame and using it to calculate the corresponding angle.

The gradient is calculated by:

m =
(y2− y1)

(x2− x1)
(1)

Where m is the gradient, x1 and y1 represent the x and y
co-ordinates of the head in pixels, and x2 and y2 represent
the x and y co-ordinates of the tail in pixels.

The angle θ is then calculated by:

θ = tan−1(m) (2)

If the angle between frames increases or decreases signi-
ficantly, then it can be determined that at that point in the
video that Bernard is turning. As the experiments only require
understanding of whether the robot is turning rather than how
far it has, the exact angle value is arbitrary. If no significant
change in angle is present, but significant relative change of
both ”head” and ”tail” co-ordinates is apparent, then it can be
determined that the robot is walking in a straight line.

If no significant change is present in angle or co-ordinates,
then it can determined that the robot remains stationary.

The training error shown in Table I can cause marked
points to show slight movement between frames while Bernard
remains stationary. If the frame step is too small difficulties
can arise distinguishing between Bernard movement and the
aforementioned error. To compensate for this comparison was
completed on every sixth frame (≈ 0.25 seconds). Once a
behaviour at a frame is determined, the length of time it
remains is calculated from the number of consecutive frames
showing the same behaviour, and multiplying by the fps.

G. Deploying Trajectory on Rocky

A ROS node is written to perform the determination of each
behaviour from the extracted DLC data and the time period it
lasts. A set of tuning parameters are also created in the node,
including options to change variables such as time step length,
walk speed, yaw speeds, and filters to eliminate any inaccuracy
present in the data. The node also depends on packages written
and provided by Unitree for working with ROS2, including
their legged messages and high level UDP protocol. The node
relates a behaviour to the Go1’s pre-programmed high level
modes, and selects the correct mode and speed parameters.
These are then transmitted for deployment onto Rocky.



(a) DLC Box likelihood Plot

(b) DLC Egg Timer Likelihood Plot

(c) DLC L Likelihood Plot

(d) DLC Spin Likelihood Plot

(e) DLC Walk Stop Likelihood Plot

Figure 4: Likelihood plots for points of interest at each frame

IV. RESULTS

A. The DLC Model

The DLC toolbox is also used to create labelled videos from
the analysed test footage. Graphs containing the likelihood

Table II: Tuning parameters for each imitated trajectory

Trajectory walk buffer turn buffer right yaw left yaw vel

Initial 1.0 2.2 -0.7 0.65 0.3
”L” 1.0 2.2 -0.7 0.65 0.3
”Box” 1.0 2.7 -0.8 0.65 0.3
”Egg Timer” 1.0 2.2 -0.7 0.7 0.3
”Spin” 2.8 2.2 -0.7 0.65 0.3
”Walk Stop” 1.0 2.2 -0.7 0.5 0.3

predictions at each frame are also created, and can be seen
in Fig. 4. These plots show the accuracy of both points of
interest at each frame.

B. Trajectory Replication

Each trajectory is then tested on Rocky using the method
discussed in section III-G. All trajectories initially use the
same set of parameters that are chosen from tuning the ”Block
L” trajectory data. Each trajectory is then deployed to Rocky,
and the results recorded. Individual tuning parameters are then
established for each trajectory to increase performance accur-
acy, and a second set of video recordings created. Exact tuning
parameters for each trajectory can be found in Table II. Where
walk and turn buffers are values in pixels to eliminate jitter.
The right yaw, left yaw and vel values represent velocities
for turning left, right and moving forward respectively. These
velocity values use implementation from the Unitree ROS2
high level control examples and range in value from -1 to 1.
Recordings of the tuned trajectories are also run through the
DLC model to produce x/y co-ordinate data for comparison.

Both demonstrator and target robot DLC data is used to
create x/y co-ordinate plots of each trajectory. Fig. 5 shows the
path of each robot over time, and is calculated using an average
of ”head” and ”tail” positions at each frame. By comparing the
path of both robots for each trajectory, it can be determined
how well the target robot performed against the demonstrator.

Recordings of all labelled DLC videos, and deployed tra-
jectories can be found online3.

V. DISCUSSION

A. DLC Model Performance

From analysis of labelled videos and the produced graphical
plots, it can be argued that at this early stage of experiment-
ation the use of DLC for tracking robotic quadrupeds shows
promise. The labelled videos show both the ”head” and ”tail”
being tracked objectively well over the course of an entire
video. The co-ordinate plots of the demonstrator robot in Fig.5
also support these findings, each showing the desired trajectory
albeit a slight distortion pertained to the angle of recording,
and the ”fish bowl” effect of the camera lens. This gives the
appearance in all trajectories of a curvature in the x-axis and
tapering in the y-axis. The likelihood plots in Fig.4 also show a
good overall performance of the model. However, some frames
show significant loss of accuracy for both ”head” and ”tail”
markers. This can also be observed when watching the marked

3https://tinyurl.com/9utd2m6e

https://tinyurl.com/9utd2m6e


(a) ”Box” Coordinate Plot of Demonstrator
Robot

(b) ”Egg Timer” Coordinate Plot of
Demonstrator Robot

(c) ”Block L” Coordinate Plot of
Demonstrator Robot

(d) ”Box” Coordinate Plot of Target
Robot

(e) ”Egg Timer” Coordinate Plot of Target
Robot

(f) ”Block L” Coordinate Plot of Target
Robot

Figure 5: x/y coordinate plot of each novel video and target robot trajectories

videos carefully, where it can be seen that in certain frames the
markers appear in the wrong location. Further experimentation
and analysis is required to ascertain the exact reasons for the
DLC model performing inadequately for these specific frames.
However, as these experiments use a relatively small data set
in a single environment, creating a more robust model using
a larger data set could possibly improve results.

B. Trajectory Replication Performance

Although the methods used to replicate general trajectory
from demonstration video to target robot were rudimentary,
and lacking in the use of an imitation learning algorithm.
The results displayed in the video evidence and Fig.5 show
potential for the use of a pose estimation toolbox in future
imitation learning research. By comparing co-ordinate plots
of the demonstrator against the target robot, it can be seen
that Rocky recreated the desired path, albeit with some dis-
crepancy. Incorrect turn speeds, distances of travel, and pauses
were present in all videos. For example, it was noted that
before before Bernard comes to a halt, it marches briefly in
place. This then created unwanted forward movement in the
target robot. It can be argued that at this stage of experi-
mentation, artifacts such as these are to be expected. Many
of these unwanted artifacts, and the need to individually tune
each trajectory appears to stem from the limited functionality
applied to Rocky. This can hopefully be eliminated in future
work by using a more robust DLC model, implementing of a

form of imitation learning algorithm, and filtering any outlier
data. It should also be noted that some initial errors originated
from Rocky itself, as it began to drift when turning. An attempt
to compensate for this was made by implementing a slight
forward velocity as the robot turned.

C. Future Work

The creation of a more robust DLC model will include
creating a larger video data set. This will contain footage
of various robotic quadrupedal platforms performing a wide
array of movements in a variety of environments. The number
of points of interest will also be increased to include each
of the robots joints rather than the ”head” and ”tail” only.
This will allow future experimentation to also test low level
control of the target robot. Using the data produced by DLC
in conjunction with a form of imitation learning algorithm
will also establish whether this provides any improvement to
accuracy of trajectory imitation.

VI. CONCLUSION

The purpose of the experiments covered in this paper are to
determine if DLC shows potential for use in tracking robotic
quadrupeds, and if the data produced can be transferred to a
target robot for trajectory imitation. It can be argued that the
results presented show that DLC has promise in both of these
areas. The DLC model successfully tracks the demonstrator
robot, and the data deployed to the target robot results in



the trajectory being replicated. However, both the DLC model
and the imitation results can be significantly improved. The
likelihood graphs in Fig. 4 show the model losing accuracy at
certain frames, and although Fig. 5 shows general trajectory
being imitated successfully, discrepancies are present in each
case. It has been determined that the cause of some these errors
requires further investigation. However, loss of model accur-
acy, outlier data, limited behaviour functionality, and hardware
issues are all factors that should be addressed to improve
results. Once these issues are resolved, the use of DLC can
be tested in conjunction with an imitation learning algorithm.
If successful it will allow imitation learning methods to be
deployed in a wider setting, for imitation of both animals and
robots.
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