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Abstract—Echocardiography is a leading cardiac imaging 

technique that requires strong expertise when performing an 

analysis, and manual labeling is challenging due to various 

acquisition devices. This research uses an innovative query-

based contrast learning visual representation methodology 

called QueryCLR. By integrating CNN's precise feature 

extraction with transformer models' broad contextual 

understanding, QueryCLR substantially enhances the 

stability and accuracy of image analysis. Our experimental 

analysis, conducted on 12 different two-dimensional 

echocardiogram datasets, validates QueryCLR's effectiveness. 

The method achieved a maximum accuracy of 79.4%, showing 

a 1.2% superiority over existing self-supervised models. 

Moreover, by just using 10% of labeled data via transfer 

learning, QueryCLR achieved 84.4% accuracy, surpassing 

the supervised learning model by 0.9%. These results 

highlight the promising potential of self-supervised learning 

in enhancing accuracy and efficiency in cardiac disease 

identification through echocardiographic classification while 

providing new insights for future research. 

Keywords—Self-supervised learning, Contrastive Learning, 

Vision Transformer, Visual Representation, Echocardiogram 

classification 

I. INTRODUCTION 

Echocardiography is a widely used heart imaging 

technique that captures dynamic images of the heart's 

structure and function through high-frequency sound waves. 

This non-invasive procedure helps observe and evaluate the 

structure and function of the heart, making it an important 

tool for diagnosing and monitoring heart disease. 

Echocardiography can provide detailed of the two-

dimensional heart and detect early signs of heart disease, 

such as heart valve disease and myocardial infarction. 

However, given the intricate nature and technicality of 

echocardiograms, a high level of expertise is required by 

physicians for accurate analysis, while acknowledging that 

variations may exist in the images obtained from different 

devices. With the rapid development of Artificial 

Intelligence (AI) technology, AI has become a powerful tool 

in the field of medical image analysis. Deep learning as an 

important branch of AI, has made remarkable progress in 

medical image recognition and classification[1],[2]. In 

echocardiography, deep learning can automatically identify 

and analyze heart structures, abnormalities, and lesions to 

provide faster, more accurate, and consistent diagnostic 

results. This has great potential to improve the quality of 

medical care for patients and reduce the time spent waiting 

for a diagnosis. 

Currently, echocardiogram research primarily relies 

on supervised learning methods. However, this approach 

requires extensive manual annotation by professionals with 

specialized expertise, resulting in significant labor and time. 

Given the complex nature of medical domains, the limited 

labels in supervised learning prove a challenge to be 

collected. 

Self-supervised learning enables models to learn 

useful feature representations by automatically generating 

labels from input features. Self-supervised learning 

obviates the need for large-scale labeled datasets, 

significantly reducing the demand for labeled data. This 

approach is highly effective when labeled data is scarce or 

costly. For these reasons, self-supervised learning methods 

are becoming increasingly important in addressing the 

challenges of limited labeling data [3]. By leveraging 

unlabeled data, self-supervised learning enhances the 

model's generalization performance, allowing it to more 

easily adapt to different domains, distributions, or 

perspectives within the data. A key stream of self-

supervised learning is contrastive learning. Contrastive 

learning is a self-supervised learning method that aims to 

learn valuable feature representations in the data by training 

the model to differentiate between various versions of the 

same sample, for example, positive versus negative 

samples[4]. Unlike most self-supervised instance-based 

methods that limit the diversity of negative instances by 

categorizing or clustering data instances, contrastive 

learning focuses on comparing different instances to 

understand their similarities and differences[3],[5]. This 

makes self-supervised contrastive learning a powerful tool 

in modern machine learning, particularly in fields where 

annotated data is scarce or expensive to obtain [6]. 

Convolutional Neural Network (CNN)[7] is a 

traditional model in computer vision, particularly adaptive 

at perceiving local information within images, which gives 

them an advantage in tasks like image classification and 

object recognition. However, due to their inherent spatial 

induction bias and reliance on prior knowledge, CNN may 

face limitations in tasks requiring a broader context 

understanding or scenarios where the input data deviates 

significantly from the training data. The Vision 

Transformer (ViT)[8] is a model based on a self-attention 

mechanism. This mechanism emphasizes more attention to 

global feature information in feature extraction, leading to 

improved performance in image classification. However, 

due to its high computational demands and training 

requirements on large data sets, ViT needs high 

computational costs and necessitates complex training 

setups. 

By synergistically integrating the robust capabilities 

of both Convolutional Neural Networks (CNN) and Vision 

Transformers (ViT), this novel approach effectively 

addresses the inherent challenge of capturing intricate 

image features in echocardiography. This fusion enhances 



the model's interpretive prowess, enabling it to accurately 

decipher the complex and dynamic nature of 

echocardiographic data, thereby significantly elevating the 

precision and dependability of classification models in 

cardiac imaging. 

In this paper, a visual representation network called 

QueryCLR is proposed by combining the advantages of 

convolution and Transformer and utilizing self-supervised 

learning. The encoder is pre-trained by contrast learning. 

Perturbations of various instances are generated by query 

sets of negative instances to address the issue of insufficient 

diversity. In addition, we proposed a backbone network 

called Global-Local Network (GLNet) that combines 

convolution and Transformer architectures. By embedding 

the Transformer structure into convolution, we incorporate 

the desired features of CNN into the ViT architecture while 

retaining the advantages of the Transformer. The main 

contributions of this work are as follows: 

1) This study presents a new dataset that provides 

echocardiography scanned across 12 categories, providing 

a valuable resource for further study and understanding of 

echocardiography. 

2) The QueryCLR framework is proposed, which 

generates diversity in positive samples through query sets, 

significantly reducing the dependence on data 

augmentation and improving feature representations. 

3) The GLNet model was designed as the encoder for 

QueryCLR, combining CNN with local perception and 

Transformers with global modeling capabilities to achieve 

global representations with spatial inductive bias. 

II. RELATED RESEARCH 

A. Research in Echocardiogram 

Recent studies utilizing CNN architectures have made 

significant advancements in echocardiography. Madani et 

al[9], Zhang et al[10], and Gao et al[11]. have each 

employed CNN for various tasks, including view 

classification and disease diagnosis in echocardiographic 

imagery. These approaches have demonstrated high 

accuracy, showcasing the potential of deep learning in 

medical imaging analysis. However, the application of 

these algorithms to echocardiography is not without 

challenges. One major limitation is the reliance on 

extensive, labeled datasets, which are particularly diverse 

in echocardiography due to variations in patients, 

equipment, and scanning parameters[12]. This diversity 

complicates model training, necessitating algorithms 

capable of processing a wide range of data inputs[13]. 

To overcome these hurdles, researchers are 

investigating self-supervised learning models. These 

models, less reliant on labeled datasets, have shown 

promise in other medical imaging areas. For instance, 

Wilson et al[14]. successfully applied a self-supervised 

learning algorithm for prostate cancer classification using 

micro-ultrasound data, and VanBerlo et al[15]. improved 

model performance through self-supervised pre-training 

for lung section classification in ultrasound. Despite these 

advancements, tackling unlabeled data remains intricate 

due to the complexities of echocardiograms. 

B. Self-supervised Learning 

Fully supervised network models typically focus on 

specific tasks. However, in scenarios where specific tasks 

suffer from a scarcity of data and labels, the effectiveness of 

such models is significantly limited, as emphasized in 

previous studies[16, 17]. The SimCLR[3] framework 

addresses this by applying random transformations to an 

image, thereby generating two augmented representations. It 

then seeks to maximize the similarity between these 

representations to develop a more generalized model. 

Nonetheless, SimCLR faces limitations due to its uniform 

dictionary and batch sizes, leading to a lack of diversity for 

different instances of the same object. Moreover, the challenge 

of optimizing overly large batches often hinders convergence. 

MoCo[4] adopts a different approach by utilizing various 

Figure 1. Overview of Global-and-local Network (GLNet) 



image enhancement strategies to derive representations. It 

employs a queue-based dynamic dictionary to accommodate a 

larger sample size, ensuring a higher quantity of negative 

samples in each batch. Additionally, it includes a momentum 

update encoder to uphold key representation consistency amid 

rapid changes in the encoder, albeit at the cost of slower 

updates. Dwibedi [18] suggests an alternative method, 

proposing the use of nearest neighbors to sample from the latent 

space data. This approach treats these neighbors as positive 

examples, offering more semantic variation beyond mere data 

augmentation. SimMM[19] on the other hand, focuses on 

predicting the original signal by randomly masking certain 

blocks. These are then encoded and regressed in the masked 

region using a single-layer prediction head. Collectively, these 

self-supervised learning methods excel at deriving a generic 

feature representation that can be seamlessly integrated into a 

variety of downstream tasks. 

Self-attention mechanisms have been widely applied to 

CNN in vision tasks[20]. Traditional CNN relies on 

convolution operations that process spatially adjacent input 

features with fixed fusion weights. This local processing is 

efficient but inherently limited in capturing long-range 

dependencies within the input data. Self-attention, on the 

other hand, allows the network to weigh the importance of 

different parts of the input data, regardless of their spatial 

proximity. This mechanism enables the model to focus 

more on relevant features and less on irrelevant ones, 

enhancing the network's ability to capture complex patterns 

and dependencies[21, 22]. Convolutional neural networks 

use fixed fusion weights for spatially adjacent input features,  

whereas SENet[23]  improves the network’s performance by 

capturing long-range dependencies through global 

attention[24]. Mobile-Former[25] combines the parallel 

design of MobileNet[26]  and Transformer to extract pixel-

level local features using convolution and then encodes global 

features using Transformer to achieve a bidirectional fusion of 

local and global features. BoTNet[27] introduces a simple yet 

powerful backbone that substitutes spatial convolution with 

global self-attention in the final three bottleneck blocks of 

ResNet[16],  resulting in impressive performance gains. These 

networks all incorporate geometric priors in adaptive weight 

fusion and play a significant role in the recognition task. 

Self-supervised learning provides an efficient solution 

to the complexity of echocardiography. By automatically 

extracting the deep features of heart images, it allows the 

full utilization of unlabeled data and effectively addresses 

the challenges of high heart dynamics, large image 

variation, and complex structure. Reduce the reliance on 

expert labeling, reduce costs, and improve the ability to 

generalize in the face of disease diversity and individual 

differences. Self-supervised learning enhances the 

accuracy of echocardiogram classification and brings a new 

and efficient way for the diagnosis of heart disease. 

III. METHODOLOGY 

In this section, we propose a query-based framework 

for contrastive learning of visual representation 

(QueryCLR) to find the most similar samples as positive 

pairs from an augmented collection of echocardiogram 

cutout datasets to obtain two correlated views. After 

training, we freeze the projection head and utilize only the 

encoder GLNet and the representation to classify different 

echocardiograms. 

A. Global-and-local Network 

We design the GL module (See Figure 2) to model the 

input feature's global and local information. Given an input 

tensor 𝑋 ∈ ℝ𝑊×𝐻×𝐶 , local spatial information is encoded by 

𝑛 × 𝑛  convolution, and then the feature dimension 𝑋1 ∈
ℝ𝑊×𝐻×𝑑  is extended using point-wise convolution. To 

model long-range dependence with an effective receptive 

field of W×H and to let the network learning have a global 

representation with spatial inductive bias, 𝑋1  is expanded 

into 𝑁  flattened patches 𝑋𝑈 ∈ ℝ𝑃×𝑁×𝑑 ,where 𝑃 =  𝑤 ×
 ℎ, and 𝑁 =  𝑊 ×  𝐻 is the number of patches, and ℎ and 

𝑤 are the height and width of the patch, respectively. For 

each 𝑝 ∈ {1, … , 𝑃 }, the relationship between the patches is 

encoded by the transformer to obtain 𝑋𝐺 ∈  ℝ𝑃×𝑁×𝑑, the GL 

block captures the local information within each patch and 

the global information between different patches. Thus, we 

can fold 𝑋𝐺 ∈  ℝ𝑃×𝑁×𝑑  to obtain 𝑋𝑓 ∈  ℝ𝑊×𝐻×𝑑 . The 𝑋𝑓 

channel is then projected to a lower C-dimensional space 

using point-wise convolution and stacked with the input 

feature 𝑋  by a cascade operation. Another 𝑛 ×  𝑛 

convolution layer is then used to fuse the stacked features. 

Since 𝑋𝑈 uses convolution to encode the local information 

in the 𝑛 × 𝑛 region and 𝑋𝐺 encodes the global information 

of the patch, each pixel 𝑋𝐺  can encode the information of all 

pixels in 𝑋  with global receptive field. Considering the 

number of channels to be matched, the network structure 

should contain two branches, 3 × 3  convolution and 

residual mapping, as shown in Figure 2(a). 1 × 1 

convolution can be regarded as a special case of 3 × 3 

convolution (an expanded convolution with edge elements 

filled with 0). The residual module in the network does not 

introduce additional computation, but it uses more memory 

than the single-branch structure. The residual structure 

makes deeper network models possible, but more branches 

slow down the model training efficiency. To ensure the 

stability of the output feature map, a 3 × 3 convolution with 

a weight of 1 is initialized. According to the convolutional 

addition principle, the weights and biases of all branches are 

further superimposed to obtain the fused 3 × 3 

convolutional layer. We use structural reparameterization to 

merge the multi-branch structure of the convolutional layer 

into the single-branch structure in Figure 2(b) to achieve 

higher inference efficiency[28]. 

 

Figure 2. Structure of our GL stage 



 

B. Query  Contrastive Learning of Visual 

Representations 

Conventional contrastive learning treats two images 

obtained from one image by different data augmentations as a 

positive pair, and 2(𝑁 − 1)  (assuming that there are 𝑁 

images in a batch, and after enhancement, they become 

2𝑁 images) images obtained from other 𝑁 − 1  images data  

augmentations negative samples[3]. The representation is 

learned by maximizing the agreement between 00involves 

applying various data augmentations to the same image to 

obtain different perspectives. Data augmentation of the same 

image cannot provide diverse perspectives of the image, 

variations of the same object, or other similar entities within the 

same category. 

SimCLR uses two data-augmented embeddings (𝑧𝑖 , 𝑧𝑖
+) 

(𝑧  is the representation obtained after the encoder and the 

projection head) as positive pairs, with the negative examples 

coming from the rest of the images in the same batch. Positive 

pairs from the same image lack variations of the same object[29]. 

To solve this problem, we find the same image and samples 

similar to that image as positive pairs in the dataset. 

Alternatively, a queue Q is used to store more different positive 

pairs, Q is called a query set. The formula for obtaining similar 

samples from a query set is as follows: 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟(𝑧, 𝑄) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑞∈𝑄‖𝑧 − 𝑞‖2                (1) 

The query set 𝑄 is updated in a first-in-first-out queue. 

At the end of each iteration, the embeddings from the 

training step are placed at the end of the queue, and the first 

n embeddings are discarded. In addition, it is recommended 

to ensure that the query set 𝑄 is as large as necessary to fit 

the whole dataset as possible, to approximate the 

embedding of the whole dataset in vector space. Indeed, 𝑄 

cannot be infinitely large and we explore the performance 

of setting differently 𝑄 later on. As shown in Figure 3, a 

picture 𝑋  is first transformed into 𝑋1  and 𝑋2  by different 

data augmentation, and 𝑋1  and 𝑋2   are encoded into 

representations 𝑧1  and 𝑧2   using GLNet and Projection 

head, noting that the two Encoder and Projection heads 

share parameters. The Query set maintains a large queue 

from which the corresponding encodings are taken to 

provide positive examples for the first set of image 

augmentation views required by contrastive learning 

between positive and negative examples. At the same time, 

the feature representation encoding from the latest batch is 

put into the queue 𝑄 , while the image encoding 

corresponding to the oldest batch is taken out of the queue 

so that the content of the encoding in the queue can be 

continuously updated.  

C. Loss Function 

In SimCLR, the training direction of the model is 

guided by drawing close the similarity between 𝑧1 and 𝑧2 

and drawing far the similarity between 𝑧1  and 𝑁 − 1 

negative examples with the following equation: 

𝐿𝑧 = − log
exp(𝑧1⋅𝑧2/𝜏)

∑ exp(𝑧1⋅𝑧2/𝜏)𝑁
𝑘=1

        (2) 

Where 𝜏  denotes the temperature coefficient. Our 

positive samples are from query set, so the loss function is 

optimized as: 

𝐿𝑧 = − log
exp(𝑆𝑖𝑚𝑖𝑙𝑎𝑟(𝑧𝑖,𝑄)⋅𝑧𝑖

+/𝜏)

∑ exp(𝑆𝑖𝑚𝑖𝑙𝑎𝑟(𝑧𝑖,𝑄)⋅𝑧𝑖
+/𝜏)𝑁

𝑘=1
   (3) 

Where 𝑧𝑖 represents a sample; 𝑧𝑖
+ is a positive sample 

of the same object as 𝑧𝑖; 𝑄 is a query set containing positive 

samples and multiple negative samples; 𝑆𝑖𝑚𝑖𝑙𝑎𝑟() 

calculated using cosine similarity. In this way, the loss 

function encourages increasing the similarity between the 

anchor point and the positive sample while decreasing the 

similarity between the anchor point and the negative 

sample. 

  

Figure 3. A Query-based Contrastive Learning Representation Framework. QueryCLR uses similar samples of 

input images as positive pairs in the query set and employs contrastive learning to minimize the distance between 
positive pairs, aiming to enhance performance. 



IV. EXPERIMENTS AND RESULTS 

A. DataSets 

We have compiled a dataset of echocardiograms from 

various populations, consisting of 23,000 images across 12 

categories. These categories include the aortic arch, aortic valve, 

main pulmonary artery, subxiphoid biventricular, subxiphoid 

four-chambered heart, left ventricular short axis, left ventricular 

long axis, apical two-chambered heart, apical three-chambered 

heart, apical four-chambered heart, and apical five-chambered 

heart. The resolution of the image is 800×600. 

B. Training Details 

In the process of training our models, we have used a 

large batch size to encompass a more comprehensive range 

of samples, thereby enhancing the diversity of the training 

data. This strategy, however, introduces the challenge of 

reduced weight adjustments per training iteration. To 

counteract this, a straightforward approach might be to 

increase the learning rate. Nonetheless, an increased 

learning rate at the beginning can cause network divergence 

because of the random initialization of model weights. To 

mitigate this issue, we initiate the training regimen with a 

preliminary 10-epoch run, which allows the model to reach 

a state of relative stability before applying the 

predetermined learning rate. 

In conjunction with this, we utilize the Layer-wise 

Adaptive Rate Scaling (LARS) optimizer[30], which 

tailors the learning rate to each layer, contributing to more 

stable and effective training dynamics. We set the 

temperature coefficient at 0.1, begin with an initial learning 

rate of 0.3, and employ a cosine decay schedule for the 

learning rate. Furthermore, we incorporate a linear warm-

up phase during the initial 10 epochs to expedite model 

convergence. 

For the encoder architecture, we default to using the 

GLNet-m variant, which produces a 2048-dimensional 

embedding as the encoder output. The projection head 

consists of a three-layer Multilayer Perceptron (MLP) with 

a dimensional sequence of [2048, 2048, 𝑑], where d is set 

to 256. After the pre-training phase on the unlabeled 

echocardiogram dataset, we removed the projection head 

and incorporated a fully connected layer to function as a 

linear classifier. This is followed by fine-tuning the entire 

network using a limited subset of labels. 

The most effective results for QueryCLR were 

observed when using a queue size of 4096 in combination 

with a base learning rate of 0.3. All experiments were 

conducted on a single NVIDIA RTX 3060 GPU to ensure 

consistent computational resources and reproducible 

results under standardized hardware conditions 

C. Results 

As shown in Figure 4, the proposed QueryCLR 

demonstrated high-quality recognition on 

echocardiographic datasets compared to supervised 

ResNet50 and other self-supervised networks. 

Table1. presents a direct comparison of various 

supervised and automatic systems utilized for the 

echocardiogram dataset, focusing exclusively on 

detection outcomes. It illustrates the effectiveness of diverse 

network designs like VGG-16, ResNet-50, InceptionV3, 

Vision Transformer (ViT), alongside representation 

learning strategies such as CPCv2, SimCLR, MoCov2, and 

our proposed GLNet in various sizes (small, medium, large). 

Network Top-1 ACC. (%) Top-5 ACC. (%) 

Supervised baseline 

VGG 76.2 92.3 

ResNet 83.5 98.8 

Inception 83.6 99.1 

Vision transformer 85.8 99.2 

Method using representation learning only 

CPCv2 72.7 78.8 

SimCLR 78.3 82.8 

SimCLR  

(w. 10% labels) 

84.3 98.2 

MoCov2 78.2 82.4 

MoCov2 

(w. 10% labels) 

84.1 89.9 

Ours (GLNet-s) 76.2 85.7 

Ours (GLNet-m) 78.6 88.3 

Ours (GLNet-l) 79.4 90.4 

Ours (GLNet-m) 

(w. 10% labels) 

84.4 98.3 

Figure 4. Echocardiogram dataset Top-1 accuracy of linear 

classifiers trained on representations learned with different self-

supervised methods.  

Figure 5. Results of semi-supervised comparison of QueryCLR 

with other networks. The performance is reported when fine-tuning 

the pre-trained GLNet with 1% and 10% of the echocardiogram 

dataset. 

Table 1. Detection results of the mainstream supervised and 

self-supervised on our dataset. 



Each method is evaluated based on several parameters: 

the architecture used, the number of parameters in millions 

(M), the computational complexity in Giga Floating Point 

Operations per second (GFLOPs), and their Top-1 and Top-5 

accuracy percentages. 

Supervised baseline methods such as VGG-16, ResNet-

50, InceptionV3, and ViT demonstrate high accuracy, with 

ViT achieving the highest Top-1 and Top-5 accuracy among 

them. In contrast, self-supervised methods such as CPCv2, 

SimCLR, and MoCov2 demonstrate varying degrees of 

effectiveness, with MoCov2 achieving notable results, 

especially when trained with only 10% of the labels. 

Our proposed GLNet, available in small, medium, and 

large configurations, demonstrates impressive results. The 

medium-sized GLNet (GLNet-m) stands out, particularly with 

a Top-1 accuracy of 78.6% and a Top-5 accuracy of 88.3%, 

surpassing other self-supervised methods. More importantly, 

when trained with only 10% of labels, GLNet-m achieves a 

Top-1 accuracy of 84.4% and a Top-5 accuracy of 98.3%, 

demonstrating its efficiency and effectiveness in learning from 

limited labeled data. This highlights the superiority of our 

model, not only in terms of accuracy but also in its reduced 

parameter count and computational efficiency, making it a 

significant contribution to the field of echocardiogram 

analysis. 

We evaluate the validity of our features semi-

supervised on 1% and 10% subsets of the echocardiogram 

dataset following a standard evaluation protocol. We 

present these results in Figure 5. The first key result of 

Figure 7 is that our method outperforms all state-of-the-art 

(SOTA) methods in terms of semi-supervised learning on 

the 1% subset, demonstrating the strong generalization 

ability of QueryCLR features. Using a 10% subset, 

QueryCLR outperforms SimCLR and other methods. 

V. CONCLUSION 

This study introduces QueryCLR, a novel framework for 

contrastive learning of visual representations, designed to 

enhance the diversity of positive examples by using similar 

representations from a query set. We developed GLNet, a 

hybrid CNN-Transformer architecture overcoming CNN's 

limitations in global representation and Transformers in 

local information processing, through a diffusion 

mechanism for transitioning from local to global 

representations. Additionally, we created a unique 

echocardiogram dataset for evaluating QueryCLR's 

effectiveness and advancing academic research. Our 

findings show QueryCLR surpasses other self-supervised 

methods, achieving a top-1 accuracy of 79.4%, and 

outperforms current state-of-the-art methods in semi-

supervised training scenarios. Future work will extend its 

application to various downstream tasks, including 

segmentation and object detection, to further explore and 

utilize its capabilities. 
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