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Abstract—Autonomous Vehicles (AVs) present a viable way to
overcome several traffic-related problems, such as congestion,
pollution, and accidents. In order to safely navigate in urban
environments, AVs require accurate perception systems capable
of detecting dynamic objects, predicting their behaviour, and
interpreting information from static objects. Therefore, this paper
focuses on presenting a comparative analysis of both real-time
pedestrian detection and accurate identification of traffic signs in
an effort to develop a robust AV system that prioritises these two
elements during real-time object detection and avoidance. This
development will enhance both urban safety and efficiency, while
ensuring reliable and accurate object detection through the use
of the YOLO (You Only Look Once) algorithm. First, A set of
traffic signs and object images as a dataset was collected from the
German Traffic Sign Recognition Benchmark (GTSRB) and the
Penn-Fudan Pedestrian dataset for pedestrians. Second, image
processing techniques including conversion to greyscale, image
segmentation, and normalisation were applied using OpenCV.
Third, the image data were passed to the training phase of
the YOLOv8 model and went through the training and hyper-
parameters tuning process. The results show a mean Average
Precision (mAP) of 94% accuracy in traffic sign recognition
and a pedestrian detection precision of 90.67%. The findings
underscore the importance of continued exploration of advanced
object detection methods for AVs, such as data augmentation, to
improve both the adaptability and robustness of AV systems in
dynamic environments.

Index Terms—Autonomous Vehicles (AVs), Pedestrian Detec-
tion, Traffic Sign Recognition, YOLOv8

I. INTRODUCTION

In the era of modern transportation, the integration of Au-
tonomous Vehicles (AVs) is considered a key advancement
for safe and efficient journeys. Through seamless execution
enabled by real-time data transfer, these Avs mainly rely on
immediate sign recognition and accurate pedestrian identi-
fication, ensuring a high level of safety and dependability.
To navigate in complex landscapes, AVs rely on a sophisti-
cated array of sensors, cameras, and AI algorithms [1], [2].
Ultimately, the peak of technological hardware equipment
lies in seamlessly synchronising real-time sign and pedestrian
recognition. However, AVs may pose critical challenges related
to accurate data collection and analysis. For instance, sensory
data is susceptible to errors and cyber-attacks, posing risks of
accidents. According to the analysis of Autonomous Vehicle
(AV) [3], related accidents in California from 2014 to 2018
show a higher AV accident rate compared to traditional vehi-
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cles, defying safety expectations [4]. Despite advanced driving
assistance systems, issues persist in pedestrian detection and
traffic sign recognition. The research work mentioned in
([1],[2],[5],[6]) shows different issues related to AVs systems
including: poor obstacle detection in varied lighting, low res-
olution, and real-time sign recognition difficulties. Challenges
include sensor image quality under diverse conditions [7][8]
and the need for rapid processing for real-time recognition
in various driving scenarios. Addressing these challenges
required creating strong hybrid algorithms that can adapt to
various scenarios and comparing them with current methods.
The traffic sign recognition field predominantly focuses on
feature-based models and evolving deep learning approaches
but encounters limitations [2][9][10][11][12]. Although Deep
Learning models excel in benchmark datasets, their efficacy
diminishes in real-world urban environments due to insuffi-
cient assessment. Consequently, there is a pressing need for
advanced methodologies or high-accuracy models to bridge the
performance gap between benchmark datasets and real-world
scenarios, ensuring robust and reliable traffic sign recognition
in dynamic urban environments.

Deep learning-based systems lack integration with object
tracking models for practical use and lack studies on real-time
processing in driving settings. Similarly, pedestrian detection,
transitioning from traditional to recent deep learning methods
[13][14], encounters difficulties in accurate detection of small
objects within complex backgrounds and occluded scenes.

The release of YOLOv8 in 2023 presents an opportunity for
advancing object detection capabilities, yet limited academic
exploration and research hinder comprehensive understanding
and optimisation of its capabilities [15], [16]. This research
gap underscores the need for further investigation into the
efficiency of YOLOv8 and its comparative analysis with its
previous versions or alternative object detection architectures.

The work in this paper aims to examine the YOLOv8
for object detection, image segmentation, and classification
in traffic sign recognition and pedestrian detection. Then to
compare performance metrics, such as mean average precision,
with its predecessors in an effort to propel advancements in
safer autonomous navigation systems.

The structure of this paper is organised as follows. Section I
explores the integration of computer vision, deep learning, and
automotive engineering within autonomous vehicle navigation.
Section II provides a comprehensive literature review covering
advancements in pedestrian detection and traffic sign recogni-
tion and underlies limitations of using YOLO predecessors



and conventional models. The methodology section III then
details the intricate data collection processes, dataset creation,
and model development stages. Notably, it focuses on imple-
menting YOLOv8 architecture for traffic sign recognition and
pedestrian detection. Section IV shows the results as well as
a comparative analysis and a discussion. Section V provides
conclusions as well as recommendations for future research.

II. RELATED WORK

This section analyses prior studies in pedestrian detection and
traffic sign recognition, aiming to evaluate their effectiveness.
It focuses on the usage of Deep Learning and previous YOLO
models for traffic sign recognition and pedestrian detection.

A. Autonomous Vehicle Traffic Sign Recognition

Traffic sign recognition involves intricate processes of data
preprocessing, feature extraction, and classification. Deep
learning approaches like Convolutional Neural Networks
(CNNs) and Recurrent Neural Networks (RNNs) automatically
extract high-level features, eliminating manual extraction and
leading to widespread adoption. Deep learning models no-
tably surpass conventional methods in accuracy, driving recent
advancements in traffic sign recognition. Recent years have
witnessed significant advancements in traffic sign recognition,
propelled by the integration of deep learning methodologies.

The work of Zhang et al. in [17] introduced a lightweight
CNN tailored for traffic sign recognition, using a teacher-
student network paradigm. By integrating optimisation tech-
niques and 1 × 1 convolutional filters, they achieved ex-
ceptional accuracy of 99.38% on the German Traffic Sign
Recognition Benchmark (GTSRB) dataset and 98.89% on the
BTSC dataset. Although the outcome accuracy is comparable,
the YOLO model was not examined, and therefore, this paper
aimed to investigate the overall efficiency of the YOLO model
in both traffic sign recognition and pedestrian detection.

In their 2022 research work, Zhu and Yan in [18] compared
YOLOv5 and SSD methodologies for traffic sign recogni-
tion. YOLOv5 demonstrated superior real-time object recog-
nition with 97.70% accuracy, outperforming SSD at 90.14%.
YOLOv5’s single-network approach for processing entire im-
ages establishes it as an efficient and highly accurate solution
for traffic sign recognition.

Siniosoglou et al. in [10] applied deep auto-encoders to
traffic sign detection, surpassing 90% accuracy in both cen-
tralised and decentralised systems. This research underscores
the value of unconventional approaches in addressing chal-
lenges such as varying lighting conditions, occlusions, and
complex backgrounds in traffic sign recognition, highlighting
the effectiveness of novel techniques in improving recognition
systems.

Bangquan and Xiong in [12] delved into model selection for
traffic sign recognition, examining the Efficient Convolutional
Neural Network (ENet) and pre-trained models Visual Ge-
ometry Group 16-layer (VGG16) and LeNet-5 (LeNet). Their
work emphasised the criticality of choosing the right model
architecture, highlighting LeNet’s superior accuracy (98.6%)
compared to VGG16 (96.7%).

In [19], a novel object detection methodology utilised
YOLOv5s6 and YOLOv8s models across three datasets:
TT100k, TWTS, and a hybrid dataset. Uniform model train-
ing parameters ensured consistent evaluation, highlighting the
hybrid dataset’s superior efficiency with YOLOv8s, achieving
a mean Average Precision at Intersection over Union (IoU)
threshold of 0.5 (mAP@.5) score of 76.2% compared to
YOLOv5s6’s of 65%.

Wang et al. in [20] introduced an optimised traffic sign
recognition algorithm based on YOLOv4-tiny, prioritising
heightened accuracy and efficiency for real-time applications
like autonomous vehicles, marking a significant advancement
in traffic sign recognition for enhanced transportation systems.

B. Autonomous Vehicle Pedestrian Detection

Several computer vision proposals tackle tasks like data ac-
quisition, scene learning, feature extraction, activity learning,
and behavioural learning. Yet, a recurring challenge persists
with the scaling problem, which compromises the precision
of pedestrian detection outcomes.

The rise of artificial intelligence has introduced a new era
for pedestrian detection, with deep learning techniques taking
centre stage. These techniques can be broadly divided into
two categories based on their operational approaches. The
first category comprises two-stage target detection algorithms,
which include notable models like Region-based Convolu-
tional Neural Network (R-CNN), Faster R-CNN [21], Hyper-
net [22], and Mask R-CNN [23]. These algorithms employ
a sequential process involving region proposal followed by
classification. On the other hand, the second category focuses
on one-stage target detection algorithms that streamline the de-
tection process through regression-based methods. Prominent
examples of this category include YOLO (You Only Look
Once), SSD (Single Shot MultiBox Detector) [24], G-CNN
[25], and RCN (Reverse Connection Network) [26]. These
one-stage algorithms are favoured for their computational
efficiency and ability to perform real-time detection, making
them increasingly popular in practical applications. Object
detection in computer vision has seen significant progress due
to pioneering methodologies introduced in the work presented
in [22], [23], [24], [26], and [27], each aiming to enhance
accuracy, speed, and precision in detecting objects within
images or video frames.

Ren et al. in [21] pioneered Faster R-CNN, a seminal
advancement in real-time object detection. Their model, featur-
ing region proposal networks, revolutionised region proposal
generation and object detection, significantly enhancing speed
and accuracy, marking a critical milestone in the field’s pro-
gression.

Kong et al. in [22] introduced HyperNet, meticulously
designed to refine region proposals, thus improving joint
object detection, enhancing the accuracy of region proposal
generation, strengthening object localisation and increasing the
reliability of object detection within images. Their emphasis
on improving region proposals added depth and precision to
current object detection methodologies.



Liu et al. in [24] presented SSD, a single-shot multibox
detector, emphasising speed and accuracy in object detection.
By directly predicting object categories and bounding box
offsets from multiple feature maps, SSD enables efficient
detection across various image scales. This streamlined ap-
proach significantly enhances the feasibility of real-time object
detection, catering to diverse applications.

The work presented in [28] meticulously evaluated the one-
stage YOLO algorithm for pedestrian detection, analysing its
accuracy, precision-recall metrics, computational efficiency,
and performance in diverse conditions. Their exhaustive ex-
perimentation and benchmarking revealed promising results,
showcasing notable accuracy and robustness in detecting
pedestrians across various scenarios. These findings under-
score the effectiveness and potential of the one-stage YOLO
algorithm in advancing pedestrian detection within computer
vision research.

Xi et al. in [27], introduced an enhanced real-time pedestrian
detection algorithm based on YOLOv3, improving precision
and efficiency. Their model maintains high accuracy while sig-
nificantly boosting real-time performance, notably influencing
pedestrian detection in computer vision for various real-world
applications.

III. METHODOLOGY

This research aims to advance pedestrian detection and traffic
sign recognition using YOLOv8 within the domain of AVs.
The methodology includes data collection and preprocessing,
model development, and evaluation to enhance the accuracy
and reliability of these critical components. The architecture
of YOLOv8 integrates a single neural network that predicts
both bounding boxes and class probabilities concurrently.

A. Data Acquisition & Preparation

The dataset collected from the GTSRB [17] consists of
32 x 32-pixel images of traffic signs captured from German
roads, each was labelled according to its respective class. The
images are represented in RGB format and stored as unsigned
8-bit integers, affording 256 potential values per pixel. The
training subset contains 34,799 meticulously labelled images
for robust model learning. The validation subset consists of
4,410 images, serving as a critical tool for assessing model
accuracy, while the test subset contains 12,630 labelled images
to provide an independent benchmark for model evaluation.

For pedestrian detection, the Penn-Fudan Pedestrian
dataset[29] was used, which consists of images containing
pedestrians in various poses and backgrounds. The dataset
includes 170 images with 345 labeled pedestrians, providing a
diverse set of scenarios for training and evaluating the model.

B. Data Preprocessing

Preprocessing of the acquired datasets involved image con-
version, image contrast and standardising light conditions, and
image refinement. The image conversion step involves the con-
version of RGB images depicting traffic signs into grayscale
representations, simplifying the images by discarding colour
information while retaining vital structural details. In the next

step, images undergo a histogram equalisation process, which
redistributes pixel intensities within each image, alleviating
inconsistencies arising from disparate illumination settings
during image capture. The last step is refining the images
using normalisation, which creates a range of uniform pixel
intensities to ensure consistency in the data provided to the
model.

C. Model Development

The architecture of YOLOv8 serves as the foundation for
model development, The proposed architecture centres on
leveraging Convolutional Neural Networks (CNN) for robust
feature extraction and precise data classification, aiming to
achieve a high accuracy. The Preprocessing phase involves
standardising illumination variations by subtracting average
traffic sign images before feeding them into the CNN. The
model development involves designing the layers of CNN,
within the YOLO model, feeding it with the preprocessed data,
and setting the learning rate and epochs in the training phase.

Fig. 1: Model Development

Fig. 1 outlines the architectural progression of the YOLOv8
model, commencing with the Input Layer for initial image
data ingestion. This data undergoes hierarchical feature ex-
traction via the Backbone Network, followed by refinement
through the Feature Pyramid Network (FPN) to generate
multi-level feature representations. The subsequent Multiscale
Feature Fusion layer amalgamates these diverse features to
augment spatial resolution and semantic depth. The Context
Aggregation Model further enriches these representations by
assimilating contextual cues through advanced attention mech-
anisms and RNNs. The Anchor-Based Detection mechanism
orchestrates simultaneous predictions of bounding boxes and
class probabilities. Ultimately, the Output Layer synthesises
these processed features to yield the final object detection
outcomes.

D. Training and Optimisation

The preprocessed datasets were instrumental in training
the YOLOv8 model, specifically targeting pedestrian detec-
tion and traffic sign recognition. Training involves optimising
model parameters, such as learning rates and loss functions,
using techniques like Stochastic Gradient Descent (SGD), and
adaptive moment estimation (Adam). Hyperparameter tuning
is performed to maximise model performance and minimise
training time.

Through exhaustive search, an optimal learning rate of
0.001 was identified to ensure the balance between stability
and convergence speed and facilitate rapid convergence while



maintaining training stability and amplifying the model’s over-
all efficacy. After comprehensive experimentation, a batch size
of 32 was determined to be optimal. To combat overfitting
and bolster model robustness, L2 regularisation with a regu-
larisation strength of 0.01 was meticulously fine-tuned. This
optimised regularisation term effectively mitigated overfitting,
enhancing the model’s generalisation capabilities. Using the
Adam optimiser, dynamic adjustment of the learning rate and
fine-tuning of the loss function were incorporated during the
training phase. The adaptive learning rate mechanism of Adam
expedited convergence, augmenting overall training efficiency.
Concurrently, an exhaustive hyperparameter tuning initiative
was undertaken, focusing on optimising learning rates, batch
sizes, and regularisation terms.

E. Evaluation and Validation

The trained YOLOv8 models are evaluated using separate
20% validation datasets to assess their performance in pedes-
trian detection and traffic sign recognition tasks. Evaluation
metrics such as precision, recall, and mean average preci-
sion (mAP) are calculated to quantify model accuracy and
robustness as shown in equation 1 where N is the number of
samples, and AP is the Average Precision. The models are
further validated using real-world scenarios and benchmark
datasets to ensure their effectiveness in practical applications.

mAP =
1

N

N∑
i=1

APi (1)

F. Fine-tuning and Optimisation

Based on the evaluation results, the YOLOv8 models may
undergo further fine-tuning and optimisation to improve per-
formance and address any shortcomings. This iterative process
involves adjusting model parameters, refining preprocessing
techniques, and incorporating additional training data to en-
hance model accuracy and reliability.

G. Implementation and Deployment

In the Implementation and Deployment phase, the YOLOv8
models are transitioned into implementation. Initially, the
deployment predominantly centres on the creation and opti-
misation of software-based models. Concurrently, plans and
preparatory steps are undertaken to facilitate future integration
with established hardware and software infrastructure. This
forward-looking approach aims to ensure the seamless oper-
ation of the YOLOv8 models within the broader AV system,
fostering effective interaction with other integral components.

IV. EXPERIMENTS AND RESULTS

A systematic exploration of object detection capabilities was
embarked upon, with a primary focus on pedestrian detection
and traffic sign recognition. To facilitate this investigation, two
prominent datasets were curated, as detailed in the Methodol-
ogy section III-A. The outcomes of the data Preprocessing step
are shown in 2, and the results of the training and validation
steps are shown in 3.

Fig. 2: Traffic Sign Sample Image Conversion to Grayscale

Fig. 3: Training and Validation losses of Epochs
The traffic sign recognition and pedestrian detection results

on the testing dataset using YOLOv8, shown in 4 and 5
respectively, exhibited a high degree of accuracy and precision,
effectively identifying and localising pedestrians in various
scenarios. Similarly, the model’s predictions on sample traffic
sign images showcased its capability to accurately recognise
and classify traffic signs. A deeper analysis using the confusion
matrix shown in Fig. 6 provides profound insights into the
model’s performance across distinct traffic sign classes.

The YOLOv8-based model results in Table I showcased
a high precision of 92%, a recall rate of 89%, and a mean
Average Precision (mAP) score of 0.91. Similarly, in the
context of traffic sign recognition, the model’s performance
metrics were typically similar, registering a precision of 95%,
a recall of 93%, and an mAP of 0.94. These high-performance
metrics—precision, recall, and mAP serve as compelling tes-
timonials to the model’s overall effectiveness in detecting
and classifying objects across varying Intersection over Union
(IoU). The IoU measures the overlapping between the bounded
images and, in this paper, IoU sets its thresholds as follows:
Excellent performance for 90% and above, good performance
between 89% and 80%, an average performance between 79%
and 70%, and poor performance for 69% and less.

TABLE I: Results of YOLOv8-based Model in Pedestrian
Detection and Traffic Sign Recognition.

Task Precision Recall mAP
Pedestrian Detection 92% 89% 0.91
Traffic Sign Recognition 95% 93% 0.94

A comparative analysis was performed, contrasting the



Fig. 4: Visualisation of Model Predictions on Traffic Sign
Sample Images

Fig. 5: Pedestrian Detection Results Using YOLOv8

performance metrics of YOLOv8 [16] with its predecessors
and other contemporary object detection methodologies, in-
cluding methods such as Faster R-CNN [21], SSD (Single
Shot Multibox Detector) [24] and Efficient Object Detection
(EfficientDet). The results of this comparative assessment,
including the performance metrics calculated from Pedestrian
detection and Traffic sign recognition tasks, are presented in
Table II and Table III respectively.

The comparative analysis reveals advancements in the per-
formance metrics of YOLOv8-based models, particularly in

Fig. 6: Confusion matrix for traffic sign recognition

TABLE II: Comparative Performance Analysis of Pedestrian
Detection methods

Pedestrian Detection Results Precision % Recall % mAP IoU
YOLOv8 92 89 0.91 Excellent
YOLOv3 [27] 85 82 0.83 Good
SSD [18] 85 80 0.88 Good
Faster R-CNN [21] 84 80 0.88 Good

TABLE III: Comparative Performance Analysis of Traffic Sign
Recognition Methods

Traffic Sign Recognition Results Precision % Recall % mAP IoU
YOLOv8 95 93 0.94 Excellent
YOLOv3 [27] 88 86 0.87 Good
EfficientDet [30] 88 82 0.88 Good

pedestrian detection and traffic sign recognition tasks, which
are active research areas in AVs. As illustrated in Table II and
Table III, the trained YOLOv8 model exhibited a good perfor-
mance across all metrics compared to its predecessors, such as
YOLOv3, and contemporary methods, such as Faster R-CNN,
SSD and EfficientDet. As illustrated in the Tables, YOLOv8
pedestrian detection model achieved good precision, Recall
and mAP, accompanied by excellent IoU compared to other
methods that used the same dataset. Similarly, the YOLOv8
traffic sign recognition model achieved good precision, recall
and mAP, accompanied by excellent IoU compared to other
methods in the table which achieved comparable results.

While the implemented models demonstrate commendable
precision and recall for most cases, instances of confusion
between specific signs and results emerge. These instances
of confusion unveil the models’ limitations in distinguishing
visually similar signs or detecting pedestrians, offering crucial
insights for targeted improvements.



This comparative assessment underscores the effectiveness
of YOLOv8 in outperforming previous methods such as Faster
R-CNN and SSD in terms of detection accuracy, computational
efficiency, and overall performance. The YOLOv8 models’
have shown responsiveness, and adaptability, making it partic-
ularly suitable for real-time applications, where rapid decision-
making and precise object detection are paramount.

V. CONCLUSION & FUTURE RESEARCH DIRECTIONS

In conclusion, this paper demonstrates a comparative analysis
of two significant processes for the development of AVs, which
are pedestrian detection and traffic sign recognition employing
the YOLOv8 architecture. The presented results and findings
reveal a potential enhancement in both pedestrian and sign
recognition using the YOLOv8 model.

YOLOv8 has achieved a precision rate of 92% for pedes-
trian detection and 95% for traffic sign recognition, com-
plemented by high recall rates and mean Average Precision
scores. The mentioned performance metrics underscore its
potential as a cornerstone technology in object detection for
AVs applications.

Future research aimed to prioritise the evaluation of
YOLOv9 [31] in comparison to YOLOv8. A thorough analysis
of YOLOv8’s object detection mechanisms, integrated into
advanced architectures alongside YOLOv9, is essential to gain
insights into potential optimisation areas. Additionally, inno-
vative strategies are needed to enhance detection accuracy in
YOLOv8, particularly in challenging environmental conditions
like adverse weather and varying light intensities.
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