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 A B S T R A C T

The aim of Knowledge Graph Embedding (KGE) is to acquire low-dimensional representations of entities 
and relationships for the purpose of predicting new valid triples, thereby enhancing the functionality of 
intelligent networks that rely on accurate data representation. In recommendation systems, for example, 
the model can enhance personalized suggestions by better understanding user-item relationships, especially 
when the relationships are hierarchical, such as in the case of user preferences across different product 
categories. Existing KGE models mostly learn embeddings in Euclidean space, which perform well in high-
dimensional settings. However, in low-dimensional scenarios, these models struggle to accurately capture the 
hierarchical information of relationships in knowledge graphs (KG), a limitation that can adversely affect the 
performance of intelligent network systems where structured knowledge is critical for decision making and 
operational efficiency. Recently, the MuRP model was proposed, introducing the use of hyperbolic space for KG 
embedding. Using the properties of hyperbolic space, where the space near the center is small and the space 
away from the center is large, the MuRP model achieves effective KG embedding even in low-dimensional 
training conditions, making it particularly suitable for dynamic environments typical of intelligent networks. 
Therefore, this paper proposes a method that utilizes the characteristics of hyperbolic geometry to create 
an embedding model in hyperbolic space, combining translation and multi-dimensional rotation geometric 
transformations. This model accurately represents various relationship patterns in knowledge graphs, including 
symmetry, asymmetry, inversion, composition, hierarchy, and multiplicity, which are essential for enabling 
robust interactions in intelligent network frameworks. Experimental results demonstrate that the proposed 
model generally outperforms Euclidean space embedding models under low-dimensional training conditions 
and performs comparably to other hyperbolic KGE models. In experiments using the WN18RR dataset, the 
Hits@10 metric improved by 0.3% compared to the baseline model, and in experiments using the FB15k-237 
dataset, the Hits@3 metric improved by 0.1% compared to the baseline model, validating the reliability of the 
proposed model and its potential contribution to advancing intelligent network applications.
1. Introduction

A Knowledge Graph (KG) serves as a structured graph format for 
organizing knowledge facts, typically expressed as triples (head entity, 
relationship, tail entity), represented as (h, r, t). In this structure, 
entities are depicted as nodes, while the relationships are illustrated as 
edges. This representation form of abstract knowledge in the real world 
using graph data structures integrates heterogeneous data to some 
extent, addressing the challenges faced by artificial intelligence models 
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in handling complex structured heterogeneous data. It has significant 
applications in information retrieval, intelligent question answering, 
recommendation systems [1–3], natural language processing, and other 
fields. In the context of intelligent networks, KG facilitates improved 
communication and interaction among interconnected systems, pro-
viding essential contextual information that enhances decision-making 
processes and optimizes network operations.
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However, both manually annotated data and knowledge graphs 
constructed using knowledge extraction models generally only repre-
sent a subset of real-world knowledge (i.e., they suffer from a large 
number of missing knowledge triples) and are often incomplete. This 
incompleteness is detrimental to various downstream tasks. Addition-
ally, due to the vast amount of information available in the era of big 
data, manually completing knowledge graphs is impractical. Therefore, 
KG completion, which aims to predict new triples, has become an 
important research direction in recent times, with implications for 
enhancing the efficiency and robustness of intelligent networks.

In recent years, researchers have developed various knowledge 
graph embedding (KGE) techniques [4–6] to address the KG completion 
problem. One of the foundational models, TransE, mapped entities and 
relationships into a continuous Euclidean space, offering a simple yet 
effective solution for modeling basic relational patterns. Building on 
this, models like TransH extended the approach to handle multi-faceted 
relations by allowing entities to have distinct representations across dif-
ferent relationships. Further advancements such as RotatE introduced 
geometric transformations, representing relationships as rotations in 
complex vector space to effectively model symmetry and inversion 
patterns. These methods demonstrated the potential of Euclidean spaces 
for KGE but encountered challenges when representing hierarchical or 
complex graph structures.

To address these limitations, hyperbolic geometry has emerged as 
a powerful alternative. MuRP pioneered the application of hyperbolic 
embeddings, leveraging the properties of hyperbolic space to capture 
hierarchical relationships efficiently, especially in low-dimensional set-
tings. Building on MuRP, HyperKG incorporated additional mechanisms 
to better model complex interactions in knowledge graphs, such as 
multi-relational projections. These advancements underline the con-
tinuous evolution of KGE techniques, with each iteration refining the 
ability to handle the inherent complexity and diversity of knowledge 
graph structures. Using the unique properties of hyperbolic space, mod-
ern KGE methods provide a robust framework for addressing challenges 
in knowledge graph completion and extending their applicability to 
intelligent networks.

The relationships in a knowledge graph mainly involve several 
relationship patterns, including symmetry, asymmetry, inversion, com-
position, hierarchy, and multiplicity, as illustrated in Fig.  1. The current 
popular embedding methods are mostly designed to model one or 
more of these relationship patterns. TransE represents relationships 
as translation operations on vectors, enabling the modeling of re-
lationship patterns such as asymmetry, inversion, and composition. 
RotatE represents relationships as rotation operations on vectors, simu-
lating relationship patterns such as symmetry, asymmetry, inversion, 
and composition. MuRP embeds relationships into hyperbolic space, 
allowing the model to better capture the hierarchical structure of rela-
tionships. Building upon these previous works, our proposed method, 
MrpHKGE, aims to achieve effective embedding by modeling all of the 
aforementioned relationship patterns.

In the domain of KGE, recent advancements have focused on more 
complex relationship patterns, including multi-relational embeddings 
and hierarchical data representations. Some models have extended 
Euclidean and hyperbolic spaces to handle these patterns more ef-
fectively. For example, tree-based embedding techniques have been 
employed to model hierarchical structures more explicitly. However, 
these models still face scalability and flexibility issues when it comes to 
representing complex multi-relational data. MrpHKGE addresses these 
challenges by learning separate curvatures for each relationship in 
hyperbolic space, offering a more scalable and flexible solution for 
handling complex hierarchical and multi-relation patterns in large-scale 
knowledge graphs.

Here, an explanation is given of how the proposed method (Mr-
pHKGE) models all relationship patterns. Firstly, due to the excellent 
performance of rotation-based models in the embedding domain, this 
model employs both 2D rotation and 3D rotation methods to model 
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Fig. 1. Example Diagram of Relationship Patterns in Knowledge Graphs.

relationship patterns such as symmetry, asymmetry, inversion, and 
composition. The model combines an attention mechanism to evalu-
ate the performance of different rotation methods on different data 
and achieve the optimal combination. Secondly, although individual 
translation-based models may not perform satisfactorily, they are indis-
pensable for modeling multiplicity. This model combines the residual 
idea and implements skip connections by applying initial relationship 
vectors for translation before and after other geometric transforma-
tions. This approach not only improves the accuracy of the model, 
but also helps to prevent the disappearance of the gradient to some 
extent. Lastly, the model completes all the aforementioned geometric 
transformations in hyperbolic space. Trains separate hyperbolic space 
curvatures for each independent relationship in the knowledge graph. 
This allows the model to effectively capture the hierarchical infor-
mation of the data, allowing clear differentiation between entities at 
different levels.

This study evaluates the proposed model, MrpHKGE, using experi-
ments conducted on two widely recognized public datasets: WN18RR
[7] and FB15K-237 [8]. The findings indicate that MrpHKGE exhibits 
performance on par with leading KGE models in low-dimensional em-
beddings. In some cases, it even surpasses mainstream models in terms 
of certain data and metrics. Additionally, the model exhibits similar 
performance in high-dimensional space, which confirms the effective-
ness of the MrpHKGE model, thereby contributing to the advance-
ment of intelligent networks that require dynamic and scalable data 
representations.

2. Related work

2.1. Euclidean embeddings

Many KGE models are designed within Euclidean space, primarily 
relying on operations such as translation and rotation.

Translation-based model. TransE [9]combines geometric transfor-
mations in space with embeddings, pointing out a new direction for 
the field of KGE. This model has led to the development of numer-
ous translation-based models, such as TransH [10], TransR [11], and 
TransD [12]. The fundamental concept of translation-based embed-
ding models is to interpret the relation 𝑟 as a translation operation 
that connects the head entity to the tail entity, implying that the 
model transforms the head entity into the tail entity via the specified 
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translation. TransH identifies the shortcomings of the TransE model 
in handling 1-N, N-1, and N-N relations and addresses these issues by 
introducing a specific relation hyperplane. TransR enhances TransH by 
expanding the hyperplane into a space that is specific to each relation. 
In turn, TransD takes a further step by employing two distinct vectors 
to represent both entities and relations within the knowledge graph.

Rotation-based model. The RotatE model [13] employs a more 
complex geometric transformation: rotation, for embedding. The QuatE 
model [14] utilizes the concept of quaternions to upgrade the 2D 
rotation transformation of RotatE to three dimensions, further im-
proving the model’s accuracy. The DualE model [15] employs dual 
quaternions to represent relations through a fusion of translation and 
rotation. These rotation-based embeddings have achieved better re-
sults than translation-based models, but such embeddings often require 
high-dimensional spaces, leading to significant memory consumption.

2.2. Graph neural network

ConvE [16] was the first to employ a convolutional architecture 
with a single convolutional layer to accomplish the knowledge graph 
completion task. It reconstructs the embeddings of the head and tail 
entities into 2D formats and uses them as inputs to the convolutional 
layer to obtain query embeddings. The output of the convolutional 
layer is vectorized through a linear transformation and matched with 
the tail entity, scoring the given triples and significantly accelerating 
training and evaluation speeds. ConvKB [17] is another KGE model 
that uses convolutional neural networks. It simplifies ConvE while 
retaining its translational properties through one-dimensional convo-
lutions. CapsE [18] builds on ConvKB by adding a capsule neural 
network layer above the convolutional layer. Various graph-based con-
volutional neural networks, including R-GCN [19], SACN [20], and 
KBGAT [21], utilize graph convolutional networks, weighted graph 
convolutional networks, and graph attention networks, respectively, to 
derive embeddings for knowledge graphs.

2.3. Hyperbolic embeddings

In recent years, using hyperbolic embeddings to represent hierarchi-
cal data has shown great advantages in low-dimensional spaces, leading 
more researchers to apply hyperbolic embeddings to KGE. MuRP [22] 
is the first KGE model to utilize hyperbolic geometry, implementing the 
translational idea of the TransE model in hyperbolic space and optimiz-
ing the model using the concept of Riemannian manifolds. AttH [23] 
employs geometric transformations such as rotation and reflection 
for hyperbolic embeddings and introduces an attention mechanism to 
optimize the embedding model. Building on the AttH model, Huiru 
X et al. [24] introduced fast Fourier transforms to transform entity 
embeddings between different geometric spaces, achieving excellent 
results.

3. Preliminary knowledge

Before presenting the method proposed in this paper, it is necessary 
to explain the problem of KGE and the related methods in hyperbolic 
geometry.

3.1. KGE for link prediction

A knowledge graph is defined as a set of triples (ℎ, 𝑟, 𝑡) ∈ 𝜀 ⊆
 ×  ×  , where  represents the set of entities, and  represents 
the set of relations. KGE essentially involves mapping entities (ℎ, 𝑡) ∈ 
to embeddings ℎ′, 𝑡′, and mapping 𝑟 ∈  to 𝑟′, while maintaining 
the maximum amount of semantic and structural information from the 
knowledge graph.

Link prediction involves inferring the most likely unknown triples 
based on known information and ranking all candidate triples using a 
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scoring function. Specifically, for a given triple (ℎ, 𝑟, 𝑡), assuming any 
one element is missing, the embedding model will iterate through each 
entity or relation to fill in the missing part and calculate the score 
for the completed triple. The score indicates the confidence of the 
completion with the current entity or relation, and the entity or relation 
that receives the highest score is deemed the most probable candidate.

3.2. Poincaré ball model

Hyperbolic geometry is an axiomatic system of geometry with con-
stant negative curvature that is independent of Euclidean geometry. 
It involves employing exponential maps to transform points from Eu-
clidean space into hyperbolic space, as well as using logarithmic maps 
to project points from hyperbolic space onto the associated tangent 
space. The two mappings are shown in Eqs.  (1) and (2) as follows: 
exp𝑐𝑟𝟎 (𝐯) = tanh(

√

𝑐𝑟‖𝐯‖)
𝐯

√

𝑐𝑟‖𝐯‖
(1)

log𝑐𝑟𝟎 (𝐲) = tanh−1(
√

𝑐𝑟‖𝚢‖)
y

√

𝑐𝑟‖𝚢‖
(2)

where 𝑐𝑟 represents the curvature of the hyperbolic space. The expo-
nential map projects a tangent vector at the origin of the hyperbolic 
space onto the manifold. This transformation is defined using hyper-
bolic trigonometric functions to ensure consistency with the underlying 
geometry. Specifically, the function scales the vector to respect the 
curvature, preserving the distance metric of hyperbolic space. Simi-
larly, the logarithmic map performs the inverse operation, projecting 
a point on the manifold back to the tangent space at the origin. This 
operation utilizes the inverse hyperbolic tangent function to account 
for curvature-dependent scaling, ensuring that the mapping respects the 
geometric constraints.

These mappings are crucial for defining operations such as trans-
lations, rotations, and embeddings in hyperbolic space, as they en-
able efficient manipulation of points while maintaining the geometric 
properties of the space.

In Euclidean geometric space, the translation operation on vectors is 
performed using vector addition. In this paper, translation in hyperbolic 
geometric space is achieved using Möbius addition, as shown in Eq.  (3): 

𝐱⊕𝑐𝑟 𝐲 =
(1 + 2𝑐𝑟𝐱𝑇 𝐲 + 𝑐𝑟‖𝐲‖2)𝐱 + (1 − 𝑐𝑟‖𝐱‖2)𝑦

1 + 2𝑐𝑟 𝐱𝑇 𝐲 + 𝑐2𝑟 ‖𝐱‖2|𝐲 ∥2
(3)

This study utilizes the Poincaré ball model to depict hyperbolic space, 
given its suitability for optimization based on gradient methods, Rie-
mannian optimization, etc. [22]. Additionally, it provides benefits like 
easy parallelization and strong scalability, facilitating the development 
of efficient embedding algorithms. In hyperbolic space, the distance be-
tween points is defined by the length of the geodesic, which represents 
the distance along the Poincaré line, as shown in Fig.  2, its calculation 
formula is shown in Eq.  (4): 

𝑑𝑐𝑟 (𝐱, 𝐲) = 2
√

𝑐𝑟
arctanh(

√

𝑐𝑟‖ − 𝐱⊕𝑐𝑟 𝐲‖) (4)

4. Proposed methodology

The goal of this paper is to develop a hyperbolic embedding model 
that performs well in low dimensions. This model should be capable of 
embedding complex semantic information, such as the symmetry and 
asymmetry commonly found in knowledge graph data, while preserving 
the underlying hierarchical structure. The model, MrpHKGE, (1) learns 
vector representations of knowledge graph data in hyperbolic space 
to maintain hierarchical structure (Section 4.1), (2) applies suitable 
rotational transformations in hyperbolic space from both 2D and 3D 
perspectives to encode logical patterns (Section 4.2), (3) combines these 
various geometric transformations with an attention mechanism (Sec-
tion 4.3), and (4) introduces the concept of residuals to the model for 
translation transformations in hyperbolic space. This complete model 
is described in Section 4.4.
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Fig. 2. Poincaré disk geodesics.

4.1. Embedding in hyperbolic space

Research indicates that, compared to Euclidean space, hyperbolic 
geometry can more effectively represent nonlinear hierarchical struc-
tures in low-dimensional spaces [22]. Hyperbolic geometry is charac-
terized by a constant negative curvature, which indicates the extent 
of deviation from flatness. When the curvature is zero, it aligns with 
Euclidean geometry. In hyperbolic space, the concept equivalent to 
a straight line in Euclidean space is known as a geodesic, which is 
represented as a curve. Theoretically, any finite tree can be nearly 
perfectly embedded in 2D hyperbolic space [25], a feat that Euclidean 
space cannot achieve.

Unlike embedding models in Euclidean space where the curvature 
is fixed at zero, embedding models in hyperbolic space yield different 
results depending on the curvature of the hyperbolic space being em-
bedded. In contrast to the MuRP model, which embeds all relations 
into hyperbolic space with the same curvature, our model learns a 
unique absolute curvature 𝐶𝑟 for each different relation, enabling the 
model to represent different hierarchical structures [23]. The curvature 
of hyperbolic space determines whether a relation is embedded into a 
more curved, less flat geometric space or into a flatter, more planar 
geometric space.

4.2. Hyperbolic transformations

Translation Transformation Translation is a fundamental oper-
ation in geometric transformations and plays a significant role in 
many embedding models based on Euclidean space. In practice, this 
operation is implemented through vector addition. However, because 
vector addition lacks a clear definition in hyperbolic space, our model 
approximates translation transformations in hyperbolic space using 
Möbius addition [26], as shown in Eq.  (3).

2D Rotation 2D rotation can simultaneously model relational pat-
terns such as inversion, composition, symmetry, or antisymmetry, and 
has been successfully applied in the RotatE model [13]. It plays a cru-
cial role in capturing the multiplicity of data. For example, symmetric 
relations (e.g., ‘‘sibling of’’) are effectively modeled by rotation matrices 
that map an entity to itself after a specific angular transformation, while 
antisymmetric relations (e.g., ‘‘parent of’’) are captured by distinct 
transformations that maintain directionality. Additionally, inversion 
and composition patterns are modeled by combining rotations with 
other transformations to represent multi-hop paths in the graph. In 
this paper, we use Givens transformations to simulate 2D rotations of 
relations in hyperbolic spaces with different curvatures [23]. Givens 
transformations are commonly used 2 × 2 rotation matrices in nu-
merical linear algebra. Assuming an even number of dimensions, we 
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parameterize the rotation using a block-diagonal rotation matrix as 
shown in Eq.  (5). 

𝑅(𝛩𝑟) = diag(𝐺(𝜃𝑟,1), 𝐺(𝜃𝑟,2),⋯ , 𝐺(𝜃𝑟, 𝑛2 )), where 𝐺(𝜃) ∶=

[

cos(𝜃) −sin(𝜃)
sin(𝜃) cos(𝜃)

]

(5)

where 𝛩𝑟 ∶= (𝜃𝑟,𝑖)𝑖∈{1,… 𝑛
2 }

 are parameters specific to each type of 
relation.

3D Rotation The non-commutative nature of 3D rotation allows the 
graph embedding model to perform non-commutative compositions. 
The QuatE model has successfully demonstrated that 3D rotation can 
be more expressive than 2D rotation for certain datasets [14]. There-
fore, this paper applies 3D rotation to the transformation of the head 
entity in hyperbolic space. This operation is simulated by the Hamilton 
product matrix operation in 3D space, as shown in Eq.  (6): 
𝑣1 ⊗ 𝑣2 = (𝑥1𝑥2 − 𝑦1𝑦2 − 𝑧1𝑧2 − 𝑡1𝑡2)

+ (𝑥1𝑦2 + 𝑦1𝑥2 + 𝑧1𝑡2 − 𝑡1𝑧2)𝐢
+ (𝑥1𝑧2 − 𝑦1𝑡2 + 𝑧1𝑥2 + 𝑡1𝑦2)𝐣
+ (𝑥1𝑡2 + 𝑦1𝑧2 − 𝑧1𝑦2 + 𝑡1𝑥2)𝐤

(6)

where the quaternion 𝑣 consists of one real part and three imaginary 
units, expressed as: 𝑣 = 𝑥+𝑦𝐢+𝑧𝐣+𝑡𝐤, where 𝑥, 𝑦, 𝑧, 𝑡 being real numbers 
and 𝐢, 𝐣,𝐤 representing the imaginary units.

4.3. Hyperbolic attention

In the two types of rotational transformations presented in this 
paper, since they will be applied in hyperbolic spaces with different 
curvatures, one rotational transformation might perform better under 
certain conditions. To leverage the advantages of both types of rota-
tional transformations simultaneously, this paper employs an attention 
mechanism to learn the importance of each rotational transformation.

Let 𝑞𝐻1  and 𝑞𝐻2  be two vectors embedded in hyperbolic space 
through different rotational transformations. Using the logarithmic 
map, 𝑞𝐻1  and 𝑞𝐻2  are mapped to the tangent space. The attention scores 
for the two types of rotational transformations are calculated using Eq. 
(7): 
(𝛼𝑞1 , 𝛼𝑞2 ) = Sof tmax(𝐯𝑇 logcr𝟎 (q

H
1 ), 𝐯

𝑇 logcr𝟎 (q
H
2 )) (7)

where 𝐯 is the attention vector. The weighted average is calculated as 
shown in Eq.  (8): 
𝐴𝑡𝑡(𝑞𝐻1 , 𝑞𝐻2 , 𝐯) ∶= 𝛼𝑞1 log

cr
𝟎 (q

H
1 ) + 𝛼𝑞2 log

cr
𝟎 (q

H
2 ) (8)

4.4. Scoring function

Building upon the previously obtained modules, incorporating skip 
connections additionally boosts the embedding model’s representa-
tional capabilities, resulting in a scoring function based on hyperbolic 
distance. Specifically, for a triple (ℎ, 𝑟, 𝑡) ⊆  × ×  , let 𝐞𝐻ℎ , 𝐫𝐻 , and 
𝐞𝐻𝑡  be the hyperbolic embeddings of 𝐞ℎ, 𝐫, and 𝐞𝑡, respectively. The 
MrpHKGE model initially performs a fundamental translation transfor-
mation on the head entity within hyperbolic space, utilizing Eq.  (3), 
and then applies the transformations from Eqs.  (5) and (6) to the head 
entity’s embedding, as shown in Eq.  (9): 
𝐛𝐻2𝐷 = 𝑅(𝛩𝑟)(𝐞𝐻ℎ ⊕𝑐𝑟 𝐫𝐻 ), 𝐛𝐻3𝐷 = (𝐞𝐻ℎ ⊕𝑐𝑟 𝐫𝐻 )⊗ 𝐫𝐻 (9)

Then, using the logarithmic map as shown in Eq.  (10), the vectors 
are mapped back to the tangent space. Using Eq.  (8), different embed-
ding results are combined and the concept of residuals is introduced 
by applying the initial relation matrix 𝑟𝐻  to perform a translation 
transformation in hyperbolic space. Finally, the hyperbolic distance 
between the resulting embedding and the target tail entity embedding 
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Fig. 3. The structure of the scoring function for the entire model.
is calculated using Eq.  (4) to obtain the final scoring function, as shown 
in Eq.  (11): 
𝐛𝐸2𝐷 = log𝑐𝑟𝟎 (𝐛

𝐻
2𝐷), 𝐛𝐸3𝐷 = log𝑐𝑟𝟎 (𝐛

𝐻
3𝐷) (10)

𝑠(ℎ, 𝑟, 𝑡) = −𝑑𝑐𝑟 (exp𝑐𝑟0 (𝐴𝑡𝑡(𝐛
𝐸
2𝐷,𝐛

𝐸
3𝐷, 𝐯𝑟)⊕

𝑐𝑟 𝐫𝐻 ), 𝐞𝐻𝑡 )2 + 𝑏ℎ + 𝑏𝑡 (11)

where 𝑑ℎ and 𝑑𝑡 are the entity biases acting as boundaries for the 
scoring function.

The flow of the scoring function for the entire model is illustrated 
in Fig.  3. Intuitively, the combination of translation and different 
rotational transformations encodes logical patterns, while hyperbolic 
space provides sufficient capacity to capture tree-like structures even 
with limited dimensions. Finally, the similarity between the resulting 
embedding and the embedding of the target tail entity is compared 
using hyperbolic distance, yielding the scoring function as shown in 
Eq.  (11).

5. Experiment

Our embedding model achieves good performance even in low-
dimensional spaces. In this section, we evaluate the effectiveness of our 
embedding model by conducting link prediction tasks on knowledge 
graphs.

5.1. Experimental setup

Datasets We evaluate our proposed model on two public datasets: 
(1) WN18RR [16] is a subset of the WordNet dataset, containing 
40,943 entities and 11 types of relations, with data that naturally has 
a hierarchical structure. (2) FB15K-237 [27] is a subset of FB15K, 
which in turn is a subset of the large-scale general-domain knowledge 
graph Freebase. FB15K-237 includes a total of 14,541 entities and fea-
tures 237 different types of relations, with data that partially exhibits 
hierarchy and partially non-hierarchy.

Baselines We compare the MrpHKGE model with state-of-the-art 
embedding models:

TransE: A well-known translation-based model, TransE represents 
relations as translations of entities in a low-dimensional vector space. 
This method works well for modeling simple relationships but struggles 
with more complex structures, such as hierarchical relations.

RotatE: This model uses rotation-based geometric transformations in 
the complex plane to model the relationships between entities. It has 
demonstrated strong performance, particularly for handling symmetric 
and asymmetric relations.

QuatE: Extending RotatE, QuatE employs quaternion embeddings to 
model both symmetric and antisymmetric relations in a more flexible 
way. This allows QuatE to capture richer relational patterns than earlier 
methods like TransE and RotatE.

MuRP: A more recent method that combines random walk-based 
strategies with geometric transformations. MuRP has shown strong 
results in modeling complex, multi-relation patterns within knowledge 
graphs.

AttH: Like our proposed model, AttH focuses on combining multiple 
geometric transformations to preserve semantic information to the 
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greatest extent. We select AttH as a baseline due to its shared approach 
in handling geometric transformations in embedding models.

Evaluation metrics During the experiments, we use the scoring 
function in Eq.  (11) to calculate the similarity between predicted and 
actual entities. We adopt the following rank-based metrics: (1) MRR 
assesses the average of the reciprocal ranks assigned to the correct 
entities, with a higher MRR signifying improved model performance. 
(2) Hits@n, (where 𝑛 ∈ {1, 3, 10})evaluates the ratio of correct triples 
within the top 𝑛 predicted triples, where higher Hits@n values indicate 
superior model performance.

Implementation details The configurable hyperparameters of the 
model include the dimension of the embedding space, optimizer type, 
negative sampling size, batch size, and learning rate. We select these 
hyperparameters through grid search and use the test set to choose the 
best combination of hyperparameters. The main optimizer types we set 
for the model are Adam and Adagrad.

Although the MuRP model proposed using RSGD for parameter 
optimization in hyperbolic space, the use of RSGD is complex. Re-
search by Chami et al. [23] shows that applying traditional Euclidean 
geometric optimization methods in the tangent space of hyperbolic 
space is equally effective. Therefore, the parameters of our model 
are first defined in Euclidean geometric space and then mapped to 
hyperbolic space through exponential transformation for subsequent 
geometric transformations. Finally, we use traditional Euclidean geo-
metric optimization methods, such as Adam or Adagrad, for parameter 
optimization.

5.2. Results in low dimensions

This study hypothesizes that the model would perform well in low 
dimensions, so the training dimension is initially set to 32. The results 
of the experiments are presented in Table  1. Table  1 compares the 
performance of the MrpHKGE model with other baseline models, in-
cluding embedding models in Euclidean space and hyperbolic space. It 
can be observed that when the training space is set to a low dimension, 
models based on hyperbolic space embeddings generally outperform 
those based in Euclidean space.

David Krackhardt [29] and Chami [23] provide two metrics, Khs 
and 𝜉𝐺, to indicate the hierarchical nature of relationships. Generally, 
the higher the Khs value and the lower the 𝜉𝐺 value, the more hierarchi-
cal the relationship is. To demonstrate the improvement brought by em-
bedding in hyperbolic space for the MrpHKGE model, we conducted a 
comparative experiment. This experiment compared the Hits@10 met-
ric on the WN18RR dataset for our model when embeddings were per-
formed in hyperbolic space versus Euclidean space. The experimental 
results, shown in Table  2, indicate that MrpHKGE shows significant im-
provement in hierarchical relationships such as ‘‘hypernym’’ and ‘‘has 
part’’, while there is little to no improvement in relationships with min-
imal hierarchical characteristics such as ‘‘similar to’’ and ‘‘verb group’’.

In the WN18RR and FB15K-237 datasets, the performance of our 
model matches that of the leading embedding models currently avail-
able in hyperbolic space. Moreover, it surpasses several of these ad-
vanced hyperbolic embedding models in the H@10 metric on the 
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Table 1
The results of the link prediction experiments in the low-dimensional space with 32 dimensions are shown below. The highest scores are 
indicated in bold, and the second-highest scores are underlined. The results for the TransE, RotatE, QuatE, and MuRP models are taken from 
Ref. [28].
 WN18RR FB15k-237

 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 
 TransE 0.244 0.099 0.350 0.506 0.277 0.194 0.303 0.444  
 RotatE 0.387 0.330 0.417 0.491 0.290 0.208 0.316 0.458  
 QuatE 0.445 0.407 0.463 0.515 0.266 0.186 0.290 0.426  
 MuRP 0.269 0.106 0.402 0.532 0.279 0.196 0.306 0.445  
 RefH 0.446 0.408 0.462 0.517 0.310 0.224 0.339 0.486  
 RotH 0.472 0.431 0.491 0.546 0.315 0.224 0.344 0.496  
 AttH 0.461 0.422 0.477 0.530 0.322 0.234 0.352 0.501 
 3H-TH 0.468 0.425 0.485 0.548 0.318 0.226 0.349 0.499  
 MrpHKGE 0.472 0.429 0.491 0.551 0.321 0.233 0.353 0.501 
Table 2
Comparison of Hits@10 for the relations in WN18RR. Higher Khs and lower 𝜉𝐺 values indicate stronger hierarchical characteristics of the 
relationship. The MrpKGE model is the Euclidean embedding version of the MrpHKGE model, used to compare the impact of embedding in 
hyperbolic space on the model’s performance. The best score is highlighted in bold.
 Relation Khs 𝜉𝐺 MrpKGE MrpHKGE Improvement 
 member meronym 1.00 −2.90 .398 .413 3.77%  
 hypernym 1.00 −2.46 .235 .269 14.5%  
 has part 1.00 −1.43 .297 .316 6.40%  
 instance hypernym 1.00 −0.82 .510 .523 2.55%  
 member of domain region 1.00 −0.78 .413 .395 −4.36%  
 member of domain usage 1.00 −0.74 .458 .448 −2.18%  
 synset domain topic of 0.99 −0.69 .430 .437 1.63%  
 also see 0.36 −2.09 .666 .701 5.26%  
 derivationally related form 0.07 −3.84 .966 .971 0.51%  
 similar to 0.07 −1.00 1.00 1.00 0.00%  
 verb group 0.07 −0.05 .969 .972 0.31%  
Table 3
The results of the link prediction experiments in the high-dimensional space with 500 
dimensions are shown below. The best scores are indicated in bold, and the second-best 
scores are underlined. The results for the TransE, RotatE, QuatE, and MuRP models are 
taken from [28].
 WN18RR

 MRR H@1 H@3 H@10 
 TransE 0.263 0.107 0.380 0.532  
 RotatE 0.396 0.384 0.399 0.419  
 QuatE 0.487 0.442 0.503 0.573  
 MuRP 0.265 0.105 0.392 0.531  
 RefH 0.462 0.403 0.481 0.564  
 RotH 0.495 0.446 0.510 0.583 
 AttH 0.484 0.440 0.497 0.571  
 3H-TH 0.489 0.444 0.507 0.579  
 MrpHKGE 0.491 0.441 0.510 0.583 

WN18RR dataset and the H@3 metric on the FB15k-237 dataset. Pre-
vious studies have demonstrated that these two public datasets con-
tain rich hierarchical structures [23]. Combined with the experimen-
tal results presented in this study, it can be concluded that choos-
ing hyperbolic space for embedding yields significant results in low 
dimensions.

5.3. Results in high dimensions
The results of our model in the link prediction experiments con-

ducted in high-dimensional space (d = 500) on the WN18RR dataset are 
shown in Table  3. It is evident that the MrpHKGE model continues to 
deliver results that are comparable to those of other leading hyperbolic 
embedding models. However, compared to Euclidean embedding mod-
els, hyperbolic embedding models, including MrpHKGE, no longer have 
a significant advantage. This indicates that when the embedding di-
mension is sufficiently large, the performance of Euclidean space-based 
embedding models and hyperbolic space-based embedding models is 
similar.

In order to more accurately demonstrate the impact of embed-
ding dimensions on the performance of the  MrpHKGE model, this 
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section designs an experiment with multiple embedding dimensions. 
This experiment effectively examines the model’s performance un-
der different dimensions and analyzes its efficiency and accuracy in 
lower-dimensional settings. The embedding dimensions selected for the 
experiment are 𝑑 ∈ {10, 16, 20, 32, 50, 200, 500}, with most dimensions 
being low-dimensional and only a few high-dimensional, ensuring a 
comprehensive evaluation of the adaptability of the MrpHKGE model 
across various embedding dimensions.

The experiment uses the link prediction task for evaluation. The 
dataset chosen is WN18RR, a commonly used and representative knowl-
edge graph dataset, capable of effectively testing the model’s perfor-
mance under different embedding dimensions. To measure the model’s 
performance, the metric Mean Reciprocal Rank (MRR) is employed, as 
it comprehensively reflects the model’s accuracy in prediction tasks.

The experimental results, shown in Fig.  4, illustrate the effect of 
embedding dimensions on the model’s performance. The results in-
dicate that with an increase in embedding dimensions, the model 
performance improves significantly in low-dimensional settings but 
plateaus at higher dimensions (e.g., 200 and 500). This validates the 
model’s efficiency and accuracy in low dimensions and its performance 
limits in high dimensions.

6. Conclusions

This paper introduces an innovative embedding model designed 
to map knowledge graph entities and relationships into hyperbolic 
space for link prediction tasks. The model leverages the expressive 
power of hyperbolic space, geometry-based transformations with at-
tention mechanisms, and skip connections to learn low-dimensional 
KG representations. By incorporating the curvature of hyperbolic space 
as a trainable parameter, the model can learn unique geometric rep-
resentations for different relationships and generalize across multiple 
embedding dimensions. The experimental results demonstrate that the 
model performs as expected, outperforming traditional Euclidean meth-
ods in hierarchical data representation. However, the model does have 
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Fig. 4. The performance of each model in multiple dimensions.

some limitations. Its scalability to larger knowledge graphs and its 
performance in noisy data environments require further investigation. 
In future work, exploring these aspects will be crucial for enhanc-
ing the model’s robustness and applicability. Additionally, integrating 
MrpHKGE with other AI tasks, such as question answering or en-
tity linking, could extend its functionality and broaden its range of 
applications. In terms of the link prediction method, the strengths 
of MrpHKGE lie in its ability to efficiently capture hierarchical rela-
tionships in low-dimensional spaces and its flexibility across different 
embedding dimensions. However, the model may face challenges in 
very large-scale graphs and noisy data, where embedding quality could 
be impacted. Despite these limitations, the model’s ability to adapt to 
multiple relational patterns and its potential for integration with other 
AI tasks make it a promising approach for knowledge graph completion 
and intelligent network applications.

CRediT authorship contribution statement

Longxin Lin: Writing – original draft, Methodology, Investigation. 
Huaibin Qin: Supervision. Quan Qi: Supervision. Rui Gu: Supervision. 
Pengxiang Zuo: Supervision. Yongqiang Cheng: Supervision.

Funding statement

The research leading to these results received funding from Key 
Areas Science and Technology Research Plan of Xinjiang Production 
And Construction Corps Financial Science and Technology Plan Project 
under Grant Agreement No. 2023AB048 for the project: Research and 
Application Demonstration of Data-driven Elderly Care System.

Declaration of competing interest

The authors declare no conflicts of interest to report regarding the 
present study.

References

[1] D. Li, H. Liu, Z. Zhang, K. Lin, S. Fang, Z. Li, N.N. Xiong, CARM: Confidence-
aware recommender model via review representation learning and historical 
rating behavior in the online platforms, Neurocomputing 455 (2021) 283–296.

[2] H. Liu, C. Zheng, D. Li, Z. Zhang, K. Lin, X. Shen, N.N. Xiong, J. Wang, Multi-
perspective social recommendation method with graph representation learning, 
Neurocomputing 468 (2022) 469–481.

[3] H. Liu, C. Zheng, D. Li, X. Shen, K. Lin, J. Wang, Z. Zhang, Z. Zhang, N.N. 
Xiong, EDMF: Efficient deep matrix factorization with review feature learning 
for industrial recommender system, IEEE Trans. Ind. Inform. 18 (7) (2021) 
4361–4371.
63 
[4] Z. Xue, Z. Zhang, H. Liu, S. Yang, S. Han, Learning knowledge graph embedding 
with multi-granularity relational augmentation network, Expert Syst. Appl. 233 
(2023) 120953.

[5] Z. Li, H. Liu, Z. Zhang, T. Liu, N.N. Xiong, Learning knowledge graph embedding 
with heterogeneous relation attention networks, IEEE Trans. Neural Netw. Learn. 
Syst. 33 (8) (2021) 3961–3973.

[6] Z. Zhang, Z. Li, H. Liu, N.N. Xiong, Multi-scale dynamic convolutional network 
for knowledge graph embedding, IEEE Trans. Knowl. Data Eng. 34 (5) (2020) 
2335–2347.

[7] Y. Shuanglong, P. Dechang, A new relational reflection graph convolutional 
network for the knowledge representation, J. Ambient. Intell. Humaniz. Comput. 
14 (4) (2023) 4191–4200.

[8] Y. Wang, S. Feng, R. Wang, P. Feng, Research on knowledge graph completion 
method based on graph convolutional neural networks, in: 2024 9th International 
Conference on Intelligent Computing and Signal Processing, ICSP, IEEE, 2024, 
pp. 658–664.

[9] S.M. Asmara, N.A. Sahabudin, N.S.N. Ismail, I.A.A. Sabri, A review of knowledge 
graph embedding methods of TransE, TransH and TransR for missing links, in: 
2023 IEEE 8th International Conference on Software Engineering and Computer 
Systems, ICSECS, IEEE, 2023, pp. 470–475.

[10] R. Jin, L. Zhou, An improved knowledge representation model based on transh, 
in: 2021 2nd International Conference on Artificial Intelligence and Information 
Systems, 2021, pp. 1–6.

[11] Y. Lin, Z. Liu, M. Sun, Y. Liu, X. Zhu, Learning entity and relation embeddings 
for knowledge graph completion, in: Proceedings of the AAAI Conference on 
Artificial Intelligence, vol. 29, (no. 1) 2015.

[12] G. Ji, S. He, L. Xu, K. Liu, J. Zhao, Knowledge graph embedding via dynamic 
mapping matrix, in: Proceedings of the 53rd Annual Meeting of the Association 
for Computational Linguistics and the 7th International Joint Conference on 
Natural Language Processing (Volume 1: Long Papers), 2015, pp. 687–696.

[13] Z. Sun, Z.-H. Deng, J.-Y. Nie, J. Tang, Rotate: Knowledge graph embedding by 
relational rotation in complex space, 2019, arXiv preprint arXiv:1902.10197.

[14] S. Zhang, Y. Tay, L. Yao, Q. Liu, Quaternion knowledge graph embeddings, Adv. 
Neural Inf. Process. Syst. 32 (2019).

[15] Z. Cao, Q. Xu, Z. Yang, X. Cao, Q. Huang, Dual quaternion knowledge graph 
embeddings, in: Proceedings of the AAAI Conference on Artificial Intelligence, 
vol. 35, (no. 8) 2021, pp. 6894–6902.

[16] T. Dettmers, P. Minervini, P. Stenetorp, S. Riedel, Convolutional 2D knowl-
edge graph embeddings, in: Proceedings of the AAAI Conference on Artificial 
Intelligence, vol. 32, (no. 1) 2018.

[17] D.Q. Nguyen, T.D. Nguyen, D.Q. Nguyen, D. Phung, A novel embedding model 
for knowledge base completion based on convolutional neural network, 2017, 
arXiv preprint arXiv:1712.02121.

[18] D.Q. Nguyen, T. Vu, T.D. Nguyen, D.Q. Nguyen, D. Phung, A capsule 
network-based embedding model for knowledge graph completion and search 
personalization, 2018, arXiv preprint arXiv:1808.04122.

[19] M. Schlichtkrull, T.N. Kipf, P. Bloem, R. Van Den Berg, I. Titov, M. Welling, 
Modeling relational data with graph convolutional networks, in: The Semantic 
Web: 15th International Conference, ESWC 2018, Heraklion, Crete, Greece, June 
3–7, 2018, Proceedings 15, Springer, 2018, pp. 593–607.

[20] C. Shang, Y. Tang, J. Huang, J. Bi, X. He, B. Zhou, End-to-end structure-
aware convolutional networks for knowledge base completion, in: Proceedings 
of the AAAI Conference on Artificial Intelligence, vol. 33, (no. 01) 2019, pp. 
3060–3067.

[21] D. Nathani, J. Chauhan, C. Sharma, M. Kaul, Learning attention-based em-
beddings for relation prediction in knowledge graphs, 2019, arXiv preprint 
arXiv:1906.01195.

[22] I. Balazevic, C. Allen, T. Hospedales, Multi-relational poincaré graph embeddings, 
Adv. Neural Inf. Process. Syst. 32 (2019).

[23] I. Chami, A. Wolf, F. Sala, C. Ré, Low-dimensional knowledge graph embeddings 
via hyperbolic rotations, in: Graph Representation Learning NeurIPS 2019 
Workshop, vol. 10, 2020, p. v1.

[24] H. Xiao, X. Liu, Y. Song, G.Y. Wong, S. See, Complex hyperbolic knowledge graph 
embeddings with fast fourier transform, 2022, arXiv preprint arXiv:2211.03635.

[25] W.R. Scott, Group Theory, Courier Corporation, New York, 2012.
[26] O. Ganea, G. Bécigneul, T. Hofmann, Hyperbolic neural networks, Adv. Neural 

Inf. Process. Syst. 31 (2018).
[27] K. Toutanova, D. Chen, Observed versus latent features for knowledge base and 

text inference, in: Proceedings of the 3rd Workshop on Continuous Vector Space 
Models and their Compositionality, 2015, pp. 57–66.

[28] Y. Zhu, H. Shimodaira, 3D rotation and translation for hyperbolic knowledge 
graph embedding, 2023, arXiv preprint arXiv:2305.13015.

[29] D. Krackhardt, Graph theoretical dimensions of informal organizations, in: 
Computational Organization Theory, Psychology Press, New York, 2014, pp. 
107–130.

Longxin Lin holds a bachelor’s degree from Fujian Agri-
culture and Forestry University and is currently pursuing a 
master’s degree in the School of Information Science and 
Technology at Shihezi University. He is currently a master’s 
student and his research interests is knowledge graphs.

http://refhub.elsevier.com/S2666-6030(25)00003-X/sb1
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb1
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb1
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb1
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb1
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb2
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb2
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb2
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb2
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb2
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb3
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb3
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb3
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb3
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb3
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb3
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb3
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb4
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb4
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb4
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb4
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb4
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb5
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb5
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb5
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb5
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb5
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb6
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb6
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb6
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb6
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb6
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb7
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb7
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb7
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb7
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb7
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb8
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb8
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb8
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb8
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb8
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb8
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb8
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb9
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb9
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb9
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb9
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb9
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb9
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb9
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb10
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb10
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb10
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb10
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb10
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb11
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb11
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb11
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb11
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb11
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb12
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb12
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb12
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb12
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb12
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb12
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb12
http://arxiv.org/abs/1902.10197
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb14
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb14
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb14
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb15
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb15
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb15
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb15
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb15
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb16
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb16
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb16
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb16
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb16
http://arxiv.org/abs/1712.02121
http://arxiv.org/abs/1808.04122
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb19
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb19
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb19
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb19
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb19
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb19
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb19
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb20
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb20
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb20
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb20
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb20
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb20
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb20
http://arxiv.org/abs/1906.01195
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb22
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb22
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb22
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb23
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb23
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb23
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb23
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb23
http://arxiv.org/abs/2211.03635
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb25
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb26
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb26
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb26
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb27
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb27
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb27
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb27
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb27
http://arxiv.org/abs/2305.13015
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb29
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb29
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb29
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb29
http://refhub.elsevier.com/S2666-6030(25)00003-X/sb29


L. Lin et al. International Journal of Intelligent Networks 6 (2025) 57–64 
Huaibin Qin Professor at the School of Information Sci-
ence and Technology, Shihezi University. He obtained his 
bachelor’s degree from Shihezi University and his master’s 
degree from Peking University. He has led one project 
funded by the National Natural Science Foundation and one 
project funded by the Corps Social Science Foundation. In 
recent years, he has published over 20 papers, including two 
papers indexed by SCI.
64 
Quan Qi Associate Professor at the School of Information 
Science and Technology, Shihezi University. He obtained 
his Ph.D. in Philosophy from the University of Hull in the 
United Kingdom. He is a member of IEEE, SIGGRAPH, CCF, 
and the Chinese Society of Stereology. His main research 
directions are edge computing, geometric reconstruction, 
augmented reality and mixed reality, and complex structure 
additive manufacturing.


	Multi-relation-pattern knowledge graph embeddings for link prediction in hyperbolic space
	Introduction
	Related work
	Euclidean embeddings
	Graph Neural Network
	Hyperbolic embeddings

	Preliminary knowledge
	KGE for Link Prediction
	Poincare Ball Model

	Proposed methodology
	Embedding in Hyperbolic Space
	Hyperbolic Transformations
	Hyperbolic Attention
	Scoring Function

	Experiment
	Experimental setup
	Results in low dimensions
	Results in high dimensions

	Conclusions
	CRediT authorship contribution statement
	Funding Statement
	Declaration of competing interest
	References


