
Fa rooq, U m er, M e h r ez, H a bib a n d H a s a n, N aja m Ul (202 4) A
Reinforc e m e n t Le a r nin g Bas e d Appro a c h for Efficie n t Rou ting in
M ul ti-F PGA Pla tfo r m s. S e n so r s , 2 5 (1). ISS N 1 4 2 4-8 2 2 0

Downloa d e d fro m: h t t p://su r e . s u n d e rl a n d. ac.uk/id/e p rin t /18 6 3 0/

U s a g e g u i d e l i n e s

Ple a s e r ef e r to t h e u s a g e g uid elines a t
h t t p://su r e . s u n d e rl a n d. ac.uk/policies.h t ml o r al t e r n a tively con t ac t
s u r e@s u n d e rl a n d. ac.uk.

Academic Editors: Charalampos

Dimoulas, Andreas L. Symeonidis

and Emmanouil Tsardoulias

Received: 25 November 2024

Revised: 20 December 2024

Accepted: 23 December 2024

Published: 25 December 2024

Citation: Farooq, U.; Mehrez, H.;

Hasan, N.U. A Reinforcement

Learning Based Approach for Efficient

Routing in Multi-FPGA Platforms.

Sensors 2025, 25, 42. https://

doi.org/10.3390/s25010042

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

A Reinforcement Learning Based Approach for Efficient Routing
in Multi-FPGA Platforms
Umer Farooq 1,* , Habib Mehrez 2 and Najam Ul Hasan 3

1 School of Computer Science and Engineering, University of Sunderland, Sunderland SR6 0DD, UK
2 LiP6 Laboratory, Sorbonne Universite, 75005 Paris, France
3 School of Computing and Digital Technologies, Sheffield Hallam University, Sheffield S1 1WB, UK
* Correspondence: umer.farooq@sunderland.ac.uk

Abstract: Prototyping using multi-FPGA platforms is unique because of its use in real-world
testing and cycle-accurate information on the design. However, this is a complex and time-
consuming process with multiple sub-steps. Among its sub-steps, inter-FPGA routing is the
one that can take a significant percentage of total prototyping time. The share of inter-FPGA
routing is projected to increase further over time with the ever-increasing complexity of the
target designs. In this work, we propose to integrate a Reinforcement Learning (RL)-based
framework to speed up the inter-FPGA routing process. For this purpose, we first find a
trade-off between the exploration and exploitation approach (also termed as the ϵ-greedy
approach) in our RL-based framework while not affecting the final Quality of Results (QoR).
To gauge its effectiveness, we then perform an extensive comparison between the proposed
framework and established routing approaches. In this regard, a set of fourteen complex
benchmarks is used, and the results of the proposed framework are compared against
existing routability- and timing-driven routing approaches. Experimental results reveal
that, on average, the proposed RL-based framework speeds up the inter-FPGA routing
process by 45% and 32%, compared to routability- and timing-driven routing approaches,
respectively. The speedup at the routing step further leads to an overall speedup of the
backend flow by 22% and 15%, respectively.

Keywords: reinforcement learning; prototyping; multi-FPGA platforms; backend flow;
inter-FPGA routing

1. Introduction
Owing to ever-improving design techniques and shrinking processing technologies,

the computation capability of modern circuits has increased tremendously over the past
few years. The increase in the computation power of modern day System on Schip (SoC)
architectures is such that it can even eclipse the processing capabilities of the most powerful
computers from a couple of decades ago [1]. It is common to have multiple Central
Processing Units (CPUs) in modern day SoCs for general purpose computing. Their
computing power is further enhanced with the addition of Graphic Processing Units
(GPUs) [2]. The enhancement in the circuit capability has started a new computing era [3]
and helped rapidly advance research in different domains like smart homes, fog computing
in the Internet of Things (IoTs), autonomous vehicles, and Artificial Intelligence (AI), to
name a few [4–6]. Specifically, if we take the example of the rapid deployment of AI in
many modern day applications over the past couple of years, it can largely be attributed to
three main enablers, namely better computation power of underlying circuits, availability

Sensors 2025, 25, 42 https://doi.org/10.3390/s25010042

https://doi.org/10.3390/s25010042
https://doi.org/10.3390/s25010042
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-5220-4908
https://doi.org/10.3390/s25010042
https://www.mdpi.com/article/10.3390/s25010042?type=check_update&version=1

Sensors 2025, 25, 42 2 of 19

of big data, and breakthrough in Deep Learning (DL) algorithms [7–9]. The growth in the
computing power of digital circuits has been sustained for the past number of years, and it
is forecasted to grow in the future with the advent of newer technologies [10].

The enhancement in the computing power of modern day digital circuits, however, has
come at the cost of the increasingly complex design process, which is further exacerbated
by mounting design costs, narrower time-to-market window, and shorter life cycles of
these circuits [11]. Today, it is common to have millions of logic gates in an SoC with
multiple power and clocking domains. Moreover, the costs associated with the design of
new circuits can go up to millions of dollars and span anywhere from six months to two
years. In this context, the verification of the circuit prior to fabrication (also termed as pre-
silicon verification) and seamless chip supply to end users become a hugely important step
as a rogue circuit or supply chain disruption [12] can cost a company a huge fortune and
damage its reputation. Pre-silicon verification of a circuit is a critical as well as complex task,
and it is becoming even more daunting with increasing circuit complexity and shrinking
process technology. As per a survey conducted by Mentor Graphics in 2018, designers
spend approximately 53% of their time on verification alone during the design cycle of a
prototype circuit, and this time is projected to increase further with sub 5 nanometer circuits.
This is because of the fact that over the past number of years, the complexity of circuits has
been increasing at 58% per year, whereas the capability of design engineers increased only
at 21% per year, and this gap is widening further with newer technologies [13].

Historically speaking, pre-silicon verification is performed using one of the four tech-
niques, namely simulation, emulation, virtual prototyping, and Field Programmable Gate
Array (FPGA)-based prototyping. Each of these techniques has its associated advantages
and disadvantages. For example, simulation-based verification is used to check the hard-
ware description of an SoC design. This technique offers complete system visibility with
quick setup and inexpensive solutions [14]. However, this technique is rather slow, and it
is not suitable for even moderately complex designs. In simulation-based verification, the
behavior of the system is completely modeled through variables and configurations [11].
Compared to simulation, emulation-based verification completely mimics the hardware
features of the system under consideration. The only difference is that emulation is per-
formed in a virtual environment rather than the real world. Emulation offers faster speed,
complete system visibility, and high scalability. Emulation-based verification solutions are
offered by a number of vendors [15,16], but they are quite expensive and unaffordable for
smaller companies and academia. Virtual prototyping is another verification technique [17]
that is used to accelerate the design process and check the software model of a system.
However, it is only a software verification technique and cannot be used for the cycle and
bit-accurate checking of a digital system. Finally, we have FPGA-based prototyping [11],
which is the only technique that gives the cycle and bit accurate [18] information of the
design with real-world interfacing experience. Moreover, compared to emulation, it has
a much smaller footprint. However, it has its own disadvantages as well. For example,
it gives poor system visibility, requires expertise both in hardware and software, and is
more expensive as compared to simulation-based techniques. A comparison of the four
verification techniques is also given in Table 1.

Table 1. Comparison between four pre-silicon verification techniques.

Technique Setup Time Cost Execution Speed Footprint Verification Type Visibility

Simulation [14] Small Few thousand dollars Few KHz N/A Hardware Up to block level
Emulation [15] Medium Million dollars Few MHz Medium to large Hardware Complete SoC
Virtual prototyping [17] Small Few thousand dollars Few KHz Small Software N/A
FPGA-based prototyping [11] Medium to long Few thousand dollars Real time Small Hardware/software Module level

Sensors 2025, 25, 42 3 of 19

Among the four verification techniques, FPGA-based prototyping is considered to
be unique as it offers real-world testing experience along with hardware/software co-
verification of the design under consideration. FPGAs have come a long way since they
were first introduced as glue logic three decades ago. Modern day FPGAs are billion transis-
tor circuits [19], and they have applications in areas like data centers, autonomous vehicles,
and smart homes. Despite huge logic capability, the reconfigurable and generalized na-
ture of FPGAs makes them much larger, slower, and more power hungry as compared
to their Application Specific Integrated Circuit (ASIC) counterparts. There exists a huge
gap between FPGAs and ASICs, and this is only going to get larger with increasing ASIC
complexity and shrinking processing technology [20]. Because of this reason, multiple
FPGAs are usually required to prototype even a moderately complex ASIC design, and
their number can increase significantly with the complexity of the design under considera-
tion [21]. Prototyping an ASIC design on a multi-FPGA platform is a daunting task as it
requires expertise both in hardware and software. The efficiency and performance of the
final prototype design are directly related to the quality of the backend flow tools of the
multi-FPGA prototyping process.

The backend flow of multi-FPGA prototyping consists of multiple steps. It starts
with the hardware description of the design, which is first synthesized. The design is
next partitioned [22,23] where the principle constraint is to divide the design into equal
parts with minimum communication interconnect between the partitioned parts. Another
prominent constraint of the partitioning algorithm is that each partitioned part should
not exceed the logic capacity of the target FPGA architecture. To satisfy these constraints,
different partitioning approaches are proposed. For example, the authors in [24,25] use an
analytical placement technique that gives good results for small designs with slight manual
intervention. However, this technique does not guarantee consistent results, especially for
large designs. Simulated annealing is another partitioning approach that is very suitable for
mesh-based architectures [26,27]. This approach promises optimal solutions by minimizing
the Manhattan distance between connected instances. The third partitioning approach
is particularly useful for hierarchical designs, and it minimizes the number of signals
traversing between different partitions by using a min-cut approach [28]. The min-cut
approach can be applied to a design in a flat or multilevel manner where the multilevel
approach [29] has been known to produce good results in a reasonable time.

Although partitioning algorithms try to keep the inter-partition communication to a
minimum, the number of nets between the partitions is usually quite large as compared to
the available physical lines between different FPGAs of multi-FPGA boards. This brings
us to the problem of inter-FPGA routing, where the nets between the FPGA partitions
(also termed as cut nets) are routed in a Time Division Multiplexed (TDM) manner. The
number of cut nets passing between the FPGAs through a single line is termed as the
multiplexing ratio. The objective of an inter-FPGA routing algorithm is to route cut nets in
the shortest possible time while keeping the multiplexing ratio to a minimum. Once the
inter-FPGA routing culminates, the partitioned design, along with routing info, is passed
to the intra-FPGA placement and routing flow that culminates with in-circuit verification
of the design.

In the multi-FPGA backend flow, partitioning and inter-FPGA routing are among
the most critical steps, and the quality of these two steps plays a major role in the final
prototype design. In particular, inter-FPGA routing is critical in the sense that it takes up
to 40% of the total time spent in the FPGA backend flow, and this share is going to grow
further in future [30]. The inter-FPGA routing is quite interesting and challenging in the
sense that by the time a designer arrives at this step, the design is already partitioned, and
the interconnect between different FPGAs is fixed. So, a routing algorithm has to use the

Sensors 2025, 25, 42 4 of 19

available resources. Routing in FPGAs is considered to be an NP-complete problem [31]
and it only gets harder to reach an optimal solution as the designs get more complex. In
the past, different routing approaches have been used for FPGA routing. Some of the more
commonly used techniques include obstacle avoidance [32], congestion avoidance [33], and
negotiation-based, congestion-driven routing approach [34,35]. However, none promise to
give optimal solutions, and all are based on heuristic approaches. The time required by
heuristic algorithms to find a feasible solution increases exponentially with the complexity
of the design under consideration, sometimes even rendering infeasible solutions as the
complexity of the design inhibits a feasible solution in a reasonable time. The time taken
and the quality of the solution produced by routing techniques are also affected by input
parameters such as the cost function, the optimization approach, and the number of
iterations. Recently, different researchers have used Machine Learning (ML) algorithms
to automatically tune the parameters of FPGA backend flow and find a feasible solution
in a short time [36,37]. However, these ML-based solutions are mono-FPGA oriented, and
they focus particularly on the placement step of the backend flow. There are some other
researchers who focus on the routing step as well [38–41]. A detailed discussion of this
research is given in Section 2. However, it is important to mention here that almost all the
aforecited work focuses on the single FPGA backend flow and no work has been performed
in this regard on the inter-FPGA routing step of multi-FPGA backend flow.

In this work, we propose a novel, generic inter-FPGA routing approach where we use
Reinforcement Learning (RL) to speed up the inter-FPGA routing process. For this purpose,
we integrate RL into the existing inter-FPGA routing framework. For experimentation,
we first explore the RL-based framework and determine the parameters that give the best
results in terms of time and efficiency. Next, we compare the proposed approach against
the existing congestion-driven routing approach. We compare the proposed approach
against the routability- and timing-driven routing approaches. Our results show that the
RL-based routing approach gives 45% and 32% better speedups against routability and
timing-driven techniques, respectively, while giving similar or better Quality of Results
(QoR). The contributions of this paper are summarized as follows:

• Integration of the RL-based approach in an existing inter-FPGA routing framework
and exploration to find the best parameters through a large set of complex benchmarks.

• Speedup improvement in the inter-FPGA routing of multi-FPGA backend flow
through the proposed RL-based framework.

• Performance comparison of the proposed approach against routability- and timing-
driven variants of inter-FPGA routing through extensive experimentation.

In the rest of the paper, Section 2 gives a comprehensive overview of the existing state-of-
the-art work, which is relevant to this paper. Section 3 gives an overview of different steps
of multi-FPGA backend flow used. Section 4 then focuses on the inter-FPGA routing step
of the backend flow and details the RL-based enhancements that we have integrated in
the backend flow. Section 5 details the experimental results along with their analysis, and
Section 6 finally concludes this paper with some discussion on future work.

2. Related Work
Inter-FPGA routing is one of the most critical steps of multi-FPGA backend flow. The

quality of this step has a big impact on the performance of the final prototype design. In the
past, the problem of inter-FPGA routing has been addressed using a number of techniques.
For example, the authors in [32] use Integer Linear Programming (ILP) to solve the routing
problem in a multi-FPGA context. This technique employs an obstacle avoidance approach
where the nets and nodes, once used, are made unavailable for the rest of the nets. This
kind of approach gives quick results for simple design. However, it renders infeasible

Sensors 2025, 25, 42 5 of 19

results for complex problems and has the tendency to fall into local minima. The authors
in [42] present a congestion avoidance inter-FPGA routing algorithm that avoids the local
minima conundrum. However, their proposed approach takes more time as compared
to the obstacle avoidance technique. The authors in [43] present a Pathfinder-based [34]
inter-FPGA routing environment. However, this is mainly an exploration environment and
it does not involve the usage of any AI or ML techniques.

In the past few years, a significant amount of research has been performed that uses
AI or ML techniques to improve the Electronic Design Automation (EDA) in general and
FPGA-based backend flow in particular. For example, the authors in [44] present an ML
framework that automatically tunes parameters and finds a range that gives optimal results
in a short time. The authors in [45] present another framework that makes use of ML and
cloud-based computing techniques to help accelerate the FPGA-based design. Both of these
works use a combination of ML algorithms like Support Vector Machines (SVMs), Bayesian
Learning (BL), and Neural Networks (NN) to auto-tune FPGA backend flow parameters.

Apart from tuning parameters of the FPGA flow, there exists work that targets the
optimization of individual steps of the flow. For example, the authors in [46,47] use Deep
Neural Network (DNN) and Convolutional Neural Network (CNN) respectively to op-
timize the the synthesis of the design in an FPGA flow. Similarly, the authors in [36,37]
optimize the placement step using ML framework and further use the placement infor-
mation to predict the routing outcome of the design as well [48]. Recently, RL, which is a
type of ML, has seen popularity in EDA because of its superior performance compared to
other ML techniques [49,50]. The authors in [51] use an RL-based framework to speed up
the placement step while giving similar or better QoR compared to existing heuristic tech-
niques like simulated annealing [26]. Similarly, there is work [38] that uses ML techniques
to predict the routability of the design under consideration. However, they do not use ML
techniques to perform the detailed routing. The authors in [52] present another RL-based
routing framework that speeds up the routing step while giving similar or better results
compared to the existing routing techniques.

The discussion provided above suggests that lately, a significant amount of work has
been performed to improve the FPGA backend flow. Some of the aforecited work performs
optimization at the global level and uses ML techniques to tune the FPGA backend flow
parameters. Some other work focuses on the individual steps of flow, like synthesis,
placement, and routing. It is important to mention here that all this work focuses on
single FPGA flow, and to the best of our knowledge, no work has addressed the multi-
FPGA backend flow. In this work, we propose to use an RL-based framework that speeds
up the inter-FPGA routing step while giving similar or better results compared to the
existing solutions used for inter-FPGA routing. For experimentation, we integrate our
proposed RL-based framework into an existing multi-FPGA exploration environment [21]
and compare our results against routability- and timing-driven routing approaches. Our
experimental results show that the proposed framework gives 45%, 32% better performance
in terms of speed up while giving similar and sometimes surpassing QoR given by the
existing framework. In the next section, we give a brief yet comprehensive overview of the
multi-FPGA prototyping flow, and then we give details of our proposed enhancement in
Section 4.

3. Multi-FPGA Backend Flow
In this section, we give a brief description of the multi-FPGA flow used in this work.

The overview of different steps of multi-FPGA backend flow is shown in Figure 1. It can
be seen from the figure that the flow starts with the synthesis of the design, followed by

Sensors 2025, 25, 42 6 of 19

partitioning, routing, and finally culminating at intra-FPGA placement and routing of
the design.

Syntheisizable
Design Files

Fast Synthesis

Synthesized
Netlist

Multi-FPGA
Partitioning

Inter-FPGA
Routing

Design Sub-
Netlist 1

Design Sub-
Netlist 2

Design Sub-
Netlist N

Intra-FPGA
Place & Route

Intra-FPGA
Place & Route

Intra-FPGA
Place & Route

Trace
Assignment

Routing
Constraints

Synthesis
Constraints

Board
Description

Partitioning
Constraints

Figure 1. An overview of the multi-FPGA backend flow.

3.1. Design Synthesis

Synthesis is a process where a design is logically optimized, and its hardware de-
scription is mapped to the library of the target architecture. In this work, we use the
Design Space Exploration (DSE) tool [53] to generate the hardware description of the Multi
Processor System on Chip (MPSoC) architecture. The MPSoC architectures generated
through this tool vary in size and complexity. Some of them are mono-cluster, while others
are multi-cluster. Apart from various co-processors, the hardware description of these
MPSoCs also contains various complex components like RAM, ROM, and FIFOs, and the
interconnect between these components is ensured through DSPIN Network on Chip (NoC)
architecture [54]. The synthesis of the design is performed using the VERIFIC tool [55].
It is a very powerful parsing tool that gives complete information about the hierarchy
of the design and transforms it into standard logic gate primitives. An overview of the
manipulation performed by these tools is also shown in Figure 2. The parse tree function
of the tool helps in analyzing the whole circuit and gives complete information about the
interconnect of the design. This information is used by the partitioning step, which is
described next.

Netlist

Database

Parser Tree

HDL

Circuit

Analysed

HDL

Circuit

HDL

Circuit in

VERIFIC

Primitives

Analysis

RTL

Elaboration

Elaborated

Parse Tree

Static

Elaboration

Figure 2. Design manipulation performed by VERIFIC.

Sensors 2025, 25, 42 7 of 19

3.2. Partitioning

Once the design is synthesized, the netlist is then partitioned using a multi-FPGA
partitioning process. This is an important step, and the impact of a mal-partitioned design
at this step cannot be undone at a later stage of inter-FPGA routing. Usually, a partitioning
algorithm has to satisfy conflicting requirements of fitting the design to the logic capacity of
the target architecture and minimizing the cut-net count. Finding an optimal partitioning
solution for a given design is difficult [56]. In this work, we use heuristic hierarchical and
multilevel partitioning approaches [57,58]. The hierarchical approach is more suitable for
designs that have an inherent hierarchy in them, whereas a multilevel approach is better for
designs exhibiting rather mesh-like interconnect. The graphical description of clustering
and refinement steps involved in multilevel partitioning is shown in Figures 3 and 4
respectively. During clustering, based on connectivity, smaller instances are combined to
make bigger clusters. This process is repeated over multiple levels until only a few clusters
are left. Figure 3 pictorially explains the clustering process where a hypergraph of seven
instances is converted into only two clusters after multiple iterations of clustering. In the
next phase, refinement is performed where clusters are expanded in the reverse order, and
instances are moved between the clusters to minimize the cut-net count. In this work,
we have a complete overview of the design interconnect at the synthesis step, and based
on that, we apply a partitioning approach (either hierarchical or multilevel) that better
suits their interconnect. Because of the scope constraint, we have provided only a brief
overview of the two partitioning approaches in this work. A detailed discussion of these
partitioning approaches can be found in [58]. Once the design is partitioned, it is passed
onto the inter-FPGA routing process, whose details are provided next.

C1

C2

C3

C4

C7

C5

C6

N1

N2

N3

N5

N4

C1

C2C3

C4

C7

C5C6
N1

N2

N3

N4

N5 absorbed in

this move

C1

C2C3C4

C7

C5C6

N1

N2

N4

N3 absorbed in

this move

C1C2C3C4

C5C6C7

N1

N2

N4 absorbed in this

move

Figure 3. Clustering phase in partitioning.

Refined
partition

Projected
partition

Figure 4. Refinement phase in partitioning.

Sensors 2025, 25, 42 8 of 19

3.3. Inter-FPGA Routing

As discussed in Section 1, there is a huge disparity between the logic resources and the
number of I/Os of modern FPGAs. Because of this reason, the number of cut nets between
the partitions is way more than the available physical resources between the FPGAs. These
cut nets are usually either single-source, single-destination (also termed as biterminal cut
nets), or single-source, multi-destination (termed as multiterminal cut nets). The objective
of a routing algorithm is to route these cut nets on the limited physical resources in a time
division multiplexed manner while keeping the number of hops and multiplexing ratio to
a minimum. An overview of the inter-FPGA routing process used in this work is shown in
Figure 5. As a first step, information on multi-FPGA board is transformed into a routing
graph G(V, E) where vertices ‘V’ correspond to the FPGAs and edges ‘E’ correspond to
the connections between them. The information taken from the routing graph is next used
to compute the initial mux ratio. The mux ratio is next used to group cut nets having
the same source and destination. Cut nets are routed using the routing approach under
consideration. This is the step where the most amount of time and computing resources
are consumed. A detailed discussion on cut-net routing and proposed enhancements in
this step is presented in Section 4.

Compute Initial MUX Ratio

Generate Routing Graph

Group Cut Nets

Cut-Nets Routing

Optimal
Routing?

Estimate System Frequency

Adjust MUX Ratio

Board
Description

No

Yes

Trace
Assignment

Optimized
Routing
Solution

Routing Constraints

Figure 5. Inter-FPGA routing flow.

Once all the cut nets are routed, the mux ratio is reduced through an iterative opti-
mization procedure. This process continues until the best mux ratio with minimum hops is
found, and the routing process terminates with the estimation of the execution frequency of
the target design. After the inter-FPGA routing, the design subnetlists are passed through
the vendor-specific flow to perform intra-FPGA placement and routing. The multi-FPGA
backend flow culminates when the bitstreams of design are downloaded onto respective
FPGAs, and in-circuit verification of the design is performed.

4. Proposed Enhancement
Inter-FPGA routing has been previously performed using different methods like

ILP [32], congestion avoidance [42], and negotiation-based [43] routing algorithm, to name
a few. In this work, we propose to integrate an RL-based framework into the inter-FPGA

Sensors 2025, 25, 42 9 of 19

routing environment and evaluate its impact on the routing QoR. In this section, we give
an overview of RL and also detail the proposed enhancement.

Recently, RL, which is an ML-based technique, has seen its applications in EDA [50].
An RL-based framework finds the solution to the problem at hand by taking actions and
then learning from the consequences of those actions. A typical RL-based framework is
shown in Figure 6. In an RL-based framework, at a given time t, an action At is taken, and
as a result of that, a reward Rt+1 is generated, and the system moves from the current state
St to the next state St+1. In this way, multiple actions are taken over time, and a log of those
actions and their rewards is maintained. Over time, the new actions taken are affected by
previously taken actions and their respective rewards. The pseudocode of RL is shown in
Algorithm 1, where the outer loop iterates for a fixed number of iterations and the inner loop
iteratively changes the state and reward values. The α, γ, and ϵ are hyperparameters that
control the learning, discounting, and exploration/exploitation balance of the algorithm.
With each iteration of the outer loop, the ϵ_decay parameter gradually moves the algorithm
away from exploration toward exploitation.

Agent

Environment

Action
At

Reward
Rt+1

State
St+1

Figure 6. A sample reinforcement learning problem.

Algorithm 1: Pseudocode for RL-based framework
// initializing parameters
Q = initialize_Q_table (num_states, num_actions)
initialze α, γ, ϵ, ϵ_decay, minimum_ϵ

foreach episode do
state = env.reset()
done = false;
while not done do

if random.uniform(0, 1) < ϵ

action = env.sample_action()
else
action = argmax(Q[state, :])
env.step(action)
update reward, next state, done
// update Q value
best_next_action = argmax(Q[next_state, :])
Q[state, action] = Q[state, action] + α ∗ (reward γ ∗ Q[next_state,
best_next_action] − Q[state, action])

// move to the next state
state = next_state
ϵ = max(min_ϵ, ϵ ∗ ϵ_decay)

increase episode

Sensors 2025, 25, 42 10 of 19

For the RL-driven approach, after experimentation and exploration, we set ϵ = 0.01
(tradeoff between exploration and exploitation) and γ = 0.1 (meaning the most weightage
is given to the most recent 10% moves). The value of α is calculated using Equation (1) [52],
where M corresponds to the number of iterations. The reward function of the RL-based
framework is very important as it decides the future moves. For the RL-based frame-
work, a basic reward function is usually used. The basic reward function is given in
Equation (2) [52]. Although this function satisfies our objective, it has the tendency to fall
in local minima as it penalizes the moves that result in an increase in conflicts. Hence, we
modify the reward function to Equation (3). This reward function favors a more exploratory
approach and avoids local minima by not penalizing the moves that cause an increase in
conflict count.

α = 1 − elog(γ)/M (1)

rt = −∆con f lict (2)

rt =

−∆con f lict, if ∆con f lict < 0

0, otherwise.
(3)

As discussed before, for inter-FPGA routing, a negotiation-based congestion-driven
routing algorithm has been previously used. In this work, we compare routability- and
timing-driven approaches of the negotiation-based algorithm against the RL-based frame-
work. The pseudocode of the negotiation-based algorithm is shown in Algorithm 2. It
can be seen from this code that this is an iterative algorithm where congested nets are
routed, and their cost can be controlled by either Equation (4) or (5) [21]. The congestion
cost of Equation (4) is applicable if the routability-driven approach is employed and that of
Equation (5) is applicable if the approach is timing-driven. It can be seen from Equation (4)
that the net cost is purely driven by present pn and historical hn congestion of the node.
However, the cost function of Equation (5) indicates that the first part of the cost is dictated
by the delay, and the second part is dominated by the congestion of the node. The criticality
of the net for the timing-driven approach is calculated using the formula in Equation (6) [21],
where slack(i, j) is the delay that could be added before it affects the critical path delay of
the circuit while Dmax is the critical path delay.

cn = (bn + hn)× pn (4)

cn = Crit(i, j)× delay(n) + [1 − Crit(i, j)]× (bn + hn)× pn (5)

Crit(i, j) = 1 − slack(i, j)
Dmax

(6)

In our proposed RL-based framework, we use the state and reward function of
Algorithm 1, which replaces the cost functions of Equations (4) and (5). The proposed
RL-based approach is particularly interesting in the sense that it keeps track of fewer
congestion parameters as compared to routability- and timing-driven approaches. In this
approach, a single record of node congestion is maintained, and it helps in finding a conflict-
free solution in significantly less time and iterations as compared to existing approaches.

Sensors 2025, 25, 42 11 of 19

Algorithm 2: Pseudocode of Pathfinder routing algorithm
Let: RTi be the set of nodes in the current routing of net i
while shared resources exist do

/*Illegal routing*/
foreach net, i do

rip-up routing tree RTi;
RT(i) = si;
foreach sink tij do

Initialize priority queue PQ to RTi at cost 0;
while sink tij not found do

Remove lowest-cost node m from PQ;
foreach fanout node n of node m do

Add n to PQ at PathCost(n) = cn + PathCost(m);

foreach node n in path tij to si do
/*backtrace*/
Update cn;
Add n to RTi;

update hn for all n;

5. Results and Discussion
In this section, we present the experimental results obtained through the flow described

in Section 3. The proposed enhancements discussed in Section 4 are integrated into the
inter-FPGA routing step, and the comparison between routability-, timing-, and RL-based
approaches is presented in this section.

5.1. Benchmarks

To perform experimentation and comparison between different routing approaches,
we use a set of fourteen benchmarks that are generated through DSE tool [53] described
in Section 3.1. Details of the benchmarks used in the experimentation are presented in
Table 2. It can be seen from this table that we use two types of benchmarks for experimenta-
tion. Mono-cluster benchmarks are single-cluster, multicore benchmarks, and multi-cluster
benchmarks are multi-cluster, multicore benchmarks. Both mono- and multi-cluster bench-
marks have other components like RAMs, FIFOs, and UARTs etc. However, the interconnect
structure of mono-cluster benchmarks uses the VCI network, whereas the interconnect
structure of multi-cluster benchmarks is based on DSPIN NoC architecture [54]. The DSPIN
network uses a mesh-based approach where each node in the mesh defines its cluster and
interconnect. The mesh-based nature of DSPIN interconnect makes it completely scalable.

Table 2. Benchmark description.

Sr. No. Benchmark Name Benchmark Type No. of Components

1 CPU20 mono-cluster 50,460
2 CPU30 mono-cluster 65,620
3 CPU50 mono-cluster 85,260
4 CPU125 mono-cluster 120,526
5 AES multi-cluster 90,680
6 CPU2X2X1 multi-cluster 93,654
7 CPU2X2X2 multi-cluster 105,426
8 CPU2X2X3 multi-cluster 119,256
9 CPU2X2X4 multi-cluster 133,459
10 CPU2X2X5 multi-cluster 368,125
11 CPU2X2X6 multi-cluster 380,783
12 CPU2X2X7 multi-cluster 395,487
13 CPU2X2X8 multi-cluster 1,296,458
14 CPU4X4X2 multi-cluster 1,319,258

Sensors 2025, 25, 42 12 of 19

5.2. Results and Analysis
5.2.1. Exploration Results

As discussed in Section 3, partitioning is an important step, which is followed by inter-
FPGA routing. In this work, to best exploit the inherent characteristics of the benchmark
interconnect, we employ two partitioning approaches. For mono-cluster benchmarks,
we use a multilevel partitioning approach as it better optimizes the cut-net count for
benchmarks with mesh-like interconnect. On the other hand, for multi-cluster benchmarks,
we use a hierarchical partitioning approach as it better exploits the hierarchical interconnect
between the clusters [21]. The partitioning results of two partitioning approaches are
presented in Table 3. In this table, each benchmark has two types of cut nets: biterminal
nets represent point-to-point interconnect, whereas multiterminal net count represents
single source multi-destination net count. It is important to mention here that the multilevel
approach is more time-consuming than the hierarchical approach. However, in this work,
we use this approach only for smaller mono-cluster benchmarks where the gap between
the two approaches is not significant, and it does not have an adverse impact on the overall
execution time of the prototyping flow. Moreover, the focus of this work is efficiency
improvement through routing, and we intend to explore the partitioning aspect of the flow
in future work.

Table 3. Cut-net results of two partitioning approaches.

Sr. No. Benchmark Cut Nets Partitioning
Name Biterminal Multiterminal Total Approach

1 CPU20 7561 2940 10,501 Multilevel
2 CPU30 8886 3456 12342 -
3 CPU50 11,933 4640 16,573 -
4 CPU125 15,447 6007 21,454 -
5 AES 7700 2995 10,695 -
6 CPU2X2X1 6304 2452 8756 Hierarchical
7 CPU2X2X2 6953 2704 9657 -
8 CPU2X2X3 7371 2867 10,238 -
9 CPU2X2X4 8891 3458 12,349 -
10 CPU2X2X5 10,013 3894 13,907 -
11 CPU2X2X6 10,315 4011 14,326 -
12 CPU2X2X7 11,113 4322 15,435 -
13 CPU2X2X8 18,487 7189 25,676 -
14 CPU4X4X2 21,835 8492 30,327 -

Before comparing different routing approaches, we first explore the best routing
parameters for RL-based routing. For this purpose, we explore the impact of varying ϵ on
the routing time and the results are shown in Figure 7. Our experimentation and exploration
reveal that RL-based routing with either a purely greedy (i.e., ϵ = 0) or purely exploratory
(i.e., ϵ = 1) approach does not give good routing results. It is clear from this figure that
a purely greedy approach has the tendency to fall in a local minima. As a result of this
pitfall, it does not find a conflict free solution in a given amount of time. For more complex
benchmarks, this approach is unable to find the conflict-free solution in a reasonable time.
On the other hand, a purely exploratory approach (i.e., ϵ = 1) tends to spend too much time
in exploration and does not necessarily improve the QoR. Our experimentation further
reveals that an increase in value of ϵ to 0.01 gives a better trade-off between routing time
and conflict count. This is mainly because of better hill climbing combined with slight
exploration. However, a further increase in ϵ value does not necessarily further improve
the QoR. For example, when ϵ is increased to 0.05 or 0.1, it increases the exploration but
does not improve the convergence time. The impact of different values of ϵ on the quality
of results is shown in Figure 7. It is clear from this figure that ϵ = 0.01 gives the best results

Sensors 2025, 25, 42 13 of 19

in the shortest time, and we use this value for the rest of the comparison with other routing
techniques (i.e., routability- and timing-driven) under consideration.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized Routing Time

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

N
or

m
al

iz
ed

 C
on

fli
ct

 C
ou

nt

Epsilon=0.0
Epsilon=0.01
Epsilon=0.05
Epsilon=0.1

Figure 7. Routing time and conflict count comparison for different values of ϵ.

5.2.2. Comparison Results

In this work, we compare four different routing approaches and the mux ratio results
of these approaches are shown in Table 4. In this table, ‘RD’ and ‘TD’ are routability-
and timing-driven routing approaches. Both are congestion-driven, negotiation-based ap-
proaches. They are based on Algorithm 2, and their cost functions use Equations (4) and (5),
which have already been discussed in Section 4. The ‘RLM’ and ‘RLNM’ columns in Table 4
represent routing results of RL-driven routing that uses Algorithm 1. The ‘RLM’ is the
approach with memory (i.e., γ = 0.1 where the most recent 10% moves are given maximum
weight), and ‘RLNM’ is the approach without memory (i.e., γ = 0, where no record of
previous moves is maintained) respectively. It can be seen from this table that the RLNM
routing approach gives the worst mux ratio results. This is because of the reason that this
approach does not give any weight to the most recent moves. On the other hand, the RLM
approach gives the maximum weight to its most recent 10% moves and adjusts its reward
and next states based on the outcome of the moves carried out in the recent past. As far as
the comparison between RD and TD is concerned, both approaches have historically been
known to produce similar quality results in terms of mux ratio [43]. However, it is the time
taken by the two approaches that makes the difference. Further discussion on this aspect is
provided next.

Table 4. MUX ratio comparison of different inter-FPGA routing approaches.

Sr. No. Benchmark Routing Approach
Name RD TD RLM RLNM

1 CPU20 2 2 2 3
2 CPU30 3 2 2 3
3 CPU50 5 5 5 5
4 CPU125 16 16 15 16
5 AES 7 7 6 8
6 CPU2X2X1 5 4 4 5
7 CPU2X2X2 5 4 4 6
8 CPU2X2X3 6 5 5 6
9 CPU2X2X4 7 6 6 7
10 CPU2X2X5 8 7 7 8
11 CPU2X2X6 8 8 8 9
12 CPU2X2X7 9 8 9 9
13 CPU2X2X8 12 10 10 13
14 CPU4X4X2 16 15 15 16

Sensors 2025, 25, 42 14 of 19

The mux ratio results of Table 4 are used to calculate the execution frequency of each
benchmark. The frequency comparison results are shown in Table 5. The frequency of
individual benchmarks is calculated using Equation (7) [59]. The results of Table 5 give
similar trend as observed in Table 4. The reason for this trend is that frequency results
are largely dependent on the multiplexing ratio result. It can be seen from these results
that the RLNM approach gives the worst overall results, and the TD and RLM approaches
give comparable frequency results. It can be concluded from these results that from a mux
ratio and frequency perspective, the RL-driven routing approach does not bring much
improvement in QoR.

sys_ f req =
i f _ f req

mux_ratio + hops + 3
MHz (7)

Table 5. Frequency comparison of different inter-FPGA routing approaches.

Sr. No. Benchmark Routing Approach
Name RD TD RLM RLNM

1 CPU20 18 20.9 20.9 15.7
2 CPU30 18 20.85 20.85 18
3 CPU50 14 14 14 14
4 CPU125 6.3 6.63 7 6.3
5 AES 11.5 11.5 12.6 11
6 CPU2X2X1 13.9 14 14 13.9
7 CPU2X2X2 12.6 14 14 12
8 CPU2X2X3 12.6 12.6 12.6 12.6
9 CPU2X2X4 11.3 12.6 12.6 11.3
10 CPU2X2X5 9.6 10.5 10.5 9.6
11 CPU2X2X6 9.7 10.5 10.5 9
12 CPU2X2X7 9.7 9.7 9 9.7
13 CPU2X2X8 7.9 8.4 8.4 7.4
14 CPU4X4X2 6 6.6 6.6 6

As discussed in Section 3.3, inter-FPGA routing is an iterative process where the
routing algorithm tries to find a conflict-free solution over multiple iterations. To have
further insight into the routing results, we compare the iteration count and time taken
by each iteration for different routing approaches under consideration. The results of
this comparison are shown in Figure 8. It can be seen from this figure that for almost
all four approaches, with an increase in iteration count, the time per iteration initially
increases linearly. The reason for this increase is that with every passing iteration, the cost
of congested nodes increases, and the routing algorithm has to spend more time to find the
conflict-free nodes. However, beyond a certain number of iterations, the per iteration time
taken by both RD and TD starts to increase exponentially, with TD giving particularly poor
results. Moreover, it is important to note here that RLNM gives the best results because of
limited exploration, and the RLM approach gives the best trade-off between RLNM and
TD approaches. Furthermore, it is pertinent to mention here that for RLNM approach,
spending less time per iteration does not necessarily translate into good QoR as evidenced
in Table 5. This is because of the fact that there is no record of recent moves in the RLNM
approach. It leads to limited exploration time and ultimately results in poor mux ratio and
frequency results.

Sensors 2025, 25, 42 15 of 19

0 5 10 15 20 25 30

Iteration Count

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

N
or

m
al

iz
ed

 It
er

at
io

n
T

im
e

RLM
RD
RLNM
TD

Figure 8. Iteration count and time taken per iteration comparison between four routing approaches.

Finally, the comparison results of the average time taken by each routing approach
to find a conflict-free solution is shown in Figure 9. It can be seen from this figure that,
on average, the RLM routing approach gives the best results in terms of the time taken to
reach a conflict-free solution. Although the RLNM approach requires less time per iteration,
it requires significantly more iterations to find a conflict-free solution, which leads to the
worst results in terms of the time taken to find a conflict-free solution. Moreover, it is clear
from this figure that as compared to the RD routing approach, TD finds a conflict-free
solution in less time despite spending more time per iteration. This is because of the fact
that TD requires an overall smaller number of iterations compared to the RD approach.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized Routing Time

0

10

20

30

40

50

60

70

80

A
ve

ra
ge

 C
on

fli
ct

 C
ou

nt

RLM
TD
RLNM
RD

Figure 9. Routing time vs. conflict count comparison results for different routing approaches.

It is clear from results presented in Tables 4 and 5 and Figures 8 and 9 that RL-based
routing approach (i.e., RLM) either offers no or very small improvement in the QoR in
terms of the frequency of the prototype design. However, it significantly reduces the time

Sensors 2025, 25, 42 16 of 19

required to perform inter-FPGA routing while giving similar and, in some cases, better
frequency results. Against Rd, TD routing approaches, for different benchmarks of Table 2,
the individual time gain provided by the RLM approach in inter-FPGA routing varies
between 27 and 45%. When compared to congestion-based, routability-, timing-driven
(i.e., RD, TD) routing approaches, on average, the RLM approach gives 45% and 32% gains.
As discussed in Section 1, inter-FPGA routing is one of the most time consuming steps of
multi-FPGA prototyping flow. So, the gain obtained at this step through the proposed RLM
approach translates into 22% and 15% reductions in total flow time compared to the RD
and TD routing approaches.

6. Conclusions
Prototyping using multiple FPGAs is a challenging task that requires expertise at both

the hardware and software levels. Routing is one of the most complex and time-consuming
steps of mutli-FPGA-based prototyping. In this work, we propose an RL-based framework
to speed up the inter-FPGA routing in particular and the overall backend flow in general.
Through exploration, we find a fine balance between the exploration and exploitation
approach of the RL framework, which gives good routing results in a reasonable time.
We then evaluate the proposed framework by comparing its results against routability-
and timing-driven, negotiation-based routing approaches. Our comparison results reveal
that in terms of frequency, the RL-based framework gives almost similar results against
the timing-driven approach. However, it is the average time taken per iteration and the
overall time required to reach a conflict-free solution where we achieve significant gains.
Our results show that the proposed framework requires, on average, 32% less routing time
while achieving similar QoR, compared to the best congestion-driven routing approach.

In this work, we have focused on the speedup of the inter-FPGA routing process. In
the future, we would like to integrate machine learning techniques at the synthesis and
partitioning steps of the backend flow. We would be keen to evaluate the impact of machine
learning techniques on the quality of results of individual steps and the speedup that we
can achieve in the overall backend flow.

Author Contributions: Conceptualization, U.F. and H.M.; methodology, U.F.; software, U.F.; vali-
dation, U.F. and N.U.H.; formal analysis, U.F. and N.U.H.; investigation, U.F. and H.M.; resources,
U.F. and H.M.; data curation, U.F. and N.U.H.; writing—original draft preparation, U.F. and H.M.;
writing—review and editing, U.F., Haib Mehrez and N.U.H.; visualization, N.U.H. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Hennessy, P. Computer Architecture: A Quantitative Approach, 5th ed.; Morgan Kauffman: Cambridge, MA, USA , 2011; p. 856.
2. Choquette, J. Nvidia hopper h100 gpu: Scaling performance. IEEE Micro 2023, 43, 9–17. [CrossRef]
3. Nickolls, J.; Dally, W.J. The GPU computing era. IEEE Micro 2010, 30, 56–69. [CrossRef]
4. Yassine, A.; Singh, S.; Hossain, M.S.; Muhammad, G. IoT big data analytics for smart homes with fog and cloud computing.

Future Gener. Comput. Syst. 2019, 91, 563–573. [CrossRef]
5. Bonomi, F.; Milito, R.; Zhu, J.; Addepalli, S. Fog computing and its role in the internet of things. In Proceedings of the First

Edition of the MCC Workshop on Mobile Cloud Computing, Helsinki, Finland, 17 August 2012; pp. 13–16.

http://doi.org/10.1109/MM.2023.3256796
http://dx.doi.org/10.1109/MM.2010.41
http://dx.doi.org/10.1016/j.future.2018.08.040

Sensors 2025, 25, 42 17 of 19

6. Baidya, S.; Ku, Y.J.; Zhao, H.; Zhao, J.; Dey, S. Vehicular and edge computing for emerging connected and autonomous vehicle
applications. In Proceedings of the 2020 57th ACM/IEEE Design Automation Conference (DAC), Francisco, CA, USA, 20–24 July
2020; pp. 1–6.

7. Hwang, T. Computational power and the social impact of artificial intelligence. arXiv 2018, arXiv:1803.08971. [CrossRef]
8. Pencheva, I.; Esteve, M.; Mikhaylov, S.J. Big Data and AI—A transformational shift for government: So, what next for research?

Public Policy Adm. 2020, 35, 24–44. [CrossRef]
9. Alom, M.Z.; Taha, T.M.; Yakopcic, C.; Westberg, S.; Sidike, P.; Nasrin, M.S.; Van Esesn, B.C.; Awwal, A.A.S.; Asari, V.K. The

history began from alexnet: A comprehensive survey on deep learning approaches. arXiv 2018, arXiv:1803.01164.
10. Thompson, N.C.; Ge, S.; Manso, G.F. The importance of (exponentially more) computing power. arXiv 2022 arXiv:2206.14007.

[CrossRef]
11. Farooq, U.; Mehrez, H. Pre-silicon verification using multi-FPGA platforms: A review. J. Electron. Test. 2021, 37, 7–24. [CrossRef]
12. Mohammad, W.; Elomri, A.; Kerbache, L. The global semiconductor chip shortage: Causes, implications, and potential remedies.

IFAC-PapersOnLine 2022, 55, 476–483. [CrossRef]
13. Mehta, A.B. ASIC/SoC functional design verification. In A Comprehensive Guide To Technologies and Methodologies; Springer:

Berlin/Heidelberg, Germany, 2018.
14. Dua, A.; Sherer, A. Hardware Simulator Performance Scaling to Meet Advanced Node SoC Verification Requirements. 2012. Avail-

able online: https://community.cadence.com/cadence_blogs_8/b/fv/posts/incisive-performance-scales-to-meet-advanced-
node-soc-verification-requirements (accessed on 14 October 2024).

15. Koczor, A.; Matoga, Ł.; Penkala, P.; Pawlak, A. Verification approach based on emulation technology. In Proceedings of the 2016
IEEE 19th International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS), Kosice, Slovakia,
20–22 April 2016; pp. 1–6.

16. Hammami, O.; Li, X.; Brault, J.M. NOCEVE: Network on chip emulation and verification environment. In Proceedings of the
2012 Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden, Germany, 12–16 March 2012; pp. 163–164.

17. Mejía-Gutiérrez, R.; Carvajal-Arango, R. Design verification through virtual prototyping techniques based on systems engineering.
Res. Eng. Des. 2017, 28, 477–494. [CrossRef]

18. Romanov, A.Y.; Lerner, A.; Amerikanov, A.A. Cycle-accurate multi-FPGA platform for accelerated emulation of large on-chip
networks. J. Supercomput. 2024, 80, 22462–22478. [CrossRef]

19. Chen, B.; Yu, S.; Chen, P.; Xiao, L.; Lü, J. Design and virtex-7-based implementation of video chaotic secure communications. Int.
J. Bifurc. Chaos 2020, 30, 2050075. [CrossRef]

20. Boutros, A.; Yazdanshenas, S.; Betz, V. You cannot improve what you do not measure: FPGA vs. ASIC efficiency gaps for
convolutional neural network inference. ACM Trans. Reconfigurable Technol. Syst. (TRETS) 2018, 11, 1–23. [CrossRef]

21. Farooq, U.; Baig, I.; Bhatti, M.K.; Mehrez, H.; Kumar, A.; Gupta, M. Prototyping using multi-FPGA platform: A novel and
complete flow. Microprocess. Microsystems 2023, 96, 104751. [CrossRef]

22. Ouaiss, I.; Govindarajan, S.; Srinivasan, V.; Kaul, M.; Vemuri, R. An integrated partitioning and synthesis system for dynamically
reconfigurable multi-FPGA architectures. In Proceedings of the Parallel and Distributed Processing: 10 IPPS/SPDP’98 Workshops
Held in Conjunction with the 12th International Parallel Processing Symposium and 9th Symposium on Parallel and Distributed
Processing Orlando, FL, USA, 30 March–3 April 1998; Proceedings 12; Springer: Berlin/Heidelberg, Germany, 1998; pp. 31–36.

23. Chen, M.H.; Chang, Y.W.; Wang, J.J. Performance-driven simultaneous partitioning and routing for multi-fpga systems. In
Proceedings of the 2021 58th ACM/IEEE Design Automation Conference (DAC), San Francisco, CA, USA, 5–9 December 2021;
pp. 1129–1134.

24. Sigl, G.; Doll, K.; Johannes, F.M. Analytical placement: A linear or a quadratic objective function? In Proceedings of the 28th
ACM/IEEE Design Automation Conference, San Francisco, CA, USA, 17–22 June 1991; pp. 427–432.

25. Kahng, A.B.; Reda, S.; Wang, Q. Aplace: A general analytic placement framework. In Proceedings of the 2005 International
Symposium on Physical Design, San Francisco, CA, USA, 3–6 April 2005; pp. 233–235.

26. Bertsimas, D.; Tsitsiklis, J. Simulated annealing. Stat. Sci. 1993, 8, 10–15. [CrossRef]
27. Kirkpatrick, S.; Gelatt Jr, C.D.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680. [CrossRef]
28. Huang, D.J.H.; Kahng, A.B. Partitioning-based standard-cell global placement with an exact objective. In Proceedings of the 1997

International Symposium on Physical Design, Napa Valley, CA, USA, 14–16 April 1997; pp. 18–25.
29. Karypis, G.; Kumar, V. Multilevel k-way hypergraph partitioning. In Proceedings of the 36th Annual ACM/IEEE Design

Automation Conference, New Orleans, LA, USA, 21–25 June 1999; pp. 343–348.
30. Murray, K.E.; Whitty, S.; Liu, S.; Luu, J.; Betz, V. Timing-driven titan: Enabling large benchmarks and exploring the gap between

academic and commercial CAD. ACM Trans. Reconfigurable Technol. Syst. (TRETS) 2015, 8, 1–18. [CrossRef]
31. Hartmanis, J. Computers and intractability: A guide to the theory of np-completeness (michael r. garey and david s. johnson).

Siam Rev. 1982, 24, 90. [CrossRef]

http://dx.doi.org/10.2139/ssrn.3147971
http://dx.doi.org/10.1177/0952076718780537
http://dx.doi.org/10.5465/AMPROC.2023.365bp
http://dx.doi.org/10.1007/s10836-021-05929-1
http://dx.doi.org/10.1016/j.ifacol.2022.09.439
https://community.cadence.com/cadence_blogs_8/b/fv/posts/incisive-performance-scales-to-meet-advanced-node-soc-verification-requirements
https://community.cadence.com/cadence_blogs_8/b/fv/posts/incisive-performance-scales-to-meet-advanced-node-soc-verification-requirements
http://dx.doi.org/10.1007/s00163-016-0247-y
http://dx.doi.org/10.1007/s11227-024-06306-3
http://dx.doi.org/10.1142/S0218127420500753
http://dx.doi.org/10.1145/3242898
http://dx.doi.org/10.1016/j.micpro.2022.104751
http://dx.doi.org/10.1214/ss/1177011077
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1145/2629579
http://dx.doi.org/10.1137/1024022

Sensors 2025, 25, 42 18 of 19

32. Inagi, M.; Takashima, Y.; Nakamura, Y. Globally optimal time-multiplexing in inter-FPGA connections for accelerating multi-
FPGA systems. In Proceedings of the Field Programmable Logic and Applications, Prague, Czech Republic, 31 August–2
September 2009; pp. 212–217. [CrossRef]

33. Hauck, S.; DeHon, A. Reconfigurable Computing: The Theory and Practice of FPGA-Based Computation; Morgan Kaufmann Publishers
Inc.: San Francisco, CA, USA, 2007.

34. McMurchie, L.; Ebeling, C. PathFinder: A negotiation-based performance-driven router for FPGAs. In Proceedings of the
1995 ACM Third International Symposium on Field-Programmable Gate Arrays, Napa Valley, CA, USA, 12–14 February 1995;
pp. 111–117.

35. Zha, Y.; Li, J. Revisiting pathfinder routing algorithm. In Proceedings of the 2022 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, Virtual Event, 27 February–1 March 2022; pp. 24–34.

36. Gréwal, G.; Areibi, S.; Westrik, M.; Abuowaimer, Z.; Zhao, B. Automatic flow selection and quality-of-result estimation for FPGA
placement. In Proceedings of the 2017 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW),
Orlando, FL, USA, 29 May–2 June 2017; pp. 115–123.

37. Al-hyari, A.; Abuowaimer, Z.; Maarouf, D.; Areibi, S.; Gréwal, G. An Effective FPGA Placement Flow Selection Framework using
Machine Learning. In Proceedings of the 2018 30th International Conference on Microelectronics (ICM), Sousse, Tunisia, 16–19
December 2018; pp. 164–167.

38. Zhao, J.; Liang, T.; Sinha, S.; Zhang, W. Machine learning based routing congestion prediction in FPGA high-level synthesis. In
Proceedings of the 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE) , Florence, Italy, 25–29 March
2019; pp. 1130–1135.

39. Bouzid, S.E.; Serrestou, Y.; Raoof, K.; Omri, M.N. Efficient routing protocol for wireless sensor network based on reinforcement
learning. In Proceedings of the 2020 5th International Conference on Advanced Technologies for Signal and Image Processing
(ATSIP), Sousse, Tunisia, 2–5 September 2020; pp. 1–5.

40. Szentimrey, H.; Al-Hyari, A.; Foxcroft, J.; Martin, T.; Noel, D.; Grewal, G.; Areibi, S. Machine learning for congestion management
and routability prediction within FPGA placement. ACM Trans. Des. Autom. Electron. Syst. (TODAES) 2020, 25, 1–25. [CrossRef]

41. Goswami, P.; Bhatia, D. Congestion Prediction in FPGA Using Regression Based Learning Methods. Electronics 2021, 10, 1995.
[CrossRef]

42. Turki, M.; Marrakchi, Z.; Mehrez, H.; Abid, M. Iterative routing algorithm of inter-FPGA signals for multi-FPGA prototyping
platform. In Proceedings of the International Symposium on Applied Reconfigurable Computing; Springer: Berlin/Heidelberg, Germany,
2013; pp. 210–217.

43. Farooq, U.; Baig, I.; Alzahrani, B.A. An efficient inter-fpga routing exploration environment for multi-fpga systems. IEEE Access
2018, 6, 56301–56310. [CrossRef]

44. Mametjanov, A.; Balaprakash, P.; Choudary, C.; Hovland, P.D.; Wild, S.M.; Sabin, G. Autotuning FPGA design parameters for
performance and power. In Proceedings of the 2015 IEEE 23rd Annual International Symposium on Field-Programmable Custom
Computing Machines, Vancouver, BC, Canada, 2–6 May 2015; pp. 84–91.

45. Kapre, N.; Chandrashekaran, B.; Ng, H.; Teo, K. Driving timing convergence of FPGA designs through machine learning and
cloud computing. In Proceedings of the 2015 IEEE 23rd Annual International Symposium on Field-Programmable Custom
Computing Machines, Vancouver, BC, Canada, 2–6 May 2015; pp. 119–126.

46. Yu, C.; Xiao, H.; De Micheli, G. Developing synthesis flows without human knowledge. In Proceedings of the 55th Annual
Design Automation Conference, San Francisco, CA, USA, 24–29 June 2018; pp. 1–6.

47. Neto, W.L.; Austin, M.; Temple, S.; Amaru, L.; Tang, X.; Gaillardon, P.E. LSOracle: A logic synthesis framework driven by artificial
intelligence. In Proceedings of the 2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), Westminster,
CO, USA, 4–7 November 2019; pp. 1–6.

48. Alhyari, A.; Shamli, A.; Abuwaimer, Z.; Areibi, S.; Grewal, G. A Deep Learning Framework to Predict Routability for FPGA
Circuit Placement. In Proceedings of the 2019 29th International Conference on Field Programmable Logic and Applications
(FPL), Barcelona, Spain, 8–12 September 2019; pp. 334–341.

49. He, Z.; Ma, Y.; Zhang, L.; Liao, P.; Wong, N.; Yu, B.; Wong, M.D. Learn to floorplan through acquisition of effective local search
heuristics. In Proceedings of the 2020 IEEE 38th International Conference on Computer Design (ICCD), Hartford, CT, USA, 18–21
October 2020; pp. 324–331.

50. Mirhoseini, A.; Goldie, A.; Yazgan, M.; Jiang, J.; Songhori, E.; Wang, S.; Lee, Y.J.; Johnson, E.; Pathak, O.; Bae, S.; et al. Chip
placement with deep reinforcement learning. arXiv 2020, arXiv:2004.10746.

51. Murray, K.E.; Betz, V. Adaptive FPGA placement optimization via reinforcement learning. In Proceedings of the ACM/IEE
Workshop on Machine Learning for CAD (MLCAD19), Snowbird, UT, USA, 12–13 September 2022; pp. 1–6.

52. Baig, I.; Farooq, U. Efficient Detailed Routing for FPGA Back-End Flow Using Reinforcement Learning. Electronics 2022, 11, 2240.
[CrossRef]

53. Pouillon, N.; Greiner, A. SoC Lib Project, 2010. Available online: https://www.soclib.fr/trac/dev (accessed on 31 August 2024).

http://dx.doi.org/10.1109/FPL.2009.5272309
http://dx.doi.org/10.1145/3373269
http://dx.doi.org/10.3390/electronics10161995
http://dx.doi.org/10.1109/ACCESS.2018.2873041
http://dx.doi.org/10.3390/electronics11142240
https://www.soclib.fr/trac/dev

Sensors 2025, 25, 42 19 of 19

54. Miro Panades, I.; Greiner, A.; Sheibanyrad, A. A Low Cost Network-on-Chip with Guaranteed Service Well Suited to the GALS
Approach. In Proceedings of the 2006 1st International Conference on Nano-Networks and Workshops , Lausanne, Switzerland,
14–16 September 2006; pp. 1–5. [CrossRef]

55. VERIFIC. 2019. Available online: https://www.verific.com/ (accessed on 10 August 2022).
56. Romashikhin, M.; Romanov, A. Hardware-software complex for prototyping NoCs using a few FPGA chips. In Proceedings of

the 2023 International Russian Automation Conference (RusAutoCon), Sochi, Russia, 10–16 September 2023; pp. 330–334.
57. Karypis, G. hMETIS 1.5: A Hypergraph Partitioning Package. 1998. Available online : https://conservancy.umn.edu/items/2f6

10239-590c-45c0-bcd6-321036aaad56 (accessed on 25 October 2024).
58. Farooq, U.; Alzahrani, B.A. Exploring and optimizing partitioning of large designs for multi-FPGA based prototyping platforms.

Computing 2020, 102, 2361–2383. [CrossRef]
59. Farooq, U.; Chotin-Avot, R.; Azeem, M.; Ravoson, M.; Mehrez, H. Novel architectural space exploration environment for

multi-FPGA based prototyping systems. Microprocess. Microsyst. 2018, 56, 169–183. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/NANONET.2006.346219
https://www.verific.com/
https://conservancy.umn.edu/items/2f610239-590c-45c0-bcd6-321036aaad56
https://conservancy.umn.edu/items/2f610239-590c-45c0-bcd6-321036aaad56
http://dx.doi.org/10.1007/s00607-020-00834-5
http://dx.doi.org/10.1016/j.micpro.2017.12.006

	Introduction
	Related Work
	Multi-FPGA Backend Flow
	Design Synthesis
	Partitioning
	Inter-FPGA Routing

	Proposed Enhancement
	Results and Discussion
	Benchmarks
	Results and Analysis
	Exploration Results
	Comparison Results

	Conclusions
	References

