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E-POSE: A Large Scale Event 
Camera Dataset for Object Pose 
Estimation
Oussama Abdul Hay1, Xiaoqian Huang1, Abdulla Ayyad1, Eslam Sherif1, Randa Almadhoun   2, 
Yusra Abdulrahman1,3, Lakmal Seneviratne4,5, Abdulqader Abusafieh1,6 & Yahya Zweiri1,3 ✉

Robotic automation requires precise object pose estimation for effective grasping and manipulation. 
With their high dynamic range and temporal resolution, event-based cameras offer a promising 
alternative to conventional cameras. Despite their success in tracking, segmentation, classification, 
obstacle avoidance, and navigation, their use for 6D object pose estimation is relatively unexplored 
due to the lack of datasets. This paper introduces an extensive dataset based on Yale-CMU-Berkeley 
(YCB) objects, including event packets with associated poses, spike images, masks, 3D bounding box 
coordinates, segmented events, and a 3-channel event image for validation. Featuring 13 YCB objects, 
the dataset covers both cluttered and uncluttered scenes across 18 scenarios with varying speeds and 
illumination. It contains 306 sequences, totaling over an hour and around 1.5 billion events, making 
it the largest and most diverse event-based dataset for object pose estimation. This resource aims to 
support researchers in developing and testing object pose estimation algorithms and solutions.

Background & Summary
Object pose estimation is essential for a wide range of robot grasping and manipulation applications such as aug-
mented reality1 and warehouse automation2. Robotic arms with grippers and visual sensors can work tirelessly, 
handling diverse items and increasing throughput compared to human operators. One of the driving elements 
of such technologies was the Amazon Picking Challenge (APC)3, which allowed industry experts and research 
teams worldwide to work together to advance the applicability of robots in the industrial setting. Conventional 
vision sensors, whether that is RGB cameras or RGB-D cameras4–6 are commonly used as the perception sensor 
with data-driven methods being the state of the art in terms of accuracy and performance.

Data-driven methods have advanced beyond traditional approaches by learning to map images of objects 
directly to a 6D pose. This shift created a demand for datasets to train models under various scenarios and 
conditions. Early datasets for 6D pose estimation include LINEMOD and LINEMOD-OCCLUDED7,8, contain 
15 objects and over 1100 frames captured under different lighting conditions. T-LESS9 focuses on texture-less 
objects, providing industry-relevant examples to extract 3D feature descriptors for 6D pose estimation. The 
YCB dataset10 benchmarks everyday objects, offering standard metrics for manipulation tasks. YCB-Video5 uses 
a subset of the YCB objects, featuring 21 objects and 92 videos, with approximately 1000 annotated images per 
object for 6D pose estimation. Table 1 summarizes common datasets and their specific attributes. These datasets 
remain central to advancing 6D pose estimation. However, conventional sensors often require structured envi-
ronments, relying on controlled lighting11 and slower operational speeds12 for accurate pose estimation.

To address the limitations of speed and light conditions of conventional sensors, researchers are turning to 
Neuromorphic Vision Sensors (NVS), also known as event-based cameras. These bio-inspired sensors detect 
scene changes with high dynamic range, responding to positive or negative illumination variations13. This allows 
them to operate effectively under various lighting conditions without specific exposure settings. Unlike tra-
ditional cameras, which have limitations in tracking fast-moving objects due to shutter speed constraints14, 
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event-based cameras provide a continuous stream of micro-second level events15, enhancing precision. 
Additionally, event-based cameras capture only events from moving objects, reducing bandwidth and improving 
the performance of downstream algorithms compared to conventional high-resolution imaging sensors12. This 
biologically-inspired sensor and neuromorphic hardware are anticipated to increase computation performance, 
especially with the end of Mooreâ€™s law approaching16. Neuromorphic processors operate with high paral-
lelism, as all neurons and synapses can function simultaneously, performing simple computations. These sys-
tems integrate processing and memory, eliminating the separation found in traditional computing, which helps 
speed up operations and reduces energy usage17. Additionally, they use event-driven computation, operating 
efficiently and consuming less energy by processing only when necessary. Therefore, due to the uniqueness of the 
event-based camera modality, there is a need to develop a new class of hand-crafted features that could be used 
for event streams. Event-based cameras have already been employed in some applications such as countersink 
inspection18, slip detection19,20, and for grasping and manipulation21–25.

However, to the best of the authors’ knowledge, there are only two limited datasets of event-based cameras for 
6DoF object pose estimation YCB-EV26 and RGB-D-E12. YCB-EV26 aimed to recreate the sequences in the origi-
nal YCB-V dataset, while RGB-D-E12 created annotations for one object for the total duration of 100 seconds. As 
shown in Table 1, YCB-EV and RGB-D-E contain 13,851 and 2,500 frames, respectively, whereas E-POSE pro-
vides 333,357 frames. This large number of frames is a result of the extensive number of sequences done along 
with our event frame generation approach, which depends on time intervals or event counts. Additionally, we 
provide an automated annotation script that allows users to generate data tailored to any applications requiring 
time surfaces, voxel grids, or accumulated frames. Since the event stream is continuous, the annotation script 
allows sampling the stream to create event frames and annotating them with the required frequency by the 
user. On the other hand, prior works annotated event frames by synchronizing them with RGB-D cameras. The 
dataset in26 was annotated at a rate of 33 ms using an RGB-based network. However, the approach in26 intro-
duced limitations, such as throttling event data and potential annotation errors due to dropped RGB frames. 
The developed dataset in this work comprises 306 sequences with a total duration of more than 1 hour, making it 
the only large-scale event-based dataset encompassing many different scenarios and conditions for object pose 
estimation. In this paper, we provide a script that can discretize the raw event streams based on accumulation 
time or number of events and associate them with the poses, along with providing the segmentation masks, 
segmented events, and 3D bounding boxes at the appropriate interval for the user, since different applications 
would require different discretization needs. A benchmark is also provided based on three state-of-the-art net-
works PoseCNN5, YOLO-6D27, DGECN28 to showcase the usage of the dataset to train a model.

Method
Experimental Setup.  The hardware setup consists of two cameras mounted on a UR10 robot manipulator, 
which move them relative to the object. The two cameras used in this work were the DAVIS346c, which has a 
resolution of (346 × 260, and the ZED mini camera, which would provide the point cloud data to reconstruct the 
object and find its relative pose to the base frame baseF . The UR10 is a highly accurate manipulator with a repeat-
ability of 0.1 mm. The ZED mini camera used is stereo-based, the left camera out of the two cameras in the ZED 
mini camera was taken as the origin of the zed camera reference frame Fzed. The setup of the two cameras and the 
UR10 robot is shown in Fig. 1. The objects used in this dataset are shown in Fig. 3. The selected objects were rich 
in features to generate as many events as possible; some selected objects were tools such as a wrench, a hammer, 
and scissors to diversify the range of objects in the dataset. Metallic objects are known for their reflective and 
featureless surface, which can hinder RGB methods due to the illumination affecting their features. Since event-
based cameras focus on object edges, the illumination variation would not cause a significant change in the object 
perception. It would allow for more consistent feature extraction in different illumination conditions.

[HTML]C0C0C0 Dataset Name Size (frames) Cluttered Occlusion
Varying light 
conditions

Motion 
blur

Texture-less 
Objects

LINEMOD (LM)7 18,273 ✓ ✗ ✓ ✗ ✓

LINEMOD OCCLUDED (LM-O)8 1,214 ✓ ✓ ✓ ✗ ✓

YCB-Video Dataset (YCB-V)5 133,827 ✓ ✓ ✗ ✗ ✗

T-LESS9 47,664 ✓ ✓ ✓ ✗ ✓

ITODD43 3,500 ✓ ✓ ✗ ✗ ✓

TUD-L29 23,914 ✗ ✗ ✓ ✗ ✗

TYO-L29 1,680 ✗ ✗ ✓ ✗ ✗

HOPE44 2,038 ✓ ✓ ✓ ✗ ✗

YCBInEOAT45 7,449 ✗ ✓ ✗ ✗ ✓

[HTML]E6F7E6 YCB-EV26 13,851 ✓ ✓ ✓ ✓ ✗

[HTML]E6F7E6 RGB-D-E12 2,500 ✗ ✗ ✗ ✓ ✗

[HTML]E6F7E6 E-POSE (ours) 333,357 ✓ ✓ ✓ ✓ ✗

Table 1.  Comparison with existing datasets such as LINEMOD7, LINEMOD OCCLUDED8, T-LESS9, ITODD, 
TUD-L43, TYO-L29, HOPE44, YCBInEOAT45 and two available event dataset YCB-EV26 and RGB-D-E12. The 
attributes addressed in all datasets are summarized.
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Experimental protocol.  The dataset was collected for a subset of the YCB object models for events-based 
object pose estimation. After obtaining the pose, it is feasible to automatically segment the events and annotate 
the object’s bounding box in the frames using standard 3D to 2D projection operations. 13 singular objects were 
considered, each appearing individually in the scene. Additionally, both cluttered and uncluttered scenes were 
considered in the data collection scenarios. In the uncluttered scenes, three objects were placed well-distanced 
from each other to facilitate the estimation of their poses without occlusion. In contrast, the cluttered scenes 
involved placing objects closer together to create occlusions during pose estimation. This process was repeated 
with five objects, arranging them both in well-spaced (uncluttered) and closely packed (cluttered) configurations. 
To introduce further variability to the dataset, the camera movement was varied. This was done by generating two 
main trajectories while recording a trajectory that only involves translation (Trajectory A) Fig. 2a across X, Y, and 
Z axes, and a trajectory with both translation and rotation (Trajectory B) Fig. 2b which was carefully devised to 
have the objects at all times within the field of view of the camera. The UR10 robot is controlled through high-level 
guidance using a linux computer. On this computer, a Python script computes the desired Tool Center Point 
(TCP) pose Tdesired for the robot based on the task requirements. The robot was controlled based on predeter-
mined waypoints. These waypoints were chosen to span the SE(3) space of the object’s relative location with 
respect to the DAVIS346c camera, ensuring that the object remained in the center of the camera’s field of view. 
Communication between the linux computer and the UR10 controller is established using the real time data 
exchange (RTDEl) interface/API (https://sdurobotics.gitlab.io/ur_rtde/introduction/introduction.html) which 
allows real-time transmission of the desired pose to the robot. The UR10 controller then processes this input by 
calculating the inverse kinematics to determine the required joint angles and generating a smooth joint trajectory. 
Finally, the controller executes the movement, ensuring precise and accurate manipulation according to the com-
manded instructions. The different angle ranges are shown in Fig. 2c.

Furthermore, the object illumination was varied during data capture, similar to TUD-L and TYO-L29. This 
work aimed to sample different regions of the event-based camera’s dynamic range. The work in30 defines four 
illumination categories: Bright Urban Center (200–2000 lux), Normal Street Lighting (20–200 lux), Low Street 
Lighting (2–20 lux), and Moonlight (0–2 lux). In this work, we focused on the top three categories, as moonlight 
conditions often result in poorly defined edges and corners, reducing the accuracy of object detection and pose 
estimation. To achieve this, data was captured in a controlled environment with three lighting conditions: good 
light (830 lux), moderate light (170 lux), and low light (18 lux).

For each lighting condition, the speed of the UR10 robotic arm was varied to induce motion blur as an addi-
tional attribute of the dataset. Dynamic object grasping, although less explored than static object handling, is 
crucial for robotic automation. Prior works, such as31, assessed grasping success at speeds between m s0 05 /.  and 
. m s0 5 / . Similarly, the ESD dataset21 demonstrated that the performance of RGB networks declines as the robot 

speed increases from m s0 15 /.  to m s1 /  due to motion blur. Therefore, we evaluated the performance of the event 
camera under varying speeds similar to the ones commonly used in the community to demonstrate its applica-
bility in dynamic and high-speed environments.

The maximum speeds reached in (Trajectory A) and (Trajectory B) during data capturing were 0.1 m/s, 
0.5 m/s, and 1 m/s. In all these scenarios, event, RGB, and point cloud data were recorded. It is noted that in 
(Trajectory A and B), a more random motion rather than a structured one (such as a circle or square) was intro-
duced to limit over-fitting when training the data since a more structured trajectory might hinder the model’s 
ability to infer the pose based on the captured shape of the object. A similar path with a reduced span was gen-
erated for the multi-object scenarios to ensure all objects were within the field of view during movement. Both 
cameras’ intrinsic and extrinsic parameters were obtained through standard calibration procedures.

Fig. 1  Experimental hardware setup with the Event-based camera DAVIS346c davisF  and the ZED mini zedF  and 
the UR10 arm baseF  along with their coordinate frame location, and overview of annotation method.

https://doi.org/10.1038/s41597-025-04536-5
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Calibration.  Intrinsic and extrinsic calibrations are one of the fundamental blocks of using vision in robotics. 
The accuracy of the calibration would dictate the accuracy of the data annotation later done. For the intrinsic 
calibration of the DAVIS346c and the ZED mini, the function from Opencv calibrateCameraCharuco was used to 
obtain the intrinsic matrix and the distortion coefficients of the two perception sensors. A re-projection error of 
0.3 and 0.5 pixels were obtained for the ZED mini and the DAVIS346c, respectively. The extrinsic calibration is 
important to obtain Tbase

zed  and Tbase
dvs , which are necessary for 3D reconstruction of the object and annotation of the 

pose along the trajectory of the UR10. The transformations were estimated using a Hand-Eye calibration proce-
dure that was done in32. An aruco checkerboard with known dimensions that enable us to obtain the transforma-
tion from the camera frames Fdvs  and Fzed to the aruco checkerboard frame arucoF  was used. A system of 

Fig. 2  Figure (a) and Figure (b) illustrate the two different trajectories considered during data collection.

https://doi.org/10.1038/s41597-025-04536-5
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homogeneous matrix equations AX ZB=  is used in an optimization scheme by obtaining multiple viewpoints of 
A and B and then solving for X and Z in a nonlinear constrained minimization process as outlined in32. The matri-
ces in =AX ZB are:

•	 A is the transformation from Fzed to Faruco or from Fdvs to arucoF  in case of the event camera.
•	 X is the transformation from the end-effector of the UR10 robot to the camera frames Fzed and dvsF .
•	 Z is the transformation from the Fbase to Faruco.
•	 B is the transformation from the end-effector to Fbase.

The optimization, when done separately for each sensor, converges to an RMSE less than 10−9, which indi-
cates a high accuracy of the Tbase

zed  and Tbase
dvs  obtained.

Furthermore, the temporal calibration is as imperative as the spatial calibration. The temporal calibration 
ensures that the data points used by the robot and the DAVIS346c camera are synchronized. As done in33, a 
property of the event camera was used, which is as the event camera’s velocity increases, the changes in the 
intensity values of the pixels increase, and the number of events generated increases. Since the DAVIS346c was 
mounted on the UR10 robot, the velocity of the UR10 and the event camera are similar. By directly matching 
the minima between the UR10 TCP velocity along with the number of events available in each frame, the min-
imum number of events would correspond to the local minima in the velocity of the robot. After finding the 
time discrepancy and synchronizing both streams, the accuracy of these methods would rely on the time cycle 
for each sensor independently. However, since the robot and the sensor operate on separate machines, the time 
offset between the two data streams is expected to remain consistent over the short duration of the sequence. 
Moreover, the inaccuracy associated with this method tends to increase over longer sequences due to clock drift. 
However, for the short sequences collected here, it would be minimal.

3D Reconstruction.  To obtain the ground truth 6D pose of the object, the ZED mini camera was used to 
reconstruct the objects using a point cloud from multiple views. The multiple views captured the different sides of 
the object on the table in front of the manipulator. The point clouds from 5 different perspectives were captured 
along with the pose of the ZED mini camera during capturing. The 5 point clouds were then transformed from 
the frame of the camera Fzed to UR10 base frame baseF  using the extrinsics of the cameras zedF  relative to the baseF . 
This is done to have a uniform fixed frame for all point clouds when fitting them with each other. The point cloud 
files consist of each point’s x,y, and z coordinates, along with its RGB components. To transform the reference 
frame from zedF  to Fbase, Eq.1 was used, where pci

zed denotes all the points in the point cloud with the reference of 
Fzed, and Tbase

zed  is the transformation between the baseF  and the ZED mini camera Fzed.

= ×pc pc T (1)i
base

i
zed

base
zed

After transforming all point clouds pci
zed to Fbase, both color and geometry34 of the point clouds were used for 

registration, the inclusion of color data stabilizes the alignment across the tangent plane, enhancing the accuracy 
and robustness of this algorithm compared to previous point cloud registration methods. Additionally, its exe-
cution speed remains on par with ICP (Iterative Closest Point) registration. The algorithm in Eq. 2 optimizes two 
objective functions, a photometric part and a geometric part, Where δ is a weighing term between [0,1].

E T E T E T( ) (1 ) ( ) ( ) (2)C Gδ δ= − +

Fig. 3  Subset of the YCB dataset used for creating E-POSE. The Objects that were chosen were 1- Wood block 
2- Sugar box 3- Bleach cleanser 4- Scissors 5- Drill 6- Hammer 7- Wrench 8- Potted meat can 9- Cracker box 
10- Rubik’s cube 11- Nine hole peg test 12- Timer 13- Mustard bottle.

https://doi.org/10.1038/s41597-025-04536-5
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E T( )G  is the point-to-plane ICP algorithm by35, the point-to-plane ICP algorithm aims to minimize the per-
pendicular distances between points in one cloud and the planes tangent to corresponding points in the other 
cloud. This is achieved by using point normals for the calculation. This technique typically results in faster con-
vergence speeds compared to the point-to-point ICP.

∑= − ⋅
∈K

E T Tp q n( ) (( ) )
(3)

G
p q

p
( , )

2

In Eq. 3 above p q( , ) are the source and target point clouds, K is the set of correspondence. and np is the 
normal vector of p.

K

∑= −
∈

E T C f T C qq( ) ( ( ( )) ( ))
(4)

C
p q

p
( , )

2

In Eq. 4, E T( )C  is the difference between the colors of the source point clouds denoted by C q( ) and its projec-
tion on the tangent plane p. The colored registration is done over multiple scales of voxels to find the one that 
optimizes the correspondence distances. The model is fitted with the laser-scanned model provided by the data-
set using point-to-point ICP in Eq. 5 to find the global pose of the object relative to the UR10 base. The registra-
tion process was conducted through multiple iterations to achieve high precision, a maximum RMSE for the 
registration of all objects was 3 −e 3 m. The output of the registration was a 4 4×  transformation matrix Tbase

obj . 
The different steps completed for 3D reconstruction is summarized in Fig. 4.

E T Tp q( )
(5)p q( , )

2∑= || − ||
∈K

Events annotations.  After obtaining the ground truth pose Tbase
obj  of the object relative to the baseF , the task 

was then to associate the events with the poses as the camera traverses the trajectories in Fig. 2a and b. The two 
streams, events and robot poses are adjusted for the time discrepancy in the method mentioned in section 
Calibration. Following that, The script provided with the data allows the user to create event frames depending on 
the representation needed by the user (Step 1). In this work, to evaluate the dataset, a time interval ∆t of 0.01 s 
was selected, representing a frequency of 100 Hz. The time of the last event added to the frame was used as the 
time stamp of the frame. Linear interpolation and spherical linear interpolation (slerp) was used to obtain the 
pose of the camera along the predetermined trajectory of the robot (Step 2). Tbase

obj  previously obtained is then used 
to find the pose of the object relative to the camera Tdvs

obj (Step 3), the steps are illustrated in Fig. 5. The interpola-
tion was performed locally and per dimension for the linear motion to ensure that the variations in the continu-
ous trajectory followed by the camera were captured at all the discretized timestamps. Equation 6 shows the 
interpolation for the X-axis, which was similarly applied to the Y and Z axes.

Fig. 4  Stage 1 in the figure illustrates the 3D reconstruction procedure to create the object from the collected 
views. The reconstructed model is used along with the CAD model to give an initial estimate of Tobj

base to allow 
the global ICP algorithm to converge faster. Stage 3 shows the final result with the CAD model superimposed 
over the reconstructed model, and Tobj

base is obtained.

https://doi.org/10.1038/s41597-025-04536-5
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X t X t t t
t t

X t X t( ) ( ) ( ( ) ( ))
(6)

N N
N N

N N
N N1

1

2 1
1 1= + −

−
−−

−

− −
+ −

Moreover, regarding rotations, slerp was used on the normalized quaternions to estimate the rotation at the 
discretized times. The equation for slerp as shown in Eq. 7 where −q t q t( ), ( )N N 1 , and +q t( )N 1  are the normalized 
quaternions for the current, previous and future time stamps respectively. θ is half the angular distance between 
q t q t( ), ( )N N1 1− +  and T is a scalar that determines how close the current quaternion is to either the previous or 
the future iterations. The proximity to current and previous time stamps is determined using the time stamps 
associated with each pose.

q t sin T
sin

q t sin T
sin

q t( ) (( 1 )
( )

( ) ( )
( )

( )
(7)

N N N1 1θ
θ

θ
θ

= − +− +

After completing the interpolation process, the discretized events are projected onto a frame of 346 260×  to 
create a spike frame. The spike frame is adjusted for distortions using the intrinsic matrix K and the distortion 
coefficients D obtained during the intrinsic calibration procedure.

Fig. 5  The accumulation of events into frames is illustrated at specific time points: tn
e, tn

e
1+ , and +tn

e
2. These frame 

timestamps are then used as interpolation points to estimate the poses pe
n, based on the poses pr

m obtained from 
the robot. The wrench depicts the change in the pose of the object at different times of the event frames, and the 
robot depicts different poses along the trajectory to be interpolated from.
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After creating the spike frames by accumulating events based on the number of events or a specific accumu-
lation time, the poses that correspond to those frames at each instant tn

e is interpolated from the original trajec-
tory stream to get pn

e using the equation below Eq. 8. pn
e is the transformation of the object relative to the camera 

T t( )dvs
obj

n
e .

T t T t T( ) ( ( )) (8)dvs
obj

n
e

base
dvs

n
e

base
obj1

= ×
−

For object pose estimation, it is also important to provide a 3D bounding box that encapsulates the object. In 
this work, since the CAD object model was available for all the objects used, the object model was utilized to 
obtain the 8 extremities of the object model in the object frame Fobj. The 8 points w1 to w8 are 3D points that 
combine the permutations of the maximum and minimum of all 3 dimensions of the CAD model. A small 
user-defined margin ε was added to ensure that the object fits completely within the 3D bounding box. To depict 
the 3D bounding box in the frame, the 8 points of the 3D bounding box were transformed to the image plane. 
This transformation utilized the pose obtained pn

e to transform the points from the object frame objF  to the cam-
era frame Fdvs, and the intrinsic matrix K to project the points onto the image.

Dbbox T t w3 ( ) (9)i
world

dvs
obj

n
e

i= ⋅

In Eq. 9 wi is a ×4 1 homogeneous coordinate vector of the form x y z[ , , , 1]i i i  that represents the location of 
the eight bounding box points in the Fobj frame. The points are then projected onto the image using perspective 
projection.

Dbbox
f Dbbox

Dbbox
c

f Dbbox

Dbbox
c3

3 (1)

3 (3)
,

3 (2)

3 (3) (10)
i
image x i

world

i
world x

y i
world

i
world y=









⋅
+

⋅
+









In Eq. 10 f f c and c, ,x y x y are the focal lengths and principal points in the x,y image coordinates respectively. 
The results of the 3D bounding box projections can be seen in the Fig. 6.

Additionally, the segmentation and mask images for the spike frame images I were prepared. To obtain the 
mask M and segmentation images S, which would contain the events that belong to the segmented object only, 
the CAD model, a point cloud scan of the object, is projected onto the image plane. The CAD model consists of 
millions of points, sampled from the object, that represent the object’s surface. A million points were sampled 
from the object’s CAD model before being projected to create a continuous mask.

U K T PC (11)dvs
obj= ⋅ ⋅ ′

Fig. 6  Sugar box object along with its projected 3D bounding box.
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The generated image U is a 3-dimensional vector composed of the projection of the point clouds to x,y pixel 
locations and the depth of each point within the cloud.

=





> >M U U1 if (1) 0 or (2) 0
0, otherwise (12)

To retain only the events corresponding to the object and effectively eliminate background noise associated 
with the event camera, the binary mask M, which indicates the pixels occupied by the object at a specific time 
instant in its trajectory, is applied to filter out and remove events outside the object region. The segmented image 
S is obtained by multiplying element-wise the mask M and the spike frame I. The results can be shown in Fig. 7, 
where the drill CAD is first projected onto the frame and then used to segment the events in the spike image.

Furthermore, while this method performs effectively for single objects, it encounters challenges in cluttered 
scenes where objects overlap, and multiple objects may occupy the same pixel. In such cases, the third dimension 
of the projected point cloud, represented by U(3), indicates the proximity of each point to the camera. By select-
ing the projection with the smallest U(3) value in overlapping pixels, the mask of the object closest to the camera 
can be segmented. Moreover, the projection of the mask onto the spike image to segment the events, as seen in 
Fig. 7, provides a visual feedback of the accuracy of the pose at all instances by utilizing the obtained pose to 
conduct the segmentation process.

Algorithm 1 6D pose Automatic Annotation for Events Data.

Data visualizations.  The dataset was extracted and organized into images, text, and MAT files containing 
the necessary information. Each data file is named according to the scenario it follows. The first letter, r or t, 
indicates whether the trajectory contains only translations or includes rotations. The numbers 01, 05, and 10 
denote the speed of operation of the robot (0.1 m/s, 0.5 m/s, and 1.0 m/s, respectively). The last two letters indicate 
the lighting conditions: ll for low light, ml for moderate light, and gl for good light.

For all single-object scenarios, the dataset includes:

•	 Event spike image (I)
•	 Mask image (M)
•	 Segmented event spike frame (S)
•	 Three-channel image
•	 3D bounding box in pixel coordinates text file
•	 Path to all images
•	 3D bounding box in world coordinates in the object frame objF  text file

For multiple object folders, the text files containing the 3D bounding box world coordinates have n rows 
(where n indicates the number of objects) and eight columns providing the eight bounding box coordinates of 
the object in the object frame.

For multiple-object scenarios, the dataset includes everything provided for single-object scenarios, along 
with a segmentation mask and segmented events image for each object in the scene. This will enable users to 
utilize the dataset for future event-based segmentation applications.

The MAT file provided with each image contains the information necessary to train an object pose estima-
tion network. Similar standards were followed with the YCB-Video dataset5. The information provided is:

•	 centerInfo: the 2D location of the center of the 3D model of the object in the image
•	 Pose: 4 × 4 transformation matrix of the pose of the object relative to the camera Tdvs

obj

•	 IntrinsicMatrix: camera intrinsics of the DAVIS346c
•	 cameraPose: Pose of the camera relative to the UR base Tbase

dvs .
•	 time: Time of the current pose and frame.
•	 keypointprojections: 2D and 3D locations of the 3D bounding box in the camera frame.
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•	 events: All the events used to construct the images at that specific index with all the needed info <xk, yk tse, pk>  
where x,y are the pixel location, t is the event time stamp and p is the polarity being +ve or -ve.

•	 cls index: Index of the class of the object.

Data Records
All data is currently available in36, and the data structure is as seen in Fig. 8.

Data format.  The data36 provided originally is in ‘.h5’ format. The data36 was extracted and discretized to 
intervals based on t∆ . The generation script ensures data extraction into ‘.png’ images such as the spike image, 
mask, segmented events, and the three-channel image. In addition, all the data related to the pose is available in 
the ‘.mat’ file provided alongside each sample image.

Dataset challenging factors and attributes.  The dataset was constructed to introduce as much varia-
bility as possible in the indoor lab environment. Different scenarios were added that made the dataset rich with 
attributes. The total number of sequences and scenarios for each attribute is shown in Fig. 10a, Fig. 10b, and 
Fig. 10c. A total number of 306 sequences are available in this dataset for the 13 single objects and four multiple 
object scenes. The total number of event frames generated and events is 333 K and 1.53 billion, respectively. The 
different attributes available in the dataset are as follows:

•	 Single Object (SO): In these scenarios, only one object was considered in the scene. The trajectory was 
designed to change the pose while the camera perceived one object from all different angles. The 3D bound-
ing box, mask, and segmented events were automatically generated. There are 13 objects in this dataset, and 
each was used in 18 different conditions.

•	 Multiple Objects (MO): Multiple objects were considered in these scenarios. The poses of all objects were 
captured, and from that, the 3D bounding box, mask, and segmented events were automatically generated. 4 
different scenes contain multiple objects, each with 18 different sequences featuring various lighting condi-
tions and speeds of traversal.

•	 Cluttered Scene (CS): This scene included multiple objects placed in a cluttered manner. The overlapping 
objects added difficulty in determining their poses due to occlusion. Cluttered scenes with 3 and 5 objects 
were considered, each with 18 different sequences that varied the lighting and speed of traversal.

•	 Uncluttered Scene (UCS): This scene included multiple objects spread out to avoid any object being 
obstructed by another. Scenarios with 3 and 5 objects were used in 18 sequences, where lighting and the 
robot’s speed varied.

•	 Low Light (LL): Data collection was conducted under low light while varying the speed. This was applied to 
all single-object and multiple-object scenes.

Fig. 7  3D to 2D projection of the CAD model and segmenting of the events belonging to the object using the 
obtained Tdvs

obj.
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•	 Moderate Light (ML): Data collection was conducted under moderate lighting conditions while varying the 
speed. This was applied to all single-object and multiple-object scenes.

•	 Good Light (GL): Data collection was conducted under good lighting conditions while varying the speed. 
This was applied to all single-object and multiple-object scenes.

•	 Low Speed (LS): Data collection was conducted at low speeds (0.1 m/s) while varying the light conditions. 
This was applied to all single-object and multiple-object scenes.

•	 Moderate Speed (MS): Data collection was conducted at moderate speeds (0.5 m/s) while varying the light 
conditions. This was applied to all single-object and multiple-object scenes.

•	 High Speed (HS): Data collection was conducted at high speeds (1.0 m/s) while varying the light conditions. 
This was applied to all single-object and multiple-object scenes.

•	 Translation Only (TO): This scenario utilized (Trajectory A) 2a during operation, with no rotational motion 
during data collection for all single-object and multiple-object scenarios.

•	 Rotation and Translation (RO): This scenario utilised (Trajectory B) 2b during data collection for all sin-
gle-object and multiple-object scenarios.

All the different scenarios for single and multiple objects can be depicted in Fig. 9.

Technical Validation
Evaluation metrics.  The Average Distance of Model Points (ADD) metric, a widely adopted evaluation 
measure for 6D pose estimation, is used to estimate the accuracy of object pose estimation on our dataset via 
several state-of-the-art approaches. This metric assesses the accuracy of the predicted pose of an object by com-
paring the estimated transformation to the ground truth. Specifically, ADD computes the mean Euclidean dis-
tance between the corresponding 3D model points transformed by the ground truth pose and the predicted pose. 
For an object with n points, let = = …M i npc{ 1, , }i  denote the set of 3D model points, R and t be the ground 
truth rotation and translation, and R̂ and t̂ be the estimated rotation and translation. The ADD metric is formu-
lated as follows:

∑= || + − + ||
=n

Rp t Rp tADD 1 ( ) ( )
i

n

i i
1

ˆ ˆ

where ⋅  denotes the Euclidean distance. However, multiple poses can be indistinguishable in the visual data 
for symmetric objects, leading to multiple correct predictions. So, the ADD-S metric, a variant of the ADD met-
ric designed to handle symmetric objects, is used in this paper. Considering the closest point distance, the 
ADD-S metric modifies the original ADD metric to account for these symmetries. It is defined as follows:

Fig. 8  Data structure, each Obj folder is named according to which object it belongs in the dataset36. Each Obj 
file will contain the images and pose information used and needed for object pose estimation. The multiple 
object folders also contain a mask for each object in the scene, along with the poses of each object.
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i

n

i jp1 j M
ˆ ˆ‖ ‖

Pose estimation on event frames.  As mentioned, to the best of our knowledge, there is no deep learning 
work addressing object pose estimation for solely event data. We convert event data into grid-like representations 
to leverage state-of-the-art approaches developed for conventional vision.

To test the event-based camera output on the image-based pre-trained networks, a representation must be 
developed with three channels (similar to RGB images) that would capture the scene and provide valuable infor-
mation to the network to estimate the object pose. The event camera is inherently superior to frame-based cam-
eras because it captures the time of each pixel or event change in the stream. This directly allows the encoding 
of fine-grained motion information that would help in many motion-related applications. This was shown in37 
that optical flow can be determined linearly from a local window around each event by estimating a plane in the 
spatio-temporal domain compared to the iterative process commonly followed in frame-based cameras.

In this work, the following representation was similar to the one adopted in EV-FlowNet38. In that work, four 
channels were used to estimate the optical flow from an event stream. However, since only three channels were 
needed in this work, the first two channels were taken from EV-FlowNet38, which are the counting of the positive 
polarity events and negative polarity events, respectively, in the discretized time window. The motivation is that 
event counting is a universal method for perceiving and visualizing the event stream. The technique was also 
used for 6Dof pose estimation of the camera in a learning-based approach in39. Moreover, counting the positive 
and negative polarities does not suffice, as argued in38. The absence of temporal information will lead to loss of 
information; therefore, the third channel selected represents the most recent timestamp of an event at a given 
pixel. This channel shows a gradient change in the intensity as the object’s speed fluctuates, which is an advan-
tageous feature when predicting the 6DoF. All three channels are normalized to ensure their maximum value 
is 1. This normalization helps maintain a consistent scale across the counting channels (positive and negative 
polarities) and the recent timestamp channel. In addition, this representation keeps the same magnitude for 
scenarios such as fast motion within a small time window and similarly slow motion within a large time window 
as mentioned in38.

Fig. 9  Sample images of single object and multiple objects in the scene. The first column shows the event spike 
image, a 1-channel binary image. The second column shows the mask image obtained through the pose and 
CAD model of the objects. The third column shows the segmented events of each object, and the fourth column 
shows the three-channel images created to validate the dataset on pre-trained models.
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Existing conventional vision-based pose estimation approaches can be categorized as regression-based, 
template-based, and feature-based methods40. Among these methods, one of the straightforward approaches is 
to treat 6DoF object pose estimation as a regression task, directly predicting poses from the input RGB images 
without relying on intermediate keypoint representations. PoseCNN5 uses direct regression to estimate the pose 
from RGB images, while DGECN28 and YOLO-6D27 rely on inferring correspondences and use PnP to obtain 
the pose. We applied transfer learning to PoseCNN and YOLO-6D on our dataset by unfreezing the last layer of 
the encoder, the whole decoder, and fully connected layers. However, DGECN is only partially open-sourced, 
which impedes the application of transfer learning on our datasets, thus direct inference was applied. Table 2 
lists the quantitative testing results of object pose estimation. All the networks exhibit significant performance 
declines on our dataset when using event frame representations, compared to their testing results on public RGB 
frame-based dataset YCB-V5 or LINEMOD7.

Fig. 10  Figure (a), (b), and (c) illustrate quantitative data of the number of sequences, events, and frames 
generated for each attribute in the dataset.

Terms Input Pose DoF
ADD-S (<0.1 m) Ours 
(Event Frames)

ADD-S (<0.1 m) 
YCB-V5 (RGB)

ADD-S (<0.1 m) 
LINEMOD7 (RGB)

YOLO-6D27 RGB & CAD 6DoF 6.86% — 56.00%

PoseCNN5 RGB & CAD 6DoF 15.78% 75.90% —

DGECN28 RGB & CAD 6DoF 29.72% 90.90% —

Table 2.  Evaluation results of the state-of-the-art object pose estimation networks YOLO-6D27, PoseCNN5 and 
DGECN28 on event frames of our dataset and RGB frames of public datasets YCB-V5 and LINEMOD7.
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When transferring or fine-tuning a network trained on RGB frames to event frames, the performance drop 
can be attributed to several key reasons. First, RGB frames capture absolute intensity values, whereas event 
frames capture changes in intensity. This fundamental difference means that the patterns and features learned 
by a network trained on RGB data might not directly apply to event data. Features such as color gradients and 
texture details in RGB frames are not available in event frames that focus on motion and changes. Besides, RGB 
frames provide rich spatial information, while event frames emphasize temporal changes. Networks trained 
on RGB frames may heavily rely on spatial features, which are less informative in event frames. Secondly, RGB 
images are 2D arrays with three color channels, while event frames represented as histograms are sparse and 
emphasize different characteristics. The preprocessing steps required for event data, such as creating histograms, 
can lead to a mismatch in the input format expected by a network trained on RGB data. Moreover, networks 
pre-trained on RGB frames may have learned features specific to color and intensity patterns, such as edges, 
textures, and colors. These features are not directly relevant to event data, which needs color information and 
relies more on motion dynamics. Furthermore, the type and characteristics of noise in RGB frames (e.g., sensor 
noise, lighting conditions) differ from those in event frames (e.g., event rate variability, sparse data). The net-
works trained on RGB frames might not be robust to the noise characteristics of event frames. In addition, the 
architecture of networks designed for RGB frames might need to be optimized for the characteristics of event 
data. For example, layers and filters tuned for color and spatial features may not effectively capture the temporal 
dynamics emphasized in event frames. It should be noted, that although the event camera poses remarkable 
capabilities in terms of low temporal resolution and high dynamic range. The noise associated with the event 
camera can be a hindering factor in terms of the accuracy and robustness of the methods developed for any task. 
For example, In low-light conditions, events corresponding to the features or edges of moving objects are widely 
scattered, and substantial noise remains prevalent despite using optimal camera settings41. However, one of the 
prominent research directions for the event camera is denoising, and many solutions have been proposed that 
would alleviate this problem and improve the signal to noise ratio of the sensor42. Furthermore, event data is 
less in features compared to RGB cameras since it only perceives edge information, thus event frames tend to be 
more difficult to learn from compared to conventional sensors.

Code availability
All the codes used for automatic annotation, along with the data needed to use the raw files, are provided in 
https://github.com/oussamaabdulhay/E_Pose.
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