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an initial implementation of the GB framework, creating 
the Group-Based Firefly Algorithm (GBFA). The GBFA 
showed promising results when benchmarked against eight 
well-known optimization problems (Ackley, Easom, Grie-
wank, Michalewicz, Rastrigin, Rosenbrock, Schwefel and 
Sphere), outperforming the standard FA implementation, 
along with other recent studies relating to nature-inspired 
algorithms, suggesting that further research into this 
group-based swarm dynamic would be useful. Although 
nature-inspired swarm intelligence algorithms have proven 
themselves to be powerful and effective optimization tech-
niques, they are still susceptible to issues such as prema-
ture convergence and oscillations within the swarms, both 
of which can negatively impact performance of the algo-
rithms and cause swarm stagnation in sub-optimal domains 
[3]. The group-based augmentation addresses the aforemen-
tioned stagnation and oscillation issues by increasing the 
search diversity of swarms, through having them move in 
ways that would not be natural to the typical behaviors of the 
swarms. After the success of the initial GBFA implementa-
tion, a further framework was developed, the Cross Group-
Based (XGB) framework, which allows cross-collaboration 
between the population groups. The main contributions of 

Introduction

This paper presents two frameworks designed to address 
issues within nature-inspired optimization algorithms and 
improve overall performance of the algorithms. This is 
achieved through the incorporation of a novel approach to 
group-based swarm dynamics, creating frameworks that can 
be implemented into almost any nature-inspired optimiza-
tion algorithm that utilizes an attraction style mechanism to 
control movement. The first framework is the Group-Based 
(GB) framework, which formalizes the approach origi-
nally proposed in [18], and the second framework is the 
Cross Group-Based (XGB) framework. Both frameworks 
are briefly introduced in this section, and fully defined in 
Sect. 3. Firstly, this study formalizes the Group-Based (GB) 
framework, originally proposed in [18], which presented 
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the novel frameworks and algorithm variants proposed in 
this study can be noted as follows:

1) Within the proposed frameworks, both group-based 
approaches are shown to outperform the base imple-
mentations of the augmented algorithm.

2) The implementation of the group-based approaches 
within BA, FA and PSO has led to the creation of six 
augmented algorithms, all of which showed excellent 
performance when compared to other current feature 
selection algorithms.

3) The proposed frameworks have shown improved algo-
rithm stability in different dimensionalities.

4) The proposed framework can be implemented into other 
nature-inspired optimization algorithms, as it does not 
rely on any specific underlying mechanics of BA, FA or 
PSO.

5) The GBFA has shown a lower complexity than the stan-
dard FA implementation.

6) The PSO algorithm augmented with the group-based 
approaches demonstrated the best overall performance 
of the augmented algorithms.

Nature-inspired optimization algorithms have shown suc-
cessful application when used for feature selection in clas-
sification problems, and has shown success across a variety 
of domains such as facial expression recognition [14], data 
mining [8] and intrusion detection [7]. Feature selection 
is a crucial pre-processing method and is an imperative 
part of creating optimal machine learning models, particu-
larly in datasets with high-dimensionality, which are often 
encountered in real-world applications. These datasets com-
monly contain redundant or irrelevant features, which can 
negatively affect the performance of machine learning algo-
rithms, particularly in the learning process [1]. Robust and 
effective feature selection helps identify the most significant 
features to be used, and removes irrelevant and redundant 
features [9], thus reducing the dimensionality and ensuring 
that the most significant features are used. There are three 
main categories of feature selection methods, these are 
wrapper-based methods, filter-based methods and embed-
ded methods [9]. Wrapper-based methods use machine 
learning techniques to select the most optimal feature sub-
set, and regardless of higher computational cost, they are 
typically noted to provide a higher classification accuracy 
[3]. While in contrast filter-based methods, use statistical 
measurements to rank and select features independently 
of any learning algorithm, subsequently making them less 
computationally demanding, but sometimes less accurate. 
Datasets with high dimensionality can be problematic for 
classification problems within machine learning due to 
memory usage and high computational costs. Traditional 

optimization methods have been applied to feature selec-
tion problems, but suffer from performance issues such as 
premature convergence, or inconsistent performance across 
datasets with different dimensionalities [20]. Metaheuristic 
algorithms are widely considered to be the most useful and 
efficient methods for tackling datasets with high dimen-
sionality, due to the large search space of features. Nature-
inspired metaheuristics, such as evolutionary algorithms 
and swarm intelligence algorithms have seen particularly 
successful application within the area of dimensionality 
reduction, consistently outperforming traditional optimiza-
tion methods [23].

Swarm intelligence algorithms are inspired by the col-
lective behaviors of social swarms that occur within nature, 
modelling the exploration and exploitation behaviors of 
these social swarms. Swarm intelligence algorithms have 
been utilized successfully as wrapper methods for feature 
selection problems. The swarms consist of artificial agents, 
typically made up of a collection of unsophisticated agents, 
that demonstrate a coordinated behavior to achieve the 
desired goal of the swarm. Agents within the swarm interact 
with each other, creating a self-organizing and decentralized 
swarm. Swarm intelligence metaheuristic algorithms such 
as Artificial Bee Colony (ABC), Ant Colony Optimization 
(ACO), Bat Algorithm (BA), Firefly Algorithm (FA) and 
Particle Swarm Optimization (PSO), have been effectively 
used as efficient and robust optimizers for a wide range of 
NP-hard problems across a variety of different domains 
[3, 4, 8, 11, 20, 23]. Modified versions of nature-inspired 
metaheuristic algorithms have been proposed in previous 
research, and generally make modifications or augmenta-
tions that focus upon manipulation of parameter values, 
search strategies, or creating hybrid combinations. Group-
based modifications have also been previously proposed, 
with variations in functionality and grouping paradigms 
implemented, but these often heavily impact the complexity 
of the algorithm, which can be seen in [28]. Current group-
based strategies also rely predominantly on the underly-
ing behavior of the modified algorithm, making these 
approaches difficult to adapt to other algorithms and often 
meaning that parameters must be adjusted to offer the same 
level of performance in different dimensionalities or prob-
lem domains [5, 22, 28]. For example, group-based strate-
gies have been implemented into FA in research such as [5], 
which implements a grouping behavior based on an addi-
tional visual field and a global best, with fireflies grouping 
with those visible to it. An additional example of a group-
based FA can be seen in [22], which implements an elite 
group, that exchanges information with sub-groups, and 
also allows individual fireflies to jump out of their current 
sub-group to a location near the highest performing fireflies. 
The PSO algorithm has also seen grouping mechanisms 
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implemented, for example in [6], a hybrid algorithm which 
utilizes the PSO algorithm and the Crow Search (CS) algo-
rithm. Within this research, groups are formed at the initial-
ization stage, and then the best performers from each group 
are distributed into other groups as the algorithm continues 
to search until the termination criteria is met. The aforemen-
tioned group-based modifications have seen some successes 
and show that implementing group-based paradigms into 
nature-inspired metaheuristic algorithms can be useful in 
improving performance.

The rest of the paper is organized as follows: The Related 
Work section contains a review of related literature, high-
lighting the key theories, concepts and areas this paper 
seeks to address. The Proposed Frameworks section con-
tains an explanation of the functionality of the proposed 
frameworks, an overview of the experimentation system 
design, and the datasets used. The Results section presents 
data analysis and findings of this study, and an evaluation 
of each of the algorithm variants derived from the proposed 
framework. Finally, the Conclusion section summarizes 
and discusses the main findings and their implications, and 
makes recommendations for future research.

Related work

Bat algorithm

The Bat Algorithm (BA) was originally proposed by [26] 
as a metaheuristic optimization technique based upon the 
echolocation communication and movement behaviors of 
a group of bats when tracking food or prey. BA has been 
applied in various optimization problems and has shown 
successes, as noted in [20, 23]. Echolocation functions as a 
form of sonar, with bats emitting a short and loud pulse of 
sound. The bats wait for the echo to return to them after it 
hits an obstacle or object, using the time delay to allow cal-
culate their distance from the obstacle or object. The echolo-
cation used by bats is not purely for navigation and they also 
have the ability to tell the difference between an obstacle 
or object, and food or prey they are hunting. The algorithm 
proposed by [26], has the following idealized rules:

1) All bats use echolocation to sense distance, and they 
also know the difference between food/prey and back-
ground barriers;

2) When searching for food or prey, bats ( xi) fly ran-
domly with a velocity ( vi) at a position ( xi), with a 
fixed frequency ( fmin), and each bat also has a varying 
wavelength ( λ ) and loudness ( A0). Bats can automati-
cally adjust the wavelength (or frequency) of the pulses 

they emit, and can also adjust the rate of pulse emission 
r ∈ [0,1], depending on the proximity of their target;

3) Although the loudness can vary in many ways, it is 
assumed that the loudness varies from a large (positive) 
A0 to a minimum constant value Amin.

The standard BA begins with the initialization of a swarm 
of virtual bats ( xi), with each bat assigned a velocity ( vi

), with the frequencies ( fi), pulse emission rates ( ri) and 
the loudness ( Ai) also initialised. Initially, each bat ( xi) 
is given a random frequency ( fi), drawn uniformly from 
[fmin, fmax]. The algorithm will then repeat the movement 
and search strategy until the maximum number of iterations 
has been reached, with t acting as the iteration counter.

The movement of bats is controlled by rules that deter-
mine how their positions ( xi) and velocities ( vi) in a d

-dimensional search space are updated, with the new solu-
tions ( xt

i) and new velocities ( vt
i ) at iteration t given by 

the equations shown in (1), (2) and (3), where β ∈ [0,1] is 
a random vector drawn from a uniform distribution and the 
current global best solution (location) is represented by x∗
, which is determined after comparing all solutions among 
the swarm of bats ( xi).

fi = fmin + (fmax − fmin)β  (1)

vt+1
i = vt

i +
(
xt

i − x∗
)

fi (2)

xt+1
i = xt

i + vt+1
i  (3)

The product of λ ifi is a constant, therefore we can use fi 
(or λ i) to adjust velocity change, while fixing the other 
factor λ i (or fi), depending on the problem type. In the 
standard implementation of BA, fmin = 0 is used, with 
fmax = O (1), depending on the size of the search domain. 
In terms of local search, after a global best has been assigned, 
a new solution for each bat ( xi) is generated through the use 
of a local random walk, as shown in (4), with ϵ is a random 
number in ∈ [−1,1] and At = At

i represents the average 
loudness of all bats in this iteration.

xnew = xold + ϵAt (4)

A scaling parameter can also be used to control the step size, 
as shown in (5), where ϵt is assigned from a Gaussian nor-
mal distribution N (0,1) and a scaling factor is present with 
σ . The scaling factor should be linked to the scalings of the 
design variables of the optimisation problem.

xnew = xold + σ ϵtA
t (5)
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1) All fireflies within the swarm are unisex and therefore 
all fireflies will be attracted to one and other regardless 
of gender;

2) The attractiveness of a firefly is proportional to the 
brightness, with brightness decreasing as distance 
increases;

3) For any two flashing fireflies, the less bright of the two 
will move toward the brighter one;

4) If there is no brighter firefly, it will move randomly 
within the search domain;

5) The brightness of an individual firefly is determined by 
the objective function ( f (x)).

There are two important factors which influence the FA: the 
formulation of attractiveness and the light intensity varia-
tion. Adjustment of these two factors allows developers 
to fine tune the firefly algorithm in a manner that is best 
suited to the requirements of the problem being solved. The 
attractiveness of a firefly is determined by the brightness 
attribute ( I), which is proportional to the objective func-
tion ( f (x)). Therefore, the brightness ( I) of a firefly at a 
location ( x) within the search domain can be determined by 
I (x) ∝ f (x). The attractiveness ( β ) of a firefly is relative 
and, as per the idealised rules of FA, should be determined 
by other fireflies within the swarm. The brightness intensity 
will vary based upon the distance ( rij) between firefly i and 
firefly j, with the light intensity of a firefly decreasing with 
distance from the source. Additionally, a level of absorption 
is also considered within the FA, to allow for light absorbed 
within the search domain. This means that the light intensity 
( I (r)), in its simplest form, varies according to the inverse 
square law, shown in (8), with the light intensity at source 
is donated as Is.

I (r) = Is

r2  (8)

The light intensity can then be determined by the equation 
shown in (9), with a fixed light absorption coefficient ( γ

), and the light intensity of the source denoted as I0 at dis-
tance r = 0.

I (r) = I0e−γ r2  (9)

Additionally, within Eq. (9), the singularity at r = 0 within 
the expression Is/r2 is avoided by the combined effects 
of the approximation of absorption in Gaussian form, and 
inverse square law. As the attractiveness of a firefly is 
directly proportional to the intensity of the brightness, the 
attractiveness ( β ) of a firefly can be defined as the equation 
shown in (10), with the attractiveness at r = 0 represented 
by β 0.

The velocity and position update of the bats is similar to 
that seen in the PSO algorithm, discussed later in this sec-
tion, as the fi essentially controls the range of movement 
and velocity of swarming particles. However, it is noted 
that BA can prove more effective in some applications, as 
it utilises parameter control and frequency tuning to influ-
ence the exploitation and exploration [26]. As the iterations 
proceed, the loudness ( Ai) and pulse emission rate ( ri) are 
also updated as appropriate. In standard functionality, the 
loudness usually decreases when a bat ( xi) is approaching 
the best solution, with the rate of decrease determined by 
α  in (6).

At+1
i = α At

i (6)

The loudness value is noted to play an important part in 
obtaining good quality solutions with the BA [21], and 
the configuration of the minimum loudness ( Amin) and 
maximum loudness ( Amax) depends on the domain appli-
cation and the size of the dataset. The pulse emission rate 
( ri) determines whether a local search around the global 
best solution should be performed or skipped. As the bat 
( xi) approaches the global best, the pulse rate value will 
increase, subsequently decreasing the likelihood of the bat 
conducting a local search, as the bat is less likely to per-
form a local search around the global best as the pulse rate 
increases. Pulse rate increase is controlled by the equation 
shown in (7) and is determined by γ .

rt+1
i = r0

i [1 − exp (−γ t)] (7)

Firefly algorithm

Firefly Algorithm (FA) was developed originally in 2008 
by Yang and is a relatively new nature-inspired metaheuris-
tic algorithm, with applications and additional advances 
shown in [18]. FA has been successfully applied to a vari-
ety of optimization problems [2–4]. The FA is a stochastic 
search algorithm, based around a population and has similar 
functionality to the PSO algorithm, discussed later in this 
section. The pseudocode for the standard FA can be seen 
in Algorithm 2. Since its initial conception, FA has gained 
notoriety for the powerful search capability it offers and 
overall computational simplicity. The algorithmic design 
concepts of the FA are based upon the luminescence attri-
bute of tropical fireflies, which influences the behaviors and 
movements of a swarm [10], creating a virtual swarm con-
sisting of autonomous agents, which is self-organizing and 
decentralized. The standard implementation of FA is also 
based on the following idealized rules [27]:
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determined by attraction toward the position of the global 
best particle, and the best solution found by that particle 
within its history, the personal best ( x∗

i ).
Individual particles also have a tendency to move ran-

domly within the search space. All particles within the 
swarm have a personal best attribute, and as the individual 
particles search within the problem domain, when a solu-
tion that is better than any previously found, the personal 
best is updated for that particle. The swarm will continue to 
search for a set number of iterations ( t), or until a termina-
tion criterion is hit. To further expand upon the movement 
of individual particles, let xi represent the position and vi 
represent the velocity for particle i, the velocity vector is 
determined by the equation shown in (13).

vt+1
i = vt

i + α ϵ1
[
g∗ − xt

i

]
+ β ϵ2[x∗(t)

i − xt
i] (13)

In (13), ϵ1 and ϵ2 are two random vectors between ∈ [0,1] 
and the parameters α  and β  are the learning parameters 
or acceleration constants. In the initialisation of the swarm, 
particles should be distributed in a relatively uniform man-
ner, to allow coverage across most regions with the search 
domain, which is imperative for multimodal problems. 
When first initialised, the velocity of a particle can be taken 
as zero and represented as vt=0

i = 0, with the position 
then being updated by the equation shown in (14), with the 
velocity ( vi) bounded within a defined range ∈ [0, vmax].

xt+1
i = xt

i + vt+1
i  (14)

Feature selection in classification

Datasets with high-dimensional data are becoming more 
common place in the field of machine learning and can 
cause issues that lead to a degradation in performance, such 
as overfitting [12]. Datasets consisting of high-dimensional 
data can also increase computational costs required to 
perform data analytics, and the memory storage require-
ments. The primary goal of feature selection is to reduce the 
dimensionality of datasets by selecting the best and most 
informative features for classification problems, while also 
eliminating the redundant features. Feature selection as a 
pre-processing technique can improve the speed and accu-
racy of classification, while also reducing computation time, 
and the memory requirements for data storage. A dataset 
can be defined as s = {(x1, y1) , (x2, y2) , . . . , (xn, yn)}, 
where xi

∼= [xi1, xi2, . . . , xid] is a multi-dimensional vec-
tor sample, with n denoting the number of samples, d rep-
resenting the number of features, and yi ∈ γ  denotes the 
label of sample xi [16]. In classification systems, choosing 
an optimization method to reduce the dimensionality of the 

β = β 0e−yr2  (10)

The Euclidean distance between two fireflies, xi and xj , 
can be expressed as shown in (11), where the dimensionality 
of the problem is denoted by n.

rij = || xi − xj || =
√∑

k=n
k=1 (xi,k − xj,k)2 (11)

Firefly movement of firefly xi is based on the level of attrac-
tion to firefly xj , and can be expressed as shown in (12),

xt+1
i = xt

i + β 0e−γ r2
ij

(
xt

j − xt
i

)
+ α ϵt

i (12)

where firefly xi will move toward firefly xj  if it has a higher 
intensity of brightness. The first term of (12) represents the 
current location of firefly xi, the second term representing 
the movement from one position to another based on attrac-
tion and finally a random walk consisting of a randomiza-
tion parameter ( α ), and ϵi is a vector of random numbers 
drawn from a Gaussian distribution with the interval [0, 1]
. In the event that β 0 = 0, the firefly will take a simple 
random walk.

Particle swarm optimization

The PSO algorithm was originally developed by Kennedy 
and Eberhart in 1995 and has become a heavily used opti-
mization algorithm, across a variety of problem domains [3, 
11, 19], due to its computational simplicity, flexibility and 
powerful search capability. PSO is inspired by the collab-
orative and swarming behaviors seen in biological popula-
tions such as schools of fish, or flocks of birds. A standout 
feature of the PSO algorithm, compared to other swarm-
intelligence-based algorithms, is that it uses global commu-
nication among the swarm, and real-number randomness. 
As noted in [26], the functionality of some components 
within the PSO have given inspiration to new swarm intel-
ligence algorithms, effectively pioneering the basic ideas of 
swarm-intelligence-based computation, where knowledge 
is optimized by social interaction within the population and 
thinking can be considered both personal and social.

PSO algorithm uses a swarm of individual particles 
(agents) and performs searches of the problem domain via 
an objective function ( f (x)), which is used to adjust the 
trajectory of individual particles within the swarm. The 
movement of the individual particles is determined and con-
trolled by two components: deterministic component, and 
a stochastic component. Within each swarm, there exists a 
global best ( g∗), which represents the current best solution 
found by the swarm. The movement of each particle within 
the swarm is based upon a velocity attribute ( vi), which is 
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information exchange between groups, which, as noted 
within the results of their work, shows an expensive com-
putational cost. The VFA also shows a lack of robustness 
in different problem domains, as it shows only a consis-
tently improved performance on some multimodal prob-
lems, and has also been shown to reduce search diversity 
in some problems. Previous work such as [5, 18, 22], have 
shown the positive results that can be achieved through the 
incorporation of grouping behaviors into nature-inspired 
algorithms. A Multi-Group Firefly Algorithm based on 
Improved Evolutionism (IMGFA), is presented in [22] 
and shows some good results when compared to the stan-
dard implementation of other nature-inspired algorithms. 
The IMGFA uses an elite group that is constructed of the 
best performing firefly agents, which are then dispersed at 
each iteration into the poorly performing sub-groups, in an 
attempt to increase performance. If a sub-group cannot be 
improved by an elite group agent, then a mutation is applied 
to the best performing agent of the group. While the IMGFA 
has shown that groupings are capable of improving perfor-
mance, the additional group management and mutations at 
each iteration have reduced the computational simplicity 
of the algorithm. In other work, a group-based mechanism 
is implemented into FA that assigns groupings based upon 
visual fields and an observer strategy, the VFA, is proposed 
in [5]. While improved results were noted with the VFA, 
the implied overhead of the additional behaviors added to 
the algorithmic design of the standard FA, along with the 
addition of the visual field component, the computational 
complexity of the algorithm is drastically increased, and 
again, poses issues translating these modifications into other 
nature-inspired optimization algorithms. While it is impor-
tant to increase the search diversity of the swarm, increases 
in computational simplicity can have negative impacts on 
real-time systems implementing nature-inspired swarm 
intelligence algorithms, especially in areas that require 
updating to changes in the problem domain, such as intru-
sion detection [7].

In summary, current work within the field shows a lack 
of robustness and consistency when applied to different 
problem domains, and often performs well in certain appli-
cations but poorly in other areas. Additionally, the multi-
swarm or group-based augmentations in current research 
are often implemented in a methodology specific to a single 
algorithm. This therefore means that the underlying para-
digm and functionality of the algorithm augmentation is not 
easily transferrable to other nature-inspired algorithms, as 
they rely on specific functionality of the modified base algo-
rithms. The GB and XGB frameworks proposed within this 
paper, however, do not rely on the movement behaviors or 
mechanisms of one algorithm, and can be implemented into 
almost any nature-inspired optimization algorithm.

dataset is vitally important to overall efficiency and perfor-
mance, and nature-inspired metaheuristic algorithms such 
as BA, FA and PSO have shown to offer this capability [2–4, 
6, 19].

k-nearest-neighbor classifier

The k-Nearest-Neighbor (k-NN) algorithm, introduced by 
Fix and Hodges in 1951, is a simple supervised machine 
learning algorithm and has seen widespread usage as a 
classifier in pattern recognition problems [15, 25]. The 
k-NN algorithm is non-parametric, which means that the 
data passed to the classifier does not need to conform to a 
normal distribution. Training data is inputted into a k-NN 
algorithm, and class membership is outputted. Objects are 
classified through majority votes of the k closest neigh-
bours according to a similarity or distance function, where 
k is user defined constant in the form of a positive and typi-
cally small integer. The training data provided to the classi-
fier consists of vectors in a multi-dimensional feature space, 
each of which is associated with a class label. As it is an 
instance-based learning algorithm, it does not explicitly 
construct an internal model, simply memorising the training 
dataset provided and uses this as “knowledge” in the predic-
tion phase at the time of classification.

Related approaches

Group-based augmentations to nature-inspired optimization 
algorithms have been implemented with successful boosts 
in performance, as can be seen in multi-swarm approach 
studies such as [5, 22, 28]. However, these approaches have 
issues such as the additional overheads of group manage-
ment and the additional computation required, along with 
issues related to adjusting the parameters for these algo-
rithms to work in different problem domains, such as data-
sets with a low or high number of features, unimodal, or 
multimodal problems. Within the work of [28] for example, 
a modified Moth-Flame Optimization Algorithm (MFO) is 
proposed, the Multi-swarm Improved Moth–Flame Algo-
rithm (MIMFO). While the proposed algorithm variant does 
increase population diversity and performance, the com-
plexity of the algorithm has increased significantly, through 
the inclusion of a complex re-grouping methodology, a 
gaussian mutation, and also, the incorporation of additional 
search strategies. The additional augmented features of the 
MIMFO algorithm also make this difficult to translate to 
other nature-inspired algorithms, as they rely heavily on the 
functionality of the underlying MFO.

In other similar work, Cao et al. present the Visual 
Firefly Algorithm (VFA), which incorporates a multi-
group approach which utilizes a visual field and relies on 
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where G represents the group size, k the group index ( 0 to 
population

G − 1), xk· G is the first agent in the k-th group, 
xk· G+1 is the next agent in the group, and x(k+1)· G−1 is 
the final population member in the group.

Groupk = {xk· G, xk· G+1, . . . , x(k+1)· G−1} (15)

The group-based augmentation maintains dynamic but 
distinct groupings of population members at each itera-
tion, which promotes each group functioning indepen-
dently before groupings are reallocated at the next iteration. 
This can help prevent premature convergence through the 
increased search diversity offered. Additionally, through 
structuring the population into groupings at each iteration, 
the augmentation can implement a level of balance between 
exploration and exploitation, which is particularly useful in 
complex optimization problems which require exploration 
of different regions simultaneously.

Cross-group framework

The second novel group-based paradigm presented in this 
research is the XGB approach, which implements a cross 
collaboration between the groups within the population. As 
with the GB approach, groupings are dynamically assigned 
at each iteration, along with group leaders ( xgl), with the 
caveat that the final group member in each group (apart 
from the last group), is the leader for the next population 
group. As the groups overlap, it alters the movement of the 
population and increases search diversity within the prob-
lem domain, offering additional flexibility that the group-
based augmentation may lack in some problem domains.

The XGB approach once again prioritizes a minimalist 
and dynamic approach to the implementation of the group-
ing mechanics, attempting to maintain the overall compu-
tational simplicity of the algorithm it has been augmented 
to, while ultimately increasing search diversity through 
varying the movement behavior of individual agents within 
the population. Table 2 describes examples of different 
configurations of group sizes and populations for the cross 
group-based approach. The formation of groups within this 
augmentation is expressed in (16), with G representing the 
group size, k the group index ( 0 to population

G − 1), and 
xk+(G−1) is the final population member in the group.

Groupk = {xk, xk+1, . . . , xk+(G−1)} (16)

Proposed frameworks

This paper proposes two novel frameworks that modify 
the behavior of nature-inspired optimization algorithms, 
the Group-Based (GB) framework and the Cross Group-
based (XGB) framework, both of which seek to address 
common issues within nature-inspired swarm intelligence 
algorithms: premature convergence and oscillations within 
swarms, which can both lead to stagnation in sup-optimal 
domains. Oscillations within swarms are generally caused 
by either too many or too few attractions during the search 
process, which makes the mechanic of attraction, and ulti-
mately movement, of individual agents, an important area 
of research. These issues are addressed in the proposed 
framework by increasing the search diversity of the swarm 
population, by having the agents act and move in a different 
way to their standard behavior, while attempting to maintain 
as much of the standard algorithm implementation, compu-
tational simplicity, and powerful search capability of the 
nature-inspired algorithm.

Group-based framework

In standard implementations of nature-inspired algorithms, 
the agents will move in a way determined by the rules of that 
algorithm, for example, in the standard FA, the firefly will 
instinctively move toward the most intensely bright firefly 
that is in closest proximity to them. In the GB approach, 
groupings are dynamically allocated at each iteration of the 
algorithm, with a group leader ( xgl) assigned, and agents 
within each group will move toward their group leader if 
it demonstrates a better performance when evaluated using 
the objective function ( f (x)). However, if the group leader 
demonstrates a worse performance when evaluated using the 
objective function, the agent will continue to move within 
the search space based upon the standard functionality of 
that algorithm. While the groupings are allocated dynami-
cally at each iteration of the algorithm, the group size ( gs) 
is a constant set at initialization, Table 1 describes example 
configurations of group sizes and populations.

The GB mechanic takes a minimalist and dynamic 
approach to the implementation of the grouping mecha-
nism within the nature-inspired algorithm, maintaining as 
much of the standard implementation and computational 
simplicity of the original algorithm as possible, while 
offering an increase in search diversity. The formation of 
groups in the group-based augmentation is shown in (15), 

Table 1 Group-based augmentation grouping examples
Group size ( gs) Population ( n) Group leaders
3 30 {x1, x4, . . . , x25, x28}
5 50 {x1, x6, . . . , x41, x46}
10 80 {x1, x11, . . . , x61, x71}
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Algorithm 1: Pseudocode for GBBA and XGBBA
14: Increase ri and reduce Ai

15: If flying toward group leader is not accepted, generate a 
new solution by flying randomly

16: else (rand < Ai & f (x) < f (x))
17: Accept the new solutions
18: Increase ri and reduce Ai

19: end if
20: Rank bats and find the current best x∗

21: Assign new groupings and group leaders ( gn) based on 
GB or XGB augmentation

22: end while

GBFA and XGBFA

The updated GBFA and XGBFA movement equation is 
shown in (18), with xt

l  representing the position of the 
group leader, with xt

i moving toward the group leader if it 
has a higher brightness.

xt+1
i = xt

i + β 0e−γ r2
ij

(
xt

l − xt
i

)
+ α ϵt

i (18)

The pseudo code for GBFA and XGBFA is shown in Algo-
rithm 2.

Algorithm 2: Pseudocode for GBFA and XGBFA
1: Define objective function : f (x) , x = (x1, . . . , xd)T

2: Initialize population of n fireflies: xi(i = 1,2, . . . , n)
3: Light intensity Ii at xi is determined by f (xi)
4: Define light absorption coefficient γ

5: Assign groupings and group leaders ( gn) based on 
GB or XGB augmentation

6: while ( t <MaxGeneration)
7: for i = 1 : n (all n fireflies)
8: for j = 1 : n(all n fireflies ) (inner loop)
9: Move toward group leader if better:
10: if ( Ii < gn)
11: Move firefly i towards gn

12: Move as normal if group leader not better:
13: else ( Ii < Ij)
14: Move firefly i towards j

15: end if
16: Vary attractiveness with distance r via exp[−γ r2]
17: Evaluate new solutions and update light intensity
18: end for j
19: end for i

20: Rank the fireflies and find current global best g∗

21: Assign new groupings and group leaders ( gn) based 
on GB or XGB augmentation

22: end while

The Cross-Group augmentation facilitates additional inter-
action between different parts of the population, which can 
increase search diversity and flexibility within the popula-
tion, to adapt to complex fitness landscapes. Additionally, 
by being part of multiple groups, population members can 
explore the search space in a more diverse way, while still 
exploiting the solutions identified by the group leaders.

GB and XGB algorithm pseudocode and movement 
equations

When described as pseudocode, the functionality of the 
GB and XGB algorithms is fundamentally the same, with 
the primary difference being how group sizes are managed 
and how group leaders are assigned, and a slightly updated 
movement equation. This subsection presents the pseudo-
code and updated movement equation for each of the pro-
posed framework variants.

GBBA and XGBBA

The updated GBBA and XGBBA velocity update equation 
is shown in (17), with xt

l  representing the position of the 
group leader, with xt

i moving toward the group leader if a 
better fitness is offered.

vt+1
i = vt

i +
(
xt

i − xt
l

)
fi (17)

The pseudo code for GBBA and XGBBA can be seen in 
Algorithm 1.

Algorithm 1: Pseudocode for GBBA and XGBBA
1: Initialize population xi and vi ( i = 1,2, . . . , n)
2: Initialize frequencies fi, pulse rates ri and loudness Ai

3: Assign groupings and group leaders ( gn) based on GB or 
XGB augmentation

4: while ( t <Max_Iterations)
5: Generate new solutions by adjusting frequency
6: Update velocities and positions/solutions
7: if (rand > ri)
8: Select a solution among the best solutions
9: Generate a local solution around the selected best solution
10: end if
11: Generate a new solution by flying toward group leader 

( gn)
12: if ( gn < Ai & f (x) < f (x))
13: Accept the new solutions

Table 2 Cross group-based augmentation grouping examples
Group size ( gs) Population ( n) Group leaders
4 40 {x1, x4, . . . , x34, x37}
8 80 {x1, x8, . . . , x64, x72}
10 100 {x1, x10, . . . , x80, x90}
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a k-NN used for classification, with the functionality of the 
system visualized in Fig. 1.

The algorithms were tested using 21 datasets from the 
UCI machine learning repository, which are commonly used 
to test the performance of feature selection and classifica-
tion systems [4], described in Table 3. Datasets were chosen 
based on the number of features and samples, to represent 
testing in different problem domains (small, medium and 
large), with each dataset being split into training and testing 
data. To maintain consistency across all experimentation, 
and with other current research within the field, each algo-
rithm was configured using the parameters: 20 runs, 1000 
iterations, population size of 20, group size of 4.

GBPSO and XGPSO

The updated GBPSO and XGBPSO movement equation 
is shown in (19), with xt

l  representing the position of the 
group leader, with xt

i moving toward the group leader if it 
has a better fitness.

vt+1
i = vt

i + α ϵ1
[
g∗ − xt

i

]
+ β ϵ2[x(t)

l − xt
i] (19)

Pseudo code for the GBPSO and the XGBPSO can be seen 
in Algorithm 3.

Algorithm 3: Pseudocode for GBPSO and XGBPSO
1: Define objective function : f (x) , x = (x1, . . . , xd)T

2: Initialize velocity ( vi) and location ( xi) of n particles
3: Find global best ( g∗) at t = 0: 

g∗ = min {f (x1) , . . . , f (xn)}
4: Assign groupings and group leaders ( gn) based on GB 

or XGB augmentation
5: while (criterion)
6: for loop over all particles ( n) and dimensions ( d)
7: Generate new velocity ( vt+1

i ) using Eq. (13), using 
group leader ( gn) instead of global best ( g∗)

8: Calculate new locations ( xt+1
i = xt

i + vt+1
i )

9: Evaluate objective function at new locations ( xt+1
i )

10: Find the current best for each particle ( x∗
i )

11: end for
12: Find the current global best ( g∗)
13: Update iteration or pseudo time ( t = t + 1)
14: Assign new groupings and group leaders ( gn) based 

on GB or XGB augmentation
15: end while

Experimentation overview

A system was built using Python 3.10, which implements 
the base versions of the BA, FA and PSO, along with the 
six proposed algorithms, to perform feature selection, with 

Table 3 UCI machine learning repository datasets
No. Name Features Samples
1 Breastcancer 9 699
2 Tic-tac-toe 9 958
3 Zoo 16 101
4 WineEW 13 178
5 SpectEW 22 267
6 SonarEW 60 208
7 IonosphereEW 34 351
8 HeartEW 13 270
9 CongressEW 16 435
10 KrVskpEW 36 3196
11 WaveformEW 40 5000
12 Exactly 13 1000
13 Exactly 2 13 1000
14 M-of-N 13 1000
15 vote 16 300
16 BreastEW 30 569
17 Semeion 365 1593
18 Clean 1 166 476
19 Clean 2 166 6598
20 Lymphography 18 148
21 PenglungEW 325 73

Fig. 1 System overview
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Results

Each of the base algorithms and proposed algorithms were 
tested against the 21 UCI machine learning datasets of vary-
ing complexity, for 20 runs at 1000 iterations each run. The 
average results for accuracy, precision, recall and F1 score 
of each algorithm are presented and discussed in this sec-
tion, along with a comparison between the GBBA, XGBBA, 
GBFA, XGBFA, GBPSO and XGBPSO algorithms pro-
posed in this study. Later in this section, the average accu-
racy performance of the proposed group-based algorithms 
is compared to other modern feature selection algorithms 
and methods: bWOA-S and bWOA-v presented in [9], the 
Interaction-Guided Incremental Selection (IGIS) presented 
in [17], Interaction Gain – Recursive Feature Elimination 
(IG-RFE) method proposed in [13] and the k-NN rough set 
reduction (k-NNRS) method presented in [24].

Average accuracy

Table 4 shows the average accuracy for BA, GBBA, 
XGBBA, FA, GBFA, XGBFA, PSO, GBPSO and XGBPSO 
for all 21 UCI machine learning datasets, with the data visu-
alized in Fig. 2. In terms of average accuracy, all proposed 
algorithms show positive results and outperform their stan-
dard implementations, with the GBPSO and XGBPSO algo-
rithms demonstrating the best overall performance.

The BA algorithm performed with an average accuracy 
of 0.79, with the GBBA averaging 0.82 and presenting the 
best of the BA variants, and XGBBA showing a 0.81 aver-
age accuracy. The FA algorithm demonstrated an average 
accuracy of 0.78 across all datasets, with GBFA performing 
the best within the group, presenting an accuracy of 0.81, 
and XGBFA performed with an average accuracy of 0.80. 
Finally, the PSO algorithm showed an average accuracy 
of 0.85, with the GBPSO and XGBPSO demonstrating an 
0.88 average accuracy. Interestingly, while all algorithm 
variants improved upon the performance of their standard 
implementations, the standard deviation of average accu-
racy across all datasets remains at a consistent level with 
the standard implementation for each proposed algorithm. 
The BA, GBBA and XGBBA all have a standard deviation 
of 0.09. FA has a standard deviation of 0.10, with the GBFA 
and XGBFA reducing this slightly to 0.09. PSO, GBPSO 
and XGBPSO all demonstrated a standard deviation of 0.07.

Average precision

The average precision of each algorithm is shown in Table 5 
and is visualized in Fig. 3, with all algorithm variants pro-
posed in this paper performing better than their standard 
implementations. BA returned an average precision of 0.78 
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across all datasets, GBBA demonstrated the best perfor-
mance of the algorithm variants, with an average of 0.81 
and XGBBA showed an average of 0.80. Both the GBFA 
and XGBFA demonstrated an average performance of 0.80, 
with the standard FA returning 0.76. The GBPSO and XGB-
PSO both demonstrated an average precision of 0.88, with 
the standard PSO showing an average precision of 0.86.

Average recall

Table 6 presents the average recall performance of all 
algorithms, with the data visualized in Fig. 4. GBBA and 
XGBBA demonstrated the same average recall performance 
with 0.76, and performed better than the standard BA imple-
mentation, which showed a performance of 0.74. The GBFA 
and XGBFA both returned an average performance of 0.75, 
with FA presenting an average of 0.71. GBPSO presented 
the best average recall of the PSO group, with the XGBPSO 
performing worse of the group, with an average recall of 
0.75 recorded, which is also reflected in Fig. 4, where XGB-
PSO shows a lower center of distribution than the standard 
PSO implementation, which achieved an average recall of 
0.80.

Average F1 score

Table 7 shows the average F1 score, with all algorithm vari-
ants proposed in this paper outperforming their respective 
standard implementations, with Fig. 5 visualizing the data. 
GBBA and XGBBA both showed an average F1 score of 
0.76, with the standard BA implementation returning an 
average F1 score of 0.74. The standard FA presents an aver-
age F1 score of 0.72, with GBFA and XGBFA improving 
upon this with an average of 0.75. Both the GBPSO and 
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Fig. 2 Average accuracy of BA, GBBA, XGBBA, FA, GBFA, XGBFA, 
PSO, GBPSO and XGBPSO
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XGBPSO obtained an average F1 score of 0.82 and the stan-
dard PSO implementation achieved an average F1 score of 
0.79. It also should be noted that while the XGBPSO dem-
onstrated a higher overall average F1 score than the stan-
dard PSO implementation, the center of distribution shown 
in Fig. 5 is lower than the standard PSO implementation.

Optimization time

Table 8 shows the average optimization time of the standard 
algorithm implementations and the algorithm variants from 
the proposed framework, with the data visualized in Fig. 6. 
As can be expected through modification of the movement 
and attraction behaviors of the algorithms, the complexity 
of the algorithm increases in most cases, with both the GB 
approach and XGB approach increasing the optimization 
time in the GBBA, XGBBA, XGBFA, GBPSO and XGB-
PSO implementations. While the complexity of these algo-
rithm variants is increased from the base implementation, 
they are also shown to offer a better overall performance.

Due to the computational simplicity of the algorithm, the 
PSO implementation provided the best result on 17 of the 
datasets, with the GBPSO and variant showing an average 
increase of 4.17 s in optimization time, and the XGBPSO 
showing an average increase of 12.96 s. Therefore, we can 
conclude that while XGBPSO offers the best performance 
of the three PSO algorithms, it also comes with an increased 
computational cost. Interestingly, in the GBFA implementa-
tion, the complexity of the algorithm has been reduced in 
comparison to the base FA implementation across, with the 
base FA implementation achieving an average optimization 
time of 21.12 s, and GBFA showing a 4.19 s decrease with an 
average of 16.93 s. This can be attributed to the lower com-
plexity of the movement rules of the GBFA implementation 
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when compared to the standard FA implementation, with the 
GBFA impacting the attraction behaviors of the algorithm. 
The XGBFA, however, does show an increase in compu-
tational complexity, with an overall average increase of 
11.55 s. This increase can be seen amongst all XGB algo-
rithm variants and can be attributed to the increased amount 
of groups within the population, and the associated compu-
tational cost caused by this.

Feature selection performance and algorithm 
stability

This section provides a brief review of feature selection 
performance and algorithm stability of the proposed algo-
rithm variants, with Table 9 showing the average amount of 
selected features, Table 10 showing the average minimum 
amount of selected features, and Table 11 showing the aver-
age maximum selected features. The average amount of 
selected features is consistently higher in all GB and XGB 
augmented algorithms, and given that the performance of 
these implementations generally improves upon the quality 
of the base implementations. While the number of features 
is not a clear indication of algorithm robustness or quality, 
it does provide provides an indication that quality features 
were selected and therefore the dimensionality has poten-
tially been reduced by ignoring irrelevant or redundant 
features.

Jaccard index

The stability of the proposed algorithms has been evaluated 
using the Jaccard Index, with the similarity coefficient for 
each algorithm and dataset shown in Table 12. The Jaccard 
Index has been used to evaluate the robustness and stability 
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of the proposed algorithm variants, and is a statistical test 
used to measure the similarity and diversity of sample sets, 
in this case, selected features. The Jaccard Index can be 
expressed as (20), with J  representing the Jaccard Index, 
A as set 1 and B as set 2.

J(A, B) = |A ∩ B|
|A ∪ B|  (20)

Overall, the stability of the proposed algorithm variants 
that incorporate the GB and XGB frameworks have shown 
an improved algorithm stability when used for feature 
selection, with eighteen of the algorithm variants show-
ing an increased stability. The algorithm variants XGBBA, 
XGBFA and XGBPSO are noted as the most stable perform-
ers, with each showing the highest performance on four dif-
ferent datasets. The XGBBA algorithm shows the highest 
overall stability, with a Jaccard Index score of 0.392.

Group-based and cross group-based average 
accuracy comparison

This section will briefly review the performance of the 
group-based and cross group-based algorithms, using accu-
racy as the primary comparison metric, as this is the metric 
that will be used to evaluate the performance of these algo-
rithms against other modern feature selection algorithms. In 
the next subsection. Figure 7 shows the average accuracy of 
GBBA, XGBBA, GBFA, XGBFA, GBPSO and XGBPSO 
on all datasets.

The best performing group-based algorithm was the 
GBPSO, with an average of 0.88, and a difference of 0.06 
higher than the next best performing group-based algorithm, 
the GBBA, with a 0.82 average. Performing marginally 
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worse than the GBBA was the GBFA, with an overall aver-
age accuracy of 0.81. In terms of the cross group-based algo-
rithms, the PSO algorithm variant was again the best, with 
XGBPSO showing an average accuracy of 0.88. The BA 
based algorithm variant, XGBBA was again the second-best 
performing algorithm, with an average accuracy of 0.81, 
and XGBFA showing a marginally lower average accuracy 
of 0.80. The XGBPSO showed a 0.07 higher average accu-
racy the XGBBA, and a 0.08 higher average accuracy than 
the XGBFA. It can also be seen in Fig. 7 that the GBPSO 
and XGBPSO were the best performing of the proposed 
algorithms, with a higher center of distribution than GBBA, 
XGBBA, GBFA and XGBFA. Interestingly, the GBPSO 
demonstrated a negatively skewed distribution of results, 
with the center of distribution sitting in the upper quartile.

Group-based and cross group-based average 
accuracy on low feature data sets

Figure 8 shows a comparison of average accuracy perfor-
mance of the proposed group-based and cross group-based 
algorithms on datasets with a feature count below 100 
(datasets 1–16 and 20). The GBBA and XGBBA both dem-
onstrated an average accuracy of 0.80, with a very similar 
center of distribution shown. GBFA and XGBFA were both 
marginally outperformed by the BA based algorithms, pre-
senting an average accuracy of 0.79, this time showing a 
slight variance in the center of distribution, as can be seen in 
Fig. 8. Of the BA and FA based algorithm variants, the cen-
ter of distribution was quite close, with very slight variances 
shown. The PSO based algorithm variants were once again 
the best performers of the group-based and cross group-
based algorithms, with both the GBPSO and XGBPSO 
showing an average accuracy of 0.86, and again showing a 
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similar center of distribution. The GBPSO showed a nega-
tively skewed distribution, with the center of distribution 
being close to the upper quartile, while XGBPSO showed a 
somewhat positively skewed distribution.

Group-based and cross group-based average 
accuracy on high feature data sets

A comparison of average accuracy performance for the pro-
posed group-based and cross group-based algorithms on 
datasets with a feature count of greater than 100 (datasets 
17–19 and 21) can be seen in Fig. 9.

GBBA demonstrated the best performance of the BA 
variants with an average accuracy of 0.82, performing 
marginally better than XGBBA, which presented an aver-
age accuracy of 0.81. Of the FA variants, the group-based 
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Fig. 8 Average accuracy of GBBA, XGBBA, GBFA, XGBFA, GBPSO 
and XGBPSO on datasets 1–16 and 20, with less than 100 features

 

Fig. 7 Average accuracy of GBBA, XGBBA, GBFA, XGBFA, GBPSO 
and XGBPSO
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The fourth algorithm selected for comparison is the Inter-
action Gain – Recursive Feature Elimination (IG-RFE) 
method [13], which evaluates the importance of features 
by combing the relevance between the feature and class 
label, and the interaction among the features. The final 
feature selection algorithm chosen for comparison is the 
k-NN rough set reduction (k-NNRS) method proposed in 
[24]. The k-NNRS implements a model that combines both 
the advantages of the δ -neighbourhood and the k-NN for 
feature selection. Table 8 presents the average accuracy of 
bWOA-S and bWOA-V on all datasets used to benchmark 
the performance of the proposed GBBA, XGBBA, GBFA, 
XGBFA, GBPSO and XGBPSO. Table 8 also shows the 
average accuracy of the IGIS, IG-RFE and k-NNRS for 
datasets 2–3, 6–8, 16 and 20.

Average accuracy comparison with bWOA-S and 
bWOA-v

As can be seen from Table 13, and Fig. 10, the proposed algo-
rithm variants (GBBA, XGBBA, GBFA, XGBFA, GBPSO 
and XGBPSO), all outperformed the bWOA-S (0.74) and 
bWOA-v (0.73). XGBFA demonstrated the lowest perfor-
mance of all proposed algorithms, with an average of 0.80, 
but outperformed the bWOA-S by 0.06 and bWOA-v by 
0.07. XGBBA and GBFA both obtained an average of 0.81, 
outperforming bWOA-S by 0.07 and the bWOA-v by 0.08. 
GBBA obtained an overall average of 0.82, outperforming 
the bWOA-S by 0.08 and bWOA-v by 0.09. Finally, both 
PSO algorithm variants, the GBPSO and XGBPSO achieved 
an overall average accuracy of 0.88, with both outperform-
ing the bWOA-S by 0.14 and bWOA-v by 0.15. As can be 
seen in Fig. 10, both the bWOA-S and bWOA-v showed a 
large variance between the minimum and maximum values 

algorithm was again the better performer of the two, with 
an average accuracy of 0.81, with the XGBFA obtaining an 
average accuracy of 0.80. Once again, both the PSO algo-
rithm variants demonstrated the best overall performance 
of the group-based and cross group-based algorithms, with 
both GBPSO and XGBPSO presenting an average accuracy 
of 0.88. Again, a pattern can be seen in Fig. 9 in the center 
of distribution for the BA and FA based algorithm variants, 
with a marginal difference between them. Interestingly, the 
GBPSO demonstrated a positively skewed distribution on 
the datasets with a larger feature count, while the XGBPSO 
showed a positively skewed distribution, as it did with the 
low feature count datasets.

Comparison of group-based and cross group-based 
average accuracy with modern feature selection 
algorithms

This section presents a comparison of the average accuracy 
results achieved by the proposed feature selection algorithm 
variants. Five modern feature selection algorithms were 
selected for comparison to evaluate the overall robustness 
and performance of the GBBA, XGBBA, GBFA, XGBFA, 
GBPSO and XGBPSO. The first two algorithms chosen 
for comparison are based upon the whale optimization 
algorithm (WOA), the bWOA-S and bWOA-v. Both are 
binary variants of the WOA presented in [4], with bWOA-
S implementing a Sigmoid transfer function to convert the 
WOA values to binary, and the bWOA-v using a hyperbolic 
tangent transfer function. The third algorithm chosen for 
comparison is the Interaction-Guided Incremental Selec-
tion (IGIS) algorithm, proposed in [17], which combines 
a filter approach to find candidate features, and a wrapper 
approach by only selecting a feature if adding it to the cur-
rently selected subset improves the accuracy significantly. Fig. 10 Average accuracy of bWOA-S, bWOA-v, GBBA, XGBBA, 

GBFA, XGBFA, GBPSO and XGBPSO on all datasets

 

Fig. 9 Average accuracy of GBBA, XGBBA, GBFA, XGBFA, GBPSO 
and XGBPSO on datasets 17–19 and 21, with more than 100 features
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Fig. 11 Average accuracy of bWOA-S, bWOA-v, GBBA, XGBBA, 
GBFA, XGBFA, GBPSO and XGBPSO datasets 2–3, 6–8, 16 and 20

 

achieved, but obtained a relatively central center of distribu-
tion. Both the bWOA-S and bWOA-v also demonstrated a 
relatively large standard deviation of 0.19, while the GBBA, 
XGBBA, GBFA and XGBFA demonstrated a standard devi-
ation of 0.09, and the GBPSO and XGBPSO both showed 
a standard deviation of 0.07, demonstrating the robustness 
of the proposed algorithms on varying sizes and types of 
datasets (see Table 13).

Average accuracy comparison with IGIS, IG-RFE and 
k-NNRS

Table 13 shows the average accuracies of the IGIS, IG-
RFE and k-NNRS feature selection methods on datasets 
2–3, 6–8, 16 and 20, with this data visualized in Fig. 11. 
In terms of average accuracy across the datasets, IGIS and 
IG-RFE were the best performing of the comparison group, 
with both achieving an average accuracy of 0.87, this is 0.01 
higher than the average accuracy of the best performing of 
the proposed algorithm variants, the GBPSO and XGBPSO, 
which both achieved an average accuracy of 0.86. While the 
GBPSO and XGBPSO were marginally outperformed by 
the IGIS and IG-RFE feature selection methods, it should 
be noted that both proposed algorithm variants demon-
strated a slightly lower standard deviation of 0.06, while 
IGIS showed a standard deviation of 0.07 and IG-RFE dem-
onstrated a standard deviation of 0.8. The k-NNRS algo-
rithm achieved an overall average accuracy of 0.86, with a 
standard deviation of 0.08, and the best performing of the 
proposed algorithm variants (GBPSO and XGBPSO) also 
achieved an average accuracy of 0.86, with a standard devi-
ation of 0.06.
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Conclusion

This paper has proposed a novel framework, consisting of 
two approaches to implement group-based mechanisms 
into nature-inspired optimization algorithms, both of which 
were designed to increase search diversity to address issues 
common to nature-inspired metaheuristic algorithms such 
as premature convergence and oscillations within the popu-
lation swarms. The results of experimentation demonstrated 
the robustness of the proposed algorithms, with each pro-
posed variant outperforming the standard implementa-
tion across varied datasets. Additionally, all algorithms 
implemented with the proposed GB and XGB framework 
showed promise when compared to other modern feature 
selection algorithms, with all proposed algorithm variants 
demonstrating an improvement upon the comparison group, 
or a relatively homogeneous level of performance. While 
the proposed algorithms have generated promising results, 
further experimentation is required to fully test the perfor-
mance, flexibility and robustness of them. Due to the nature 
of the GB and XGB frameworks and their modification of 
movement behaviors within nature-inspired optimization 
algorithms, it is expected that there will be a diverse reac-
tion in terms of complexity, dependent on the movement 
behaviors of the base algorithm. For example, within this 
study the GBFA demonstrated a reduction in complexity 
when compared to the base FA implementation, but both the 
GB and XGB frameworks showed an increase in complexity 
in BA and PSO, and it is expected that other nature-inspired 
optimization algorithms may also show an improvement in 
terms of complexity. An area to explore to further reduce 
the complexity requirements of the GB and XGB frame-
works, adjustments could be made to the dynamic nature of 
the grouping mechanism, for example having groups stay 
static for t iterations after formation. For future work, the 
proposed algorithms will be further tested to fully investi-
gate the impact of group and population sizes on the per-
formance of the algorithms. The proposed algorithms can 
also be applied to problems other than feature selection, and 
the investigation of multi-objective versions of the proposed 
algorithm variants should also be considered.
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