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Abstract—In an era where asynchronous environments pose
challenges to traditional self-positioning methods, we propose
a new transformation to the existing paradigm. Traditionally,
time of arrival (TOA) measurements require both microphone
and source signals, limiting their applicability in environments
with unknown emission time of human voices or sources and
unknown recording start time of independent microphones. To
address this issue, our research pioneers a mapping function
capable of transforming both TOA and time difference of arrival
(TDOA) formulas, demonstrating, for the first time, that they
can be identical to one another. This implies that microphone
signals alone are sufficient for self-positioning without the need
for source signals waveform, a groundbreaking advancement
in the field that carries the potential to revolutionize self-
positioning techniques, expanding their applicability in challeng-
ing environments. Supported by a robust mathematical proof
and compelling experimental results, this research represents a
timely and significant contribution to the current discourse in
signal, and audio processing.

Index Terms—Time of arrival, time difference of arrival, self-
positioning, mapping function

I. INTRODUCTION

THE ability to accurately localize distributed microphones
and sound sources is a fundamental requirement in var-

ious acoustic tasks, including noise reduction, source signal
enhancement, and separation [1]–[3]. This is conventionally
achieved through the utilization of time of arrival (TOA) or
time difference of arrival (TDOA) measurements [4]. However,
these techniques have significant limitations, particularly in
asynchronous environments where the unknown timing infor-
mation (UTIm) of signal emission and recording are unknown
in advance [5], resulting unknown microphones start time and
sources emission time contained in TOA while the unknown
time offset of a pair of microphones contained in TDOA.

In scenario where the waveform of the source signals is
available, including information on frequency, amplitude, and
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duration, TOA measurements can be estimated through cross-
correlation methods [6]. This has led to the development of
various self-positioning methodologies such as probabilistic
generative models [7], maximal likelihood estimation [8],
Gram matrix and semi-definite relaxation [5], and techniques
utilizing the low-rank property (LRP) [9] with alternating
minimization method [10], [11], and structure total least
square [12], [13].

Alternatively, when source signals waveform is hard to
obtain, self-positioning techniques pivot towards TDOA mea-
surements, which can be estimated with audio signals from
a pair of microphones [6]. This shift has led to a plethora
of methodologies, such as maximal likelihood estimation [8],
[17], auxiliary function method [14], LRP with nuclear trunca-
tion minimization [15], [16], and distributed damped Newton
optimization [4], [18].

Yet, amidst these developments, a significant and press-
ing question has lingered: Can microphone signals alone be
sufficient for self-positioning, thereby negating the need for
source signals? In details, on one side, after the UTIm in
TOA/TDOA is estimated, we can obtain the range measure-
ments between microphones and sources for self-localization
with TOA measurements while the range difference of a pair
of microphones with respect to corresponding sources can be
used for self-localization with TDOA measurements. However,
range measurements between microphones and sources con-
tain richer information than range difference. For example,
with both range measurements and AOA measurements [19],
the location of both microphones and sources can be obtained
directly [20], alternatively, with range measurements only,
closed form solutions [21] can also be derived directly for
localization of microphones and sources. On the other side,
TDOA measurements need microphones signals only while
both microphones and sources are necessary to be used for
obtaining TOA measurements. Therefore, with microphones
signals only, how to prove TOA can be identical to TDOA



is the key problem. The answer to this question carries
profound implications for the field, as it can streamline and
make the self-positioning process more efficient and adaptable.
Moreover, it presents a timely advancement, given the growing
complexity of audio environments and the increasing need for
flexible and efficient localization methods.

This research takes a groundbreaking step towards answer-
ing this crucial question. We introduce an innovative mapping
function that transforms both TOA and TDOA formulas to
an identical representation/form. In other words, our findings
illustrate that their transformations can mirror one another
perfectly, confirming that relying solely on microphone signals
is sufficient for self-positioning tasks. Therefore, our novel
approach unveils, for the first time, the exact relationship
between TOA and TDOA measurements, challenging the long-
standing assumption that TOA necessitates both microphone
signals and the source signal waveform.

This revolutionary insight doesn’t merely simplify the self-
positioning process by eliminating the need for additional
information from source signals. It also broadens its applicabil-
ity, as properties initially designed for TOA-based localization,
such as rank 3 [3] and rank 5 [22], can now be applied to
TDOA-based localization. In essence, our work represents a
significant, novel, and timely contribution, with the potential
to dramatically reshape self-positioning techniques in asyn-
chronous environments and catalyze further advancements in
signal, and audio processing.

II. PROBLEM FORMULATION

Consider a setup where we have M asynchronous mi-
crophones and N asynchronous sound sources, located at
R =

[
r1, · · · , rM

]
3×M

and S =
[
s1, · · · , sN

]
3×N

,
respectively, with 3 denoting three dimensions. After sources
have emitted the audio signals and microphones have received
the corresponding signals, we can encounter two possible
scenarios.

In the scenario where the waveform from the source signals
can be acquired, by defining the unknown recording start time
of ith microphone as δi and unknown emission time of jth

source as ηj as well as the speed of sound as c, the known
TOA (ti,j) between ith microphone and jth source can be
calculated as [5]

ti,j =
∥ri − sj∥

c
+ ηj − δi, (1)

where i = 1, · · · ,M and j = 1, · · · , N , and ∥ • ∥ is the
l2 norm. In addition, without loss of generality, the location
of the first source can be set as s1 = [0, 0, 0]T because of
the invariance of translation and rotation as well as reflection
regarding the geometry of microphones and sources [3].

The second scenario arises when it is challenging to obtain
the waveform from the source signals. Here, we define the
known TDOA (τi,j) of jth source between ith microphone
and 1st microphone as [5]

τi,j = ti,j − t1,j =
∥ri − sj∥

c
− ∥r1 − sj∥

c
+ δ1 − δi. (2)

Upon inspection of Eq. (2), it can be observed that after
the source j emits the audio signal and both ith and 1st

microphones receive the corresponding signal, the ith micro-
phone signal contains information about the start time of ith

microphone δi, the emitted time of jth source ηj , as well
as the time difference in signal propagation from the jth

source to the ith microphone. Similarly, the signal at the 1st

microphone contains information about the start time of the
1st microphone δ1, the emitted time of jth source ηj , and the
time difference in signal propagation from the jth source to
the 1st microphone. Thus, employing the generalized cross-
correlation with phase transform [23] method, TDOA (τi,j)
can be estimated using only the audio signals from the jth and
1st microphones, demonstrating the independence of TDOA
from the source signal. Besides, according to the definition
of TDOA, it measures the time difference between a pair
of microphones when they receive the corresponding source
signal, therefore, the TDOA (τi,j) of jth source in Eq. (2) can
also be measured by the ith microphone signal and any other
one of remaining microphone signals. Fig. (II) illustrates these
two cases for TOA formula in Eq. (1) and TDOA formula in
Eq. (2).

Let’s denote δ̌i = δi − δ1 and η̌j = −∥r1−sj∥
c , then TDOA

formula in Eq. (2) can be re-written as [5]

τi,j =
∥ri − sj∥

c
+ η̌j − δ̌i. (3)

Interestingly, this equation shares the same structural form
as the TOA formula in Eq. (1). However, the exact re-
lationships between TOA formula in Eq. (1) and TDOA
formula in Eq. (2) remain elusive. No existing works have
demonstrated this relationship so far, and as a result, the
sufficiency of utilizing only microphone signals for self-
positioning is still unknown. Our research objective, therefore,
is to investigate the feasibility of utilizing the microphone
signals alone for self-positioning when the waveform of source
signals is unavailable. The results of our study have the
potential to challenge the long-standing assumption that the
acquisition of source signal waveform is a necessity for TOA-
based self-positioning. This can lead to an expansion of self-
positioning techniques, enhancing their utility in challenging
environments.

III. MAPPING FUNCTION FOR TOA AND TDOA
FORMULAS

In this section, a novel mapping function is derived for
TOA formula in Eq. (1) and TDOA formula in Eq. (2). We
first present the novel mapping function in Subsection A,
then the proof of the proposed mapping function is shown
in Subsection B.

A. Mapping Function f(•)
TOA measurements are unavailable when the waveform of

source signals is missing, and only TDOA measurements can
be used for localization once this situation happens. Since
there are no existing works in the state-of-the-art investigate



Fig. 1. The illustrations for TOA and TDOA formulas with asynchronous
microphones and sources (r1 and ri: locations of 1st and ith microphones,
respectively; sj : location of jth source; ti,j : TOA measurement between ith

microphone and jth source; τi,j : TDOA measurement of jth source between
1st microphone and ith microphone; δ1 and δi: start time of 1st and ith

microphones, respectively; ηj : emission time of jth source; c: speed of sound;
∥ • ∥||: l2 norm).

the relationships between TOA and TDOA measurements,
here, we present a novel general form of mapping function
to show the sufficiency of using microphone signals alone for
both TOA and TDOA-based self-positioning. The proposed
general form of mapping function, f(•), for TOA formula in
Eq. (1) and TDOA formula in Eq. (2), is defined as

f(ti,j) = ti,j − ti,1 −
∑M

i=1(ti,j − ti,1)

M
, (4)

and

f(τi,j) = τi,j − τi,1 −
∑M

i=1(τi,j − τi,1)

M
, (5)

respectively, then by applying the mapping function, f(•), to
TOA formula in Eq. (1) and TDOA formula in Eq. (2) and
defining two variables{

δ̇i =
∥ri−s1∥

c

η̇j =
∑M

i=1(∥ri−s1∥−∥ri−sj∥)
cM

, (6)

we state that
f(ti,j) = f(τi,j) =

∥ri − sj∥
c

− δ̇i + η̇j , (7)

where i = 1, · · · ,M and j = 1, · · · , N . From the statement
in Eq. (7), we can see that once this relationship is proved,
this mapping function indicates the same structure as TOA
formula in Eq. (1), showing the location of both microphones
and sources can be obtained with f(•) by utilizing the same
methods that are designed for TOA-based self-positioning.
More importantly, the sufficiency of utilizing microphone
signals alone can be revealed for self-positioning, providing
the potential to challenge the long-standing assumption that
TOA necessitates both microphone signals and the waveform
of source signals for self-positioning. Thus, the process of
self-positioning can be more adaptable and efficient, and the
abilities of self-positioning techniques can be expanded in
challenging environments.

B. Proof for mapping function f(•)

We first derive the transformation of TOA formula in Eq.
(4), then the derivation of transformation of TDOA formula
in Eq. (5) is displayed. Finally, we validate the statement in
Eq. (7) by comparing the transformation of TOA formula in
Eq. (4) with the transformation of TDOA formula in Eq. (5).

1) Transformation of TOA formula: From TOA formula in
Eq. (1), we can have

ti,1 =
∥ri − s1∥

c
+ η1 − δi, (8)

then with Eqs. (1) and (8), the difference between ti,j and ti,1
can be written as

ti,j − ti,1 =
∥ri − sj∥

c
− ∥ri − s1∥

c
+ ηj − η1. (9)

From Eq. (9), we can see the mean value for ti,j − ti,1 with
respect to the index i is∑M

i=1(ti,j − ti,1)

M
=

∑M
i=1(∥ri − sj∥ − ∥ri − s1∥)

cM
+ηj−η1.

(10)
Finally, with Eqs. (9) and (10), the mapping function for

TOA formula in Eq. (4), f(ti,j), can be formulated as

f(ti,j) = ti,j − ti,1 −
∑M

i=1(ti,j − ti,1)

M

=
∥ri − sj∥

c
− ∥ri − s1∥

c
+

∑M
i=1(∥ri − s1∥ − ∥ri − sj∥)

cM
,

(11)

where i = 1, · · · ,M and j = 1, · · · , N .
2) Transformation of TDOA formula: From TDOA formula

in Eq. (2), we can display the difference between τi,j and τi,1
as

τi,j − τi,1 =
∥ri − sj∥

c
− ∥r1 − sj∥

c

− ∥ri − s1∥
c

+
∥r1 − s1∥

c
, (12)

then from Eq. (12), the mean value for τi,j − τi,1 with respect
to the index i can be written as∑M

i=1(τi,j − τi,1)

M
=

∑M
i=1(∥ri − sj∥ − ∥ri − s1∥)

cM

− ∥r1 − sj∥
c

+
∥r1 − s1∥

c
. (13)

Finally, with Eqs. (12) and (13), the mapping function for
TDOA formula in Eq. (5), f(τi,j), can be formulated as

f(τi,j) = τi,j − τi,1 −
∑M

i=1(τi,j − τi,1)

M

=
∥ri − sj∥

c
− ∥ri − s1∥

c
+

M∑
i=1

(∥ri − s1∥ − ∥ri − sj∥)
cM

(14)

where i = 1, · · · ,M and j = 1, · · · , N .



3) Validation of statement: Based on the definitions of the
two variables δ̇i and η̇j in Eq. (6), then with the transforma-
tions of both TOA formula in Eq. (11) and TDOA formula in
Eq. (14), we can see that Eq. (11) and Eq. (14) are identical
to one another, this completes the proof of mapping function
f(•) in Eq. (7).

With the proof of the statement in Eq. (7), we can see
that the transformations of TOA and TDOA formulas are
identical to one another, revealing the sufficiency of uti-
lizing microphone signals for both TOA and TDOA-based
self-positioning, providing the potentials to challenge the
long-standing assumption that TOA necessitates both micro-
phone signals and the waveform of source signals for self-
positioning. In addition, the statement in Eq. (7) indicates that
many properties, such as rank 3 [3] and rank 5 [22], that are
used for TOA-based localization can also be used for TDOA-
based localization, this makes the tasks of self-positioning
more efficient and adaptable. Besides, by eliminating the need
for additional information from source signals, a wide range
of other applications, such as noise reduction, sources signals
enhancement and separation [1]–[3] can also be facilitated
since the importance of self-positioning for those applications
above.

IV. EXPERIMENTAL VALIDATIONS

In this section, experimental results are shown to validate
the proposed mapping function. The experimental setups are
illustrated in subsection A first, then the evaluation metric
is defined and the validations of both the proposed mapping
function and the property of the proposed mapping function
are shown in subsection B.

A. Setups

1) Simulation data: All the simulation data is randomly
generated by MATLAB with uniform distribution, both the
start time of microphones and emission time of sources are in
the range of [−1, 1]s, the locations of microphone and source
are distributed in the room with size of 10 × 10 × 3 m3 [5]
and the speed of sound is set to be 340 m/s. In addition, both
the number of microphones M and the number of sources N
are set to be 20, and the number of configurations is set to be
1000. Thus, there are 400000 data points for simulated data.

2) Real-Life data: The real data [24] was collected in an
office of size of 5× 3 m2, where most of the furniture inside
the office was removed. There are 12 microphones which
were fixed, and a chirp was played by a loudspeaker from
65 positions. This real-life data for 12 × 65 TOA matrix can
be downloaded at Github1 [5], [24] and the TDOA matrix is
calculated by Eq. (2). For more details of this real-life data,
readers can refer to references [5], [24]. Also, both the start
time of microphones and the emission time of sources are in
the range of [−1, 1]s. In addition, the number of data points
for real-life data is 780 since there are 12 microphones and
65 sources.

1This real-life data is available at https://github.com/swing-research/xtdoa/
tree/master/matlab

B. Evaluations and Results

We first show the values of proposed mapping function for
the transformations of both TOA and TDOA measurements in
both simulation data and real-life data sets, then the statement
for the proposed mapping function in Eq. (7) is evaluated
by measuring the difference of transformations of TOA and
TDOA formulas

∆fi,j = f(ti,j)− f(τi,j), (15)

where i = 1, · · · ,M and j = 1, · · · , N . As can be seen
from Eq. (15), once ∆fi,j is equal to zero, the values of
transformation of both TOA and TDOA formulas are the
same as each other, it indicates the validation of the proposed
mapping function f(•).

Fig. 2 shows the experimental results with both simulated
data and real data. From Fig. 2(a), it can be observed that
the values of f(•) for both TOA and TDOA measurements
in simulated data are in the range of [−0.05, 0.05]s while
the corresponding values in real data are in the range of
[−0.02, 0.02]s, this is because of the different sizes of
the rooms are used for simulation data and real life data,
respectively. In addition, from Fig. 2(b), we can also see that
the value of ∆fi,j is also with a magnitude of 10−16 due
to the machine calculation accuracy of MATLAB, therefore,
∆fi,j = 0 in Eq. (15) is validated. This implies that the
transformations of TOA formula in Eq. (1) and TDOA formula
in Eq. (2) are identical to one another with our proposed
mapping function f(•), so that the statement for proposed
mapping function in Eq. (7) is validated. TOA measurements
are obtained with both microphone and source signals while
TDOA measurements are obtained with microphone signals
only, and from Fig. 2(b), it is obvious that the transformation
of TOA and TDOA measurements are the same as each other,
therefore, our novel mapping function shows the sufficiency of
utilizing microphone signals alone for self-positioning, negat-
ing the need of source signals for self-positioning, presenting
a timely advancement for tasks of self-positioning.

V. CONCLUSION

This paper investigated the sufficiency of using micro-
phone signals alone for self-positioning that has never been
investigated in the state-of-the-art. When both the emission
time of the source signal and the recording start times of
the microphones are unknown, by presenting a novel map-
ping function that has never been shown in the literature to
transform both TOA and TDOA formulas, we demonstrated
that the transformations of TOA and TDOA formulas are
identical to one another, showing the sufficiency that uses mi-
crophone signals alone for self-positioning, enabling the tasks
of self-positioning more flexible and adaptable. Therefore,
the proposed mapping function can be regarded as a timely
advancement for the tasks of self-positioning.

For future works, based on the existing TOA and TDOA-
based methods, it would be interesting to apply our novel
mapping function to estimate the unknown source emission
time and microphone start time as well as the locations of



(a) (b)

Fig. 2. Validation of proposed mapping function with both simulation and
real-life data sets: (a) the value of proposed mapping function f(•) for trans-
formations of both TOA measurements in Eq. (4) and TDOA measurements
in Eq. (5); (b) the value of ∆fi,j in Eq. (15).

microphones and sources. Besides, it might also be interesting
to apply this mapping function to other applications, such as
noise reduction, sources signals enhancement and separation.
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