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Abstract—Integration of large-scale renewable energy 
sources and increasing uncertainty has drastically changed the 
dynamics of power system and has consequently brought 
various challenges. Rapid transient stability assessment of 
modern power systems is a vital requirement for accurate power 
system planning and operation. The conventional methods are 
unable to fulfil this requirement. Therefore, novel approaches 
are required in this regard. Machine leaning approaches such 
as artificial neural networks can play a significant role in this 
regard. Therefore, this paper aims to review the application of 
artificial neural networks for transient stability assessment of 
power systems. It is believed that this work will provide a solid 
foundation for researchers in the domain of machine learning 
applications to power system security and stability. 
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I. INTRODUCTION  
One of the main requirements for a reliable power system 

is to maintain the synchronous generators (SGs) running in 
parallel and with sufficient capability to meet the load 
demand. In power system, the term transient stability is 
defined as the ability of the synchronous machines to remain 
in synchronism during the brief time following a large 
disturbance, such as a three-phase fault [1-2]. There are 
various conventional methods to assess transient stability; 
however, the most common one is the time-domain simulation 
approach. This is popular due to its universal nature and high 
accuracy; however, it is too time consuming which makes it 
unsuitable for real time prediction of transient stability [3]. 
This method requires detailed modelling for the whole system 
and accurate information about disturbances to solve the 
nonlinear differential–algebraic equations, and is based on 
numerical integration. It is typically used to assess transient 
stability status and to provide detailed operational information 
of the faulted system. Although, this approach is a popular 
method due to its high accuracy, but it is inappropriate for 
online Transient Stability Assessment (TSA), chiefly due to 
its extensive computation effort. Moreover, this method does 
not have any criterion to indicate the system stability before 
the fault clearance [4-5].   

The Transient Energy Function (TEF) method and 
Extended Equal Area Criterion (EEAC) have also been used 
to assess power system transient stability. Though, these 
approaches have some modelling restrictions, and they require 
numerous computations to compute transient stability index 
[6]. Since the EEAC technique considers Single Machine 
Infinite Bus (SMIB), therefore, the system needs to be 
oversimplified, therefore, it cannot be applied to complex 
interconnected power systems. Similarly, the TEF technique 
presents a restriction of only capable of forecasting the 
stability, based on the first swing and if the second swing 
presents itself and go unstable, then the stability examination 

is inaccurate. The TEF method is based on Lyapunov’s second 
theory. Determining an appropriate Lyapunov function for a 
bulk power system, effort in computing the level of the kinetic 
and potential energies, and its inefficiency are some of the 
challenges of the TEF method. Although, these methods have 
a low computational burden, they give conservative results. 
The reliability of the TEF modelling is another challenge. The 
TEF-based methods are difficult to implement, especially due 
to many potential function terms of the TEF of the system. 
Also, these approaches require postfault data for TSA, and 
hence, they are not suitable for TSA for online applications [4-
5]. 

In view of the above mentioned, there is a dire need to 
explore new horizons in terms of assessing transient stability. 
Various computational intelligence- based machine learning 
(ML) approaches such as Artificial Neural Network (ANN), 
Support Vector Machine (SVM), and Decision Tree (DT) 
have been proposed till date for this purpose. Among these 
approaches, ANN is the most common and popular one due to 
various reasons. It does not require any rigorous mathematical 
modelling for its training, and it has a modular structure which 
allows parallel processing. Moreover, it has the ability to 
instantly map nonlinear relations between input data and 
output data [1]. Therefore, this paper will attempt to 
specifically review the application of ANN to TSA. 

The rest of the paper is organized as follows. Section II 
discusses background and overview of ML. Section III 
provides a classification of ML. Section IV provides 
background and overview of ANN and its critical 
components. Section V provides a summary of various work 
of ANN application to TSA. Section VI provides research 
gaps and suggestions for future work. Finally, Section VII 
concludes the paper. 

II. MACHINE LEARNING: OVERVIEW AND BACKGROUND 
ML is broadly regarded as the subset of artificial 

intelligence [7] (simulation of human intelligence in 
machines, which are programmed to think like humans and 
mimic their actions), as outlined by Fig. 1. ML basically is an 
application of artificial intelligence that provides systems the 
ability to automatically learn and enhance from experience 
without being explicitly programmed [7-8]. In fact, the ML 
performs data analysis, using a set of instructions, through a 
variety of algorithms, for decision making and/or predictions 
[9]. Laborious designing and programming of algorithms are 
essential to be conducted, for ML, to implement diverse 
functionalities, such as, classification, clustering, and 
regression. Deep learning (DL) is a class of ML algorithms 
that uses multiple layers to progressively extract higher-level 
features from the raw input. For example, in image processing, 
lower layers may identify edges, whereas higher layers may 
identify the concepts relevant to a human being, such as digits, 
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letters or faces [10]. It is majorly used for speech recognition, 
computer vision (high-level understanding from digital 
images or videos), medical image analysis, and natural 
language processing. There are several architectures used in 
DL such as deep neural networks, deep belief networks, 
recurrent neural networks, long short-term memory, and 
convolutional neural networks. The DL generally requires 
huge processing power and massive data [10]. The focus of 
this work is, however, on ML. 

 
Fig. 1.  ML as a subfield of artificial intelligence. 

ML differs from traditional programming, in a very 
distinct manner. In traditional programming, the input data 
and a well written and tested program (algorithm) is fed into a 
machine to produce output. When it comes to ML, input data 
along with the output is fed into the machine during the 
learning phase, and it works out a program for itself. This is 
illustrated in Fig. 2 [11]. During the last decade, ML, and DL 
has demonstrated promising contributions to many research 
and engineering areas, such as data mining [12], medical 
imaging [13], communication [14], multimedia [15], 
geoscience [16], remote sensing classification [17], real-time 
object tracking [18], computer vision-based fault detection 
[19], and so forth. The integration of advanced information 
and communication technologies, specifically Internet of 
Things (IoT), in the power grid infrastructures, is one of the 
main steps towards the smart grid. Since the vital capability of 
IoT devices is their capability to communicate data to other 
devices in a more pervasive fashion, and hence a massive 
amount of data is made available at the control centres. Such 
meaningfully enhanced system condition awareness and data 
availability demands for ML-based solutions and tools to 
conduct efficient data processing and analysis, to encourage 
the system operational management and decision-making 
[20]. Therefore, ML has been applied in various fields of 
power system, such as load forecasting [21], fault diagnosis 
[22], substation monitoring [23], reactive power control [24], 
unit commitment [25], maintenance scheduling [26], wind 
power prediction [27], energy management [28], load 
restoration [29], solar power prediction [30], state estimation 
[31], TSA [32], economic dispatch [33], and electricity price 
forecasting [34]. 

 
Fig. 2.  Traditional programming vs ML. 

III. CLASSIFICATION OF MACHINE LEARNING 
ML is generally classified into three broad types [20]. A 

brief description of each type is given below. 

A. Supervised Learning (SL) 
In supervised ML (SML), the aim is to learn a mapping 

between the inputs to outputs based on a given labelled set of 
input/output pairs in the training set. In this kind of learning, 
each example is a pair consisting of an input object (normally 
a vector) and a desired output value. A supervised learning 
(SL) algorithm examines the training data and generates an 
inferred function, which can be applied for mapping new 
examples. Some common SL algorithms neural network 
ANN, SVM, DTs, Naïve Bayes, and K-Nearest Neighbour 
(KNN) [35].  

B. Unsupervised Learning (UL) 
In unsupervised ML (UML), the training of an algorithm 

is performed, using information that is neither labelled nor 
classified, such that the algorithm may cluster the information 
based on similarity or difference. In contrast to the SL that 
makes use of labelled data, UL allows to incorporate 
probability densities over inputs. The goal of UL is to discover 
hidden patterns in unlabelled data. Some of the most common 
algorithms used in UL include clustering and anomaly 
detection [35].  

C. Reinforcement Learning (RL) 
Reinforcement learning (RL) is an iterative process to 

foretell the next optimal step to perform a task to get a final 
reward. In each stage, the DL agent receives an award when it 
moves in the direction of the goal. RL is appropriate for 
training a computer to drive a vehicle or playing a game 
against an opponent [36]. Basically, in RL, an agent interacts 
with its environment and adapts its actions, based on the 
reward received in response to its actions [37]. RL differs from 
SL in the sense that it does not need labelled input/output pairs 
be presented and does not need sub-optimal actions to be 
unambiguously adjusted. Instead, the emphasis is on finding a 
balance between exploration (of uncharted territory) and 
exploitation (of current knowledge) [38]. 

In RL process, the environment gives the agent a state. The 
agent chooses an action and receives a reward from the 
environment along with the new state. This learning process 
persists, until the goal is accomplished. Commonly used 
SMLs include ANN, SVM, DTs, random forest, and Naïve 
Bayes; however, the focus of the present work is on ANN- 
based SML algorithm. 

IV. ARTIFICIAL NEURAL NETWORK: BACKGROUND AND 
OVERVIEW 

The development of ANNs was inspired by the studies of 
the central nervous system of the human, where the nodes and 
the interaction within themselves, are to mimic the brains 
neurons and their synaptic connections. By introducing a 
training data set to the network, the synaptic weights are 
iteratively strengthened, until the response of the network 
follows the output data, like the learning process in the 
biological brain [39-40]. ANNs are powerful processing tools, 
enfolding the ability of learning from experience. From a 
general viewpoint, ANNs are a data-driven, black box 
technique, aiming at learning and modelling the input-output 
relationship, of a given process, from the knowledge of a set 
of input-output measurements only. ANNs have been applied, 
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with remarkable performances, in various black box 
modelling tasks, involving classification [41-43] and function 
approximation [44-46]. Generally, ANNs have three layers: 
input, hidden, and output. The input layer contains the initial 
data which is fed into the neural network; the output layer 
produces the results for the given inputs, and the hidden layer 
is an intermediate layer between input and output layer, where 
all the required computation is done, i.e., the hidden layer 
performs nonlinear transformations of the inputs entering the 
network [44-45]. 

Training an ANN is an iterative process in which training 
data examples are presented to the network one by one, and 
the values of the weights are adjusted each time. At the 
beginning of each training, the synaptic weights are assigned 
a randomly set starting value, which means that unless the 
starting values are saved, the chance that the exact network is 
repeated twice is tremendously small. There is also a risk that 
the starting values are far from the minima and the learning 
algorithm gets stuck in a local minimum, the result being a 
network with poor performance. It is, thus, important to train 
the network iteratively, with the established configuration, to 
ensure that the network is not the product of a poor learning 
cycle. The general framework to train the network is 
illustrated in Fig. 3, where training data is fed into the model 
which gives its response and compares it to the actual value 
supplied by the training data. 

 
Fig. 3.  ANN training framework. 

There are various components of a typical ANN as 
described below [47]. 

A. Neurons 
ANNs are comprised of artificial neurons which are 

theoretically derived from biological neurons. Each artificial 
neuron has inputs and produces a single output, which can be 
directed to numerous other neurons. The inputs can be the 
feature values of a sample of external data, such as images or 
documents, or they can be the outputs of other neurons. The 
outputs of the final output neurons of the neural net achieve 
the task, such as image recognition. To determine the output 
of the neuron, the weighted sum of all the inputs is computed, 
weighted by the weights of the connections from the inputs to 
the neuron. Then, a bias term is added to this sum. This 
weighted sum is occasionally called the activation. This 
weighted sum is then passed through a (usually 
nonlinear) activation function for output generation. 

B. Connections and Weights 
The network consists of connections, each connection 

providing the output of one neuron as an input to another 
neuron. Each connection is assigned a weight that represents 
its relative importance. A given neuron can have multiple 
input and output connections. 

C. Activation Function 
Activation functions are functions used in neural networks 

to compute the weighted sum of input and biases, which is 

used to decide whether a neuron can be fired or not. Activation 
function can be either linear or non-linear depending on the 
function it represents. 

D. Layers 
The neurons are typically organized into multiple layers, 

especially in DL. Neurons of one layer connect only to 
neurons of the immediately preceding and immediately 
following layers. The layer that receives external data is 
the input layer. The layer that produces the ultimate result is 
the output layer. In between them are zero or more hidden 
layers. Single layer and unlayered networks are also used. 
Between two layers, multiple connection patterns are possible. 
They can be fully connected, with every neuron in one layer 
connecting to every neuron in the next layer. They can 
be pooling, where a group of neurons in one layer connect to 
a single neuron in the next layer, thereby reducing the number 
of neurons in that layer. Neurons with only such connections 
form a directed acyclic graph and are known as feedforward 
networks. Alternatively, networks that allow connections 
between neurons in the same or previous layers are known 
as recurrent networks. 

E. Hyperparameter 
A hyperparameter is a constant parameter whose value is 

set before the learning process begins. The values of 
parameters are derived via learning. Examples of 
hyperparameters include number of neurons, the number of 
hidden layers and batch size.  

F. Loss Function 
The loss function (or a cost function) is one of the most 

significant component of the ANN. It essentially represents 
the prediction error of neural network, and the method to 
calculate the loss is called loss function. The loss function 
simply computes the absolute difference between the 
predicted and the actual value. 

V. LITERATURE REVIEW: APPLICATION OF ANN FOR TSA 
Application of ANN to power system is an area of soaring 

interest; the main reason being the ability of ANN to process 
and learn intricate nonlinear relations [48]. Moreover, they 
possess the ability of parallel processing of data. In ANN-
based TSA, a relation mapping is established between the 
input features and the output results of a stability assessment, 
based on many offline simulations. Thus, they have been 
widely applied to create this relation mapping by numerous 
research [49, 50-52]. 

Reference [49] used ANNs to predict Critical Clearing 
Time (CCT) for a small test power system. Reference [50] 
used an individual TEF approach to predict energy margin and 
stability. Reference [51] devised an integrated approach of 
unsupervised and SL for TSA. Reference [53] proposed a fast 
pattern recognition and classification method for states of 
dynamic security. In [54], ANNs were used to predict stability 
of a system consisting of 227 buses and 53 generators. 
Reference [55] applied the recurrent Radial Basis Function 
(RBF) and the Multi-Layer Perceptron Neural Network 
(MLPNN) for predicting rotor angles and angular velocities of 
synchronous machines. Reference [56] used ANN to classify 
system stability status for various contingencies. In [57], the 
nonlinear mapping relation between the transient energy 
margin and the generator power, at different fault clearing 
time (FCT), was established by using the multilayer 
Feedforward Neural Network (FNN). Lyapunov’s direct 
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method, based on the system dynamic equivalents, was used 
as a fast method to obtain the training set for the ANN. 
Reference [58] presented a novel ANN-based global online 
fault detection, pattern classification, and relaying detection 
scheme, for SGs in interconnected electric utility networks. 
The online ANN based relaying scheme classified fault 
existence and fault type as either transient stability or loss of 
excitation, and the allowable CCT, and loss of excitation type 
as either open circuit or short circuit condition. 

An innovative two-layer, fuzzy hyperrectangular 
composite neural network was proposed, in [59], to determine 
real-time transient stability prediction. In [60], investigation 
was conducted for enhancing transient stability, by applying 
auxiliary controls for controlling power flow of High Voltage 
Direct Current (HVDC). The current controller model and the 
line dynamics were integrated in the stability analysis. A 
multi-machine system with a neural network controller was 
established to boost the stability of the system. Reference [61] 
discussed the issue of ANN input dimension reduction. Two 
different methods, for TSA application, were discussed and 
compared for efficiency and accuracy. Reference [62] 
described a neural network-based, adaptive pattern 
recognition approach, for estimation of the CCT. Reference 
[63] proposed an application of ANN, for contingency 
screening and ranking of a power system, with respect to 
transient stability. Reference [64] suggested a method of TSA, 
by adaptive pattern recognition which makes use of an ANN. 
Reference [65] aimed to examine the use of ANNs, in the 
analysis of the transient stability of a power system 
(determination of CCT for short-circuit faults type, with 
transmission line outage), using a supervised FNN. 

In [66], a multilayer feedforward ANN is employed for the 
online TSA of a power system. Reference [67] used RBF 
Neural Network (RBFNN) as a control scheme, for the 
Unified Power Flow Controller (UPFC), to improve the 
transient stability performance of a multimachine power 
system. Reference [68] focused on validating the accuracy of 
ANN for evaluating the transient stability of a single machine 
infinite bus system. The fault CCT, obtained through ANN, 
was compared with the results, obtained through the 
traditional Equal Area Criterion (EAC) method. The 
multilayer FNN concept was applied to the test system. 
Reference [69] presented a comparative analysis of two 
different ML algorithms, i.e., ANN and SVM, for online 
transient stability prediction, considering various uncertainties 
(load, network topology, fault type, fault location, and fault 
clearing time). The results showed that the performance of 
ANN was way better than that of SVM as its classification 
metrics and computational time was determined to be 
superior. 

Reference [70] proposed ANN-based supervised ML, for 
predicting the transient stability of a power system, 
considering uncertainties of load, faulted line, fault type, fault 
location, and fault clearing time. The training of the neural 
network was achieved using appropriate system features as 
inputs, and probabilistic transient stability (PTS) status 
indicator as the output. Reference [71] investigated the 
framework for PTS in power systems and the application of 
ANN to improve its assessment process. Numerous uncertain 
factors such as faulted line, fault type, fault location, and fault 
clearing time were part of the analysis. The results obtained 
indicated the effectiveness of the suggested algorithm such 
that it can be applied to predict transient stability of any large-

scale practical power system. In [72], a comparative analysis 
between DT, SVM and ANN for two datasets demonstrated 
that TSA using ML is system specific. It was also shown that 
he performance between the two sets of algorithms fluctuates 
considerably as the parameters of the network shift.  

A TSA and instability mode assessment approach based 
on convolutional neural network was presented in [73]. The 
technique takes the bus voltage phasor sampled by Phasor 
Measurement Units (PMUs) during a short observation 
window after disturbance as input, and outputs the forecast 
result swiftly in terms of stability, aperiodic instability, or 
oscillatory instability. In [74], a novel hybrid intelligent 
system was devised for predicting transient stability. The 
system was composed of a preprocessor, an array of neural 
networks and an interpreter. The preprocessor partitioned the 
whole set of synchronous machines into subsets, each one 
including two generators. 

A novel method for power system TSA was suggested in 
[75] based on voltage phasor and CNN (Convolutional Neural 
Network). Firstly, using the DL technique, a dynamic display 
of power system transient process in the voltage phasor 
complex plane was assembled. Secondly, based on CNN and 
the image of voltage phasor complex plane, the power system 
transient stability fast estimation prototype was suggested. A 
direct method based on Type-2 fuzzy neural network for TSA 
was suggested in [76]. The Type-2 fuzzy logic had the ability 
to tackle the uncertainty in the measurement of power system 
parameters. On the contrary, a multilayer perceptron (MLP) 
neural network possesses expert knowledge and ability to 
learn. The devised hybrid approach combined both of these 
capabilities to attain a precise estimation of CCT, which is an 
index of TSA. Reference [77] proposed TSA of a large 87-bus 
system using a unique approach known as the Probabilistic 
Neural Network (PNN) by integrating feature selection and 
extraction approaches. Transient stability was predicted based 
on the generator relative rotor angles obtained from time 
domain simulations. It was concluded that the PNN with the 
incorporation of feature reduction approaches reduced the 
PNN training time  without  impacting  the  correctness  of the 
classification results. Real-time TSA was presented in a data 
driven framework in [78], by incorporating the temporal 
relations of the predictors using Recurrent Neural Network 
(RNN) with Long Short-Term Memory (LSTM) units. The 
presented method was illustrated on the IEEE 39-bus test 
system and produced extraordinary test results compared with 
a SVM benchmark. 

In [79], a TSA system based on the long short-term 
memory network was developed. By suggesting a temporal 
self-adaptive scheme, the presented network aimed to balance 
the trade-off between evaluation accuracy and response time. 
Case studies on three power systems demonstrated the 
effectiveness of the suggested TSA approach. Reference [80] 
presented a methodical approach for building and renovating 
an exact transient stability classifier. Firstly, the time- series 
trajectories of generators after disturbance were used as the 
inputs, and consequently, a CNN ensemble method was 
suggested to generate the transient stability predictor using 
these multi-dimensional data. The simulation results of two 
power systems demonstrated the efficacy of the presented 
technique. Reference [81] explained the capability of ANN for 
predicting the CCT of power system. The training of ANN 
was done using selected features as input and CCT as desire 
target. A single contingency was used and the target CCT was 
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determined using time domain simulation. The simulation 
showed that ANN can deliver rapid and accurate mapping 
which makes it suitable for online applications. 

VI. RESEARCH GAPS AND FUTURE RECOMMENDATIONS 
Based on the detailed literature review and to the best of 

author’s knowledge, there exists no research works on PTS, 
which specifically uses ANN-based ML approach, 
considering all the uncertainties of load, faulted line, fault 
type, fault location (on the line), and FCT. Although, [82] used 
ANN for PTS, but the approach only considers the uncertainty 
of load (ignoring other uncertainties of fault type, fault 
location, and FCT). Moreover, [83] specifically mentions the 
potential of ANN for online Dynamic Security Assessment 
(DSA). In addition, [84-90] strongly indicate that ML is a 
favourable and forthcoming approach for online DSA (which 
also includes TSA). Thus, one of the main research gap is to 
predict PTS status using an ANN-based ML approach. 

Also, there is a dearth of work which incorporates 
renewable energy in TSA prediction using ANN. As the 
amount of renewable energy is increasing continually in the 
power system, the dynamics of power system are becoming 
more intricate. More comprehensive studies and simulations 
are required to understand the behaviour of the system under 
renewable energy integration. Network topology changes are 
often ignored in the existing research work. It is significant to 
train the ANN model for changing topologies. Novel 
techniques must be researched and applied such that the ANN 
model can adapt to any topology of the power system. 
Moreover, a majority of research articles assume that PMU 
online data is comprehensive and error-free; however, in real 
life scenarios, the obtained value of a parameter may be 
inaccurate or unavailable due to jamming, malfunctioning, or 
even cyber-attacks [91]. 

Currently, ANN-based TSA methods face some 
challenges. First, it is very difficult to obtain large- scale, 
balanced data of random input variables with accurate labels 
in real-world scenarios. On top of that, existing ANN-based 
TSA methods act as a black box which have poor 
interpretability, which also limits their application in actual 
power systems [92]. Approaches can be formulated to 
integrate various kinds of stability into a single index and 
consequently, utilize ANN to predict its value. It is highly 
recommended that future research work on ANN based 
approach to power system transient stability should focus on 
comprehensive validation of the approach using large scale 
test system which have similar attributes of uncertainty and 
randomness as that of a modern power system. Moreover, 
techniques for feature reduction must be devised for large-
scale power systems to further reduce the computational 
efforts [77]. 

The present study provided a review of some major 
research works and potential future research avenues 
associated with ANN application to TSA. This can be a 
remarkable starting point for researchers in the domain of ML, 
power system stability and security, particularly in the 
presence of uncertainty. Recent research [93-99] reveals that 
there is a lot of scope in this domain, and its potential must be 
fully investigated. 

VII. CONCLUSION AND FUTURE WORK 
Rapid TSA is a critical requirement for correct and timely 

operation of an electric power system. The traditional methods 

fail to fulfil this requirement. In this regard, ML approaches 
can play a significant role. Therefore, this paper provided a 
review of works related to application of ANN to TSA. It is 
believed that this review will provide a good basis for 
researchers in the field of ML and power system stability, and 
consequently, help them understand the current research status 
and existing challenges.  

As a future work, various reviews and case studies can be 
conducted using other ML approaches and a comparative 
analysis can be drawn. ML can also be integrated with edge 
computing for modern power systems which will allow the 
smart devices (smart meters, PMUs, digital relays, etc.) to 
process the data locally, thereby reducing the dependence on 
cloud networks. 
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