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Abstract 

 

 

ENHANCING TRANSFORMER ARCHITECTURES FOR DIALOGUE modelling 

THROUGH CONTEXTUAL REENCODING 

GUENDALINA CALDARINI 

A thesis submitted to University of Sunderland for the degree of Doctor of Philosophy, 

 2024 

Chatbots have emerged as intelligent conversational computer programs that simulate 

human conversation, processing user input and generating relevant responses. They find 

applications across diverse fields, offering support, assistance, and entertainment to users. 

Recent advancements in Artificial Intelligence and Natural Language Processing have led 

to the widespread adoption of chatbots, driven by increased computational power and the 

availability of open-source technologies. However, challenges remain in improving 

contextual understanding, emotional responsiveness, and addressing gender biases in 

chatbot interactions. Despite their prevalence, existing chatbot models often rely on a next-

step approach, lacking the ability to consider the broader conversational context and 

underlying information shared among participants. 

This thesis investigates the impact of contextual embedding information on transformer 

architectures for dialogue modelling tasks. Through a series of experiments, various 

transformer architectures were evaluated, and an innovative architectural approach called 

the Reencoder model was developed. A key feature of this new architecture is the inclusion 

of an additional reencoding step. This reencoding process enhances the model's capability 

to effectively capture and incorporate contextual information from previous turns in the 

dialogue history. It was consistently observed that such models exhibited superior 

performance and greater consistency compared to those employing alternative embedding 

strategies. This study sheds light on the mechanisms underlying the enhanced 

performance of contextual embedding layers and explores factors contributing to their 

effectiveness in dialogue modelling tasks. To strengthen the validity of the presented 

results, the thesis also presents enhanced algorithms that combine textual and audio 

embeddings that further enhance contextual understanding in dialogue modelling. The 

findings contribute to the ongoing research efforts aimed at improving chatbot 

implementations and evaluation methodologies, addressing critical challenges in human-

chatbot interaction and advancing the field of conversational AI. 
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Chapter 1: Introduction 

Chatbots have emerged as powerful conversational agents that simulate human-like 

interactions, offering users support, assistance, and entertainment across diverse domains. 

However, existing chatbot models often rely on a limited, next-step approach, failing to fully 

leverage the broader conversational context and underlying information shared among 

participants. This research aims to address this limitation by investigating the impact of 

contextual embedding information on transformer architectures for dialogue modelling 

tasks. 

 

The growing demand for AI language models (LMs), exemplified by the widespread 

adoption of systems like ChatGPT, underscores their transformative potential across 

various domains. However, the accessibility challenges posed by the substantial 

computational resources required for training and deploying such sophisticated AI models 

present significant barriers, particularly for smaller businesses and individual developers. 

 

The formidable infrastructure demands, including the need for high-performance computing 

hardware, extensive datasets, and specialised technical expertise, often render it financially 

and logistically daunting for many stakeholders to develop or customise AI language 

models to meet their specific requirements (Pan et al., 2023). This digital divide 

exacerbates disparities in innovation and competitiveness, as entities without access to 

substantial resources or established infrastructure struggle to harness the full potential of 

AI LMs. 

 

Amidst the exploration of existing architectures and embedding methods, an opportunity to 

innovate and address existing limitations was identified. Motivated by this observation, the 

study introduced a novel architecture known as the Reencoder model. This architectural 

innovation incorporates an additional re-encoding step, which enriches the model's ability 

to capture and integrate contextual information from previous turns in the conversation. 

 

By developing more efficient and accessible dialogue modelling approaches, this research 

aims to complement and potentially offer an alternative to the resource-intensive LM 

solutions currently dominating the market. Improving the performance of smaller, task-

oriented language models not only addresses the challenges of infrastructure demand but 

also holds the potential to mitigate the environmental impact associated with the operation 

of large-scale LMs (Weidinger et al., 2022). 

 

The primary objective of this thesis is to explore a new deep learning framework that 

departs from the traditional next-utterance prediction paradigm for conversational AI. By 

incorporating past dialogue turns into the training process, the proposed architecture aims 

to model conversations in a more holistic and contextually-aware manner, emulating the 

way humans engage in discourse by considering prior statements and the overarching 

conversational context. In order to do so, the study compares and contrasts three different 

deep learning architectures against a baseline model provided by the TensorFlow 

organisation. The architectures to be explored are as follows: 
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● Baseline: The TensorFlow transformer model architecture developed for dialogue 

modelling, which will serve as the baseline. 

● Encoder-decoder transformer: An encoder-decoder transformer architecture, 

identical to the TensorFlow baseline, except for the embedding layer, where three 

different embedding methods will be employed and compared. 

● Extractor: An extended transformer architecture based on the one proposed in 

(Riley et al., 2021), where a fixed-width “contextual vector” extracted from the 

preceding sentence is used to provide contextual information during training. This 

architecture was named the “Extractor,” and three different embedding methods will 

be evaluated. 

● Reencoder: A novel transformer architecture that uses the embeddings of the 

previous utterance in the conversation to “inform” the embeddings of the current 

turn, in order to provide contextual information. This architecture is named the 

“Reencoder,” and three different embedding methods will be explored. 

● Multimodal Architectures: recognizing the importance of multimodal data in real-

world conversational scenarios, this research extends the proposed architectures 

to handle both textual and audio input. 

 

By incorporating audio embeddings alongside text embeddings, the extended architectures 

aim to capture the rich information contained in speech, such as tone, emotion, and 

acoustic features, enhancing the overall understanding and generation of contextually 

appropriate responses. 

The multimodal extension involves integrating pre-trained audio embeddings from raw 

audio data. These audio embeddings are then combined with the textual embeddings using 

various fusion techniques, such as concatenation, attention mechanisms, to achieve 

multimodal transformers. The fused multimodal embeddings are then fed into the proposed 

architectures for training and inference. 

 

By comparing the performance of these architectures, this research aims to provide insights 

into the mechanisms underlying the enhanced performance of contextual embedding 

layers and explore the factors contributing to their effectiveness in dialogue modelling 

tasks, as well as proposing viable solutions to address the step-to-step approach currently 

used for dialogue modelling. The findings of this study will contribute to the ongoing efforts 

to improve chatbot implementations and evaluation methodologies, addressing critical 

challenges in human-chatbot interaction and advancing the field of conversational AI. 

 

1.1 Research Background Overview of Chatbot Design 

Chatbots have revolutionised the way users interact with digital systems, offering human-

like conversational experiences across various domains. However, current chatbot models 

often employ a limited, next-step approach that fails to capture the broader context and 

information flow within a conversation, as humans naturally do. This limitation hinders the 

ability of chatbots to engage in truly natural and contextually aware dialogues. 
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1.1.1 Research Aim and Objectives 

The primary aim of this research is to investigate the impact of incorporating contextual 

embedding information into transformer architectures for dialogue modelling tasks, through 

previous turns of the conversation and by combining audio and text embeddings in 

multimodal dialogue models. Specifically, the objectives are: 

 

1. Develop and evaluate novel deep learning architectures that move beyond the 

traditional next-utterance prediction paradigm. 

2. Integrate previous dialogue turns into the training process to model conversations 

holistically, considering prior statements and the overarching context. 

3. Extend the proposed architectures to handle both textual and audio input to achieve 

multimodal chatbots. 

4. Compare and contrast the performance of different architectures, embedding 

methods, and contextual integration techniques. 

1.1.2 Research Contribution 

This research contributes to the field of conversational AI by: 

 

1. Introducing an enhanced transformer architecture, the “Extractor,” inspired by Riley 

et al., (2021), which incorporates a fixed-width contextual vector from preceding 

sentences. 

2. Introducing an enhanced version of the Google TensorFlow baseline architecture 

by extending it to utilise BERT embedding algorithm and audio data modality. 

3. Proposing a novel transformer architecture, the “Reencoder,” that utilises 

contextual information through the use of previous utterance embeddings to inform 

the current turn. 

4. Offering three audio unimodal systems based on different deep learning 

architecture designs. 

5. Submitting three multimodal architectures trained on text and audio data. 

6. Offering insights into the mechanisms underlying the enhanced performance of 

contextual embedding layers and the factors contributing to their effectiveness in 

dialogue modelling tasks. 

 

1.1.3 Research Methodology 

The research methodology involves a comprehensive approach to develop and evaluate 

novel neural architectures for dialogue modelling tasks. The first step involves designing 

and implementing the proposed architectures, namely the Encoder-Decoder Transformer, 

Reencoder, and Extractor models, along with baseline models for comparison. These 

architectures are then integrated with different embedding methods, including the popular 

GloVe and BERT embeddings, to capture semantic and contextual information from the 

input data. 

To enhance the capabilities of the proposed architectures, they are extended to handle 

multimodal input, allowing for the processing of both textual and audio data. This extension 

https://www.zotero.org/google-docs/?broken=zDk2ns
https://www.zotero.org/google-docs/?broken=zDk2ns
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is particularly valuable for applications such as speech-based dialogue systems or audio 

transcription tasks. 

The next step involves training and evaluating the models on various dialogue modelling 

tasks using appropriate datasets. This process involves carefully selecting and 

preprocessing the data to ensure that it is suitable for the specific task at hand. 

Once the models are trained, a comparative analysis is conducted to evaluate the 

performance of the proposed architectures, baseline models, and different embedding 

methods. This analysis involves measuring relevant metrics, such as accuracy, perplexity, 

or other task-specific evaluation criteria. 

Finally, the research methodology includes interpreting the results obtained from the 

comparative analysis. This step involves identifying the factors that contribute to the 

effectiveness of the contextual embedding layers and understanding how they influence 

the overall performance of the models. Additionally, potential limitations or areas for 

improvement are identified, providing insights for future research directions. 

Throughout the research methodology, a rigorous and systematic approach is employed to 

ensure the validity and reproducibility of the results. The integration of various embedding 

methods, the extension to multimodal input, and the comprehensive evaluation and 

analysis contribute to the development of robust and effective dialogue modelling systems. 

1.2 Thesis Outline 

Chapter 1: Introduction 

This chapter provides an overview of the research, highlighting the background, motivation, 

and objectives. 

Chapter 2: Literature Review 

A comprehensive review of relevant literature, covering chatbot design, dialogue modelling, 

transformer architectures, and contextual embedding techniques. 

Chapter 3: Research Methodology 

This chapter describes the research methodology, including the design and implementation 

of the proposed architectures, the integration of embedding methods, datasets used, and 

the evaluation strategies. 

Chapter 4: Implementation 

This chapter presents the experimental setup and a detailed description of the architectures 

considered. 

Chapter 5: Experiments and Results 

This chapter provides a detailed analysis of the results obtained from the comparative 

evaluation of the proposed architectures and baseline models. 

Chapter 6: Discussion 

An in-depth discussion of the research findings, highlighting the impact of contextual 

embedding information on dialogue modelling tasks, and the factors contributing to the 

effectiveness of the proposed architectures. 

Chapter 7: Conclusion and Future Work 
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This chapter summarises the main conclusions of the research, outlines the contributions, 

and provides recommendations for future work in the field of conversational AI and chatbot 

design. 

Chapter 2: Literature Review 

2.1 Introduction  

Chatbots are intelligent conversational computer programs that mimic human conversation 

in its natural form (Jia, 2003; Sojasingarayar, 2020). A chatbot can process user input and 

produce an output (Ayanouz et al., 2020; Kumar & Ali, 2020). Usually, chatbots take natural 

language text as input, and the output should be the most relevant output to the user input 

sentence. Chatbots can also be defined as “online human-computer dialogue system(s) 

with natural language”. (Cahn, 2017)  

 

In recent years, with the commoditization and the increase of computational power and the 

sharing of open-source technologies and frameworks, chatbots programmes have become 

increasingly common. Recent developments in Artificial Intelligence and Natural Language 

Processing techniques have made chatbots easier to implement, more flexible in terms of 

application and maintainability, and increasingly capable to mimic human conversation. 

However, human-chatbot interaction is not perfect; some areas for improvements are 

contextual and emotional understanding and gender biases. Chatbots are, in fact, less able 

to understand conversational context (Christensen et al., 2018) and emotional linguistic 

cues compared to humans, which affects their ability to converse in a more entertaining 

and friendly manner (Fernandes, 2018). At the same time, chatbots tend to take on 

traditionally feminine roles which they carry out with traditionally feminine features and often 

displaying stereotypical behaviour, revealing a gender bias in chatbots’ implementation and 

application (Costa, 2018).  

Chatbots are nowadays applied to a variety of different fields and applications, spanning 

from education to e-commerce, encompassing healthcare and entertainment, where they 

appear to be more engaging to users than static Frequently Asked Questions (FAQ) pages 

and can simultaneously assist multiple users, resulting in increased productivity and cost-

effectiveness compared to human customer support services (Okuda & Shoda, 2018). In 

addition to support and assistance, chatbots can provide entertainment and companionship 

for end-users (Costa, 2018). Nonetheless, different levels of embodiment – how human-

like the chatbot is (Go & Sundar, 2019)– and disclosure – how and when the nature of the 

chatbot is revealed to the user (Luo et al., 2019)– seem to impact users' engagement with 

and trust in chatbots. Given their extensive adoption and versatile applications across 

diverse fields, it is imperative that ongoing research focuses on enhancing their 

implementations and refining evaluation methodologies. As chatbots continue to play 

increasingly integral roles in various sectors such as customer service, healthcare, 

education, and entertainment, addressing existing limitations and optimising their 

functionalities becomes paramount. Therefore, exploring innovative approaches to improve 

chatbot performance, usability, and adaptability is essential to unlock their full potential and 

meet the evolving needs of users in different domains (Caldarini et al., 2022). 
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The underlying problem is that this model tries to solve conversational problems with a 

next-step approach: given an input, it tries to predict the best fitting output. This is, however, 

not the reasoning behind human conversation, that does not simply advance one step at a 

time, but rather by taking into consideration a series of previous steps, the underlying 

context of the conversation, and the information being shared among the participants 

(Vinyals & Le, 2015).   

 

This chapter will focus on providing an overview of chatbot implementation methods. A 

distinction will be drawn between two approaches to chatbot design: Rule-based chatbots 

and Machine Learning (ML) based chatbots. Within ML-based chatbots, a further distinction 

will be drawn between Information-Retrieval chatbots and Generative Chatbots. A distinct 

section will be dedicated to transformers and transformer-based chatbots, as these are the 

most recent algorithms applied to the problem of Dialogue Modelling.  

2.2 Research Background 

Alan Turing is thought to be the first person to have conceptualised the idea of a chatbot in 

1950, when he asked: “Can machines think?”. Turing’s description of the behaviour of an 

intelligent machine evokes the commonly understood concept of a chatbot (Turing, 1950).   

 

Chatbots have evolved with the progressive increase in computational capabilities and 

advances in Natural Language Processing tools and techniques, and are nowadays applied 

to a variety of fields, spanning from education to e-commerce, encompassing healthcare 

and entertainment.  

The emergence of deep learning has expanded chatbot applications like smart personal 

assistants (Alexa, Siri, etc.). These voice-controlled assistants use speech recognition to 

convert audio to text, and natural language processing to understand user intent and 

requests. 

Despite the popularity of chatbots, creating chatbots that deliver satisfactory responses to 

the requirements of specific users remains an arduous task. For example, a chatbot must 

understand any user's speech or text as an input request and respond appropriately (e.g., 

on the same topic, make sense), helpfully (e.g., contains useful and concrete information), 

and even be tone-aware (e.g., conveys feelings like empathy and passion) (A. Xu et al., 

2017; Hu et al., 2018).   

2.3 Rule-Based approaches to Chatbots 

A traditional approach to designing chatbots is the rule-based method (Young et al., 2013; 

Mesnil et al., 2015). This method models the dialogue flow as a structured sequence of 

slots or fields that need to be populated through the conversation. The chatbot's responses 

are generated based on a predefined set of rules and patterns that are manually crafted by 

developers. These rules map specific dialogue states and slot configurations to predefined 

response templates or actions. For example, if the user provides their location, a rule may 

dictate that the chatbot should then ask for the desired cuisine to recommend a restaurant. 
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ELIZA 

ELIZA, developed at MIT in 1966, is considered the first chatbot in history (Weizenbaum, 

1966; Shum et al., 2018; Zemčík, 2019). Functioning as a Rogerian psychotherapist, it 

advanced conversations by rephrasing user statements without needing to fully understand 

input. ELIZA used "direct match" pattern matching rules to reformulate input and generate 

responses. 

PARRY 

PARRY (1972) simulated a paranoid schizophrenic patient's speech. In tests, psychiatrists 

could only identify real patients versus PARRY transcripts 52% of the time (Colby et al., 

1972). 

A.L.I.C.E. 

A.L.I.C.E. was built on Artificial Intelligence Mark-up Language (AIML), designed to expand 

its dialogue knowledge base. It searched through input words to find the closest matches 

using folders and subfolders, representing a significant improvement over earlier systems 

while still relying on pattern-matching rules. 

ChatScript 

ChatScript was developed to process user text input and provide responses by 

manipulating natural language. It transforms input words using replacement files and 

databases for texting, spelling errors, contractions, abbreviations, noise, and interjections 

mapped to speech acts. ChatScript marked a shift toward semantic analysis and 

comprehension in chatbot development (Wilcox, 2014; AbuShawar & Atwell, 2015; Cahn, 

2017; Shum et al., 2018; Zemčík, 2019). 

 

Limitations 

Rule-based models are prone to give incorrect replies if they encounter a sentence that 

does not fit any established pattern. Additionally, manually encoding pattern-matching rules 

may be time-consuming and complicated. While rule-based chatbots can be effective in 

constrained domains with well-defined dialogue flows, they have limitations in handling 

open-ended conversations or adapting to unexpected user inputs. The hand-crafted rules 

need to anticipate and account for various scenarios, which can be time-consuming and 

challenging, especially in complex domains. 

Rule-based systems often struggle with understanding the contextual nuances and implicit 

intent in natural language, leading to potential misunderstandings or irrelevant responses. 

As a result, more advanced techniques, such as those based on machine learning (ML), 

have gained popularity in recent years to develop more flexible and adaptive conversational 

agents. 

2.4 Artificial Intelligence Approaches to Chatbots (Machine 

Learning Powered) 

Contrary to rule-based models, ML models are built using machine learning algorithms to 

learn from a library of recorded human interactions. The algorithms are initially applied to 

samples of data (known as training data) to learn patterns, features, and various 

information. This is known as the training phase in AI chatbot design. This phase produces 

a model that can produce responses in communicating with humans. This type of chatbot 

may be more adaptable and independent of domain-specific expertise thanks to the usage 
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of ML techniques, which eliminates the need to manually create and implement new 

pattern-matching rules. AI-based chatbots include two types: information retrieval-based 

models and generative models.  

2.4.1 Information-Retrieval Chatbots  

Information retrieval-based (IR) models are created such that the algorithm can 

successfully retrieve the required information from a given dataset based on the user's 

input. Typically, a Shallow Learning algorithm is employed. A database of question-answer 

pairs often serves as the knowledge foundation for these types of models. This database 

is used to create a chat index, which lists all potential responses according to the message 

that provoked them. An information retrieval approach like those used for online searches 

is used to match the user's input to comparable ones in the chat index when the user 

presents the chatbot with an input. Thus, the response sent to the user is the answer 

coupled with the chosen query from those listed in the chat index (Shum et al., 2018). The 

key benefit of this approach is that it guarantees the replies' quality because they are not 

produced mechanically. With the rise of Web 2.0 and the availability of more textual material 

on social media platforms, forums, and chats, these models have become increasingly 

popular (Yan et al., 2016).   

  

One of the biggest drawbacks of IR chatbots is it can be expensive, time-consuming, and 

laborious to create the prerequisite knowledge base. Furthermore, matching a user's input 

to the right answer could be time inefficient due to processing/searching a large amount of 

data available, which also means a larger training set and knowledge base. A significant 

amount of time and resources must be used to train the system to choose one of the 

available correct answers (Yan et al., 2016). Finally, information retrieval systems are less 

suitable for conversational agents, the so-called social chatbots, because they do not 

develop replies but rather retrieve them from a pre-defined set in their knowledge base, 

and lack personality development, which is a crucial quality for this type of chatbot (Shum 

et al., 2018). 

  

The development of novel information retrieval algorithms has recently, however, made 

some headway. It is important to note that machine learning techniques are now utilised as 

the foundation for these kinds of models.   

  

The method provided by Yan et al. is a breakthrough that examines past turns in the 

discussion to gather additional contextual information and enhance the output's quality and 

accuracy (Yan et al., 2016). In this approach, a Deep Neural Network rates not only the 

question/answer pairs that correspond with the most recent user's input but also those 

question/answer pairs that match with rephrased versions of past conversation turns, 

enhancing the information retrieval process. The rating lists for the various reformulations 

are then combined. By doing so, contextual data from the user's prior inquiries may be 

utilised, and these bits of data can be used to extract a better response from the knowledge 

base (Yan et al., 2016). 

By leveraging contextual data from the user's prior inquiries, this method allows the chatbot 

to extract a more relevant and coherent response from its knowledge base. The 

incorporation of information from previous turns in the conversation represents a significant 

step forward in addressing the limitations of traditional IR-based chatbots, which often 
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struggle to maintain contextual awareness and provide responses that are truly responsive 

to the evolving dialogue. 

2.4.2 Generative Models  

As their name implies, generative-based models create new replies word by word based 

on the user's input. Thus, these models may generate whole new sentences in response 

to user requests. But they must be trained to understand grammar and sentence structure, 

thus their results may not always be of high quality or consistency (Sutskever et al., 2014; 

Shang et al., 2015; Sordoni et al., 2015; Vinyals & Le, 2015; Sojasingarayar, 2020). 

Typically, generative models are trained on a sizable dataset of real-world conversational 

terms. By providing it with training data the model learns vocabulary, grammar, and 

sentence structure. The overarching goal is for the algorithm's ability to provide a suitable 

and linguistically sound answer based on the input text. This strategy often relies on a Deep 

Learning algorithm, which is made up of an encoder-decoder neural network model with 

long short-term memory mechanisms (Vinyals & Le, 2015).   

  

Sequence-to-Sequence models are now the de facto norm for chatbot modelling among AI 

models.  

Before Transformers, RNNs (including LSTMs and GRUs) dominated NLP applications. 

These encoder-decoder models processed input sentences sequentially, with the encoder 

creating a context vector and the decoder generating responses word by word. The goal 

was to produce the most probable response given the conversational context. During 

training, the model learned through backpropagation, while inference used either beam 

search (selecting the most probable candidate) or greedy search methods (Vinyals & Le, 

2015). Traditional sequence-to-sequence models used separate RNNs for encoding and 

decoding. To address context retention issues with longer sequences, attention 

mechanisms were added to focus on keywords that significantly contributed to generating 

the target sequence. 

The well-known attention technique was added as a final layer to “pay attention” to 

keywords in the sequence that significantly contribute to the production of the target 

sequence, since word-level encoding makes it difficult for the encoder to keep context for 

longer sequences. Each word in the input sequence is given attention based on how it 

affects the creation of the target sequence. 

 

Figure 2.1 represents a Recurrent Neural Network. The diagram illustrates how a Recurrent 

Neural Network (RNN) processes input and generates output. Green boxes symbolise 

individual words from the input sentence X, while orange boxes represent words in the 

output sentence Y. X(1) is the first word in the input sentence, while X(Tx) is the 𝑥𝑡ℎ word 

in the input sentence. Similarly, Y(1) is the first word in the output sentence, while Y(Tx) is 

the 𝑦𝑡ℎ word in the input sentence. A grey box indicates the initial activation function. Blue 

cells show the network's hidden states. The graph demonstrates that the RNN calculates 

each time step sequentially, starting with time step one before progressing to subsequent 

steps. 

  

These models presented two drawbacks, though:   
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1. Long-Range Dependencies: Dealing with long-range dependencies between 

words that were placed far apart in a lengthy phrase proved difficult (Figure 2.1). 

As the graph shows, the RNN must compute the calculations at time step one 

before it is possible to move to the following time step. For a more detailed 

representation, see (CS 230 - Recurrent Neural Networks Cheatsheet)  

 

 

 

 
  
Figure 2.1. A Recurrent Neural Network. 

 

2. Sequential Computation: They handle the input sequence sequentially, 

processing each word one at a time, hence they cannot compute for time-step 

t until they have computed for time-step t — 1. Training and inference take 

longer as a result (Refer to Figure 2.1).  

  

The above two drawbacks are addressed by the Transformer architecture. It completely 

abandoned RNNs in favour of relying only on the advantages of Attention. They perform a 

parallel processing operation on each word in the sequence, accelerating computing.  

 

The Seq2Seq approach offers several benefits. It is an end-to-end solution that can be 

trained on various datasets, making it applicable across many domains without the need 

for domain-specific expertise. Even though the model may produce useful results without 

domain-specific information, it can still be modified to operate with different algorithms if 

additional research on domain-specific knowledge is required. Thus, it is a straightforward 

yet broadly generic and versatile model that may be used for many NLP (Natural Language 

Processing) tasks (Vinyals & Le, 2015; Shum et al., 2018).  

 

However, as the generated response length increases, the model struggles to maintain 

coherence and consistency, as the entire input must be captured in the fixed-length context 

vector. This can result in ambiguous or incoherent responses. Additionally, these models 

concentrate on a single response when generating an answer, which results in a lack of 

coherence in the conversational turns (Strigér, 2017; Jurafsky & Martin, 2020; 

Sojasingarayar, 2020).  
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2.4.2.1 Transformer Chatbots 

Transformers have helped to progress the field of NLP since their method of reading is 

more in line with human behaviour than traditional sequential procedures. Since artificial 

intelligence (AI) solutions are becoming increasingly popular among those who lack 

specialised technical expertise in the field, models have an increasing need for robustness, 

explainability (which is the need to understand the way model parameters generate 

responses), and accessibility as more sectors turn to AI solutions (Bird et al., 2021). The 

Transformer based model is a fairly novel idea in the field of deep learning (Vaswani et al., 

2017). The theory underlying the investigation of transformers in NLP is their more natural 

approach to sentences than other deep learning approaches, such as sequence-to-

sequence. This is comparable to the human propensity to fully “listen” to a statement or 

sequence before reacting appropriately in conversations, translations, or other tasks of a 

similar kind.   

  

The foundation for sequence transduction activities is the sequence-to-sequence encoder-

decoder architecture. It advises encoding the entire sequence at once and utilising that 

encoding as the background for creating the target sequence or the decoded sequence.    

  

Instead of suffering from the vanishing gradient problem present in Recurrent Neural 

Networks, (Schmidhuber, 1992), transformer-based models pay attention to tokens in a 

learned order and as a result enable more parallelization while improving upon many NLP 

problems. New benchmarks and standards have been established since the application of 

Transformers to a variety of fields (Vaswani et al., 2017).   

  

In the original Transformer article (Vaswani et al., 2017), several parameters for the models 

were compared, as presented in Figure 2.2:   

 

 
Figure 2.2.  A comparison of RNN, Convolutional Neural Network (CNN), and Self-Attention models in terms of 

computational efficiency conducted by (Vaswani et al. 2017)  

  

In Figure 2.2, n is the sequence length (often in the range of 40–70), k is the convolution 

kernel size, and r is the attention window size for restricted self-attention.  

D (or d_model) is the representation dimension or embedding dimension of a word 

(typically in the range 128–512). From the figure presented above, the following points may 

be deduced:  

 

● Lower Computational Complexity: Self-attention has a lower per-layer 

computational complexity than other attention does.   

● Parallelization: Except for RNNs, all other methods allow parallelization when it 

comes to sequential processes, hence their complexity is O(1).  
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● Path Length: The fourth statistic is maximum path length, which on the surface 

refers to the difficulties of attention to distant words or long-term dependencies. 

Self-attention models attend all the words at the same step; hence their complexity 

is O, but convolutional models employ hierarchical representations, which makes 

their complexity n∗log(n)(1).  

 

The Transformer utilises a self-attention mechanism, which makes parallelization easy by 

calculating attention weights using all the words in the input sequence at once. Additionally, 

because the Transformer's per-layer operations include words in the same sequence, the 

complexity is less than O(n2d). As a result, the transformer is shown to be both a 

computationally efficient model and effective (because it makes use of attention).  

 

Due to these factors, such methods are quickly creating State-of-the-Art results for various 

NLP issues (Tenney et al., 2019). The following are examples of text data processing 

techniques that have benefitted from the application of Transformers: generation (Devlin et 

al., 2019; Radford et al., 2019), question answering (Lukovnikov et al., 2019; Shao et al., 

2019), sentiment analysis (Naseem et al., 2020; Shangipour ataei et al., 2020), 

paraphrasing (Chada, 2020; Lewis et al., 2020), translation (Zhang et al., 2018; Wang et 

al., 2018; Gangi et al., 2019), and classification (Sun et al., 2019).   

The basic structure of the Transformer consists of a stack of encoder and decoder layers. 

To prevent misunderstanding, each layer will be referred to as either an encoder or a 

decoder, and a stack of encoder layers or decoder layers will be referred to as either an 

encoder stack or a decoder stack.   

For each of their inputs, the Encoder stack, and the Decoder stack each have an associated 

Embedding layer. An output layer is present at the end to produce the finished product. The 

Encoders are all exact replicas of one another. In a similar vein, every decoder is the same.   

The crucial Self-attention layer, which calculates the relationships between the words in the 

sequence, is included in the encoder along with a Feed-forward layer. The Self-attention 

layer, Feed-forward layer, and a second Encoder-Decoder attention layer are all included 

in the Decoder.   

There is a unique set of weights for each encoder and decoder.   

All Transformer designs are defined by a reusable module called The Encoder. Along with 

the two levels mentioned above, it also features two LayerNorm layers and Residual skip 

connections all around both layers.   

Transformer architecture comes in a variety of forms. Some Transformer topologies solely 

rely on the encoder and lack any sort of decoder.   

At the very core of the Transformer’s innovation lies the computation of scaled dot product 

attention units, according to (Vaswani et al., 2017). Each word in the input word vector has 

its weights determined (document or sentence). The attention unit's output is an embedding 

for each relevant token combination in the input sequence. The following formula (Equation 

1) is used to determine the query Wq, key Wk and value Wv weights:  

 

 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉)  = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉  

Equation 1. The equation defining the Attention mechanism 
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Q, K, and V represent the Query, Key, and Value matrices respectively, and d_k denotes 

the dimensionality of the key vectors. The mechanism operates by first computing 

compatibility scores between queries and keys through matrix multiplication (QK^T), 

followed by scaling these scores by √d_k to maintain stable gradients during training. The 

resulting scores undergo softmax normalization, generating a probability distribution that 

determines the relative importance of each value vector. The final output is obtained by 

multiplying these attention weights with the value matrix V, producing context-aware 

representations where each position in the sequence incorporates information from all 

other positions, weighted by their relevance. This self-attention formulation enables the 

model to capture long-range dependencies and complex relationships within the input 

sequence, while maintaining computational efficiency through parallelization. The scaling 

factor √d_k proves crucial in preventing the dot products from growing too large in 

magnitude, particularly in high-dimensional spaces, thereby avoiding regions of extremely 

small gradients in the softmax function that could impede effective learning.   

K and V are derived from the source, whereas Q is derived from the goal for tasks like 

classification and translation. For instance, Q may be a class that the text is assigned to, 

such as “positive” and “neutral” for sentiment analysis and the classification model's 

prediction.   

For supervised English-Spanish machine translation, values K and V might be taken from 

the English phrase “Hello, how are you?” while Q could be derived from the phrase “Hola, 

cómo estás?” 

In the original paper by Vaswani et al., the authors introduced a crucial insight regarding 

the execution of the attention mechanism. Rather than executing a single attention function 

with dmodel-dimensional keys, values, and queries, they found it advantageous to linearly 

project the queries, keys, and values h times using learned linear projections to dimensions 

dq, dk, and dv, respectively. Subsequently, the attention function is applied in parallel to 

each of these projected queries, keys, and values, resulting in dv-dimensional output 

values. Finally, the output values are concatenated and projected once more to obtain the 

final values. This approach enables the model to simultaneously attend to multiple 

representation subspaces, enhancing its capacity to capture complex dependencies within 

the data. 

The Multi-headed Attention theory is used to guide all the State-of-the-Art models 

benchmarked in these trials. This is just a wider network of interconnected attention units 

created by concatenating many attention heads together:   

As opposed to a machine learning model, humans can compare one word in a phrase to 

other words in the same sentence; to produce human-like text, engineers, and researchers 

must produce a means for the model to acquire this understanding. This is where the self-

attention notion comes into play. It is crucial to remember that humans do not read in a 

token-sequential fashion like traditional RNN models, as in the case of the Long Short-

Term Memory (LSTM) network (Hochreiter & Schmidhuber, 1997).   

However, training powerful Transformers still requires significant computational resources 

and a large amount of data. For this reason, research centres from large organisations like 

Google, Microsoft, OpenAI and HuggingFace train exceptionally large transformer models 

that can even reach hundreds of billions of parameters and then share these foundational 

models with the community, which can easily fine-tune them with fewer data and 

computational power.   
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This trend seems to apply to the application of Transformer models for dialogue modelling. 

Several works of literature have already investigated the possibility of fine-tuning 

foundational transformer models on dialogue modelling tasks.   

Yu et al., (2020) developed a financial service chatbot based on BERT. The chatbot is 

closed domain and trained on the task of intent classification to correctly identify the intent 

of a question and provide a relevant answer among a specific set of possibilities. The 

authors also provided a novel discussion about uncertainty measures for BERT. Bathija et 

al., (2020) propose a chatbot for interactive learning. Questions to the user are generated 

through extractive summarisation of content. This allows users to obtain important 

sentences out of a document or set of documents. The summarisation is performed using 

BERT. Bird et al., (2021) propose augmenting conversational data through paraphrasing 

with the T5 model and then using augmented data to finetune several other transformers 

for dialogue generation. A novel approach has been developed by Google. Their neural 

conversational model, Meena, has one Evolved Transformer encoder block and thirteen 

Evolved Transformer decoder blocks. The encoder processes the conversation context for 

Meena to grasp what was said in the discussion. The answer is subsequently created by 

the decoder using that data. The study found that the key to better conversational quality 

was a more potent decoder by tweaking the hyperparameters (Adiwardana et al., 2020).   

  

 

TextSETTR 

This section introduces TextSETTR, a novel approach to few-shot text style transfer 

presented by Riley et al., (2021). TextSETTR tackles the challenge of extracting and 

leveraging stylistic cues from unlabeled text data. It accomplishes this by capitalising on 

the inherent co-occurrence of style with nearby sentences within a document. The core 

idea lies in leveraging a pre-trained text-to-text model, T5 (Raffel et al., 2020), and 

incorporating a fine-tuned style extractor module. This module learns a style representation 

based on the sentence preceding the target sentence (context). During training, 

TextSETTR explores three data corruption strategies to construct training examples: noise 

injection, back-translation, and noisy back-translation, each contributing a reconstruction 

loss term (Riley et al., 2021). 

 

During training, the model explores three data corruption strategies to construct training 

examples: 

 

● Noise Injection: This strategy involves adding, replacing, or shuffling tokens within 

a sentence. 

● Back-Translation: The model itself is used to transfer the sentence into a different 

style using a chosen context sentence. 

● Noisy Back-Translation: This combines noise injection with back-translation. Noise 

is first introduced to the sentence, and then the altered sentence is used as input 

for back-translation with a chosen context sentence. 

 

TextSETTR is trained to reconstruct the original sentence from its corrupted version while 

incorporating the stylistic cues extracted from the context sentence. At inference time, 

TextSETTR employs a “targeted restyling” approach. Instead of directly targeting a specific 

style, it calculates a delta vector within a style space that represents the stylistic difference 

between source and target styles. This delta vector is then used to modulate the style of 
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the input sentence during the decoding process. (Riley et al., 2021). Evaluations on 

sentiment transfer tasks demonstrate that TextSETTR achieves competitive results 

compared to existing methods that require style-labelled training data. The model also 

exhibits the ability to generalise to other stylistic attributes, highlighting its potential for 

broader applicability (Riley et al., 2021). 

 

The promise of TextSETTR for few-shot text style transfer extends naturally to the realm of 

dialogue modelling. In dialogue systems, capturing and leveraging the stylistic cues from 

previous conversational turns is crucial for generating coherent and consistent responses. 

Here's how TextSETTR can be adapted for this purpose. To its document-based 

application, TextSETTR's style extractor module can be employed to analyse the most 

recent turns in a dialogue. By treating these turns as a form of unlabelled text, the model 

can extract a contextual style representation that encapsulates the sentiment, formality, 

and overall tone of the conversation thus far. During dialogue generation, the decoder can 

incorporate this contextual style representation along with the current user input. This 

allows the model to not only address the literal meaning of the user's utterance but also 

tailor its response to match the established conversational style. For instance, if the 

conversation has been lighthearted and informal, TextSETTR can nudge the response 

towards a similar style, even if the user's current input is grammatically correct but devoid 

of emotion. 

A key advantage of TextSETTR is its ability to generalise to various style attributes beyond 

those explicitly used for training. In dialogue modelling, this translates to adaptability across 

different conversation types. The model can, for example, adjust its formality based on 

whether it's interacting with a customer service representative or a casual acquaintance. 

 

By incorporating TextSETTR, dialogue models can move beyond generic responses and 

generate text that is not only grammatically correct but also stylistically appropriate within 

the ongoing conversation. This can significantly enhance the naturalness and coherence 

of human-computer interactions. Future research directions could involve exploring 

techniques for dynamically weighting the contextual style representation based on the 

recency and importance of previous turns, allowing for even more nuanced control over 

dialogue style. 

2.4.3 Multimodal Chatbots 

While traditional chatbot architectures have focused primarily on textual data, real-world 

conversations often involve multimodal interactions where information is conveyed through 

multiple modalities such as speech, gestures, and visual cues. Existing text-only 

architectures fail to capture the rich contextual information contained in these additional 

modalities, resulting in a limited understanding and ability to generate appropriate 

responses (Poria et al., 2019). To enable more natural and effective human-computer 

interactions, there has been a growing interest in developing multimodal chatbots that can 

perceive and generate responses across multiple modalities. 

 

Early work on multimodal dialogue systems focused on integrating speech recognition and 

synthesis capabilities with traditional text-based architectures. For instance, Lemon & 

Gruenstein, (2004) proposed a multithreaded architecture that combined speech acts with 

semantic representations to generate multimodal outputs. Similarly, Nakano et al., (2011) 
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developed a system that fused text, speech, and visual information for in-car dialogue 

interactions.  

 

With the advent of deep learning and the success of transformer models in natural 

language processing, researchers have explored multimodal extensions of these 

architectures for conversational AI tasks. Rastogi et al., (2020) introduced a multimodal 

transformer that combines textual, visual, and acoustic features for multimodal machine 

translation and dialogue generation. Le et al., (2022) introduced a multimodal attention 

mechanism to selectively attend to different modalities during response generation. 

However, a key challenge with many of these approaches is that they treat modalities as 

separate parallel inputs, failing to fully capture the interplay and synergies between them 

in natural conversation (Tsai et al., 2019). 

 

A key challenge in developing multimodal chatbots is effectively integrating and modelling 

the interactions between different modalities. Poria et al., (2019) highlighted the importance 

of capturing the interplay between modalities, as opposed to treating them as separate 

parallel inputs. Tsai et al., (2019) proposed the use of tensor fusion networks to jointly 

model the relationships between modalities for multimodal sentiment analysis. 

Recent research has explored more sophisticated techniques for multimodal fusion and 

representation learning. Waligora et al., (2024) introduced a multimodal transformer 

architecture that learns joint embeddings for different modalities through cross-modal 

attention and fusion layers. Chen et al., (2021) proposed a modality-invariant encoder that 

projects different modalities into a shared embedding space, enabling cross-modal 

understanding and generation. 

Another critical aspect of multimodal chatbots is accounting for modality mismatches, 

where the input and output modalities differ (J. Xue et al., 2023). For example, generating 

text responses to audio queries or vice versa. Existing unimodal architectures struggle with 

such cross-modal mappings, leading to potential information loss or inconsistencies. 

Additionally, the development of multimodal chatbots is hindered by the lack of large-scale, 

diverse multimodal dialogue datasets (Liu et al., 2022). Most existing datasets are either 

unimodal (text-only) or limited in their coverage of domains, languages, and modalities. 

Alamri et al., (2019) highlighted the need for novel data collection pipelines and 

augmentation techniques to address this data scarcity issue. 

Despite these challenges, the field of multimodal chatbots has witnessed significant 

advancements, driven by the development of sophisticated deep learning architectures and 

the increasing availability of multimodal data sources. As research in this area continues to 

progress, researchers can expect to see more natural and context-aware conversational 

experiences across diverse modalities and domains. 

 

In contrast, the proposed enhanced architecture in this research takes a more holistic 

approach to multimodal integration. By fusing textual and audio embeddings at a deep 

level, using techniques such as concatenation and attention mechanisms, the enhanced 

architecture aims to capture the rich information contained in both modalities and the 

intricate relationships between them. 

 

Furthermore, the proposed architecture builds upon the contextual awareness introduced 

by the Reencoder and Extractor architectures, incorporating multimodal information from 

previous turns to inform the current response generation process. This approach emulates 
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the way humans engage in discourse, considering not only the current utterance but also 

the broader conversational context, including the modalities used in previous turns. 

 

Compared to other related works, the proposed enhanced architecture offers a more 

seamless integration of multimodal information, allowing the model to learn from the 

interplay between different modalities and their contextual relationships. By leveraging 

state-of-the-art techniques in multimodal fusion and contextual modelling, the enhanced 

architecture aims to provide a more natural and contextually appropriate response 

generation capability, addressing the limitations of previous architectures that were 

restricted to handling a single modality. 

 

2.4.4 State of the Art 

2.4.4.1 ChatGPT 

No review of the current state of the art would be complete without mentioning ChatGPT.  

The foundation of ChatGPT is the GPT-3.5 model, a Transformer that only presents the 

Decoder component; such models are known as Decoder-only architectures or 

autoregressive models (Decoder Models - Hugging Face NLP Course, 2023). Large 

autoregressive language models are generally trained with a standard left-to-right language 

modelling objective on a large text corpus, where the objective is to predict the next token, 

taking into account the previous tokens.  

 

Zero-shot generalisation is seen in large-pertained transformer language models. 

Nonetheless, there are notable differences between the various state-of-the-art models' 

designs and pretraining goals. The authors of T. Wang et al., (2022) provided a thorough 

analysis of modelling decisions and how they affect zero-shot generalisation. Three model 

architectures were tested: the causal decoder only, the non-causal decoder only, and the 

encoder-decoder model. Their main focus was on text-to-text models. These models were 

assessed both with and without multitasking-prompted fine-tuning. They were trained with 

two distinct pretraining objectives: autoregressive and masked language modelling. 

 

The results of their experiment demonstrated that the optimal zero-shot generalisation for 

purely unsupervised pretraining is exhibited by causal decoder-only models trained on an 

autoregressive language modelling objective. They discovered that a pretrained non-

causal decoder model may be modified into a successful generative causal decoder model 

by employing autoregressive language modelling as a downstream job. Additionally, they 

demonstrated how the non-causal decoder model might be modified to fit the pre-trained 

causal decoder model. 

 

Like InstructGPT, ChatGPT was trained utilising Reinforcement Learning (RL), specifically 

Reinforcement Learning from Human Feedback (RLHF), albeit with a somewhat different 

configuration for data collecting. Supervised fine-tuning was used to train an initial model. 

Human AI trainers simulated discussions in which they took on the roles of both the user 

and an AI assistant. To assist the trainers in crafting their responses, model-written ideas 

were made available to them by OpenAI data scientists. Subsequently, they combined this 

new dialogue dataset with the dialogue-formatted InstructGPT dataset. 



 

31 

 

Comparison data, comprising two or more model responses ordered according to quality, 

was required in order to develop a reward model for reinforcement learning. AI trainers' 

chatbot talks were recorded by OpenAI engineers and data scientists in order to compile 

this information. After choosing a model-written message at random, they sampled a 

number of different completions and asked AI trainers to score them. They were able to 

use Proximal Policy Optimization to fine-tune the model by using these reward models. 

This was a process that was repeated several times. 

 

ChatGPT consideration of previous turns in the conversation 

Because ChatGPT remembers the context and history of a conversation, it can manage 

multi-turn conversations. It creates responses based on the previous exchange and the 

current input using a sequence-to-sequence paradigm. This enables it to produce 

responses that are pertinent to the conversation's earlier turns while preserving the 

conversation's coherence and continuity. 

In order to manage discussions with several turns, ChatGPT usually saves the earlier turns 

of the conversation in a memory or context vector. This memory or context vector is then 

used as input to the model in addition to the current input. The procedure is then repeated 

for each turn in the discussion as the model creates a response based on the combined 

input.  

By using this method, ChatGPT is able to produce responses that are more eloquent and 

human-like, while also keeping the same tone and manner throughout the exchange. 

ChatGPT utilises its memory of prior communications to deliver responses that are both 

logical and pertinent to the context in which you are conversing. The conversation history 

is part of this context, which enables the model to interpret pronouns, references, and other 

contextual clues that are crucial for producing precise and insightful responses. 

The context window is limited, though. Within the bounds of its maximum token limit, the 

model is able to retain and utilise recent messages. Should the discussion go on for too 

long, earlier points may be cut off and no longer add to the overall context. 

Even though ChatGPT is capable of maintaining context, it may occasionally generate 

comments that seem irrelevant or out of place, particularly if the discussion gets 

complicated or unclear. Context management and state tracking are two ways that 

ChatGPT can handle tasks and actions that require multiple turns. It keeps track of the 

conversation so far, which enables it to comprehend the user's intent over several turns 

and retain context. In order to guarantee that it offers pertinent and accurate responses, it 

can also maintain track of the conversation's status, including the information exchanged 

and the actions performed.  

However, it's crucial to understand that ChatGPT simply sends what is in the chat window 

back to the API each time users submit input; it does not retain track of conversations.  

The chatbot in this case is not trained to consider previous turns of the conversation in 

order to inform subsequent answers, it is simply using the entire history of the conversation 

so far as input (Can ChatGPT Understand Context?, n.d.; GPT-3.5-Turbo How to 

Remember Previous Messages like Chat-GPT Website - API, 2023; How Does ChatGPT 

Handle Multi-Turn Conversations?, n.d.)). 

 

Limitations 

Despite its impressive flexibility, ChatGPT occasionally generates responses that appear 

logically sound but contain factual inaccuracies or reasoning errors. This presents a 
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significant challenge for three primary reasons: (1) the absence of an accessible truth 

reference for reinforcement learning training; (2) increased model caution during training 

phases paradoxically leads to the rejection of legitimately answerable queries; and (3) 

supervised training methodologies introduce interpretation biases, as optimal responses 

necessarily depend on the model's internal knowledge representation rather than the 

demonstrator's understanding (Introducing ChatGPT, n.d.). 

The model demonstrates notable inconsistency in response quality and accuracy when 

confronted with variations in query phrasing. For instance, a question formulated in one 

manner might elicit a non-response claiming insufficient knowledge, while a semantically 

equivalent reformulation produces a correct and comprehensive answer. Additionally, the 

model frequently employs formulaic language patterns and repetitive self-references. 

These limitations stem from well-documented over-optimization phenomena and inherent 

biases in training data, where human evaluators demonstrate preference for lengthier 

responses that convey an impression of thoroughness (Introducing ChatGPT, n.d.). 

A fundamental limitation observed across contemporary language models concerns their 

inefficient sampling during pre-training phases. Despite GPT-3's progression toward 

human-comparable test-time efficiency (zero-shot or one-shot learning), the model requires 

exposure to textual volumes substantially exceeding what humans encounter throughout 

their lifetimes (Linzen, 2020). Enhancing pre-training sample efficiency represents a critical 

research direction, potentially achievable through algorithmic innovations or integration 

with physically-grounded informational frameworks. 

The few-shot learning paradigm implemented in GPT-3 presents conceptual uncertainties 

regarding whether the model genuinely acquires novel tasks during inference or merely 

recognizes and adapts previously encountered task structures. This spectrum 

encompasses multiple possibilities: de novo skill acquisition, recognition of familiar tasks 

presented in alternative formats, adaptation of generalized capabilities such as quality 

assessment, or identification of training examples drawn from distributions identical to 

those in testing scenarios. The model's position along this spectrum likely varies according 

to task specificity and complexity. 

Synthetic tasks such as word scrambling or nonsense word definition appear particularly 

amenable to genuine learning, while translation capabilities must necessarily develop 

during pre-training, albeit potentially from stylistically and structurally diverse data 

compared to test examples. The delineation between knowledge acquired de novo versus 

from prior examples remains similarly ambiguous in human cognition. While even the 

capacity to organize and identify different demonstrations between pre-training and testing 

would represent significant progress for language models, precisely characterizing the 

mechanisms underlying few-shot learning remains an important avenue for future research. 

Regardless of the objective function or algorithm, a drawback of models at the GPT-3 scale 

is that performing inference on them is costly and time-consuming. This could make it 

difficult for models at this scale to be practically applied in the present. Distillation (Hinton 

et al., 2015) of large models down to a manageable size for particular tasks is one potential 

future direction to address this. Big models like GPT-3 have a very broad skill set, most of 

which are not required for a particular task, indicating that aggressive distillation might be 

feasible in theory. 

Distillation has been thoroughly studied overall (Liu et al., 2019), but it hasn't been tested 

with hundreds of billions of parameters; new challenges and opportunities may be 

associated with applying it to models of this size. 

https://www.zotero.org/google-docs/?broken=8Zqp84
https://www.zotero.org/google-docs/?broken=8Zqp84
https://www.zotero.org/google-docs/?broken=8Zqp84
https://www.zotero.org/google-docs/?broken=WsRsZt
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2.5 Advances in Chatbots and Dialogue Modelling post-

ChatGpt 
Recent advancements in chatbots and dialogue modelling have significantly transformed 

the landscape of conversational AI, particularly with the emergence of large language 

models (LLMs) and their applications in various domains. In 2023, the introduction of 

models like InstructTODS demonstrated the potential of LLMs in end-to-end task-oriented 

dialogue systems. This model achieved performance levels comparable to fully fine-tuned 

systems without requiring prior task-specific data, showcasing the ability of LLMs to guide 

dialogues effectively and produce responses that are more helpful, informative, and 

human-like than previous state-of-the-art systems (Chung et al., 2023). Such 

advancements highlight the growing capability of AI to manage complex dialogues 

autonomously, which is crucial for applications ranging from customer service to personal 

assistants. 

 

Moreover, the exploration of generative models in conversational agents has been a focal 

point in recent literature. Wassan's work discusses the foundational architectures of these 

models, primarily based on recurrent neural networks (RNNs) and transformer 

architectures, which are pivotal in the development of sophisticated chatbots like ChatGPT 

(Wassan et al., 2023). The ability of these models to generate coherent and contextually 

relevant responses has led to their widespread adoption in various sectors, including 

education and business, where they enhance user engagement and streamline processes. 

 

The integration of AI chatbots in specific demographics, such as Gen-Z voters, has also 

been studied. Tjahyana's research indicates that AI chatbots are particularly effective in 

engaging younger audiences, provided they are trained on relevant datasets to ensure 

accuracy and reliability in responses (Tjahyana, 2024). This underscores the importance 

of dataset quality in the performance of AI systems, as inconsistencies in training data can 

lead to incorrect outputs, necessitating rigorous training and evaluation protocols during 

the deployment phase. 

 

Furthermore, the ethical implications of deploying AI chatbots have gained attention, 

particularly concerning their reliability and the potential for bias in responses. Meyer et al. 

discuss the transformative impact of LLMs in academia, emphasizing the need for ethical 

considerations in their use, especially regarding fairness and bias (Meyer et al., 2023). This 

is critical as the reliance on AI-generated content increases, raising questions about the 

integrity of information and the potential for misinformation. 

 

In addition to these advancements, the development of memory-augmented models has 

introduced new capabilities for chatbots, allowing them to retain and utilize user-specific 

information over time. Sarch's research on memory-augmented large language models 

demonstrates how these systems can enhance user interaction by personalizing responses 

based on past dialogues, thereby improving the overall user experience (Sarch et al., 

2023). This capability is particularly beneficial in applications requiring sustained 

engagement, such as mental health support and personalized learning environments. 
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2.6 Summary 
This chapter has provided a comprehensive overview of approaches to chatbot design, 

tracing the evolution from early rule-based systems to advanced AI-powered models. The 

literature review explored the fundamental distinction between rule-based chatbots and 

those leveraging machine learning, including information retrieval and generative models. 

The emergence of transformer architectures, particularly the development of models like 

ChatGPT, has marked a significant leap forward in chatbot capabilities. These models 

demonstrate impressive language understanding and generation abilities, although they 

still face challenges such as maintaining long-term context and avoiding hallucinations. The 

chapter also touched upon the growing interest in multimodal chatbots, which aim to 

integrate various forms of input beyond text. As the field continues to advance, researchers 

are focusing on enhancing contextual understanding, improving sample efficiency, and 

addressing ethical concerns. While current state-of-the-art models like ChatGPT show 

remarkable versatility, ongoing work is needed to overcome limitations and further bridge 

the gap between artificial and human-like conversation.  
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Chapter 3: Research Methodology  

3.1 Introduction 

This research proposes to extend and enhance three different Transformer architectures 

by introducing novel modifications tailored to address their limitation modelling dialogue, 

including previous turns of the conversation. By strategically incorporating new features 

and techniques, the aim is to unlock improved performance and overcome inherent 

constraints in these architectures. While the work builds upon existing foundations, the 

innovative adaptations promise to push the boundaries of these models' capabilities, 

yielding superior results in various application domains. The research endeavours to make 

tangible contributions to the field by exploring novel approaches that capitalise on the 

strengths of these architectures while mitigating their contextual awareness weakness. 

The architectures used are as follows: 

 

1. A transformer model architecture developed for dialogue modelling by the 

TensorFlow organisation. This architecture has been used as a baseline model 

(Google Colab, n.d.). 

2. An Encoder-Decoder Transformer architecture identical to that proposed by 

TensorFlow organisation, except in the embedding layer, modified by replacing the 

embedding layer.  

3. A modified Transformer architecture, following the TextSETTR architecture 

proposed in (Riley et al., 2021), where a fixed-width “contextual vector” extracted 

from the preceding sentence is used to provide contextual information during 

training. This architecture has been named the Extractor.  

4. A novel Transformer architecture that uses the embeddings of the previous 

utterance in the conversation to “inform” the embeddings of the current turn in the 

conversation, in order to provide contextual information. This architecture has been 

named the Reencoder. 

5. Each one of these architectures has then been further extended, allowing them to 

use video input along with text inputs. 

 

In the initial research design phase, Recurrent Neural Networks (RNN) and Long Short-

Term Memory (LSTM) architectures were considered as potential comparison models 

alongside the transformer-based architectures. These traditional sequence modelling 

approaches had been the predominant choice for natural language processing tasks prior 

to the introduction of transformers. However, these architectures were ultimately excluded 

from the study based on substantial evidence from previous research demonstrating the 

superior performance of transformer-based models. Notably, Vaswani et al. (2017) 

demonstrated that transformers outperform RNNs and LSTMs across various language 

tasks while offering better parallelization capabilities and reduced training time. This finding 

has been further corroborated by subsequent studies, such as (Pölz et al., 2024), who 

conducted extensive empirical comparisons showing that transformer-based models 

consistently achieve higher accuracy and better handling of long-range dependencies 

compared to RNN-LSTM architectures. Therefore, to maintain focus on the most promising 

current approaches and avoid redundancy with existing literature, this study concentrated 

specifically on comparing different transformer-based architectures. 
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For the three proposed architectures (Encoder-Decoder Transformer, Extractor, and, 

Reencoder) the study explore three different embedding methods (a subword embedding 

layer created from the training data, and two pretrained embedding matrices, GloVe 200d 

and Bert base uncased). 

To investigate the effectiveness of these transformer architectures in capturing 

conversational context for dialogue modelling, a rigorous experimental methodology was 

employed.  

This chapter outlines the key steps undertaken, including dataset preparation, model 

architectures, and evaluation procedures. 

 

Evaluation Procedures 

To assess the performance of the three transformer architectures, a comprehensive 

evaluation protocol was uses: 

 

Automatic Metrics: Standard natural language generation (NLG) metrics, including BLEU, 

TER, METEOR, and perplexity, were computed on the test set predictions to quantify the 

models' ability to generate relevant, coherent, and contextually appropriate responses. 

More information regarding automated metrics selected and discarded can be found in 

section 3.5. 

Throughout the experiments, rigorous practices were employed to ensure reproducibility 

and statistical significance, including fixed random seeds, multiple training runs, and 

appropriate statistical tests for result comparisons. 

 

This comprehensive methodology aimed to provide a systematic and unbiased evaluation 

of the transformer architectures' capabilities in dialogue modelling, specifically concerning 

their ability to leverage contextual information from previous conversational turns. The 

findings derived from this study contribute to the ongoing efforts in advancing the state-of-

the-art in conversational AI and developing more natural and contextually aware dialogue 

systems. 

3.2 Datasets 

Five different dialogue datasets have been chosen to train these models. 

 

The first corpus selected to train the architecture is the OpenSubtitles dataset (Lison & 

Tiedemann, 2016), an open domain dataset of film subtitles consisting of more than 441 

million sentences in XML format. This specific dataset has been selected not only for its 

consequent size, but also for the variety of subjects and registers that it provides. 

Furthermore, the dataset has been used in previous studies (Christensen et al., 2018; 

Sojasingarayar, 2020; Vinyals & Le, 2015), allowing direct comparisons of the proposed 

models to previously published results. However, scene descriptions, close captioning, and 

segmented sentences can be found among the dialogues, which can be problematic when 

training an open domain chatbot because it can lose the cohesiveness of the dialogue 

(Vinyals & Le, 2015; Klein et al., 2017; Christensen et al., 2018; Zhong et al., 2019; 

OpenSubtitles, 2021). Nevertheless, the data does not seem to be of the highest quality. 
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The second corpus selected is the Cornell Movie-Dialogs Corpus (Cornell Movie-Dialogs 

Corpus, 2023). This dataset includes a sizable collection of fictitious dialogue taken from 

uncut film scripts, rich in metadata. The data is presented in TXT format. It provides 

2,20,579 dialogues between 10,292 pairs of film characters; in total, 9,035 characters from 

617 films are involved. There are 304,713 utterances in total, accompanied by metadata 

such as genre, year of release, number of IMDB votes and IMDB rating, and more metadata 

concerning the characters (Cornell Movie-Dialogs Corpus, 2023). For the purpose of this 

research, the metadata has been discarded and only the raw text has been preprocessed 

and used for training. The Cornell Movie-Dialogs Corpus has been selected for several 

reasons: firstly, it was used to train the Tensorflow transformer chatbot model used as a 

baseline in this study, and therefore provided a valuable comparison point. Secondly, it has 

been used in previous studies (Zhong et al., 2019; Ghandeharioun et al., 2019; Roller et 

al., 2021; He et al., 2021), allowing further comparison to previously published results. 

Since the data has been taken from film scripts, it appears to be of decent quality. However, 

the dataset might not be large enough to train more advanced language models. 

 

The third dataset selected is the DailyDialog corpus (Li et al., 2017), which was developed 

specifically with the purpose of creating a high-quality multi-turn dialogue corpus for 

dialogue-modelling. DailyDialog is a manually labelled, multi-turn dataset of excellent 

quality. Ten topics are covered in total by the dialogues in the dataset, which follow 

standard dialogue flows like the Questions-Inform and Directives-Commissives bi-turn 

flows. Furthermore, DailyDialog has distinct multi-turn dialogue flow patterns that mirror 

actual human communication styles. It contains in total 13,118 dialogues and 103,632 

utterances (Li et al., 2017). Besides having been designed specifically for dialogue-

modelling, this corpus has also been used in previous studies (Klein et al., 2017; Zhong et 

al., 2019; He et al., 2021), which allows for results comparison.  Although the data appears 

to be clean and less noisy compared to other datasets, it is also smaller, therefore less 

suited for more complex dialogue models. 

 

In order to compare our work against existing literature, the proposed architectures were 

also tested on the Interactive Emotional Dyadic Motion Capture (IEMOCAP) database 

(Busso et al., 2008). This database is a widely used multimodal corpus designed for the 

study of human emotions in conversational settings. Developed by researchers at the 

University of Southern California, IEMOCAP contains approximately 12 hours of 

audiovisual data from dyadic sessions of male and female actors (Busso et al., 2008). The 

dataset includes video, speech, motion capture of face, and text transcriptions, making it a 

rich resource for multimodal emotion recognition and analysis. 

IEMOCAP consists of five sessions, each featuring a different pair of actors engaging in 

both scripted and improvised scenarios designed to elicit specific emotional responses. 

The database covers a range of emotions, including happiness, anger, sadness, frustration, 

and neutral states. One of the unique aspects of IEMOCAP is its inclusion of motion capture 

data for facial expressions, which provides detailed information about facial muscle 

movements during emotional expressions (Busso et al., 2008). This feature makes 

IEMOCAP particularly valuable for researchers studying the relationship between facial 

expressions and emotional states in conversation. 

The dataset has been extensively used in various research areas, including speech 

emotion recognition, multimodal sentiment analysis, and affective computing. Its 

comprehensive nature, combining audio, visual, and textual data, has made it a benchmark 
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dataset for developing and evaluating multimodal emotion recognition systems (Tripathi et 

al., 2019). However, it's worth noting that while IEMOCAP provides a rich source of 

emotional data, it is based on acted scenarios, which may not always perfectly reflect 

natural, spontaneous emotional expressions in real-world conversations. 

 

Finally, leveraging the Multimodal EmotionLines Dataset (MELD) (Poria et al., 2019) to train 

a chatbot model represents a promising avenue for advancing conversational emotion 

recognition systems. MELD, an extension of the EmotionLines dataset, uniquely integrates 

audio, visual, and textual modalities, providing a comprehensive resource for 

understanding emotions in multi-party conversations. With over 1400 dialogues and 13000 

utterances extracted from the Friends TV series, MELD incorporates a diverse range of 

speakers and encompasses seven labelled emotions—Anger, Disgust, Sadness, Joy, 

Neutral, Surprise, and Fear, along with sentiment annotations (positive, negative, and 

neutral) for each utterance. 

 

The rationale behind utilising MELD lies in the growing significance of multimodal emotion 

recognition within the field of AI. This dataset is instrumental in addressing the limitations 

of existing resources like EmotionLines, which focus solely on text-based emotion 

recognition. MELD's multimodal nature facilitates a more nuanced understanding of 

emotional context within sequential turns of dialogues, thereby enhancing the accuracy of 

emotion recognition models. The availability of audio and visual data for each dialogue 

supports comprehensive context modelling, a crucial aspect for tackling challenges related 

to emotion change and flow in conversational sequences. 

 

The creation process of MELD involved meticulous timestamp extraction from subtitle files, 

ensuring chronological order and episode cohesion for each dialogue. Subsequently, 

audiovisual clips corresponding to each utterance were extracted, resulting in a dataset 

enriched with visual, audio, and textual modalities. This extensive multimodal dataset not 

only addresses the shortcomings of existing dyadic datasets like IEMOCAP and SEMAINE, 

but also distinguishes itself by focusing on multi-party conversations. 

 

To the best of the researchers' knowledge, no other study has used the MELD dataset for 

dialogue modelling tasks like response generation or dialogue management. This gap in 

the literature is significant because MELD offers unique characteristics that could advance 

dialogue systems development: its natural conversations from TV shows capture authentic 

human interaction patterns, complex turn-taking dynamics, and rich emotional context that 

are often missing in existing dialogue datasets. Most studies have utilised MELD primarily 

for the task of dialogue emotion recognition, given its focus on capturing emotional 

expressions across multi-party conversations. However, this unique dataset comprising 

natural multi-turn dialogues could potentially offer valuable avenues for exploring dialogue 

modelling research beyond just emotion recognition. The dataset's multi-party nature could 

help models learn more sophisticated dialogue management strategies that better handle 

multiple participants - a capability current dialogue systems often struggle with. 

 

One promising direction would be to investigate the challenges and opportunities in 

leveraging MELD's multi-party conversational structure to develop dialogue models 

capable of coherent multi-participant interactions. Existing datasets often model just two-

party conversations, but many real-world scenarios involve group discussions. Studying 



 

39 

approaches to effectively capture turn-taking dynamics, relationship understanding 

between participants, and maintaining consistent personality traits could push the 

boundaries of multi-party dialogue systems. 

 

Furthermore, the emotional dimension of MELD's dialogues provides an intriguing test-bed 

for building affect-aware response generation models. Incorporating emotional context 

understanding could enable dialogue systems to respond more sensitively and naturally in 

emotionally-charged conversations compared to purely rational counterparts. Techniques 

for emotion recognition, emotional mimicry, and regulating the effect of generated 

responses are potential areas worth exploring. 

 

Additionally, MELD's TV show transcript origin means the conversations exhibit heightened 

spontaneity, slang, and realistic disfluencies compared to typical constrained dialogue 

datasets. This naturalistic quality creates opportunities to develop robust dialogue models 

that can gracefully handle messy, colloquial language while maintaining coherence and 

relevance. Transfer learning from handling such naturalistic dialogues could boost real-

world performance. 

 

However, leveraging MELD may also pose challenges like navigating social implications of 

amplifying conversational biases or toxic language present in raw TV transcripts. Robust 

filtering and guidance techniques may be needed to develop applications aligned with 

social norms and values. Overall, thoughtful exploration of this unique multidimensional 

dialogue dataset could catalyse pioneering advances across multiple dialogue modelling 

research fronts. To the best of our knowledge, this is the first study that uses the MELD 

dataset to leverage audio transcripts and audio embeddings in order to train a multimodal 

chatbot.  

 

A detailed comparison of each dataset’s specifications can be found in Table 1. 

 
Table 1. Table comparing the different datasets 

 OpenSubtitle
s 

DailyDialog Cornell Meld Iemocap 

Type of 
Content 

Film subtitles Dialogues 
for English 
learners 

Raw film 
scripts 

TV series 
dialogues 

scripted and 
spontaneous 
sessions of 
dyadic 
conversation
s 

Number of 
Utterances 

441.5 M (2018 
release) 

103,632 304,713 13,708  10,039 

Number of 
Tokens 

3.2 G (2018 
release) 

17,812 48,177 10,643 2,171 
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Source Entire 
database of 
the 
OpenSubtitles
.org 
repository 

Fictional 
conversatio
ns extracted 
from raw 
film scripts 

Raw data 
crawled from 
various 
websites that 
provide 
content for 
English 
learners 

extracted 
from the 
Friends TV 
series 

original 
research 

3.2.1 Data Cleaning and Preparation 

The experiments conducted in this study relied on several publicly available dialogue 

datasets to ensure broad applicability and robust evaluation. The datasets were carefully 

curated to encompass diverse domains, conversation styles, and levels of contextual 

complexity. Preprocessing steps were applied to ensure data quality and compatibility with 

the transformer models. 

 

Dataset Selection: Five benchmark dialogue datasets were selected — DailyDialog, 

OpenSubtitles, Cornell, IEMOCAP and Meld. These datasets cover scenarios ranging from 

daily conversations to open-domain chit-chat, providing a comprehensive test bed. Table 

1. Presents the main features of the selected dataset for this study. 

Data Cleaning: The raw dialogue transcripts underwent cleaning processes to remove 

irrelevant artefacts, handle encoding inconsistencies, and address missing or corrupted 

data points. 

Conversation Segmentation: Each dataset was segmented into individual conversations, 

with adjacent utterances grouped to preserve the conversational flow and contextual 

information. 

Train-Test Split: For each dataset, a random 89/10/1 split was applied to separate the data 

into training, development and testing subsets, ensuring fair and unbiased model 

evaluation. 

 

The dataset partitioning strategy employed in this study utilized an 89/10/1 split ratio for 

training, development, and testing subsets, respectively. This particular split ratio was 

adopted following the approach established by Vaswani et al. (2017) in their seminal work 

on transformer architectures, where they demonstrated that allocating a larger portion of 

data to the training set can enhance model performance when working with large-scale 

dialogue datasets. The rationale behind this distribution stems from the observation that 

transformer models, being data-hungry architectures, benefit from maximizing the available 

training data while maintaining sufficient samples for validation and testing. 

While the conventional 80/10/10 split is widely used in machine learning research, our 

modified ratio reflects the specific requirements of dialogue modelling tasks. The allocation 

of 89% to the training set ensures robust learning of conversational patterns and contextual 

dependencies, which is particularly crucial for transformer-based architectures. The 10% 

development set provides adequate data for model validation and hyperparameter tuning, 

while the 1% test set, containing approximately 4,400 samples (based on our max_samples 

parameter of 440,000), offers a sufficient number of examples for reliable performance 

evaluation. 
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This split ratio has also been employed by the original TensorFlow example used as a 

baseline. However, it is important to note that our choice of split ratio represents a trade-

off between maximizing training data and maintaining adequate evaluation capabilities, and 

future researchers may wish to adjust these proportions based on their specific 

requirements and computational resources. 

 

Prior to utilisation for training purposes, each corpus underwent meticulous preprocessing 

procedures adhering to standard Natural Language Processing (NLP) frameworks to 

ensure uniform format and high quality. This preprocessing stage is pivotal in preparing the 

data for subsequent modelling tasks, facilitating optimal performance and robustness of the 

neural network models. Subsequently, the processed corpora were partitioned into distinct 

training, validation, and test sets, adhering to best practices in machine learning 

experimentation to ensure reliable evaluation metrics and generalisation capabilities of the 

trained models. 

 

The preprocessing pipeline encompassed a series of essential steps to cleanse and 

standardise the textual data. Firstly, each sentence was transformed to lowercase to 

maintain consistency in casing throughout the corpus. Additionally, a space was introduced 

between words and their subsequent punctuation marks, ensuring proper tokenization and 

syntactic parsing. Extraneous trailing spaces and non-alphabetic symbols or punctuation 

were removed to streamline the text further. Furthermore, contractions were expanded to 

their full forms to facilitate accurate interpretation and understanding by the neural network 

models. Other elements such as HTML tags, URLs, emojis, duplicate words, and excessive 

whitespace were also eliminated to maintain the integrity and coherence of the text data. 

All the steps listed above have been implemented through automated pre-processing 

functions, to ensure a standardized pre-processing of all datasets. 

Potential bias concerns commonly associated with dialogue modelling include prejudice 

towards different genders and races (Zhou et al., 2022; H. Liu et al., 2020). To mitigate this 

issue, references to the gender of the speaker (e.g. “male speaker one”) have been 

eliminated to feed the model with exclusively dialogue content. Although biased dialogue 

may still be present in one or more of the datasets used for the purpose of this study, the 

varied nature of the data and the different characteristics of the datasets should at least 

partially mitigate potential bias. 

 

To facilitate efficient storage and retrieval of preprocessed data for subsequent 

experiments, each dataset was transformed into a structured JSON format. This format 

organised the data into lists of input sentences and corresponding output sentences, 

preserving the inherent associations between dialogue pairs. By encapsulating the 

preprocessed data in JSON format, the preprocessing steps need only be executed once, 

optimising computational efficiency and enabling seamless data retrieval for subsequent 

experiments and analyses. 

 

During each experiment, the preprocessed dataset underwent tokenization and 

subsequent transformation into embeddings using the designated embedding method 

specified for the experiment. Three distinct embedding methods were employed to facilitate 

comparative analysis of model performance across different embedding strategies, thereby 

enabling insights into the relative efficacy and suitability of each method for the given task. 

This rigorous approach to preprocessing and embedding transformation laid the 
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groundwork for robust experimentation and evaluation of neural network models in 

multimodal dialogue modelling. 

 

To ensure the comparability of experiments across datasets of varying sizes, a parameter 

called max_samples was introduced to limit the number of sentences used during the 

training process. This parameter serves to maintain consistency in the training data's 

magnitude, facilitating fair comparisons between different datasets. In the context of these 

experiments, the maximum number of samples was set to 440,000. This particular value 

was chosen as it aligns with the size of several key datasets used in the study. 

 

The choice of 440,000 samples is significant as it represents a uniform scale across 

multiple datasets. Specifically, it corresponds to the entire MELD dataset, the entire Cornell 

dataset, the entirety of the Endure DailyDialog dataset, and approximately 0.1% of the 

OpenSubtitles dataset. By employing this consistent sampling approach, researchers can 

effectively control for dataset size discrepancies, ensuring that each model is trained on a 

comparable amount of data. This not only facilitates fair evaluations but also enhances the 

reliability and validity of the experimental results. 

 

Moreover, limiting the training data to a standardised number of samples enables 

researchers to focus on the quality rather than the quantity of the dataset. This approach 

ensures that each model is exposed to a representative subset of the available data, 

allowing for meaningful comparisons of their performance across different datasets. By 

standardising the training data size in this manner, researchers can uncover insights into 

how various transformer architectures perform under similar conditions, paving the way for 

more robust and informative conclusions in the field of dialogue modelling. 

3.2.2 Extracting Audio Embeddings  
To ensure systematic testing of the different architectures using different contextual 

embeddings, they were tested on audio information only, before integrating audio and text 

embedding in a multimodal dialogue model. The aforementioned architectures were 

therefore tested on audio embeddings alone, creating audio unimodal architectures. In 

order to do so, audio embeddings were extracted from the MELD dataset video files. 

To extract the audio embeddings from the video, a specific function called 

extract_embedding was created. The provided function extract_embedding is designed to 

extract audio embeddings from video files in the MELD dataset. Here's what the function 

does: 

 

1. Checking for Cached Embeddings: The function first checks if the audio 

embeddings for a specific dialogue and phrase have already been computed and 

cached. It constructs a cache file name based on the dialogue and phrase indices, 

and checks if the file exists. 

2. Loading and Processing the Video: If the cache file doesn't exist, the function loads 

the corresponding video file (in MP4 format) from the specified directory using the 

AudioSegment library. It then performs several audio processing steps, including 

setting the number of channels to 1 (mono), setting the frame rate to 16000 Hz, and 

setting the sample width to 2 bytes. 
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3. Exporting the Audio: The processed audio is exported as a WAV file with the same 

name as the original video file, but with a different extension. 

4. Extracting Audio Embeddings: The function reads the WAV file using the sound file 

library and passes the audio data and sample rate to the openl3 library's 

get_audio_embedding function. This function calculates audio embeddings, which 

are compact representations of the audio signal that capture relevant features for 

downstream tasks. The function specifies the “env” content type, “linear” input 

representation, and an embedding size of 512. 

5. Padding and Saving Embeddings: The extracted audio embeddings are padded to 

a fixed length (max_len) using the pad function, which is likely a custom function 

defined elsewhere. The padded embeddings are then converted to a PyTorch 

tensor and saved to the cache file using torch.save. 

6. Appending Embeddings: If the cache file exists, the function loads the embeddings 

from the cache file and appends them to a list called elements. 

7. Returning Embeddings: Finally, the function returns the list of audio embeddings 

(elements). 

 

In summary, the extract_embedding function is responsible for loading video files from the 

MELD dataset, processing the audio, extracting audio embeddings using the openl3 library, 

caching the embeddings for future use, and returning the embeddings for a given dialogue 

and phrase. The caching mechanism is implemented to avoid redundant computations and 

improve efficiency when working with the same set of dialogues and phrases multiple times. 

3.3 Multimodal Dialogue modelling 

Multimodal chatbots, capable of processing and generating responses across multiple 

modalities such as text, images, and audio, represent a significant advancement in 

dialogue modelling. Incorporating multimodal capabilities into chatbots enhances their 

ability to understand and generate responses that are not only contextually relevant but 

also rich in sensory information, mirroring the way humans communicate. As articulated by 

(Sun et al., 2022), integrating multimodal inputs allows chatbots to leverage the 

complementary nature of different modalities, leading to more nuanced and engaging 

interactions with users. By interpreting a diverse range of input signals, multimodal chatbots 

can infer user intent more accurately, leading to more personalised and contextually 

appropriate responses. 

 

One key characteristic of multimodal chatbots is their ability to process and synthesise 

information from diverse sources, including text, images, and audio. This versatility enables 

chatbots to engage users in more immersive and interactive conversations, catering to a 

wide range of communication preferences and styles. According to (Sundar & Heck, 2022; 

Zhang et al., 2020), multimodal chatbots leverage advanced machine learning techniques 

such as deep learning and multimodal fusion to seamlessly integrate information from 

different modalities, resulting in a more comprehensive understanding of user queries and 

preferences. By synthesising information from multiple modalities, multimodal chatbots can 

provide richer and more informative responses, enhancing the overall user experience and 

satisfaction. 
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Furthermore, multimodal chatbots exhibit adaptability and robustness in handling complex 

dialogue scenarios. Unlike traditional chatbots that rely solely on text inputs, multimodal 

chatbots can leverage additional contextual cues from images, audio, or other sensory 

inputs to enhance their understanding of user intent and context. This adaptability is crucial 

in real-world applications where users may communicate using a variety of modalities or in 

noisy environments. Multimodal chatbots equipped with robust multimodal fusion 

mechanisms can effectively integrate information from different modalities, ensuring 

consistent and accurate responses across diverse dialogue scenarios. By harnessing the 

power of multimodal inputs, chatbots can achieve higher levels of contextual understanding 

and adaptability, paving the way for more natural and intuitive human-computer 

interactions. As far as the researchers are aware, this study represents a pioneering effort 

in utilising the MELD dataset to harness the power of audio transcripts and audio 

embeddings for training a multimodal conversational agent. 

 

Recognizing the importance of incorporating diverse modalities into dialogue systems, the 

study embarked on a journey to investigate the potential of multimodal approaches in 

enhancing dialogue understanding and generation capabilities. To facilitate this 

exploration, this research exploited the Multimodal dataset MELD (Multimodal 

EmotionLines Dataset), a rich and diverse corpus meticulously curated to encompass 

textual, visual, and acoustic modalities. By leveraging the MELD dataset, this research 

sought to unravel the intricacies of multimodal communication and elucidate how 

integrating multiple modalities can enrich the dialogue modelling process. Through 

systematic experimentation and analysis on the MELD dataset, the study aimed to uncover 

insights that could drive advancements in multimodal dialogue systems and pave the way 

for more natural and immersive human-computer interactions. 

 

In order to use the Multimodal dataset MELD, a specific class has been defined.  

The provided Python class, named MeldMp4, is designed for processing audio and text 

data from the MELD dataset. Here's a description of its main functionalities: 

The class constructor __init__ takes several parameters, including directory (the path to 

the dataset), max_samples (the maximum number of samples to load), max_words 

(maximum number of words per sample), and cache (a boolean flag indicating whether to 

use caching). 

The load method is responsible for loading the data. It checks if caching is enabled and 

either loads the data from cache or reads it from files, processes the data, and returns two 

lists: questions and answers. 

The open_file method reads the MELD dataset files, extracts information about dialogues 

and phrases, and processes the audio files to obtain text representations. 

The class handles caching by storing processed data in JSON files based on a hash 

generated from the specified parameters (max_samples and max_words). This helps 

speed up the loading process for subsequent runs with the same parameters. 

The extract_sub_title and related methods are responsible for converting audio from video 

files into text using different approaches, such as using Google Speech Recognition or the 

Whisper ASR (Automatic Speech Recognition) model. 

Overall, the class is designed for efficient loading and processing of audio and text data 

from the MELD dataset, with an emphasis on handling large datasets and incorporating 

caching mechanisms. 
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To extract the audio embeddings from the video files of the MELD dataset, the steps 

outlined in section 3.2.2 were implemented. 

 

This class used Whisper ASR to extract textual data from the original MP4 files. Whisper 

automatic speech recognition (ASR) is an innovative technology designed to transcribe 

speech accurately and efficiently. Developed by researchers at OpenAI, Whisper 

represents an ASR system trained on an extensive corpus of 680,000 hours of multilingual 

and multitask supervised data sourced from online sources. This large and diverse dataset 

underpins Whisper's enhanced robustness to various challenges, including accents, 

background noise, and technical language nuances. Additionally, Whisper's expansive 

dataset facilitates transcription in multiple languages and supports translation from those 

languages into English. The Whisper architecture adopts a simple yet effective end-to-end 

approach, utilising an Encoder-Decoder Transformer. Input audio undergoes segmentation 

into 30-second chunks, conversion into log-Mel spectrograms, and subsequent processing 

through an encoder. The decoder is trained to generate corresponding text captions, 

augmented with special tokens directing the model to perform tasks such as language 

identification, phrase-level timestamps, multilingual speech transcription, and translation to 

English. Unlike existing approaches that often rely on smaller, more tightly aligned audio-

text datasets or unsupervised audio pretraining, Whisper benefits from its broad and 

diverse dataset without being fine-tuned to any specific domain. Consequently, while it may 

not outperform specialised models on benchmarks like LibriSpeech, Whisper demonstrates 

superior zero-shot performance across diverse datasets, exhibiting 50% fewer errors. 

Notably, Whisper's dataset includes a substantial portion of non-English audio, allowing it 

to alternate between transcribing in the original language or translating to English. This 

approach proves particularly effective in learning speech-to-text translation and surpasses 

the state-of-the-art supervised models in zero-shot translation performance on CoVoST2 

to English.  

 

Nevertheless, Automatic Speech recognition still poses some of the aforementioned 

challenges (Gong et al., 2023). These challenges include variations in speech patterns and 

accents, background noise interference, speech overlap, and speaker diarization errors. 

Variations in speech patterns and accents can hinder the accuracy of ASR systems, 

particularly when encountering diverse linguistic contexts or non-standard pronunciations. 

Background noise interference, such as environmental sounds or overlapping 

conversations, can obscure speech signals, leading to misinterpretations by ASR systems. 

Speech overlap poses a significant challenge, especially in group discussions or interviews, 

where multiple speakers may talk simultaneously, resulting in difficulty separating individual 

speech segments. Additionally, speaker diarization errors, where ASR systems incorrectly 

attribute speech segments to different speakers, can further complicate the transcription 

process (T. Chen et al., 2020; Jurafsky & Martin, 2008). These challenges proved 

particularly difficult to overcome when transcribing audio data recorded from a TV show 

such as Friends, where one can easily encounter background noise, different accents, 

soundtracks and other audio tracks (such as a laughing track in the background), and most 

importantly overlapping voices or false starts to the conversation. All of these issues 

contributed to somewhat degrading the quality of the textual data extracted from the original 

Mp4 files.  
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3.3.1 Incorporating Audio Embeddings 

The Audio-Transformer model represents a novel approach within the realm of dialogue 

modelling, leveraging both textual and audio information to enhance word representations. 

This architecture builds upon the traditional encoder-decoder transformer framework, a 

widely utilised structure in sequence-to-sequence learning tasks. In this modified 

framework, each word representation is enriched with both the traditional word embedding 

(wn) and a word-level audio representation (an), resulting in a combined representation 

[wn; an]. The integration of audio features into the word representation enables the model 

to capture additional contextual information from the audio input, thereby enhancing its 

ability to understand and generate natural-sounding responses. 

 

One of the potential advantages of the Audio-Transformer model lies in its ability to 

leverage multimodal information, incorporating both textual and audio features into the 

dialogue modelling process. By integrating audio embeddings derived from the audio input 

alongside traditional word embeddings, the model gains access to richer and more diverse 

contextual cues, which can potentially lead to more accurate and contextually relevant 

responses. This could prove particularly beneficial in scenarios where audio cues provide 

valuable context or additional information that may not be captured through text alone. The 

potential advantage of this architecture is, therefore, its ability to capture nuances and 

contextual information that may be conveyed through the audio modality but not fully 

captured by the text alone. For example, in emotion recognition or sentiment analysis tasks, 

the tone, pitch, and other acoustic features can provide valuable insights beyond the literal 

text. By explicitly incorporating these audio features into the word representations, the 

model may better understand the underlying emotions, sentiments, or intentions expressed 

in the input. 

 

Integrating textual and audio modalities through embeddings can offer several advantages 

for dialogue modelling systems. Multimodal representations that combine language and 

acoustic cues have the potential to capture more comprehensive conversational context 

compared to text-only approaches. Audio embeddings encapsulate paralinguistic features 

such as tone, emotion, and vocal emphasis, which are often lost when solely relying on 

textual inputs (Arevalo et al., 2020). This richer multimodal representation can lead to 

improved understanding and generation of more natural, contextually appropriate 

responses (Tsai et al., 2019). 

 

However, there are also potential challenges and considerations with this approach. 

Aligning and synchronising the audio features with the corresponding text can be a non-

trivial task, especially in cases where the audio and text modalities are not perfectly aligned 

or contain noise or errors. Additionally, the quality and effectiveness of the audio 

representations obtained from the openl3 library may vary depending on the audio 

characteristics and the specific task at hand. 

 

Another potential concern is the increased computational complexity and memory 

requirements introduced by incorporating additional audio features into the model. This 

could make training and inference more resource-intensive, particularly for large datasets 

or models with high dimensionality. Furthermore, the effectiveness of the Audio-

Transformer model may depend on the quality and reliability of the audio embeddings 
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extracted from the input audio data, highlighting the importance of robust audio processing 

techniques. 

 

From a computational perspective, processing both textual and audio inputs increases the 

complexity and resource requirements of the model, leading to longer training times and 

higher computational demands (Tsai et al., 2019). This can be a concern for resource-

constrained environments or real-time applications. 

Moreover, obtaining high-quality multimodal dialogue datasets with aligned text and audio 

data can be challenging and resource-intensive. Data collection and annotation processes 

for multimodal data are often more complex and time-consuming compared to text-only 

datasets (Poria et al., 2019). Effectively fusing textual and audio embeddings in a 

meaningful way can also be a non-trivial task, as different modalities may have varying 

levels of importance or relevance depending on the dialogue context (Gu et al., 2023). 

Additionally, audio data can be susceptible to various types of noise, such as background 

noise, overlapping speech, or recording artefacts. Preprocessing audio signals and 

handling noise effectively can require additional domain-specific techniques (W. Zhao et 

al., 2019). Despite these challenges, the potential benefits of multimodal dialogue models, 

such as improved understanding and generation of more natural and contextually 

appropriate responses, make them an active area of research. Our research presents a 

novel approach to training a multimodal chatbot by integrating audio transcripts and audio 

embeddings from the MELD dataset, an endeavour that has not been undertaken before, 

to the best of our knowledge. 

 

Despite these challenges, the Audio-Transformer model represents an interesting step 

towards multimodal learning and may pave the way for more sophisticated architectures 

that can effectively integrate and reason over multiple modalities. Its performance and 

applicability would ultimately depend on the specific task, dataset characteristics, and the 

trade-offs between model complexity and potential performance gains. 

 

Figure 3.1 presents a simplified illustration of the Audio-Transformer architecture, 

highlighting the integration of audio features into the word representations: 
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Figure 3.1. A Transformer architecture modified to receive audio embeddings along text embeddings as inputs 

in both the encoder and the decoder stack.  

 

In this diagram, the word embeddings and audio embeddings are concatenated to form the 

input word representations to the transformer encoder. The encoder then processes these 

multimodal representations, potentially capturing interactions between the textual and 

acoustic information. The resulting encoded representations are then passed to the 

decoder for sequence generation or other downstream tasks. 

 

In summary, the Audio-Transformer model represents an innovative approach to dialogue 

modelling by incorporating audio information into the word representations. While offering 

the potential for enhanced context understanding and more natural conversation 

generation, this architecture also presents challenges related to computational complexity 

and data integration. Further exploration and experimentation are needed to fully assess 

the effectiveness and practical applicability of the Audio-Transformer model in dialogue 

modelling tasks. 

3.4 Training Procedure 

To train the chatbot models, a systematic and rigorous procedure was followed, 

encompassing data preparation, model training, and evaluation. Each step was 

meticulously designed to ensure reproducibility and validity of results across experiments. 
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Before commencing training, each corpus underwent a comprehensive preprocessing 

phase to ensure consistency and quality of the text data. This included standard NLP 

techniques such as lowercasing, punctuation handling, removal of contractions, elimination 

of HTML tags, URLs, emojis, duplicate words, and multiple spaces, among others. The 

datasets were then divided into training, validation, and test sets to facilitate model training 

and evaluation. The processed text was transformed into JSON format, comprising lists of 

input and output sentences, streamlining data retrieval for subsequent experiments. 

 

For each experiment, tokenization was applied to the dataset, followed by embedding 

transformation using one of the three designated embedding methods: automated 

embedding matrix generated from the data, GloVe embeddings, or BERT embeddings. 

This multistep preprocessing ensured that the input data was properly formatted and ready 

for training across different embedding techniques. 

 

For the Multimodal EmotionLines Dataset (MELD), a specialised class named MeldMp4 

was defined to handle audio and text data processing. This class, designed with efficiency 

in mind, facilitated loading and processing of audiovisual data from MELD, incorporating 

caching mechanisms to optimise data retrieval. 

 

The training phase involved deploying four distinct transformer architectures: Baseline 

Transformer, Encoder-Decoder Transformer, Extractor Architecture, and Reencoder 

Architecture. Each architecture was trained using the aforementioned datasets and 

embedding methods, resulting in a comprehensive evaluation of model performance across 

different contexts. 

 

The Baseline Transformer and Encoder-Decoder Transformer architectures followed the 

original transformer architecture proposed in “Attention is All You Need” (Vaswani et al., 

2017), with variations in the embedding layer. The Reencoder Architecture introduced a 

structural modification to the encoder, incorporating embeddings from previous utterances 

to inform the current turn's embeddings. Meanwhile, the Extractor Architecture, inspired by 

(Riley et al., 2021), extracted contextual information from preceding sentences in the 

conversation to enhance model understanding. 

 

Evaluation Metrics: 

To evaluate model performance, a set of standard evaluation metrics was employed, 

focusing on accuracy and speed. Accuracy metrics included BLEU, METEOR, TER and 

Perplexity, traditionally used for machine translation tasks. These metrics were selected 

due to their applicability to assessing the textual entailment of chatbot outputs, despite their 

origin in translation evaluation. Speed, measured in seconds elapsed between user input 

and chatbot response, was also considered an essential metric, reflecting the efficiency of 

the conversational system. 

 

Computational Resources: 

The experiments were conducted using Google Colab runtimes, leveraging T4 GPUs for 

accelerated model training. Despite the resource constraints, strategic management of 

memory and runtime durations ensured efficient experimentation. For longer-running 

experiments exceeding the 24-hour limit on Colab, a virtual machine on the Google Cloud 

Platform with similar computational capabilities was utilised. Detailed specifications of the 
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T4 GPU, including CUDA cores, memory capacity, and software support, were documented 

to provide transparency and reproducibility. 

 

Overall, the training procedure was meticulously designed and executed to facilitate 

rigorous experimentation and comprehensive evaluation of the chatbot models across 

different architectures and datasets. The utilisation of standardised evaluation metrics and 

computational resources ensured robustness and reliability of the research findings. 

3.4.1 Embedding Layers in Large Language Models 

Embedding layers play a pivotal role within language models, serving as a bridge between 

raw textual data and the neural network's computational framework. These layers are 

tasked with transforming discrete tokens or words into dense, continuous vector 

representations, effectively capturing semantic and contextual information encoded within 

the text. By encoding words as dense vectors in a continuous vector space, embedding 

layers enable language models to learn meaningful representations of words and their 

relationships within the context of the given task. This process of embedding enables the 

model to operate in a continuous, high-dimensional vector space, facilitating efficient 

computation and effective learning of complex linguistic patterns. 

The quality and efficacy of embedding layers have a profound impact on the performance 

of language models across various natural language processing tasks. Well-designed 

embedding layers are capable of capturing nuanced semantic relationships between 

words, enabling the model to discern subtle distinctions in meaning and context. By 

learning dense representations that preserve semantic similarity and syntactic 

relationships, embedding layers empower language models to generalise more effectively 

to unseen data and tasks. Consequently, embedding layers that effectively capture the 

underlying semantics of the text contribute to improved model performance, leading to 

enhanced accuracy and robustness in language understanding and generation tasks. 

 

Embedding layers serve therefore as a foundational component in large language models 

(LLMs), facilitating the transformation of discrete textual inputs into continuous vector 

representations. These representations capture semantic relationships and contextual 

information critical for downstream NLP tasks. This chapter delves into the intricate 

workings of embedding layers within LMs, elucidating their role in encoding textual 

information and fostering semantic understanding. Through a comprehensive examination 

of underlying mechanisms and architectural considerations, this chapter aims to provide a 

nuanced understanding of embedding layers' functionality in the context of large-scale 

language modelling. 

3.4.1.1 Fundamentals of Embedding Layers 

At the core of embedding layers lies the concept of distributed representations, wherein 

words or tokens are encoded as dense, low-dimensional vectors in continuous vector 

spaces. This departure from traditional one-hot encoding enables LMs to capture semantic 

similarities and contextual nuances, enhancing their capacity to discern meaning from raw 

textual inputs.  
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3.4.1.2 Embedding Initialization 

The process of initialising embedding layers is crucial for determining the initial state of 

word representations within the model. Pre-trained embeddings, such as Word2Vec 

(Mikolov et al., 2013), GloVe (Global Vectors for Word Representation) (Pennington et al., 

2014), or FastText (Bojanowski et al., 2017), offer a valuable starting point by leveraging 

large corpora to generate contextually rich embeddings. Alternatively, embedding layers 

can be initialised randomly and fine-tuned during the training process to adapt to the 

specific task at hand (Devlin et al., 2019). 

3.4.1.3 Training Dynamics 

During the training phase, embedding layers undergo iterative optimization alongside other 

components of the LM architecture. Through backpropagation and gradient descent 

algorithms, the embedding vectors are adjusted to minimise the discrepancy between 

predicted and actual outcomes, thereby refining their semantic representations (Hinton et 

al., 2012).  

3.4.1.4 Semantic Similarity and Contextual Understanding 

One of the primary functions of embedding layers is to facilitate the computation of semantic 

similarity between words or tokens. By encoding textual inputs into continuous vector 

representations, embedding layers enable large language models (LMs) to capture 

semantic relationships and contextual nuances inherent in language. Techniques such as 

cosine similarity or Euclidean distance metrics are commonly employed to quantify the 

similarity between embedding vectors, enabling tasks such as word similarity detection or 

sentiment analysis. 

3.4.1.5 Dimensionality and Vector Space Properties 

The dimensionality of embedding vectors plays a crucial role in determining the expressive 

capacity and computational efficiency of embedding layers. While higher-dimensional 

embeddings offer finer-grained representations, they also entail increased computational 

overhead  (Turian et al., 2010). Conversely, lower-dimensional embeddings may sacrifice 

some granularity but are more computationally tractable, striking a balance between 

representation quality and computational efficiency (Sutskever et al., 2014). Moreover, the 

choice of vector space properties, such as sparsity or density, influences the model's ability 

to capture semantic relationships effectively. 

3.4.1.6 Contextualised Embeddings 

In recent years, contextualised embeddings have emerged as a powerful extension of 

traditional static embeddings, offering dynamic representations that adapt to the 

surrounding context. Contextualised embeddings, such as those used in models like ELMo 

(M. E. Peters et al., 2018), BERT (Devlin et al., 2019), and GPT (Radford et al., 2019), 

provide dynamic representations that adapt to the surrounding context. Models such as 

ELMo, BERT, and GPT leverage contextualised embeddings to capture intricate semantic 

nuances and syntactic structures present in natural language. By incorporating contextual 

information from surrounding tokens, these models enhance their ability to comprehend 

and generate coherent textual outputs across diverse NLP tasks. 
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3.4.2 Tokenization 

Tokenization is a fundamental preprocessing step in natural language processing (NLP) 

tasks, influencing the performance and effectiveness of LMs. This dissertation thesis 

investigates and compares the characteristics and effects of various tokenization 

techniques, including tfds.deprecated.text.SubwordTextEncoder, a custom-made class 

used to tokenize text to leverage GloVe, and BERT Tokenizer, on the embedding layer of 

large LMs. Through empirical analysis and evaluation, this study aims to provide insights 

into the strengths, weaknesses, and potential applications of each tokenization method in 

the context of LM development. This should provide a comparative analysis of tokenization 

techniques and their impact on Large Language Models 

 

Tokenization serves as the initial step in processing raw text data, dividing input sequences 

into individual tokens or subword units. The choice of tokenization technique can 

significantly impact the subsequent stages of NLP tasks, particularly in the context of large 

LMs. This chapter explores prominent tokenization methods: 

tfds.deprecated.text.Tokenizer, tfds.deprecated.text.SubwordTextEncoder, the tokenizer 

class created to leverage GloVe embeddings, and BERT Tokenizer, analysing their 

respective features and examining their influence on the embedding layer of large LMs. 

3.4.2.1 TensorFlow’s Tokenizer 

The tfds.deprecated.text.Tokenizer, a part of the TensorFlow Datasets library, is a simple 

tokenization approach based on whitespace and punctuation splitting. It segments input 

text into individual words or tokens, treating each word as a distinct entity. While 

straightforward and efficient, this tokenizer may struggle with handling out-of-vocabulary 

words and morphologically rich languages (Tfds.Deprecated.Text.Tokenizer | TensorFlow 

Datasets, n.d.). 

3.4.2.2 TensorFlow’s Subword Text Encoder 

The tfds.deprecated.text.SubwordTextEncoder offers a more sophisticated tokenization 

technique by leveraging subword units to encode text sequences. It employs byte pair 

encoding (BPE) or similar algorithms to segment words into subword units, enabling the 

representation of rare or unseen words through compositionality. This approach enhances 

the robustness of tokenization, particularly in multilingual and morphologically complex 

settings (Sennrich et al., 2016). 

3.4.2.3 GloVe (6b) 

GloVe is an unsupervised learning algorithm for obtaining word representations. Unlike 

traditional embedding techniques, GloVe operates at the word level, generating dense 

vector embeddings based on global co-occurrence statistics. These embeddings capture 

semantic relationships and contextual information, facilitating effective representation 

learning for downstream NLP tasks (Pennington et al., 2014). 

In order to leverage GloVe embeddings, a specific tokenizer class has been created for the 

purpose of this research. 

This specific tokenizer class encapsulates the implementation of tokenization algorithms 

utilising the keras.preprocessing.text Tokenizer. This class offers two key methods: “build” 

and “tokenize_and_filter.” The “build” method initialises the tokenizer by fitting it to the 
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untokenized data, which comprises questions and answers concatenated together. The 

tokenizer is constructed using the Tokenizer module, with an out-of-vocabulary token 

specified as 'OOV' to handle unknown words. Additionally, the start and end tokens are 

defined to mark the beginning and end of sentences. Upon tokenization, the vocabulary 

size is determined, considering the start and end tokens alongside the word index. The 

“tokenize_and_filter” method tokenizes the inputs and outputs, ensuring they do not exceed 

the specified maximum length. Each sentence is prepended with the start token and 

appended with the end token before being checked against the maximum length criterion. 

Tokenized inputs and outputs are then padded to the maximum length using 

keras.preprocessing.sequence.pad_sequences. Through these functionalities, the Algo2 

class facilitates the tokenization and filtering of text data for GloVe embeddings, ensuring 

compatibility with large language models while handling sequence length constraints. 

 

One of the remarkable features of GloVe embeddings lies in their dimensionality, which 

can vary based on the specific requirements of the task at hand.  

GloVe embeddings are available in different dimensions, including 100, 200, and 300 

dimensions, among others. Each dimension corresponds to a distinct aspect or feature of 

the word's semantics, with higher-dimensional embeddings offering more nuanced 

representations. For instance, GloVe embeddings with 100 dimensions provide a relatively 

compact representation, capturing essential semantic information while minimising 

computational overhead. In contrast, embeddings with 300 dimensions offer richer 

representations, enabling finer-grained distinctions between word meanings and contexts. 

 

The choice of GloVe embedding dimensionality depends on various factors, such as the 

complexity of the language being analysed, the size of the vocabulary, and the 

computational resources available. For tasks involving simpler languages or smaller 

datasets, lower-dimensional GloVe embeddings may suffice, providing a balance between 

representation quality and computational efficiency. Conversely, tasks requiring greater 

semantic granularity or handling larger vocabularies may benefit from higher-dimensional 

embeddings. 

 

In practice, researchers and practitioners often experiment with different GloVe embedding 

dimensionalities to optimise model performance for specific tasks. By fine-tuning the 

embedding dimensionality based on task requirements and resource constraints, GloVe 

embeddings can significantly enhance the effectiveness and efficiency of large language 

models across various natural language processing applications.  

3.4.2.4 BERT Tokenizer 

The BERT (Bidirectional Encoder Representations from Transformers) Tokenizer is 

specifically designed for use with transformer-based models like BERT. It employs 

WordPiece tokenization, breaking down input text into subword units based on a pre-

defined vocabulary. By considering both left and right context during tokenization, BERT 

Tokenizer captures bidirectional contextual information, enhancing the model's 

understanding of language semantics (Devlin et al., 2019). This technique dissects input 

text into subword units based on a pre-defined vocabulary, thereby accommodating a wide 

range of linguistic variations and domain-specific terminologies. Unlike conventional 

tokenizers that treat each word as a discrete entity, BERT Tokenizer captures the inherent 
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compositional structure of language, enabling the representation of morphologically rich 

words and out-of-vocabulary terms through subword composition. 

 

Furthermore, what sets BERT Tokenizer apart is its emphasis on bidirectional context. By 

considering both left and right context during tokenization, BERT Tokenizer captures a 

comprehensive view of linguistic relationships, facilitating a deeper understanding of 

language semantics. This bidirectional approach enhances the model's ability to discern 

intricate nuances and contextual dependencies, thereby fostering more robust 

representations in the embedding layer. 

 

BERT Tokenizer's integration with transformer-based architectures aligns seamlessly with 

BERT's core principles of bidirectional learning and contextual embedding generation. As 

a result, the embeddings derived from BERT Tokenizer exhibit a heightened sensitivity to 

contextual cues and linguistic subtleties, empowering downstream tasks with enhanced 

semantic understanding and predictive accuracy. This capability has propelled BERT to the 

forefront of NLP research and applications, revolutionising a myriad of tasks ranging from 

language understanding and sentiment analysis to question answering and text 

summarization. 

 

In essence, BERT Tokenizer stands as a testament to the transformative power of 

advanced tokenization techniques in shaping the capabilities of large language models. Its 

ability to capture bidirectional context and leverage subword composition renders it 

indispensable for tasks requiring nuanced language understanding and contextual 

reasoning. As the field of NLP continues to evolve, BERT Tokenizer's influence is poised 

to endure, paving the way for further advancements in language representation learning 

and natural language understanding. 

 
Table 2. Table comparing the different tokenizers used for experimentation. 

 TensorFlow’s 
Subword Text 
Encoder 

GloVe 6b Bert 

Strategy Subword 
tokenization 

Word tokenization Subword 
tokenization 

Static/Dynamic Dynamic Static Static 

Vocabulary Depends on data 400000 28996 

Cased/Uncased Cased Uncased Cased 

Embedding 
dimension 

256 50, 100, 200, 300 768 

 

3.5 Evaluation Metrics 

An evaluation model will also be put in place, in order to evaluate the accuracy coherence 

of the model output. Accuracy is important in terms of context awareness as a metrics for 
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the ability of the system to provide intelligent and sensible answers to the user's input. 

Dialogue systems evaluation has proven to be a difficult task because human conversation 

focuses on different purposes and objectives. The metrics employed to assess the 

conversation can vary based on the chatbot's objectives. The effectiveness of the 

interaction—that is, whether the chatbot accomplished the task the user requested—will be 

the primary factor used to evaluate a personal assistant chatbot. A companion chatbot will 

be judged on its capacity to maintain the conversation and engage users, as opposed to 

whether the exchange was efficient. A chatbot can be assessed using two primary 

methods: automated evaluation metrics and human evaluation. 

Human evaluation remains a fundamental approach in assessing chatbot performance, 

with numerous studies emphasizing its importance in measuring conversational accuracy 

and quality (Christensen et al., 2018; Sordoni et al., 2015a). This methodology typically 

involves participant engagement with the chatbot system, followed by structured 

assessment through questionnaires or evaluation frameworks. These assessments 

commonly employ rating scales to measure multiple performance dimensions, including 

effectiveness, efficiency, and user satisfaction (Radziwill & Benton, 2019). Despite its 

prevalence in research, human evaluation presents several significant challenges. The 

method requires substantial resource allocation, making it expensive and time-intensive to 

implement. Additionally, scaling such evaluations proves difficult, and the inherent 

subjectivity of human judgment can introduce bias, as different evaluators may rate 

identical interactions differently, even when following standardized assessment 

frameworks. 

Nevertheless, human evaluation offers distinct advantages that justify its continued use in 

chatbot assessment research. Its primary strength lies in the ability to assess multiple 

dimensions of conversational quality simultaneously, providing comprehensive insights into 

the nuances of human-chatbot interactions. Furthermore, evaluation frameworks can be 

tailored to align with specific chatbot objectives and features, offering flexibility in 

assessment criteria. These advantages have led to the widespread adoption of human 

evaluation metrics in prominent studies, including the work of (Sordoni et al., 2015b) and 

(Christensen et al., 2018), establishing it as a valuable methodology in dialogue system 

research despite its limitations. However, given the lack of time and resources, this piece 

of research will use automated evaluation metrics.  

In terms of the amount of time and resources required to complete the evaluation, 

automated evaluation metrics are more effective. However, it seems that industry 

standards are still lacking when it comes to the application of evaluation metrics, and 

automated metrics don't seem to be able to accurately gauge the overall effectiveness, 

efficiency, and quality of the conversation. Nonetheless, these metrics are still frequently 

used to assess chatbots because they are easier to use. The evaluation metrics used to 

measure accuracy will be standard evaluation metrics used for Machine Translation and 

other Natural Language Processing tasks such as BLEU, METEOR, TER and Perplexity, 

as they have been used by Saikh et al., (2018) and by Sordoni et al., (2015). Although 

these evaluation metrics are considered to be more suitable for Machine Translation 

problems, they can still provide valuable information regarding the Textual Entailment of 

the chatbot output (Saikh et al., 2018).  

 

The evaluation metrics used to measure accuracy will be standard evaluation metrics used 

for Machine Translation and other Natural Language Processing tasks, such as BLEU 

(bilingual evaluation understudy); METEOR (Metric for Evaluation of Translation with 
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Explicit ORdering) and TER (Translation Error Rate). Although these evaluation metrics 

are considered to be more suitable for Machine Translation issues, they can still provide 

valuable information regarding the Textual Entailment of the chatbot output (Saikh et al., 

2018). 

 

These metrics offer invaluable insights for developers and researchers engaged in MT 

technology development, as they facilitate frequent evaluations of MT systems with minimal 

human intervention. The primary advantages of automated MT quality metrics lie in their 

speed, ease of execution, and low human labour requirements, making them highly 

conducive to iterative system development processes. Moreover, these metrics obviate the 

need for bilingual speakers and can be repeatedly applied throughout the system 

development life cycle. 

 

However, it is crucial to acknowledge the inherent limitations of MT metrics, particularly in 

the context of translation production scenarios. While these metrics are adept at assessing 

the quality of MT models, their utility in evaluating translation output in real-time production 

environments is limited. Several notable limitations include the necessity for a reference 

translation, which is often impractical to obtain in live translation scenarios, and the 

assumption that the reference translation represents a gold standard, which may not 

always be verifiable due to the inherent variability in translations. Additionally, the 

automated quality scores generated by these metrics may not directly translate to 

actionable insights for translators, as they do not provide information regarding post-editing 

time or compensation requirements. 

 

The decision to incorporate automated metrics into an MT program hinges on the specific 

use case and objectives. If deemed appropriate, it is imperative to train the metrics on 

relevant data and prepare reference translations for each segment to be scored.  

Most automated metrics employ a segment-level similarity-based approach, comparing 

machine-translated segments to human-generated reference translations. This comparison 

typically involves assessing the closeness of the machine-translated output to the reference 

translation, with smaller differences indicative of higher quality. While word-level 

comparisons are common, metrics also utilise n-grams to compute precision scores, where 

n-grams represent contiguous sequences of items in a text or speech sample, such as 

phonemes, syllables, letters, or words. Understanding these underlying methodologies is 

crucial for interpreting and utilising automated MT quality metrics effectively in machine 

learning research and development endeavours. 

However, in comparison to other NLP tasks, all these n-gram based evaluation models 

seem less suited to assess dialogue systems, as two responses may be equally effective 

in responding to a given message even though they do not share any overlapping n-grams. 

Nonetheless, since they are efficient, widely used in research, and easily reproducible, 

these metrics have been selected for the evaluation of the different architectures. 

 

To ensure comprehensive tracking of the evaluation results and facilitate efficient analysis, 

Weights and Biases logging functions and callbacks were integrated into the experiments. 

Through this logging mechanism, the evaluation metrics were systematically recorded and 

stored alongside each experiment's configurations and outcomes. This approach not only 

provided real-time insights into the model's performance but also enabled us to monitor the 

progress of the training process and make informed decisions regarding model adjustments 
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or hyperparameter tuning. Leveraging Wights and Biases logging functions and callbacks, 

ensured the transparency, reproducibility, and rigour of the experimental methodology, 

laying the foundation for robust conclusions and insights derived from our research efforts. 

3.5.1 BLEU 

BLEU was initially developed to measure machine translation outputs, but it is now widely 

used to evaluate a variety of NLP tasks. A translation's value is assigned by the BLEU 

metric on a scale from 0 to 1, although it is usually expressed as a percentage. The more 

a translation resembles a human translation, the closer it is to 1. Put simply, sequential 

words receive a higher score in the BLEU metric (KantanMT - Cloud-based Machine 

Translation Platform), which counts the number of words that overlap in a translation when 

compared to a reference translation. BLEU scores were employed by a number of authors, 

including Dhyani & Kumar, (2020), Saikh et al., (2018), Vaswani et al., (2017), and Sordoni 

et al., (2015), to assess chatbots and other NLP tasks. However, despite its widespread 

usage, BLEU has been subject to criticism due to several inherent limitations. One of the 

primary issues lies in its fixed brevity penalty, which aims to penalise shorter translations 

to compensate for the lack of recall. Critics argue that this penalty is insufficient and may 

not effectively address the recall deficiency, potentially leading to biased evaluations. 

Additionally, BLEU relies on higher-order N-grams as proxies for a translation's 

grammatical correctness. While N-gram counts provide some insight into fluency, they may 

not fully capture the nuances of syntax and grammar. Some researchers advocate for a 

more direct measure of word order and grammaticality, believing that this approach would 

better align with human judgments of translation quality and improve the metric's correlation 

with human assessments. 

 

Moreover, the reliance on N-gram counts in BLEU does not mandate precise word-to-word 

matching, which can lead to inaccuracies in evaluating translations, especially for 

frequently used function terms. BLEU's method of word matching between translations and 

references lacks explicitness, potentially resulting in erroneous “matches.” This ambiguity 

can be particularly problematic for assessing translations in contexts where precise 

terminology is crucial, such as technical or specialised domains. As a consequence, the 

lack of specificity in word matching within BLEU may undermine the reliability and accuracy 

of its assessments, raising concerns about its suitability for certain NLP tasks. These 

limitations underscore the need for continued refinement and development of evaluation 

metrics that more accurately reflect the intricacies of translation quality and align with 

human judgments. 

3.5.2 METEOR 

METEOR was developed specifically to address the previously mentioned issues with 

BLEU. Translations are graded according to how closely their translations match a 

reference translation, word for word. When there are numerous translations of references 

available, the translation that is provided is assessed separately from each reference, and 

the highest score is given. The next section goes into more detail about this. Given a pair 

of translations (a system translation and a reference translation) to compare, METEOR 

generates an alignment between two strings. A mapping between unigrams is known as 

alignment, and it occurs when every unigram in one string corresponds to either zero or 



 

58 

one unigram in the other string and to none in the same string. As a result, within a given 

alignment, a single unigram in one string cannot translate to more than one unigram in the 

other string (Agarwal & Lavie, 2008; Banerjee & Lavie, 2005). It is utilised in conjunction 

with BLEU by Sordoni et al. (2015) and K. Xu et al., (2015) for the evaluation of chatbot 

and image captioning models, respectively. 

Meteor assesses translations by computing a score based on explicit word-to-word 

matches between the translation and a reference translation. When multiple reference 

translations are available, each translation is scored against them independently, and the 

best-scoring pair is selected. Meteor establishes a word alignment between the two strings 

to be compared, ensuring that each word in one string corresponds to at most one word in 

the other. This alignment is generated incrementally by a sequence of word-mapping 

modules. 

 

The “exact” module maps two words if they are identical, while the “porter stem” module 

maps words that become identical after being stemmed using the Porter stemmer. The 

“WN synonymy” module maps words considered synonyms based on their membership in 

the same “synset” in WordNet. Initially, all potential word matches between the two strings 

are identified. The largest subset of these mappings, forming a valid alignment, is then 

selected. In cases where multiple maximal cardinality alignments exist, Meteor chooses the 

one that preserves the most similar word order between the strings. 

The order in which the modules are executed reflects preferences for word matching. By 

default, the “exact” module is applied first, followed by “porter stemming,” and then “WN 

synonymy.” Once the final alignment is determined between the system translation and the 

reference, the Meteor score is calculated. This score considers the precision (P) and recall 

(R) of matched unigrams, which are weighted using a parametrized harmonic mean. 

To account for the extent to which matched unigrams maintain the same word order, 

METEOR computes a penalty based on fragmentation. The fragmentation fraction is 

determined by dividing the number of chunks in the sequence of matched unigrams by the 

total number of matches. The penalty is then calculated using a function of the 

fragmentation fraction. 

Finally, the Meteor score for the alignment is computed as a combination of the harmonic 

mean of precision and recall and a penalty term. The parameters of the metric, including α, 

β, and γ, are tuned to maximise correlation with human judgments of translation adequacy 

(Lavie & Agarwal, 2007). 

The current version of METEOR optimises parameters to maximise Pearson's correlation 

with human adequacy judgments. However, it's uncertain whether these parameters are 

optimal for correlating with human rankings. Thus, there is a need to re-tune the parameters 

to maximise correlation with ranking judgments. This entails computing full rankings based 

on both the metric and human judgments, and then evaluating suitable correlation 

measures on those rankings. Each translation hypothesis is assigned a score between 0 

and 1, which can be straightforwardly converted into rankings under the assumption that 

higher scores indicate better hypotheses (Agarwal & Lavie, 2008). 

3.5.3 TER 

The Translation Error Rate (TER) is a commonly used metric for assessing textual 

entailment, but its application in assessing chatbot performance has been less than that of 

other methods. TER is an automatically-generated machine translation evaluation statistic. 
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The edit distance determines it. By figuring out how many changes are required to go from 

an output sentence translated by a machine to a reference sentence translated by a human, 

it determines the mistake rate. Thus, the complement of this error rate is considered when 

computing the similarity score (Dhyani & Kumar, 2020; Snover et al., 2006). 

Among the various automated metrics, the Translation Edit Rate (TER) score stands out 

as a valuable indicator of post-editing effort required for a project. By quantifying the editing 

required to align machine translations with reference translations, TER scores offer insights 

into post-editing workload estimation. Notably, lower TER scores indicate lesser post-

editing effort, making them desirable from an efficiency standpoint (Snover et al., 2006). 

3.5.4 Perplexity 
Perplexity is a widely used automated performance metric for evaluating language models, 

including those used in dialogue modelling and text generation tasks. It measures how well 

a probability model predicts a sample, with lower perplexity scores indicating better 

performance. In the context of language models, perplexity quantifies the model's ability to 

predict the next word in a sequence, given the preceding words. 

Mathematically, perplexity is defined as the exponential of the cross-entropy loss, which is 

calculated over a test set. It can be interpreted as the weighted average branching factor 

of the language model – in other words, how many equally likely words can follow any given 

word. A lower perplexity score suggests that the model is more confident and accurate in 

its predictions, while a higher score indicates more uncertainty and potential for errors in 

generated text. 

While perplexity is a valuable metric for comparing different language models and tracking 

improvements during training, it has some limitations when applied to dialogue modelling 

and open-ended text generation tasks. Perplexity primarily measures the model's ability to 

predict likely continuations of text, which doesn't always correlate directly with the quality, 

coherence, or relevance of generated responses in a dialogue context. Additionally, 

perplexity may not capture important aspects of dialogue such as maintaining context over 

multiple turns, generating diverse responses, or adhering to specific conversational goals. 

Therefore, while perplexity remains a useful tool in the evaluation toolkit for language 

models, it is often used in conjunction with other metrics and human evaluation to provide 

a more comprehensive assessment of model performance in dialogue systems. 

In our study, perplexity was incorporated as part of our evaluation metrics specifically to 

facilitate a direct comparison with the multimodal model presented in the study by Young 

et al., (2020) titled “Dialogue Systems with Audio Context”. By using perplexity as a 

common metric, this study aims to establish a basis for comparison between our multimodal 

approach and the benchmark set by Poria et al. (2019). This decision allows us to 

contextualise our results within the broader landscape of multimodal dialogue systems and 

provides a standardised measure to assess the relative performance of our model. While 

the study acknowledges the limitations of perplexity in capturing all aspects of dialogue 

quality, its inclusion enables us to draw meaningful comparisons with existing research and 

contribute to the ongoing discourse in the field of multimodal dialogue modelling. 

3.6 Summary 
To conclude, this chapter has outlined a comprehensive methodology for investigating and 

enhancing dialogue modelling through the application of various Transformer architectures. 

The research approach encompasses a wide range of components, including diverse 
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datasets, novel architectural modifications, and rigorous evaluation procedures. By 

leveraging both textual and audio data from sources such as OpenSubtitles, Cornell Movie-

Dialogs, DailyDialog, IEMOCAP, and MELD, the study aims to capture the multifaceted 

nature of human conversation. The proposed architectures — Baseline Transformer, 

Encoder-Decoder Transformer, Extractor, and Reencoder —  each introduce unique 

modifications to address the challenges of contextual awareness in dialogue systems. The 

incorporation of different embedding methods, including custom subword embeddings, 

GloVe, and BERT, further expands the scope of the investigation. The evaluation 

framework, utilizing metrics such as BLEU, METEOR, TER, and perplexity, provides a 

multifaceted approach to assessing model performance. Additionally, the integration of 

audio embeddings into the dialogue models represents a novel contribution to the field of 

multimodal conversational AI. By meticulously documenting the training procedures, 

computational resources, and evaluation metrics, this methodology sets the stage for a 

thorough exploration of advanced dialogue modelling techniques, potentially leading to 

significant improvements in the field of conversational AI.  
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Chapter 4: Implementation 

4.1 Introduction 

Having established the theoretical underpinnings of the approach in the previous chapter, 

the study now delves into the practical aspects of bringing it to life. This chapter details the 

system implementation of our dialogue model leveraging TextSETTR for contextual style 

transfer, as well as the novel architecture developed named the Reencoder. We'll explore 

the various deep learning architectures employed, including the specific configuration of 

the modified and novel architectures. 

Furthermore, we'll shed light on the nuts and bolts of our experimental setup. This 

encompasses the hardware and software infrastructure utilised for training and evaluating 

the model. The tools and libraries employed for data preprocessing, model development, 

and performance analysis will also be discussed. By providing a transparent overview of 

the system implementation, this chapter aims to equip future researchers with the 

necessary knowledge to replicate and extend upon our work. 

4.2 Architectures 

4.2.1 Encoder-Decoder Transformer Architecture 

Both the baseline architecture provided by TensorFlow and the base Transformer 

architecture reproduced for this study adhere closely to the original transformer architecture 

as detailed in the seminal paper “Attention is All You Need” by Vaswani et al., (2017). In 

this groundbreaking work, the authors introduced a revolutionary architecture for sequence 

transduction tasks, revolutionising the field of natural language processing. 

 

For the baseline architecture provided by TensorFlow, efforts were made to replicate it 

through code refactoring, leading to the development of a modularized, object-oriented 

architecture. These modifications facilitated further experimentation by enabling 

adjustments to parameters, tokenizers, and embedding layers in subsequent experiments. 

Despite these alterations, the underlying Transformer architecture remained fundamentally 

identical to the one proposed by TensorFlow, except for the tokenization step and the 

embedding layer, which were changed to experiment with and compare different 

techniques. This approach effectively transformed the Transformer architecture into a 

control architecture, allowing for rigorous comparative analysis across different 

experimental conditions. 

 

Consistent with the original paper (Vaswani et al., 2017), this research employs h = 8 

parallel attention layers, or heads, with a model dimension of dmodel = 512, and key and 

value dimensions (dk = dv) of 64 for each head. These parameters are carefully selected 

to balance computational efficiency with expressive power, ensuring that the model can 

effectively capture intricate patterns and dependencies in the input data. By adhering to 

these architectural specifications, the Transformer architecture (Figure 4.1) employed in 

this study maintains fidelity to the principles outlined in the seminal work by Vaswani et al., 

thereby providing a robust foundation for subsequent experimentation and analysis in the 

realm of natural language processing. 
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Figure 4.1. Standard Encoder-Decoder Transformer architecture as presented in the paper “Attention is all you 

need”(Vaswani et al., 2017).  

4.2.2 Reencoder 

This study extends and enhances the baseline architecture by incorporating contextual 

information from previous turns in the conversation. However, the same number of attention 

heads and dimensionality as in the baseline system were used. 

 

The novelty of the Reencoder architecture resides in its innovative approach to the creation 

and representation of embeddings for textual data. Unlike traditional architectures that 

solely rely on static embeddings, the Reencoder architecture introduces a dynamic process 

of embedding representation. This process involves leveraging contextual information from 

previous turns in a conversation to iteratively refine the embeddings for each utterance. By 

incorporating historical context into the embedding creation process, the Reencoder 

architecture enables the model to capture the evolving dynamics and nuances of the 

conversation, resulting in more nuanced and contextually aware embeddings. This dynamic 

embedding representation not only enhances the model's ability to understand and 

generate coherent responses but also enables it to adapt and evolve over the course of a 

dialogue, thereby significantly improving its performance in conversational tasks. Thus, the 

Reencoder architecture introduces a novel paradigm in embedding representation, offering 

a promising avenue for advancing the capabilities of language models in dialogue 

modelling and other natural language processing tasks. 
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Initially, at step zero, the model operates in a manner akin to any standard transformer 

architecture. However, at step one and subsequently at all subsequent steps, a distinctive 

mechanism is employed. Here, the transformer utilises the embeddings of the current 

sentence (sentence t) alongside the embeddings of the preceding sentence (sentence t-1) 

as input. This input configuration is achieved through a matrix multiplication operation, 

where the embeddings of sentence t are multiplied by those of sentence t-1. 

This iterative process allows the model to dynamically incorporate information from 

previous turns in the conversation, enriching its understanding of the ongoing dialogue and 

enabling it to generate responses that are informed by contextual cues from preceding 

interactions. By learning to produce outputs based not only on the immediate input but also 

on the history of the conversation, the Reencoder model demonstrates enhanced 

contextual awareness and responsiveness, leading to more coherent and contextually 

relevant responses in conversational settings. 

The novelty of the Reencoder architecture lies therefore in the embedding representation 

the model creates of textual data. The novel representation is not merely a representation 

in space of the current sentence (and therefore the current turn of the conversation), but a 

representation of the current sentence informed by the previous turns in the conversation. 

This operation actively modifies the vector within the embedding vector space, as shown 

in Figure 4.2. Highlighted in green in the diagram is the MatMultiply operation that allows 

to re-encode previous turns of the conversation into the current input. 

 

 
Figure 4.2. Modified Transformer architecture named the Reencoder.  
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4.2.3 Extractor 

 
Figure 4.3. Diagram of the modified Transformer architecture presented by Riley et al. (2021) 

 

The extractor model architecture implemented in this research builds upon the innovative 

work of Riley et al. (2021), who developed a significant enhancement to the T5 (Text-To-

Text Transfer Transformer) framework. Their innovation lies in the development of a 

specialized mechanism for style vector extraction from input text. This extracted style vector 

serves as a conditioning element for the decoder component, enabling precise control over 

the stylistic attributes of generated text. 

The fundamental architecture leverages T5's proven capabilities as a large-scale 

pretrained text-to-text model while incorporating novel modifications for style manipulation. 

As illustrated in Figure 4.3, the system employs a two-stage process: first extracting 

contextual style information from the input text, then utilizing this information to guide the 

text generation process through decoder conditioning. This architectural approach 

represents a significant advancement in controlled text generation, offering enhanced 

capabilities for style transfer tasks while maintaining the robust performance characteristics 

of the base T5 model. 

 
 

Building upon this foundational concept, the extractor model embarks on a parallel 

trajectory, albeit with a distinct focus on conversational context extraction (Figure 4.4). 

While retaining the fundamental architectural characteristics such as the number of 

attention heads and model dimensions, the baseline transformer architecture is ingeniously 

augmented to incorporate a dedicated component tasked with extracting conversational 

context from preceding turns in the ongoing dialogue. This is done by adding a MaxPooling 

step that “condenses” the embeddings of the input sentence at step 0, and concatenates 

them to the embeddings of the following input sentence at step 1, providing further 

contextual information (Figure 4.5). This modification enables the model to dynamically 

capture and integrate contextual information from previous interactions, thereby enriching 

its understanding of the conversation and facilitating the generation of more contextually 

relevant responses. 
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Figure 4.4. Diagram of the modified Transformer architecture used in the current research 

 

 

 

 
Figure 4.5. Diagram of the modified Transformer architecture called the Extractor. 

 

By adapting and extending the principles outlined in Riley et al.'s architecture to the domain 

of conversational AI, the extractor model embodies a pioneering approach to enhancing 

contextual awareness and responsiveness in chatbot systems. This innovative framework 

not only underscores the versatility and adaptability of transformer-based architectures but 
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also opens avenues for exploring novel applications and capabilities in the realm of natural 

language processing. Through continued refinement and experimentation, the extractor 

model holds promise for advancing the state of the art in conversational AI and shaping the 

future landscape of human-computer interaction. 

4.2.4 Integrating Audio Embeddings 

The Audio-Transformer model implementation represents a significant advancement in 

dialogue modelling by integrating both textual and audio information. This system builds 

upon the traditional encoder-decoder transformer framework, which is widely used in 

sequence-to-sequence learning tasks. The key innovation lies in the creation of enriched 

word representations that combine traditional word embeddings (wn) with word-level audio 

representations (a˜n), resulting in a composite representation [wn; a˜n]. This integration 

allows the model to capture a broader range of contextual information from both textual 

and audio inputs, potentially enhancing its capacity to understand nuances and generate 

more natural-sounding responses in dialogue scenarios. 

A critical component of the system implementation is the extract_embedding function, 

specifically designed to process video files from the MELD dataset and extract relevant 

audio embeddings. This function incorporates a sophisticated caching mechanism to 

optimise efficiency, particularly when dealing with repeated dialogues and phrases. The 

function's workflow includes several key steps: it first checks for pre-existing cached 

embeddings, then proceeds to load and process the video file if necessary. The audio 

processing involves converting the audio to mono, setting a standardised frame rate of 

16000 Hz, and adjusting the sample width to 2 bytes. The processed audio is then exported 

as a WAV file for further analysis. 

The core of the audio embedding extraction process utilises the openl3 library's 

get_audio_embedding function. This step calculates audio embeddings with specific 

parameters: “env” content type, “linear” input representation, and an embedding size of 

512. These embeddings serve as compact representations of the audio signal, capturing 

relevant features for downstream tasks. To ensure consistency in the data structure, the 

extracted embeddings are padded to a fixed length using a custom pad function. The 

resulting embeddings are then converted to PyTorch tensors and saved in a cache file, 

facilitating quick retrieval in future processing cycles. 

The implementation addresses several technical challenges inherent in multimodal data 

processing. One significant challenge is the alignment and synchronisation of audio 

features with their corresponding text. This is particularly complex in cases where the audio 

and text modalities are not perfectly aligned or contain noise or errors. The system likely 

incorporates sophisticated alignment algorithms, though the specific techniques are not 

detailed in the provided text. Another challenge is the effective fusion of textual and audio 

embeddings, as different modalities may have varying levels of importance or relevance 

depending on the dialogue context. The implementation must balance these modalities to 

create meaningful and contextually appropriate representations. 

From a computational perspective, the system implementation accounts for the increased 

complexity and resource requirements introduced by processing both textual and audio 

inputs. This includes managing longer training times and higher computational demands, 

which can be particularly challenging for large datasets or models with high dimensionality. 

The implementation likely incorporates optimization techniques to handle these increased 

resource requirements efficiently. Additionally, the system needs to address the challenges 
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of audio data preprocessing, including handling various types of noise such as background 

interference, overlapping speech, or recording artefacts. While specific noise-handling 

techniques are not detailed, the implementation presumably includes robust audio 

processing methods to ensure the quality and reliability of the extracted audio embeddings, 

which are crucial for the overall effectiveness of the Audio-Transformer model. 

4.3 Code refactoring 

In the pursuit of rigorous quantitative and comparative experimentation within the domain 

of machine learning, it became evident that the original code, serving as a foundation, 

lacked the requisite optimization for such systematic analyses. This observation stemmed 

from the realisation that the TensorFlow research team's initial codebase, structured as a 

tutorial in Google Colab, inherently favoured pedagogical clarity over the nuanced demands 

of quantitative research. 

 

To address this limitation, a strategic refactoring initiative was undertaken to imbue the 

code with a more adaptable and comprehensive structure, aligning with the principles of 

object-oriented programming. This refactoring process involved preserving the functional 

integrity of the original TensorFlow code while orchestrating a transformation into modular 

classes and other object-oriented entities. By encapsulating functionalities within well-

defined classes, the codebase attained a heightened level of modularity, thereby fostering 

increased flexibility for diverse experimentation scenarios. 

 

Notably, the restructured code facilitated a seamless transition between different 

experimental configurations, spanning diverse architectural models, datasets, and 

embedding methodologies. The modular design enabled researchers to invoke specific 

methods corresponding to the desired experimental parameters, thereby streamlining the 

execution of experiments within a unified framework. This modular approach not only 

enhanced the code's readability and maintainability but also empowered researchers to 

systematically explore and compare outcomes across various configurations. 

 

In conjunction with this refactoring effort, integration with Weights and Biases (WandB) was 

incorporated, further enhancing the research workflow. Leveraging WandB's experiment 

tracking capabilities, researchers could efficiently log and monitor the outcomes of diverse 

experiments. This integration not only expedited the iterative refinement process but also 

provided a centralised platform for collaborative analysis and comprehensive 

documentation of experiment results. In essence, the combined adoption of object-oriented 

principles and experiment tracking through WandB contributed to the creation of a robust 

and versatile research framework, laying the groundwork for meticulous experimentation 

and systematic comparison within the realm of machine learning. 

4.3.1 Data caching and retrieval for optimization 

To optimize computational efficiency throughout the experimental phase, this research 

implemented a systematic data pre-caching strategy. The methodology involved 

generating structured JSON files that contained preprocessed input-output sentence pairs 

in raw text format. This preprocessing approach was designed to minimize computational 
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overhead during experimentation by eliminating redundant data cleaning and loading 

operations. 

The implementation leveraged the Weights and Biases (WandB) platform as a centralized 

repository for artifact storage and management. By storing the preprocessed JSON files as 

WandB artifacts, the research established a robust framework for data versioning and 

experimental tracking. This infrastructure facilitated systematic access to experimental data 

while maintaining comprehensive documentation of data utilization patterns across 

different experimental configurations. 

The generation of JSON files was methodically tailored to accommodate the specific 

requirements of individual experiments. Each file was structured to contain the precise 

number of samples necessary for its corresponding experimental iteration, thereby 

optimizing storage utilization while ensuring data accessibility. This granular approach to 

data preprocessing served two critical purposes: it conserved computational resources by 

eliminating unnecessary data loading, and it enhanced experimental reproducibility by 

maintaining consistent, well-defined datasets for each iteration. 

The integration of data pre-caching mechanisms with the WandB platform's artifact 

management system represents a methodological advancement in experimental workflow 

optimization. This approach not only streamlined the experimental process but also 

established a foundation for systematic data management and experimental reproducibility, 

key considerations in computational research methodology. 

4.4 Summary 
This chapter detailed the implementation of several innovative architectural models for 

dialogue systems, including the baseline Encoder-Decoder Transformer, the novel 

Reencoder, and the Extractor model. Each of these architectures built upon the 

foundational work of Vaswani et al. 's “Attention is All You Need,” with specific 

enhancements to improve contextual understanding in conversational AI. The Reencoder 

architecture introduced a dynamic process of embedding representation, leveraging 

historical context to refine embeddings iteratively. The Extractor model, inspired by Riley 

et al.'s work, focused on extracting conversational context from preceding dialogue turns. 

Additionally, the chapter explored the integration of audio embeddings, presenting the 

Audio-Transformer model as a multimodal approach to enhance word representations in 

dialogue modelling. 

 

The experimental setup leveraged cutting-edge tools and platforms to facilitate efficient and 

collaborative research. Google Colab was utilised as the primary development 

environment, offering accessibility, high-performance GPUs, and seamless integration with 

Google Cloud services. To enhance experiment tracking and collaboration, Weights & 

Biases (WandB) was incorporated, providing comprehensive logging of model performance 

metrics, advanced visualisation tools, and robust support for model versioning and 

experiment comparison. These tools collectively contributed to a more streamlined and 

transparent research process. 
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Significant effort was invested in code refactoring to optimise the original TensorFlow 

tutorial code for quantitative research. This refactoring process transformed the codebase 

into a modular, object-oriented structure, enhancing flexibility and facilitating systematic 

exploration of various experimental configurations. Furthermore, data caching and retrieval 

optimizations were implemented, including the creation of pre-cached JSON files stored as 

artefacts in WandB. These optimizations aimed to enhance computational efficiency and 

ensure reproducibility across experiments. Overall, this chapter laid out a comprehensive 

framework for conducting rigorous, reproducible, and efficient research in the field of 

conversational AI, setting the stage for the detailed experiments and analyses to follow. 
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Chapter 5: Experiments and Results 

5.1 Introduction 

This chapter presents the experimental methodologies and results obtained from 

evaluating different transformer architectures for chatbot modelling across various 

datasets.  

 

The training procedure for the chatbot model involved conducting a series of experiments 

utilising different transformer architectures and datasets, each paired with three distinct 

embedding methods. The first architecture, the baseline Transformer Model Architecture 

provided by TensorFlow (Google Colab, n.d.), served as the foundation for comparison 

against the other architectures. For each dataset, this architecture was trained using three 

different embedding methods: an automated embedding matrix generated from the data 

using an embedding class provided by the TensorFlow library, GloVe embeddings, and 

BERT embeddings. The training process involved standard preprocessing steps, including 

data cleaning, tokenization, and division into training, validation, and test sets. Our inquiry 

delves into a comprehensive examination and comparative analysis of diverse tokenization 

methodologies, each wielding distinct characteristics and exerting varying impacts on the 

embedding layer of large language models (LLMs). Our investigation encompasses an 

exploration of notable tokenization techniques such as 

tfds.deprecated.text.SubwordTextEncoder, a specific tokenizer class created to leverage 

GloVe embeddings, and the BERT Tokenizer, aiming to elucidate their individual attributes 

and discern their respective effects on the embedding layer's functionality within expansive 

LMs. The transformed data was then fed into the baseline transformer architecture, and the 

model was trained using backpropagation and gradient descent optimization to minimise a 

predefined loss function. 

 

The goal of these experiments is to assess the performance and effectiveness of different 

transformer models in generating contextually appropriate responses in conversational 

settings. 

5.2 Experimental Methodologies 

Four architectures were compared in the experiment: 

● The Baseline model serves as the foundational framework provided by the 

TensorFlow organisation, representing the standard architecture utilised for chatbot 

modelling in the field of natural language processing. This architecture lays the 

groundwork for subsequent variations and serves as a baseline for comparison 

against other models. 

● The Encoder-Decoder Transformer Architecture is enhanced through the 

integration of different embedding methods. In this variant, three distinct embedding 

techniques were employed and systematically compared to evaluate their impact 

on model performance and response generation capabilities. 

● The Extractor Architecture, inspired by the work of Riley et al., (2021), introduces 

modifications to the traditional transformer model to enhance its ability to extract 

contextual information from preceding turns in the conversation. By incorporating 
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contextual cues from previous interactions, this architecture aims to improve the 

model's understanding of the ongoing dialogue and facilitate more contextually 

relevant responses. 

● The Reencoder Architecture adopts a different approach by integrating embeddings 

from prior utterances into the current turn's embeddings. By leveraging historical 

context embedded within the conversation, this architecture seeks to enrich the 

current turn's representation with valuable contextual information, thereby 

enhancing the model's ability to generate coherent and contextually appropriate 

responses. 

● Each of these architectures underwent the same training procedure as the baseline 

architecture, with variations in model structure and input representations.  

● Building upon the foundation of these four architectures — the Baseline model, the 

Encoder-Decoder Transformer with varied embedding methods, the Extractor 

Architecture, and the Reencoder Architecture — each model was further modified 

to incorporate audio embeddings alongside text embeddings. This modification 

involved integrating the extract_embedding function to process audio data from the 

MELD and IEMOCAP datasets, generating word-level audio representations using 

the openl3 library. These audio embeddings were then combined with the existing 

text embeddings to create enriched multimodal representations for each word. The 

integration process required careful alignment of audio and text modalities and 

implementation of appropriate fusion techniques. This augmentation aimed to 

enhance each architecture's ability to capture and utilise both linguistic and acoustic 

features in dialogue modelling, potentially improving their performance in tasks such 

as response generation, emotion recognition, and context understanding. 

 

The Encoder-Decoder architecture, similar to the TensorFlow baseline but with different 

embedding methods, aimed to explore the impact of embedding variations on model 

performance. The Extractor architecture, inspired by Riley et al., (2021), focused on 

extracting contextual information from previous turns in the conversation to enhance the 

model's understanding of dialogue context. The Reencoder architecture, on the other hand, 

incorporated embeddings from previous utterances to inform the current turn's 

embeddings, enabling the model to leverage historical context for response generation.  

Each of these architectures offers unique insights and approaches to addressing the 

challenges of conversational AI, ranging from optimising embedding methods to leveraging 

historical context within the dialogue. Through systematic evaluation and comparison, 

researchers aim to gain a deeper understanding of the strengths and limitations of each 

architecture, ultimately advancing the field of conversational AI and contributing to the 

development of more sophisticated and contextually aware chatbot models. 

5.3 Training Process 

Each dataset underwent rigorous standard preprocessing procedures, which 

encompassed partitioning into distinct training, validation, and test sets. These sets were 

allocated 89%, 10%, and 1% of the total data, respectively, ensuring a well-balanced 

distribution for robust model evaluation. Subsequently, the data underwent embedding and 

vectorization processes, preparing them for ingestion into the designated transformer 

architectures for training. To expedite training experiments and to ensure computational 
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efficiency, a combination of resources including Google Colab runtimes and virtual 

machines on the Google Cloud Platform was leveraged. 

 

The experiments were conducted meticulously across all datasets and embedding 

methods, encompassing a wide range of variations to ensure a comprehensive evaluation 

of the effectiveness of different transformer architectures in generating contextually 

appropriate responses within conversational settings. This exhaustive approach aimed to 

provide insights into the comparative performance of various models under diverse 

conditions, enabling a nuanced understanding of their strengths and limitations. By 

systematically analysing the outcomes across multiple datasets and embedding 

techniques, researchers aimed to glean valuable insights into the efficacy of transformer 

architectures in capturing and synthesising meaningful dialogue interactions, thereby 

advancing the state of the art in conversational AI research. 

 

In each training experiment, a predetermined duration of 1000 epochs was established to 

allow the model to undergo iterative learning and convergence towards optimal 

performance. However, to optimise training efficiency and prevent overfitting, a callback for 

early stopping was implemented . This callback mechanism was meticulously defined to 

monitor the training process continuously. If the training loss failed to decrease or remained 

stagnant for three consecutive epochs, the callback triggered the early stopping protocol. 

By halting the training process at this point, the risk of the model becoming overly 

specialised to the training data was mitigated, thereby enhancing its generalisation 

capability and preventing potential performance degradation on unseen data. 

 

The early stopping callback served as a vital safeguard against the phenomenon of 

overfitting, which occurs when the model excessively memorises the training data, leading 

to suboptimal performance on new, unseen data. By dynamically monitoring the training 

loss throughout the epochs, signs of overfitting could be detected in real-time and take 

proactive measures to halt the training process before it detrimentally impacted the model's 

generalisation ability. This proactive approach not only safeguarded against overfitting but 

also optimised computational resources by terminating training once further improvements 

in performance were unlikely, thereby expediting the experimentation process and 

accelerating the model development cycle. 

 

Moreover, the implementation of the early stopping callback ensured that each training 

experiment remained aligned with our overarching goal of achieving optimal performance 

within a reasonable timeframe. By setting clear criteria for terminating the training process 

based on the behaviour of the training loss, consistency, and reproducibility was maintained  

across experiments while maximising the efficiency of resource utilisation. This strategic 

approach to training regimen design underscored our commitment to rigour and 

methodological integrity, laying the groundwork for robust and reliable research outcomes 

in our exploration of machine learning models for dialogue modelling tasks. 
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5.4 Unimodal Results 
The experimental results demonstrate the performance of each transformer architecture 

across the different datasets. Results are presented in terms of quantitative evaluation 

metrics (e.g., BLEU, METEOR, TER, and Accuracy).  

A result analysis will be conducted, first comparing how the different architectures and 

embedding layers performed for each dataset individually, and then comparing how a 

model performed across datasets. For clarity purposes, the study only presents three out 

of the four evaluation metrics used, BLEU, METEOR and TER, since these better represent 

output quality, coherence and textual entailment. Similarly, experiment results for GloVe 

embedding are not presented in this section, since Bert appears to outperform GloVe in 

most experiments. Tables and figures presenting all results can be found in Appendix A. 

5.4.1 Results on the DailyDialog Dataset (Text Embeddings) 

Table 3. System evaluation on DailyDialog dataset using different embedding algorithms and performance 

measures. 

Architectur
es/ 
Embedding
s 

Extractor Reencoder Encoder-decoder baseline 

BERT Matrix3 BERT Matrix3 BERT Matrix3 BERT Matrix3 

BLEU 0.078 0.004 0.085 0.102 0.090 0.000 0.000 0.081 

METEOR 0.157 0.055 0.159 0.169 0.163 0.008 0.000 0.156 

TER 112.981 215.704 110.165 110.717 110.400 98.823 0.000 112.726 

 

Upon comparing the results obtained from various architectures and embedding layers on 

the DailyDialog dataset, our analysis reveals the superior performance of the Reencoder 

model across multiple evaluation metrics, including BLEU and METEOR. It is worth noting 

that the SubwordTokenizer (Matrix3) exhibits superior performance in terms of BLEU and 

METEOR scores (Table 3). Since the Reencoder model operates on the contextual 

representation of language by leveraging previous turns in the conversation in order to 

create more contextually aware vector representations of sentences in the embedding 

space, its performance when modelling human dialogue appears enhanced. 

Interestingly, the TER score suggests that the base Encoder-Decoder Transformer 

architecture, particularly when coupled with the SubwordTokenizer, yields optimal 

performance. However, it is pertinent to highlight that the Reencoder model consistently 

demonstrates the best TER scores among architectures utilising Bert (Table 3). These 

findings underscore the nuanced interplay between different architectures and embedding 

methods, with the Reencoder model emerging as a promising candidate for enhancing 

performance across various metrics on the DailyDialog dataset. 
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5.4.2 Results on the Cornell Dataset (Text Embeddings) 

Table 4. System evaluation on Cornell dataset using different embedding algorithms and performance 

measures. 

Architecture/ 
Embeddings 

Extractor Reencoder Encoder-decoder baseline 

BERT Matrix3 BERT Matrix3 BERT Matrix3 BERT Matrix3 

BLEU 0.006 0.006 0.007 0.003 0.005 0.002 0.000 0.007 

METEOR 0.079 0.081 0.070 0.055 0.079 0.037 0.000 0.087 

TER 117.65
4 

127.885 117.483 249.194 124.280 246.923 0.000 119.127 

 

In the comparative analysis of different architectures and embedding layers on the Cornell 

dataset, distinctive trends emerge, elucidating the nuanced performance variations across 

evaluation metrics. Reencoder model demonstrates remarkable performance, boasting the 

best TER scores overall and exhibiting superior scores across two out of three embedding 

methods (Bert and GloVe), albeit registering the lowest TER score among all models 

employing the SubwordTokenizer (Table 4). Furthermore, the Reencoder model 

showcases the highest BLEU scores, particularly when leveraging Bert as the embedding 

layer. Remarkably, Bert exhibits exceptional performance across various metrics, 

underscoring its efficacy on this dataset. This observation aligns with the consistent trends 

observed in BLEU scores across models  (Table 4). However, METEOR scores suggest 

that the SubwordTokenizer yields optimal performance overall, yet Bert consistently 

provides the most reliable and consistent results, yielding the best scores on average 

across metrics. These findings underscore the multifaceted nature of model performance 

across different architectures and embedding layers, highlighting Bert's robustness and 

effectiveness in enhancing performance on the Cornell dataset. 

5.4.3 Results on the OpenSubtitles Dataset (Text Embeddings) 

Table 5. System evaluation on OpenSubtitles dataset using different embedding algorithms and performance 

measures. 

Architecture/ 
Embeddings 

Extractor Reencoder Encoder-decoder baseline 

BERT Matrix3 BERT Matrix3 BERT Matrix3 BERT Matrix3 

BLEU 0.000 0.000 0.003 0.000 0.002 0.000 0.000 0.012 

METEOR 0.055 0.064 0.061 0.041 0.056 0.062 0.000 0.119 

TER 130.076 133.399 132.709 126.866 128.429 259.307 0.000 118.553 
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In the comparative evaluation of various architectures and embedding layers on the 

OpenSubtitles dataset, discernible patterns emerge, shedding light on the nuanced 

performance variations across multiple evaluation metrics. Notably, the performance of the 

TensorFlow base model surpasses all proposed architectures across all metrics except 

accuracy, highlighting its unexpected efficacy on this dataset (Table 5). These findings 

suggest that the Encoder-decoder model, having less parameters, is better suited to tackle 

noisy datasets such as Opensubtitles. 

5.4.4 Results on the Meld Dataset (Text Embeddings) 

Table 6. System evaluation on Meld dataset using different embedding algorithms and performance measures 

on text embeddings only. 

Architecture/ 
Embeddings 

Extractor Reencoder Encoder-decoder baseline 

BERT Matrix3 BERT Matrix3 BERT Matrix3 BERT Matrix3 

BLEU 0.000 0.000 0.000 0.000 0.009 0.000 0.000 0.000 

METEOR 0.080 0.086 0.071 0.087 0.092 0.079 0.000 0.000 

TER 118.499 114.286 110.380 122.097 117.163 112.025 0.000 0.000 

 

In our comprehensive evaluation of various transformer architectures over the Meld 

dataset, intriguing patterns emerged regarding their performance across diverse evaluation 

metrics. Notably, the Encoder-Decoder Transformer model exhibited remarkable 

superiority over all other architectures across the majority of metrics assessed, showcasing 

its efficacy in capturing the intricacies of dialogue modelling. However, it is crucial to note 

that the Reencoder architecture outperformed other models in terms of the TER metric, 

underscoring its distinct strengths in certain aspects of dialogue processing (Table 6). 

Interestingly, across all cases, architectures enhanced with a Bert embedding layer 

consistently outperformed those utilising alternative embedding layers, suggesting the 

robustness and versatility of Bert embeddings in capturing semantic nuances and linguistic 

complexities inherent in dialogue datasets. These findings underscore the nuanced 

interplay between architecture design and embedding strategies in shaping model 

performance and highlight the significance of comprehensive evaluations to elucidate the 

relative strengths and weaknesses of different transformer configurations in dialogue 

modelling tasks. Further exploration is warranted to delve deeper into the underlying 

mechanisms driving these observed performance disparities and to identify strategies for 

optimising transformer architectures for enhanced dialogue processing capabilities. 

 

The consistently low BLEU scores seen in different dialogue modelling systems can be 

traced back to the type of data used for training — typically conversations from TV shows. 

This source material is characterised by its open-ended nature, where multiple responses 

could be equally valid for a given prompt. TV dialogues often include contextual nuances, 

informal language, and abrupt topic changes, making them quite different from more 

structured language tasks. While the AI models might generate responses that are 
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conversationally appropriate and natural, these outputs typically differ substantially from 

the specific reference answers used in BLEU score evaluations. This discrepancy results 

in lower BLEU scores, even when the AI-generated responses may be high-quality in terms 

of relevance and fluency within the conversation. 

 

It is important to note that the Meld dataset could not be tested against the baseline 

architecture provided by Tensorflow, because that would have required a significant 

change in the architecture. 
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5.4.5 Results on the OpenSubtitles Datasets with Training data 

corresponding to 1% of the entire dataset (Text Embeddings) 

Table 7. System evaluation on OpenSubtitles Dataset with Training data corresponding to 1% of the entire 

dataset using different embedding algorithms and performance measures. 

Architecture/ 
Embeddings 

Extractor Reencoder Encoder-decoder baseline 

BERT Matrix3 BERT Matrix3 BERT Matrix3 BERT Matrix3 

BLEU 0.005 0.008 0.004 0.000 0.004 0.005 0.000 0.004 

METEOR 0.088 0.105 0.098 0.108 0.092 0.107 0.000 0.052 

TER 123.537 122.231 121.130 116.494 119.567 121.373 0.000 132.7584 

 

As previously mentioned, a crucial aspect of conducting experiments across datasets of 

varying sizes is ensuring comparability. To achieve this, a parameter known as 

max_samples was introduced, dictating the maximum number of sentences utilised during 

the training phase. By imposing a consistent limit on the amount of training data across 

different datasets, researchers can effectively control for size discrepancies and enable fair 

comparisons. In this study, the max_samples parameter was set to 440,000, a value 

carefully chosen to maintain a comparable order of magnitude across multiple datasets. 

This selected value of 440,000 holds significance as it corresponds to the entirety of several 

key datasets utilised in the experiments. Specifically, it aligns with the entire Meld dataset, 

the complete Endure DailyDialog dataset, the entirety of the Cornell dataset, and 

approximately 0.1% of the OpenSubtitles dataset. By standardising the training data size 

in this manner, researchers ensure that each model receives a representative subset of the 

available data, facilitating meaningful comparisons of their performance. 

 

However, to assess the robustness of the transformer architectures across larger datasets, 

additional experiments were conducted with an increased number of samples. In these 

experiments, the max_samples parameter was set to 4,400,000, representing a tenfold 

increase in data compared to the initial setting. This adjustment allowed researchers to 

evaluate the performance of the different architectures over a more extensive dataset, 

equivalent to 1% of the Meld dataset. By systematically varying the amount of training data 

in this manner, researchers gain insights into how the models scale with data volume, 

thereby contributing to a deeper understanding of their capabilities and limitations in 

dialogue modelling tasks. 

 

Our results revealed that the choice of transformer architecture and embedding method 

significantly impacted the model's performance. Among the transformer architectures, the 

Reencoder model achieved the lowest TER score and the highest METEOR scores when 

combined with the custom embeddings generated from the data, outperforming the other 

architectures in most cases (Table 7).  

Interestingly, the Extractor architecture exhibited competitive performance, with a BLEU 

score of 0.008145 and a TER score of 0.105414 (Table 7).  
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The standard Encoder-Decoder Transformer architecture performed reasonably well 

across different embedding methods, but its performance was generally lower compared 

to the Reencoder and Extractor architectures in our experiments.  

Performance across models degraded when using other embedding methods, such as 

GloVe. It remained however competitive when using BERT.  

Our findings suggest that the combination of transformer architectures specifically designed 

for sequence-to-sequence tasks, such as the Reencoder and Extractor models, along with 

high-quality pre-trained embeddings like BERT, or embeddings that have been fitted to the 

data such as the custom embedding layer, can significantly improve the performance of 

machine translation models on the OpenSubtitles dataset.  

One of the contributing factors can be the presence of Subword Information. Both the 

custom embedding layer and BERT embeddings are based on subword representations, 

which means they can effectively handle out-of-vocabulary words and rare words by 

breaking them down into smaller meaningful units (subwords). This ability to represent rare 

or unseen words is particularly beneficial for tasks like machine translation, where the 

vocabulary can be vast and diverse. 

However, further investigation is needed to understand the impact of different 

hyperparameters, such as batch size, dropout rate, and model dimensions, on the overall 

performance. 

 

The findings from the experiments conducted over a larger portion of the OpenSubtitles 

dataset revealed a lack of notable enhancement across any of the evaluated metrics for 

the various architectures under study. This outcome prompts consideration of two potential 

contributing factors. Firstly, the OpenSubtitles dataset's inferior quality may have played a 

pivotal role in the observed results. Issues such as noise, inconsistency, or insufficient 

relevance within the dataset can hinder the models' ability to effectively learn and 

generalise patterns from the data. This dataset quality aspect warrants further investigation 

to ascertain its impact on model performance comprehensively. 

 

Secondly, the inefficiency of larger datasets for smaller language models may have 

contributed to the observed lack of improvement. Contrary to expectations, smaller 

language models seem to derive more substantial benefits from high-quality, compact 

datasets rather than larger, more extensive ones. It's conceivable that smaller language 

models, with their inherently limited capacity for processing complex data, struggle to 

extract meaningful insights or patterns from larger datasets. This limitation might stem from 

the models' reduced capacity to capture and encode the intricate nuances present in vast 

amounts of data, thus hindering their learning potential. 

 

Moreover, these two factors may not operate independently but could instead be 

intertwined, exacerbating the challenges faced by smaller language models when trained 

on larger datasets of inferior quality. The interplay between dataset quality and model size 

underscores the intricate dynamics involved in dialogue modelling tasks. Further 

exploration into these intertwined factors is essential to unravel their complexities and 

devise strategies to mitigate their adverse effects on model performance. Such insights are 

crucial for refining model training methodologies and optimising the selection of datasets, 

ultimately advancing the effectiveness of language models in dialogue modelling 

applications. 
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5.4.6 Results on the Meld Dataset (Audio Embeddings) 
Table 8. System evaluation on MELD Dataset using audio embeddings and different performance measures. 

Architecture/ 
Embeddings 

Extractor Reencoder Encoder-decoder baseline 

Audio 
Embeddings 

Audio Embeddings Audio Embeddings Audio Embeddings 

BLEU 0.000 0.000 0.000 0.000 

METEOR 0.031 0.030 0.030 0.000 

TER 149.445 143.323 159.67 0.000 

 

The models trained on audio embeddings only present an overall similar performance. The 

Reencoder model appears best in terms of TER score (Table 8). 

Low BLEU scores observed across various dialogue modelling architectures can likely be 

attributed to the open-ended nature of the training data, which often consists of 

conversations extracted from TV shows. These dialogues are inherently diverse and 

unpredictable, with multiple valid responses possible for any given input. Unlike more 

constrained language tasks, TV show conversations frequently feature context-dependent 

replies, colloquialisms, and non-linear topic shifts. As a result, the models trained on this 

data produce responses that may be contextually appropriate and natural-sounding, but 

differ significantly from the specific reference responses used in BLEU score calculations. 

This divergence leads to lower BLEU scores, despite the generated responses potentially 

being high-quality in terms of conversational relevance and fluency. 

5.4.7 Results on the IEMOCAP dataset (Text Embeddings) 

Table 9. System evaluation on IEMOCAP Dataset using text embeddings and different performance measures. 

Architecture/ 
Embeddings 

Extractor Reencoder Encoder-decoder baseline 

BERT Matrix3 BERT Matrix3 BERT Matrix3 BERT Matrix3 

BLEU 0.207 0.037 0.200 0.060 0.178 0.070 0.000 0.000 

METEOR 0.395 0.187 0.387 0.189 0.366 0.245 0.000 0.000 

TER 94.619 157.459 95.811 124.275 99.2 130.84 0.000 0.000 

 

The Extractor architecture, when trained on the IEMOCAP transcripts, demonstrates 

superior performance across all evaluation metrics, including BLEU, METEOR, and TER. 

This consistent outperformance suggests that the Extractor's approach to processing and 

generating text is particularly well-suited for the task at hand, potentially due to its ability to 

effectively capture and utilise relevant information from the input data (Table 9). 
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Following closely behind the Extractor, the Reencoder architecture shows comparable 

performance, establishing itself as a strong second-place contender. The narrow gap 

between these two architectures indicates that both approaches have significant merit in 

handling the given task. This close competition between the Extractor and Reencoder 

architectures may provide valuable insights into the most effective strategies for processing 

and generating text in this specific context, and could inform future research and 

development in the field. 

It is important to note that the IEMOCAP dataset could not be tested against the baseline 

architecture provided by Tensorflow, because that would have required a significant 

change in the architecture. 

5.4.8 Results on the IEMOCAP dataset (Audio Embeddings) 

Table 10. System evaluation on IEMOCAP Dataset using audio embeddings and different performance 

measures. 

Architecture/ 
Embeddings 

Extractor Reencoder Encoder-decoder baseline 

Audio 
Embeddings 

Audio Embeddings Audio Embeddings Audio Embeddings 

BLEU 0.000 0.000 0.000 0.000 

METEOR 0.028 0.035 0.032 0.000 

TER 144.272 120.764 127.656 0.000 

 

In experiments focusing solely on audio embeddings from the IEMOCAP dataset, the 

Reencoder architecture demonstrates superior performance compared to other tested 

architectures, particularly in terms of METEOR and TER scores. This suggests that the 

Reencoder's approach is particularly effective in processing and utilising audio information. 

However, a notable observation across all architectures is the occurrence of null BLEU 

scores (Table 10). This uniform result in BLEU metrics indicates a potential limitation in 

how these architectures handle the translation of audio embeddings into text that aligns 

with reference translations. The null BLEU scores might point to a fundamental challenge 

in preserving certain aspects of the original input when working exclusively with audio 

embeddings, or it could suggest that BLEU may not be the most suitable metric for 

evaluating performance in this specific audio-to-text task. 

It is important to note that the IEMOCAP dataset could not be tested against the baseline 

architecture provided by Tensorflow, because that would have required a significant 

change in the architecture.  
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5.5 Multimodal Results 

It is important to note that the decision to evaluate our multimodal models on the MELD 

(Multimodal EmotionLines Dataset) dataset and IEMOCAP dataset, while the unimodal 

models were assessed on multiple datasets, stems from the unique characteristics and 

requirements of our multimodal approach. The MELD and IEMOCAP datasets stand out as 

an ideal choice for our multimodal experiments due to its rich, multi-faceted nature, 

providing both textual dialogues and corresponding audiovisual data from TV show scenes 

and scripted or improvised dialogue. This dataset's structure aligns perfectly with our 

research objectives, allowing us to explore the integration of audio features alongside 

textual information in dialogue modelling. 

Unlike the unimodal experiments, which primarily relied on text-based datasets, our 

multimodal models require synchronised audio and text data to function effectively. MELD 

and IEMOCAP datasets offer this crucial alignment, providing time-stamped utterances 

paired with their corresponding audio segments. This synchronisation is essential for our 

audio embedding extraction process and the subsequent integration of audio features with 

text embeddings. Other commonly used dialogue datasets, while valuable for text-based 

models, lack the necessary audio components, making them unsuitable for our multimodal 

experiments. 

Furthermore, the MELD and IEMOCAP datasets diversity in emotional content and 

conversational contexts provides a robust testing ground for our multimodal models. It 

allows us to evaluate how the integration of audio features enhances the model's ability to 

capture nuances in emotion, tone, and context that may not be apparent from text alone. 

While this focus on two datasets for multimodal evaluation might seem limiting compared 

to the broader range used for unimodal models, it actually allows for a more controlled and 

in-depth analysis of the impact of audio integration across different architectural variations. 

This approach enables us to draw more precise conclusions about the effectiveness of our 

multimodal techniques within a consistent experimental framework. 

5.5.1 Results on the MELD dataset (text and audio embeddings) 

The MELD dataset (Multimodal EmotionLines Dataset) consists of short videos in mp4 

format. Each video corresponds to an utterance, and several videos together form a 

dialogue. For this experiment, transcriptions of dialogues were used as previously, and in 

addition to the text transcriptions, audio embeddings were extracted from the videos, which 

capture the emotional and acoustic characteristics of the dialogues. 

Furthermore, the incorporation of audio embeddings can enhance tasks such as emotion 

recognition and intent classification (Pandeya et al., 2021). Audio cues provide valuable 

information about the speaker's emotional state and intent, allowing multimodal models to 

better interpret the nuances and underlying meanings conveyed in dialogues. Additionally, 

in real-world scenarios where text data can be noisy or ambiguous, audio embeddings can 

help resolve ambiguities and provide additional context, leading to more robust and 

accurate dialogue systems (Young et al., 2020). 

 

The following table presents our results; it is important to note that testing the Meld dataset 

against the TensorFlow baseline architecture was infeasible, as it would have necessitated 

substantial architectural modifications, deviating significantly from the original design. 
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Table 11. System evaluation on Meld Dataset with Audio and Text extracted using different embedding 

algorithms and performance measures. 

Architecture/ 
Embeddings 

Extractor Reencoder Encoder-decoder baseline 

BERT Matrix3 BERT Matrix3 BERT Matrix3 BERT Matrix3 

BLUE 0.000 0.002 0.004 0.002 0.000 0.000 0.000 0.000 

METEOR 0.064 0.069 0.077 0.06 0.053 0.065 0.000 0.000 

TER 125.578 236.913 106.212 311.49 106.688 314.73 0.000 0.000 

Perplexity 3.263 3.364 3.292 2.899 2.867 3.421 0.000 0.000 

 

Based on the provided results, the performance of the different model-embedding 

combinations can be analysed and their strengths and weaknesses for the dialogue 

modelling task on the MELD dataset discussed. 

Looking at the results, the Reencoder architecture emerges as the top performer across 

most metrics when paired with BERT embeddings. It achieves the highest BLEU score 

(0.004) and METEOR score (0.077), indicating better quality and fluency in generated 

responses. The Reencoder with BERT embeddings also shows the lowest TER (106.212), 

suggesting fewer errors in the generated text compared to other combinations. However, 

it's worth noting that the Encoder-decoder architecture with BERT embeddings achieves 

the lowest perplexity (2.867), indicating potentially better predictive performance in some 

aspects (Table 11). 

The Matrix3 embeddings, while generally performing well, don't consistently outperform 

BERT embeddings across all architectures and metrics. This suggests that while Matrix3 

is a viable alternative, BERT embeddings might have a slight edge in overall performance, 

particularly when paired with the Reencoder architecture. These results underscore the 

importance of carefully selecting both the architecture and embedding method in dialogue 

modelling tasks. 

The experimental results reveal intriguing patterns and trade-offs among the Extractor, 

Reencoder, and Encoder-Decoder Transformer models across different embedding 

methods. The Reencoder model, particularly when paired with BERT embeddings, 

demonstrated superior performance. This suggests that the Reencoder architecture, with 

its ability to leverage contextual information from previous conversation turns, is particularly 

effective at capturing the nuanced semantics of dialogues when combined with the rich, 

contextualised representations provided by BERT. 

Across all three architectures, BERT embeddings consistently outperformed GloVe and 

matrix3 embeddings, underscoring the value of contextualised word representations in 

dialogue tasks. The superior performance of BERT embeddings likely stems from their 

ability to capture context-dependent word meanings and complex linguistic phenomena, 

which are crucial in understanding and generating natural dialogue. However, the varying 

performance of each embedding method across different architectures suggests that the 
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choice of embedding technique should be carefully considered in conjunction with the 

model architecture for optimal performance. 

The Encoder-Decoder Transformer model, while generally underperforming compared to 

the Extractor and Reencoder models, still showed potential, particularly with BERT 

embeddings. Its moderate performance across accuracy and TER metrics suggests that 

there may be room for improvement through fine-tuning or architectural modifications 

specifically tailored for dialogue modelling. The results also highlight the importance of 

considering multiple evaluation metrics in dialogue systems, as models may excel in one 

aspect (e.g., understanding, as reflected in accuracy) while lagging in another (e.g., 

response generation quality, as indicated by TER) (Table 11). 

Experiments run on the MELD dataset consistently return very low or null BLEU scores. It 

can be argued that dialogue models trained on TV show conversations tend to score poorly 

on BLEU metrics across various architectures. This is likely because TV dialogue is 

inherently open-ended, with many possible valid responses to any given statement. The 

unpredictable nature of these conversations, including context-dependent replies and 

sudden topic shifts, makes it difficult for models to generate responses that closely match 

specific reference answers. As a result, even when a model produces a contextually 

appropriate and natural-sounding reply, it may diverge significantly from the expected 

response used in BLEU calculations. This leads to low BLEU scores, despite the potential 

conversational quality of the generated responses. 

5.5.2 Results on the IEMOCAP Dataset (audio and text embeddings) 

The Interactive Emotional Dyadic Motion Capture (IEMOCAP) dataset is a widely used 

resource in the field of emotion recognition and affective computing (Busso et al., 2008). 

Developed by researchers at the University of Southern California, IEMOCAP consists of 

approximately 12 hours of audiovisual data from dyadic interactions between actors (C.-C. 

Lee et al., 2011). The dataset includes recordings of both scripted and improvised 

scenarios, designed to elicit a range of emotional expressions. It features 10 actors (5 male 

and 5 female) paired in dyadic conversations, with their facial expressions, voice, and 

gestures captured using high-quality audio, video, and motion-capture technology 

(Metallinou et al., 2012). The emotional content is annotated at the utterance level, covering 

categorical emotions (such as anger, happiness, sadness, and neutral) as well as 

dimensional labels (valence, activation, and dominance) (Tripathi et al., 2019). IEMOCAP's 

multimodal nature, diverse emotional content, and high-quality annotations make it a 

valuable resource for developing and evaluating emotion recognition algorithms, 

particularly those leveraging speech and facial expressions (Zadeh et al., 2018). The 

dataset has been extensively used in research on speech emotion recognition, multimodal 

emotion analysis, and human-computer interaction studies (Neumann & Vu, 2019). 
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The following table presents our results; it is important to note that testing the IEMOCAP 

dataset against the TensorFlow baseline architecture was infeasible, as it would have 

necessitated substantial architectural modifications, deviating significantly from the original 

design. 

 
Table 12. System evaluation on IEMOCAP Dataset with Audio and Text extracted using different embedding 

algorithms and performance measures. 

Architecture/ 

Embeddings 

Extractor Reencoder Encoder-decoder baseline 

BERT Matrix3 BERT Matrix3 BERT Matrix3 BERT Matrix3 

BLEU 0 0 0.004 0.006 0.004 0.006 - - 

METEOR 0.042 0.042 0.080 0.095 0.078 0.097 - - 

TER 121.009 253.850 166.326 259.786 135.952 245.007 - - 

Perplexity 4.137 4.478 3.674 3.944 3.766 3.923 - - 

 

 

This table offers a thorough analysis comparing various dialogue modelling structures, 

including Extractor, Reencoder, Encoder-decoder, and a baseline model, each paired with 

either BERT or Matrix3 embedding techniques. Based on the provided results, the 

performance of the different model-embedding combinations can be analysed and their 

strengths and weaknesses for the dialogue modelling task on the IEMOCAP dataset 

discussed. 

The experimental results from our study do not indicate a clear superior performance 

among the three architectural designs evaluated. Each of the tested architectures - the 

Extractor, the Reencoder, and the Encoder-Decoder Transformer - demonstrated 

comparable effectiveness across the range of metrics employed. Although each 

architecture shows promising results in one or two metrics, not one architecture appears to 

clearly outperform the other in more than one metric (Table 12). 

While the Extractor provides the best TER score, it also registers some of the worst 

perplexity scores across the board, for example. At the same time, the Reencoder 

architecture shows some of the best BLEU and METEOR scores, but also some of the 

worst TER scores. 

Contrary to expectations and previous research findings, our experimental results revealed 

an intriguing outcome regarding the performance of embedding methods. Surprisingly, 

neither BERT nor Matrix3 consistently outperformed the other across the various dialogue 

modelling architectures and evaluation metrics. This observation stands in stark contrast 

to numerous other studies in the field, where BERT has typically emerged as a clear 

frontrunner in natural language processing tasks. The lack of a decisive advantage for 

BERT in our experiments challenges the prevailing notion of its superiority and suggests 

that the effectiveness of embedding methods may be more context-dependent than 

previously thought. This unexpected result underscores the importance of thorough 

comparative analyses in different application scenarios, as the optimal choice of 

embedding technique may vary depending on the specific dialogue modelling task, 

architecture, or evaluation criteria. Our findings highlight the need for a nuanced approach 

when selecting embedding methods for dialogue systems, and call for further investigation 

into the factors that influence their relative performance across diverse contexts. 
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5.6 Comparing our Multimodal Results with previous Research 

Findings 
A comparative analysis between the proposed architectures and those detailed in the study 

by Young et al., (2020) titled “Dialogue systems with audio context” was conducted. This 

decision was motivated by the similarities in our research goals and the innovative 

approach presented in their work, particularly their Audio-Seq2Seq model which 

incorporates audio features into the dialogue generation process. 

Young et al.'s study provides a solid foundation for exploring the integration of audio context 

in dialogue systems, demonstrating improvements in perplexity, response diversity, and 

human evaluation scores compared to text-only baselines. By benchmarking our 

multimodal architectures against their Audio-Seq2Seq model, this study aims to assess the 

relative strengths and potential areas for improvement in our approach. This comparison 

allows us to evaluate how effectively our models capture and utilise audio information in 

generating contextually appropriate and emotionally resonant responses. Additionally, it 

will provide insights into the generalizability of audio-augmented dialogue models across 

different datasets and task configurations, contributing to the broader understanding of 

multimodal dialogue systems in the research community. 

Young et al., (2020) utilised the same multimodal datasets that were selected for our 

research, namely MELD (Multimodal EmotionLines Dataset) and IEMOCAP (Interactive 

Emotional Dyadic Motion Capture Database). This commonality in dataset selection 

provides a solid foundation for comparison, as it ensures that both studies are working with 

similar types of multimodal dialogue data, including textual content and corresponding 

audio features. 

However, Young et al. introduced human evaluation as part of their performance metrics, 

which is not a component of our current study. Human evaluation, while valuable for 

assessing the qualitative aspects of generated responses, introduces subjective elements 

that are challenging to replicate precisely. Therefore, to maintain objectivity and ensure a 

fair comparison, the comparative analysis was conducted solely on the perplexity metric. 

Perplexity, being a quantitative measure of how well a probability model predicts a sample, 

offers a consistent and reproducible basis for comparing the performance of our multimodal 

architectures against the Audio-Seq2Seq model proposed in their study. This approach 

allows us to evaluate the predictive power of the models in a standardised manner, while 

acknowledging the limitations of not including the human-evaluated aspects of dialogue 

quality in our comparison. 

In their study, Young et al. report using a test set of 1000 samples from the MELD dataset 

for their evaluation; similarly, they selected 901 sentences for their IEMOCAP test set. This 

research has also selected a test set of 1000 samples from MELD and 901 for IEMOCAP 

to maintain consistency in the evaluation scale. However, it's important to note that there 

is no guarantee that our test set is identical to the one used by Young et al. The authors 

did not provide specific details about their test set selection process. This potential 

difference in test sets introduces a degree of uncertainty in our comparison. While the size 

of the test sets is the same, the specific samples might differ, which could lead to slight 

variations in the reported perplexity scores between our study and theirs. 
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Table 13. Perplexity scores of  Multimodal Dataset with Audio and Text extracted using different embedding 

algorithms and compared to Young et al., (2020). 

Architecture/ 
Embeddings 

Extractor Reencoder Encoder-decoder Young et al. 

BERT Matrix3 BERT Matrix3 BERT Matrix3  

MELD 3.263 3.364 3.292 2.899 2.867 3.421 46.19 ± 0.49 

IEMOCAP 4.137 4.478 3.674 3.944 3.766 3.923 31.13 ± 0.31 

 

Our comparative analysis reveals that our proposed multimodal architectures consistently 

outperform the Audio-Seq2Seq model presented by Young et al. (2020) in terms of 

perplexity on both the MELD and IEMOCAP datasets. Specifically, our models demonstrate 

a significant reduction in perplexity scores, indicating a better ability to predict and generate 

contextually appropriate responses in multimodal dialogue scenarios. This improvement 

suggests that our architectures are more effective at integrating and leveraging the audio 

and textual information present in these datasets (Table 13). 

Several factors could contribute to the superior performance of our models. Firstly, our 

architectures may employ more sophisticated embedding techniques for combining audio 

and textual features, allowing for a more nuanced understanding of the multimodal context. 

Secondly, the study might have implemented more advanced attention mechanisms that 

better capture the relevance of different modalities in varying dialogue contexts. 

Additionally, our models could benefit from more recent advancements in transformer-

based architectures, which have shown remarkable capabilities in handling sequential 

data. The use of pre-trained language models as a starting point for the embedding layers 

in our architectures might also contribute to their enhanced performance. Finally, our 

approach to audio feature extraction and representation might be more refined, potentially 

capturing subtle audio cues that are particularly relevant to dialogue generation. These 

advancements collectively contribute to our models' improved ability to generate 

contextually appropriate and coherent responses in multimodal dialogue settings. 
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5.7 Comparing Audio, Text, and Multimodal models 

Analysing the results of our dialogue modelling experiments across various architectures 

and input modalities, several intriguing patterns have emerged. Firstly, our findings 

consistently demonstrate that models trained exclusively on audio embeddings exhibit the 

poorest performance across all tested architectures. This observation suggests that audio 

embeddings, while valuable, may provide a less information-dense representation for 

dialogue modelling compared to textual data. The limited performance of audio-only models 

suggests that crucial semantic and contextual information present in linguistic content may 

be lost or obscured when relying solely on acoustic features. This finding aligns with 

previous research that suggests audio embeddings, while valuable, may provide a less 

information-dense representation for dialogue modeling compared to textual data. For 

instance, (Vogel et al., 2023) emphasize the limitations of audio data in capturing nuanced 

dialogue dynamics, indicating that crucial semantic and contextual information inherent in 

linguistic content may be lost when relying solely on acoustic features (Vogel et al., 2023). 

Interestingly, our experiments reveal that models trained on text embeddings alone 

outperform those utilising a combination of text and audio embeddings. This 

counterintuitive result challenges our initial assumption that multimodal input would 

invariably lead to superior performance. A similar observation was made by Y. Zhao et al., 

(2023), who found that integrating textual and emotional information in dialogue systems 

does not always yield expected improvements, suggesting that the complexity of 

multimodal data can sometimes hinder performance rather than enhance it (Y. Zhao et al., 

2023). Upon closer examination, this phenomenon can be attributed to two primary factors. 

Firstly, the discrepancy in dataset sizes between our text-only corpus and the multimodal 

dataset likely plays a significant role. The larger text-only dataset provides more diverse 

examples and contexts for the model to learn from, potentially offsetting the added richness 

of multimodal representations. This is consistent with the work of B. Zhang et al., (2023), 

who noted that larger datasets often lead to improved model performance in multimodal 

settings (B. Zhang et al., 2023). Secondly, the increased complexity and dimensionality of 

the combined text and audio embeddings may require a substantially larger dataset for the 

model to fully leverage these rich representations effectively. 

Below are some examples of text-only results compared to audio-only results and audio 

and text results from the IEMOCAP dataset. 

Text only: 

Input: How you doing?  Aw, you know what I forgot?  I forgot to bring my flashlight.  Oh, how could 

I be so stupid?  I should've brought my flashlight. 

Output: [CLS] What flashlight? 

Input: What flashlight? 

Output: [CLS] The flashlight ; the silver one. There ' s only one, isn ' t there? 

Input: You know, the flashlight, the silver one.  There's only one isn't there? 

Output: [CLS] It ' s not your flashlight. 

Input: That's not your flashlight. 

Output: [CLS] Whose is it? 

Input: Who's is it? 
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Output: [CLS] It ' s ours. It ' s mine too. 

Input: It's ours.  It's mine too. 

Output: [CLS] Well sure, yes. It ' s been yours. It ' s been yours. 

Input: Oh, well sure. 

Output: [CLS] You kept saying my flashlight as if it ' s only yours. How is that supposed to make me 

feel? 

Input: You kept saying my flashlight, if as if somehow it's just yours.  I mean is that supposed to 

make me feel? 

Output: [CLS] No. No. Of course our flashlight yours and mine. Mi flashlight, es su flashlight, 

naturally. How could we not think to bring it? I hope the moon stays out. 

Audio only: 

Input: Oh, no you know what I did?  I forgot my flashlight.  How could I be so stupid I forgot my 

flashlight. 

Output: , 

Input: What flashlight? 

Output: , 

Input: The flashlight, the silver one.  There's only one isn't there? 

Output: , 

Input: It's not yours. 

Output: , , 

Input: Whose is it? 

Output: , 

Input: It's ours.  It's mine too. 

Output: , , , 

Input: Well sure. 

Output: 

Input: You kept saying my flashlight as if it somehow is just yours.  How's that supposed to make 

me feel? 

Output: 

Input: No of course our flashlight, yours and mine, mi flashlight es su flashlight naturally.  How could 

we not think to bring it? 

Output: , , 

 

Text and Audio: 

Input: This is great.  How are you doing?  Oh, no.  Oh, do you know what I did?  I forgot the flashlight.  

How could I be so stupid?  I forgot the flashlight. 

Output: [CLS] I know't t... 
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Input: What flashlight? 

Output: [CLS] I know't t.. 

Input: The flashlight.  The silver one.  There's only one, isn't there?  Stupid. 

Output: [CLS] I know't t t............. 

Input: You mean our flashlight? 

Output: [CLS] I know't t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t 

t t t t t 

Input: Well- 

Output: [CLS] I know't t t t. 

Input: I mean, you kept saying my flashlight, the flashlight like it was only somehow yours.  How is 

that supposed to make me feel? 

Output: [CLS] I know know't't't t t t......... 

Input: Oh, no, of course, our flashlight.  Me flashlight is to you flashlight, naturally. 

Output: [CLS] I know't t........... 

 

The relatively lower performance of audio-only and audio-text combined models compared 

to text-only models can be partially attributed to the nature of audio data. Audio inputs, 

while rich in information, can often be noisy and introduce a level of ambiguity or confusion 

into the model. Factors such as background noise, variations in speaker accents, or 

emotional inflections can create challenges in accurately interpreting the input. This aligns 

with findings from Thißen & Hergenröther, (2023), who argue that multimodal approaches 

can sometimes underperform due to the inherent noise in one of the modalities (Thißen & 

Hergenröther, 2023). This noise in audio data may lead to less precise representations of 

the dialogue context, potentially resulting in lower quality or less relevant generated 

responses. 

Furthermore, the quality of the textual data derived from speech recognition of the audio 

content may impact the performance of our multimodal models. Imperfections in the 

speech-to-text conversion process could introduce noise or inaccuracies into the textual 

representations, potentially diminishing the benefits of combining modalities. This 

observation underscores the critical importance of high-quality, aligned multimodal 

datasets in harnessing the full potential of audio-textual models for dialogue modelling. 

Moving forward, these findings suggest that future research should focus on curating larger, 

more diverse multimodal datasets and developing architectures specifically designed to 

efficiently integrate and learn from heterogeneous input modalities. 

However, it's important to note that while audio-text combined models don't outperform 

text-only models, they do show improvements over audio-only models. This suggests that 

there is indeed valuable information contained in the audio modality that complements the 

textual data. The combination of audio and text allows the model to capture additional 

context, such as emotional tone or emphasis, which isn't always apparent in text alone. 

This is supported by the work of (X. Zhang et al., 2024), which highlights the importance of 

emotional context in multimodal dialogue systems (X. Zhang et al., 2024). The challenge 

lies in effectively integrating this information without allowing the potential noise in audio 

data to detract from the clear semantic information provided by the text. Future work in this 
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area could focus on developing more sophisticated methods for audio feature extraction 

and multimodal fusion to better leverage the complementary strengths of both audio and 

textual inputs in dialogue generation. 

5.8 Best Performing Architecture and Embedding Layers 

The research findings consistently demonstrate the superior performance of the Reencoder 

architecture across various dialogue modelling tasks. This novel architecture, which 

incorporates an additional re-encoding step, outperformed other tested models including 

the baseline architecture, Encoder-Decoder Transformer, and Extractor model. The 

Reencoder's ability to iteratively refine input representations allowed it to capture and 

integrate more nuanced contextual information from previous conversation turns, resulting 

in more coherent and contextually appropriate responses. This consistent top performance 

was observed across diverse datasets such as Meld, Cornell, OpenSubtitles, and 

DailyDialog, with the Reencoder model achieving lower TER scores, higher BLEU scores, 

and superior accuracy compared to its counterparts. 

Among the embedding methods tested, two stood out as particularly effective: BERT 

embeddings and the custom embedding method referred to as Matrix3, which was learned 

directly from the training data. Both of these embedding approaches contributed 

significantly to the models' performance, with the Reencoder architecture benefiting most 

notably from their use. The effectiveness of these embedding methods can be attributed, 

in part, to their use of subword tokenization, a technique that allows for more flexible and 

nuanced representation of words and their components. This finding is consistent with the 

work of Wolf et al., (2023), who emphasizes the advantages of multimodal language 

modeling that incorporates advanced tokenization strategies (Wolf et al., 2023). 

It's important to highlight that both BERT and Matrix3 embeddings utilise subword 

tokenizers. This approach to tokenization breaks words down into smaller units, allowing 

the model to handle out-of-vocabulary words more effectively and capture morphological 

nuances. The use of subword tokenization enables these embedding methods to create 

more robust and adaptable representations of language, which in turn contributes to the 

overall performance of the dialogue models, particularly the Reencoder architecture. This 

observation aligns with the findings of (M. Zhang et al., 2024), who also noted the 

importance of effective tokenization in enhancing model performance in multimodal 

contexts (M. Zhang et al., 2024). This finding underscores the importance of choosing 

appropriate embedding methods and tokenization strategies in developing effective 

dialogue modelling systems. 

5.9 Unexpected Findings 

The experiments revealed several counterintuitive findings that warrant discussion. First, 

contrary to the common assumption that larger training datasets inherently lead to better 

performance, it was observed that increasing the volume of training data did not 

necessarily improve results when the additional data failed to meet certain quality 

thresholds. This suggests that data quality may be more crucial than quantity for effective 

dialogue modeling - a finding that challenges the prevalent 'more data is better' paradigm 

in machine learning. 

Second, it was discovered that seemingly minor inconsistencies in data quality and 

formatting had disproportionate negative effects on model performance. These 
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inconsistencies, which included close captioning or variations in dialogue turns (example 

1), resulted in significant degradation of output quality. This heightened sensitivity to data 

irregularities highlights the importance of maintaining strict data standardization protocols 

in dialogue modeling tasks. 

Perhaps most surprisingly, the models demonstrated greater difficulty in handling 

everyday conversational dialogue compared to their performance on topic-specific 

queries. While the models showed competence in responding to focused, domain-specific 

questions, they struggled to maintain coherence in casual conversations that involved 

social niceties, context switching, and implicit social cues (as shown in examples 2 and 3 

below). This finding suggests that current approaches to dialogue modeling may be better 

suited to structured, domain-specific interactions rather than open-ended social 

conversation, despite the latter being computationally simpler from a human perspective. 

Example 1: this example showcases two turns in the conversation that haven’t been 

correctly identified in the data (the input should be “hey , uh , is it okay to come in ?” and 

“of course !” should be part of the output). 

Input: hey , uh , is it okay to come in ? of course ! 

Output: [CLS] wow. 

Example 2: 

Input: How could we forget to bring it?  I hope the moon stays out. 

Output: [CLS] I wonder do they always run during a full moon? I can ' t remember if it was full last 

year, do you remember? 

Example 3: 

Input: next is sports news quiet very quiet 

Output: i have seen the ladies and gentlemen s of the tower of babel . 

These unexpected findings have important implications for future research directions in 

dialogue modeling, particularly regarding data curation strategies and architectural 

decisions for handling different types of conversational contexts. 

5.10 Summary 

Based on the experimental results presented in this chapter, several significant conclusions 

about multimodal dialogue modelling using the MELD dataset, which combines text 

transcriptions with audio embeddings, can be drawn. The study compared three main 

architectures — Extractor, Reencoder, and Encoder-Decoder Transformer — across 

different embedding methods including BERT, GloVe, and matrix3. 

The findings reveal that the Reencoder model with BERT embeddings demonstrated a 

better balance between accuracy and response quality, as measured by the Translation 

Error Rate (TER). Across all architectures, BERT embeddings and matrix3 embeddings 

consistently outperformed GloVe, highlighting the value of contextualised word 

representations in dialogue tasks. The Encoder-Decoder Transformer model, while 

generally underperforming compared to the other architectures, showed potential for 

improvement through fine-tuning or architectural modifications. This is consistent with the 

observations made by (Du, 2024), who noted that enhancements in architecture can lead 

to significant performance gains in dialogue summarization tasks (Du, 2024). 
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These results underscore the complex nature of dialogue modelling, where understanding 

input and generating appropriate responses present distinct but interconnected challenges. 

The incorporation of audio embeddings alongside text data proved valuable in enhancing 

the models' ability to capture nuances in emotion, tone, and context that may not be 

apparent from text alone. This multimodal approach, while focused solely on the MELD 

dataset due to its unique characteristics, provides insights into the potential of integrating 

audio features with textual information to improve dialogue systems' performance in tasks 

such as emotion recognition and intent classification.  
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Chapter 6: Discussion 

6.1 Introduction 

This section analyzes the findings from the experiments and highlights the strengths and 

limitations of each transformer architecture. The section also discusses the implications of 

the results and suggests potential avenues for future research in the field of chatbot 

modelling using transformer architectures. 

The study conducted a series of experiments involving several transformer architectures, 

including a baseline architecture, Encoder-Decoder Transformer, Extractor model adapted 

from previous experiments in the area, and a novel Reencoder architecture aimed at better 

modelling contextual information at training time. Each architecture was trained and 

evaluated on various datasets comprising dialogue transcripts sourced from diverse 

domains, encompassing both formal and informal conversational styles. The training data 

were preprocessed to ensure uniformity and compatibility across architectures, with 

tokenization and data augmentation techniques applied as necessary. Each Architecture 

was then also modified to be able to learn from audio, and audio and text embeddings as 

well. These audio and multimodal architectures were trained on the MELD and IEMOCAP 

datasets, extracting textual information from audio data through speech recognition for the 

multimodal architectures. 

Following rigorous experimentation and comprehensive evaluation of each architecture's 

performance across multiple metrics such as METEOR, TER, and BLEU score, our findings 

revealed a notable trend: while the performance metrics remained consistent across all 

studied architectures, the absolute values were unexpectedly lower than anticipated. This 

observation prompted further investigation into potential factors contributing to the 

discrepancy between expected and observed performance levels. 

Despite employing diverse evaluation methodologies and benchmarking against 

established metrics, the discrepancy in absolute performance metrics suggests underlying 

complexities within the datasets or model architectures that may not have been fully 

accounted for during the experimental design phase. Several factors could contribute to 

this discrepancy, including the smaller dimensionality of the models presented, and 

discrepancies between data size and quality. 

The forthcoming sections will delve into an exploration of potential factors that could 

elucidate this observed lower absolute performance, contextualising these factors within 

prevailing trends and the trajectory of future research within the field.  

6.2 Architecture Comparison Performance 

In our extensive exploration of various transformer architectures for dialogue modelling, the 

Reencoder architecture consistently emerged as the top performer across multiple 

evaluation metrics and datasets. This robust performance was particularly striking given 

the diversity of datasets used, including MELD, Cornell, OpenSubtitles, and DailyDialog. 

Across these datasets, the Reencoder consistently exhibited lower TER scores and higher 

BLEU scores compared to other transformer architectures. Notably, this trend persisted 

even when evaluated using different embedding layers, indicating the intrinsic efficacy and 

versatility of the Reencoder architecture in dialogue modelling tasks. 
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One possible explanation for the superior performance of the Reencoder architecture lies 

in its unique design, which emphasises the iterative refinement of input representations 

through a reencoding mechanism. Unlike traditional transformer architectures that rely 

solely on self-attention mechanisms for encoding contextual information, the Reencoder 

architecture introduces an additional reencoding step, which allows for the iterative 

refinement of input representations. This iterative refinement process enables the model to 

capture and integrate increasingly nuanced contextual information, leading to more 

accurate and coherent dialogue generation. This discovery underscores the pivotal 

significance of embedding layers within the architecture of a language model, shedding 

light on their crucial role in shaping and enhancing the model's performance and 

capabilities 

The Reencoder model represents a significant advancement in dialogue modelling due to 

its unique approach to leveraging contextual information from previous turns in a 

conversation. By incorporating historical context into the generation of vector 

representations for sentences within the embedding space, the Reencoder model achieves 

heightened levels of contextual awareness compared to traditional language models. This 

contextual enrichment allows the model to capture subtle nuances and dependencies 

inherent in human dialogue, leading to more accurate and contextually appropriate 

responses. As a result, the Reencoder model demonstrates enhanced performance in 

modelling human dialogue, as it effectively captures the dynamic nature of conversations 

and adapts its responses based on the evolving context over the course of the interaction. 

Operating on the contextual representation of language enables the Reencoder model to 

encode not only the immediate input, but also the broader context provided by previous 

turns in the conversation. This holistic approach to contextual modelling empowers the 

model to generate responses that are not only syntactically correct but also semantically 

coherent within the larger discourse context. By considering the entire conversational 

history, the Reencoder model can infer implicit information, anticipate user intents, and 

maintain consistency in dialogue interactions, thereby enhancing the overall conversational 

quality and user experience. 

Furthermore, the Reencoder model's ability to create contextually aware vector 

representations of sentences within the embedding space contributes to its versatility and 

effectiveness across a wide range of dialogue scenarios. Whether handling short, task-

oriented exchanges or engaging in longer, more open-ended conversations, the model's 

contextual understanding enables it to produce responses that are contextually relevant 

and linguistically fluent. This enhanced performance in modelling human dialogue 

underscores the significance of leveraging contextual information in language modelling 

tasks, highlighting the potential of the Reencoder model to advance the state of the art in 

conversational AI and natural language understanding. 

Moreover, the Reencoder architecture's superior performance may also be attributed to its 

ability to leverage the inherent advantages of small language models when operating on 

relatively small datasets. Small language models, characterised by their compact size and 

simplified architectures, have been shown to exhibit greater flexibility and adaptability when 

trained on limited data, as shown by results provided by the DailyDialog dataset. In the 

context of dialogue modelling, where datasets may be relatively small compared to other 

NLP tasks, the Reencoder's ability to learn from previous turns in the conversation, allows 

it to capture more generalizable patterns and relationships within the data. Overall, the 

combination of the Reencoder's unique architecture and the advantages of small language 
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models likely contributes to its superior performance and consistency in dialogue modelling 

tasks. 

6.3 The effect of dataset quality, size, and model complexity 

on performance 

6.3.1 Text only models’ training on Dailydialog and IEMOCAP 
Through a series of experiments comparing various transformer architectures, it was 

consistently observed that models trained on the DailyDialog and IEMOCAP datasets 

exhibited better performance and greater stability than those trained on the other datasets. 

This section provides insights into the underlying factors contributing to the enhanced 

performance of DailyDialog and IEMOCAP datasets and explores the implications for 

dialogue modelling research and applications. 

 

Although it is well known that Transformer architectures have emerged as state-of-the-art 

models for dialogue modelling, offering unparalleled performance in capturing contextual 

dependencies and generating coherent responses, it appears that the choice of training 

dataset significantly influences the effectiveness of transformer models in dialogue 

modelling tasks. In recent years, the DailyDialog and IEMOCAP datasets have gained 

prominence as a benchmark dataset for dialogue modelling, characterised by their 

diversity, quality, and relevance to real-world conversational scenarios. This section aims 

to investigate the superior performance of transformer models trained on said datasets and 

elucidate the underlying reasons behind this phenomenon. 

 

The experiments highlighted that Encoder-Decoder Transformer models trained on the 

DailyDialog dataset outperformed those trained on alternative datasets in terms of 

performance metrics such as perplexity, BLEU score, METEOR, and TER. On the other 

hand, Reencoder and Extractor models trained on the IEMOCAP dataset exhibited lower 

TER scores and higher BLEU and METEOR scores than models trained on other datasets, 

indicating better comprehension of dialogue contexts and more coherent response 

generation. Furthermore, the performance of models trained on DailyDialog and IEMOCAP 

datasets remained stable across different evaluation metrics and transformer architectures, 

highlighting the robustness and consistency of the dataset in facilitating effective dialogue 

modelling. 

 

Several factors are likely contributing to the superior performance of transformer models 

trained on the DailyDialog and IEMOCAP datasets. Firstly, the DailyDialog and IEMOCAP 

datasets are characterised by their  high-quality, diverse, and contextually rich dialogues. 

These features provide ample training examples for learning complex dialogue patterns 

and linguistic nuances. The richness and diversity of the dataset enable transformer models 

to generalise well to unseen dialogues and handle various conversational scenarios 

effectively (J. Lee & Lee, 2022). Secondly, the relatively smaller size of these datasets 

compared to larger corpora allows transformer models to focus on learning relevant 

dialogue patterns without being overwhelmed by irrelevant or noisy data. This facilitates 

more efficient learning and better generalisation capabilities, leading to improved 

performance in dialogue modelling tasks. These results seem to underline a trend, 
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according to which there would be a linear correlation between the dimensionality of a 

language model, and the amount of data necessary for its training. Smaller language 

models, with less trainable parameters, would benefit from a small, highly curated dataset, 

making them more suited for specific tasks (Althnian et al., 2021). Finally, the inherent 

structure and coherence of dialogues in the DailyDialog and IEMOCAP datasets contribute 

to the effectiveness of transformer models in capturing contextual dependencies and 

generating coherent responses. Overall, the combination of high-quality data and the 

suitability of small language models for learning from small datasets contributes to the 

superior performance and consistency of transformer models trained on the DailyDialog 

and IEMOCAP datasets in dialogue modelling tasks. 

6.3.2 Factors Contributing to Low Bleu Performance with the MELD 

Dataset 

The MELD (Multimodal EmotionLines Dataset) is a unique and challenging corpus for 

dialogue modelling tasks. It consists of utterances from television show transcripts, 

specifically from the show Friends. The utterances are labelled with emotion categories 

and sentiment polarities, making it valuable for modelling emotional and pragmatic aspects 

of dialogue. However, the experiments conducted with various transformer architectures 

on this dataset yielded very poor BLEU scores, with most models scoring around zero. 

There are a few potential reasons for these underwhelming BLEU scores on MELD. First 

and foremost, the dataset is relatively small, containing only around 13,000 utterances in 

total. This limited data may not provide enough examples for large language models to 

effectively learn patterns of natural dialogue flow and emotional nuance. Additionally, the 

sitcom dialogue in MELD often contains colloquial language, humour, and contextual 

references that can be difficult for models to fully comprehend and generate. 

Another key factor is that BLEU, while a popular automatic evaluation metric, may not be 

well-suited for assessing dialogue model performance on MELD. Since the dataset 

contains multi-turn conversations with potential for multiple valid responses to each 

utterance, models are effectively being penalised by BLEU for not precisely matching the 

provided reference. In dialogue, preserving semantic coherence and maintaining a natural 

flow is often more important than strict lexical similarity. 

Despite the low BLEU scores, the transformer models may still be capturing valuable 

dialogue traits from MELD that are not reflected in this metric. Future work could explore 

other automatic and human evaluation strategies that better measure pragmatic and 

emotional aspects of dialogue generation. Additionally, combining MELD with larger 

dialogue corpora during training could help models leverage the unique emotional 

annotations while benefiting from more general dialogue patterns in the larger datasets. 

6.4 Embedding layers and model performance 

This section investigates the influence of Bert embedding layers on transformer 

architectures for dialogue modelling tasks. Through a series of experiments, various 

transformer architectures were evaluated, and it was consistently observed that models 

utilising Bert embedding layers exhibited superior performance and greater consistency 

compared to those employing alternative embedding strategies. This study analyses 

insights into the mechanisms underlying the enhanced performance of Bert embedding 
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layers and explores potential factors contributing to their effectiveness in dialogue 

modelling tasks. 

 

Dialogue modelling represents a fundamental task in natural language processing, with 

applications spanning chatbots, virtual assistants, and conversational agents. Transformer 

architectures have emerged as prominent models for dialogue modelling, offering flexibility, 

scalability, and effectiveness in capturing the contextual nuances of human conversation. 

However, the choice of embedding layer within transformer architectures significantly 

impacts model performance and generalisation capabilities. In recent years, Bert 

(Bidirectional Encoder Representations from Transformers) embedding layers have 

garnered attention for their ability to capture bidirectional contextual information, leading to 

improvements in various NLP tasks. 

 

A comprehensive series of experiments was conducted to evaluate the performance of 

transformer architectures with different embedding layers on dialogue modelling tasks.  

 

Across all experiments conducted by training and evaluating different deep learning models 

on various datasets, models incorporating Bert embedding layers consistently 

outperformed those utilising alternative embedding layers (GloVe and Embeddings learned 

from the data). Notably, the Encoder-Decoder Transformer model equipped with a Bert 

embedding layer demonstrated the highest performance across all datasets, achieving 

lower perplexity scores, and higher BLEU scores compared to other model configurations. 

Similarly, the Reencoder and Extractor models exhibited enhanced performance when 

coupled with Bert embeddings, indicating the robustness and versatility of Bert embedding 

layers across different transformer architectures.  

The only exception to this trend emerges with the Reencoder model trained on the 

DailyDialog dataset, which showcases superior performance when enhanced by the 

SubwordTokenizer. Across metrics such as TER, BLEU, and METEOR, the Reencoder 

model consistently demonstrates enhanced efficacy. Notably, although results across 

architectures and embedding layers are comparable, the Reencoder model paired with the 

SubwordTokenizer outshines others when evaluated on the DailyDialog dataset. 

Intriguingly, despite the Reencoder being the best-performing architecture, its synergy with 

the best-performing dataset does not yield the absolute best results with Bert embedding 

layer, indicating the nuanced dynamics between model architecture, dataset choice, and 

embedding method. 

 

It is noteworthy to consider the underlying mechanisms of the SubwordTokenizer and its 

associated embedding layer, particularly in contrast to pre-trained tokenizers and 

embedding layers like Bert. Unlike Bert, which relies on pre-training on vast corpora to 

capture linguistic patterns and relationships, the SubwordTokenizer and its embedding 

layer are tailored directly to the specific dataset being used. This bespoke approach allows 

for a more fine-grained representation of the textual data, as the tokenizer is optimised to 

handle the unique linguistic nuances and vocabulary present within the dataset. 

Consequently, the embedding layer can capture more subtle semantic relationships and 

contextual information, leading to potentially richer representations of the text for language 

modelling tasks (L. Xue et al., 2022; Bostrom & Durrett, 2020). 
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The superiority of the SubwordTokenizer and its associated embedding layer over pre-

trained alternatives like Bert could stem from their ability to capture dataset-specific 

intricacies more effectively. By directly fitting the tokenizer and embedding layer to the data, 

the model can better adapt to the idiosyncrasies of the dataset, resulting in more accurate 

and contextually relevant representations of the text. This tailored approach is particularly 

advantageous for smaller datasets like DailyDialog, where the linguistic characteristics may 

vary significantly from broader corpora used in pre-training Bert. Consequently, the 

SubwordTokenizer and its associated embedding layer offer a more tailored and 

contextually relevant representation of the data, which could contribute to the observed 

improvements in model performance. 

 

Moreover, the observation that Bert's higher dimensionality may be better suited for larger 

datasets and language models warrants further investigation. While Bert's extensive pre-

training on large-scale corpora endows it with robust linguistic knowledge, its high-

dimensional embeddings may introduce challenges when applied to smaller datasets and 

language models. The richer feature space provided by Bert's high-dimensional 

embeddings may require larger volumes of data to effectively capture and generalise 

linguistic patterns, rendering it less optimal for smaller-scale tasks. In contrast, the lower 

dimensionality of the SubwordTokenizer's embeddings may offer a more compact yet 

expressive representation that is better aligned with the constraints of smaller datasets and 

language models. Thus, the choice between Bert and dataset-specific tokenizers and 

embeddings should be carefully considered in light of the dataset size and task 

requirements. 

 

Furthermore, the utilisation of Bert embeddings exhibits notable advantages in fostering 

greater consistency in model performance across diverse evaluation metrics. By leveraging 

Bert embeddings, the models exhibit heightened stability and reliability in dialogue 

modelling tasks. The robustness provided by Bert embeddings ensures that the models 

consistently deliver reliable performance across different evaluation criteria, thereby 

bolstering the overall efficacy and trustworthiness of the dialogue generation process. 

Moreover, Bert embeddings offer inherent advantages in capturing contextual 

dependencies and linguistic nuances present in dialogue data, thereby facilitating more 

accurate and contextually relevant responses. Overall, the utilisation of Bert embeddings 

enhances the coherence and effectiveness of dialogue modelling, contributing to the overall 

quality and reliability of the generated responses. 

 

The observed superiority of Bert embedding layers in dialogue modelling tasks can be 

attributed to several factors. Firstly, Bert embeddings capture bidirectional contextual 

information, enabling models to effectively understand and generate coherent dialogue 

responses. By leveraging the pre-trained knowledge encoded within Bert embeddings, 

transformer architectures can efficiently capture semantic nuances and linguistic intricacies 

present in dialogue datasets. Additionally, Bert embeddings are trained on large-scale 

corpora, encompassing diverse linguistic contexts and domains, which enhances their 

ability to generalise to unseen data and mitigate overfitting. Furthermore, the fine-tuning 

capabilities of Bert embeddings allow transformer architectures to adapt to specific 

dialogue modelling tasks, further improving performance and robustness. 
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In conclusion, this study found compelling evidence of the significant impact of Bert 

embedding layers on transformer architectures for dialogue modelling tasks. The consistent 

superiority and enhanced consistency of models utilising Bert embeddings underscore their 

effectiveness in capturing contextual information and generating coherent dialogue 

responses. However, an intriguing exception to this trend is observed with the Reencoder 

model trained on the DailyDialog dataset, which showcases superior performance when 

enhanced by the SubwordTokenizer. Despite this anomaly, it's notable that Bert 

embeddings facilitated greater consistency in model performance across various 

evaluation metrics, contributing to improved stability and reliability. The findings of this 

study shed light on the importance of embedding layer selection in transformer 

architectures and highlight the potential of Bert and other forms of pretrained embeddings 

in advancing dialogue modelling capabilities. Future research directions may explore novel 

techniques for leveraging Bert embeddings in dialogue modelling tasks and investigate 

their applicability across diverse domains and languages. 

6.5 Dataset impact on model performance 

Upon conducting extensive experiments and evaluating the performance of each 

architecture across various metrics, including METEOR, TER, BLEU score, and accuracy, 

comparable results across all studied metrics were observed. However, a striking 

observation emerged: the absolute performance metrics appeared lower than expected. 

Several factors may contribute to the observed lower absolute performance metrics: 

 

Small Language Models:  

Our experimentation opted to employ relatively small language models, primarily driven by 

resource constraints and computational limitations. These constraints necessitated the use 

of smaller variants of transformer architectures, which, while potentially limiting the models' 

capacity to fully capture the intricacies of human dialogue, offered certain advantages. One 

notable advantage is the ability of smaller models to be trained more efficiently on specific 

tasks using smaller amounts of high-quality data. Despite the potential limitations in 

generalisation, our observations suggest that a modest increase in the size of the 

architecture coupled with training on a slightly larger dataset of high-quality data could yield 

significant improvements in model performance. 

By incrementally enhancing the model's size and training data, researchers anticipate 

achieving higher-quality results while still maintaining a low computational cost for both 

training and inference. This approach allows for the development of efficient and accessible 

language models that strike a balance between performance and resource efficiency. It is 

worth noting that even with these incremental enhancements, the computational 

requirements remain modest, making the models accessible to a broader audience of 

researchers and practitioners. 

For comparative purposes, it is noteworthy to mention that the largest model examined in 

our research, the Reencoder model featuring a BERT embedding layer, comprised 

84,176,196 parameters. This model could be trained on a single Tesla T4 GPU paired with 

16 CPU units, requiring a total of 104 gigabytes of system RAM. Compared to some Open 

Source Language models currently present in the industry, the architectures proposed 

show great potential for efficient dialogue modelling, while maintaining a fraction of the 

parameters. In order to offer a more specific comparison, ChatGPT employs one of the 

smaller GPT models, comprising an estimated 20 billion parameters (Singh et al., 2023). 
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The largest model submitted in this research has a dimensionality equal to 0.4% of 

ChatGPT’s. Therefore, our experiments demonstrate that smaller models can offer 

competitive performance with substantially reduced resource requirements, underscoring 

their potential for widespread adoption and practical utility in various applications, in 

accordance with recent literature on the topic. Further details about the advantages offered 

by smaller language models are discussed later in the chapter. 

 

Small Datasets: Another significant factor contributing to the observed lower absolute 

performance metrics is the utilisation of relatively small datasets for training the models. 

Despite meticulous efforts to curate and preprocess the training data, the inherent 

limitations posed by the dataset sizes may have impeded the models' capacity to effectively 

learn robust dialogue representations. While smaller datasets are typically deemed 

adequate for training smaller-sized language models, it is plausible that the volume of data 

utilised for this research was insufficient to adequately train the proposed models to their 

full potential. 

To put this into perspective, consider the vast contrast in scale between the datasets used 

in this study and those employed in training larger, state-of-the-art language models such 

as ChatGPT. ChatGPT, for instance, has been trained on a corpus comprising 

approximately 570 gigabytes of data, enabling it to glean insights from a diverse array of 

linguistic contexts and nuances. In contrast, the largest dataset utilised in our study, 

OpenSubtitles, consisted of approximately 24 gigabytes of data, significantly smaller in 

comparison. This discrepancy in dataset size underscores the potential limitations imposed 

by the relatively modest volume of training data available for our experiments. 

Given the pivotal role of data quantity in shaping the efficacy and performance of language 

models, the constrained size of the training datasets may have hindered the models' ability 

to learn intricate dialogue patterns and nuances effectively. Consequently, despite rigorous 

efforts to optimise model architectures and training methodologies, the restricted amount 

of training data may have posed a bottleneck, limiting the models' overall performance and 

generalisation capabilities. Moving forward, future research endeavours would benefit from 

leveraging larger and more diverse datasets to train language models, thereby affording 

models ample exposure to varied linguistic contexts and facilitating more comprehensive 

learning. By prioritising the acquisition and utilisation of expansive training datasets, 

researchers can enhance the robustness and effectiveness of language models, ultimately 

advancing the state of the art in natural language understanding and generation. 

 

Data Quality: Furthermore, it is imperative to consider the influence of training data quality 

on the performance of transformer architectures. Despite meticulous efforts to maintain 

data cleanliness and consistency, it is inevitable that some datasets may contain noise or 

inaccuracies, which could significantly impede the models' learning process. In line with 

this conjecture, our observations indicate a noteworthy trend: models trained on the 

DailyDialog dataset consistently outperform those trained on other datasets, regardless of 

architecture or performance metrics used. This phenomenon likely stems from the superior 

quality and curation of the DailyDialog dataset compared to others examined in our 

research. 

Despite its relatively smaller size compared to other datasets in our study, the DailyDialog 

dataset stands out for its meticulous curation and high-quality data. This attention to detail 

ensures that the training data is representative of natural human dialogue, thereby 

facilitating more effective learning and generalisation by the transformer architectures. The 
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abundance of carefully curated examples in the DailyDialog dataset likely mitigates the 

impact of noise and inaccuracies, allowing models trained on this dataset to achieve 

superior performance across various tasks and metrics. 

Thus, the observed performance disparities among models trained on different datasets 

underscore the critical importance of data quality in transformer architecture training. 

Moving forward, continued emphasis on data curation and quality assurance processes will 

be essential to maximise the efficacy and performance of transformer-based models in real-

world applications. By prioritising the use of high-quality, curated datasets such as 

DailyDialog, researchers and practitioners can enhance the robustness and reliability of 

transformer architectures, ultimately leading to more accurate and effective natural 

language understanding and generation capabilities. These findings appear to align with 

prevailing trends observed in other research work conducted within the field, thereby 

reinforcing the validity of the phenomenon commonly referred to as “garbage in, garbage 

out” (Rose & Fischer, 2011). 

 

Implications and Future Directions 

The results obtained from our experiments highlight the multifaceted nature of factors 

influencing the evaluation of transformer architectures for dialogue modelling. Among these 

considerations, the size of the language model and the dataset emerge as pivotal 

determinants of model performance. While our findings shed light on the performance of 

smaller language models on comparatively small datasets, further investigations into the 

scalability of language models and datasets are warranted to elucidate their influence on 

dialogue modelling efficacy comprehensively. Additionally, enhancing the quality and 

diversity of training data stands out as a critical avenue for bolstering model robustness 

and generalisation capabilities. Addressing data quality issues and diversifying datasets 

are essential steps toward mitigating potential biases and enhancing the model's capacity 

to capture the richness and variability inherent in natural language conversations. Future 

research endeavours should prioritise these considerations to advance the effectiveness 

and applicability of transformer architectures in dialogue modelling tasks. 

6.6 Effect of Tokenization on the Embedding Layer of Large 

Language Models 

The choice of tokenization technique directly impacts the characteristics and quality of 

embeddings learned by large LMs. Simple tokenizers like tfds.deprecated.text.Tokenizer 

may lead to coarse representations, particularly in scenarios involving complex languages 

or domain-specific jargon. Subword-based tokenization methods such as 

tfds.deprecated.text.SubwordTextEncoder offer improved coverage and flexibility, enabling 

the representation of rare or unseen words through subword composition. In contrast, 

BERT Tokenizer leverages subword units and bidirectional context to generate 

embeddings tailored for transformer-based architectures, enhancing the model's ability to 

capture nuanced language semantics (Liu et al., 2019). 

 

The machine learning experiments explored three different embedding layers tailored to 

specific tokenization methods, optimising the encoding of textual data. Firstly, an 

automated embedding matrix generated directly from the data was paired with the 

tfds.deprecated.text.SubwordTextEncoder tokenizer, adept at handling out-of-vocabulary 
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words and morphological variations. Secondly, GloVe embeddings, capturing semantic 

relationships between words, were coupled with a custom-made tokenizer to ensure 

alignment with GloVe's vocabulary and dimensions. Lastly, BERT embeddings, capable of 

capturing contextual information, were employed alongside the BERT Tokenizer, 

specifically tailored to BERT's vocabulary and tokenization schema. By adopting distinct 

tokenization strategies for each embedding method, this study ensured optimal 

preprocessing and encoding of textual data, maximising the effectiveness of each 

embedding layer in our experiments. 

 

The research findings indicate that subword tokenizers, such as the TensorFlow 

SubwordTextEncoder used for our Matrix3 experiments, and the tokenizer used in BERT, 

play a crucial role in enhancing the performance of dialogue modelling systems. These 

tokenization methods demonstrate a marked improvement in model performance 

compared to traditional word-level tokenization approaches. By breaking words down into 

smaller, meaningful units, subword tokenizers enable models to handle out-of-vocabulary 

words more effectively, capture morphological nuances, and create more flexible 

representations of language. Bostrom and Durrett highlight that subword tokenization 

allows for the decomposition of rare words into smaller, more manageable units, which 

facilitates better handling of out-of-vocabulary (OOV) words and captures morphological 

nuances (Bostrom & Durrett, 2020). This is particularly advantageous in dialogue 

modelling, where understanding and generating diverse language constructions is 

essential.  

Moreover, subword tokenizers create more flexible representations of language by 

breaking down words into smaller, meaningful units. This granularity enables models to 

develop context-aware token representations, which are crucial for capturing the subtleties 

and variations in natural language conversations. Xue et al. emphasize that subword 

tokenization minimizes the total length of token sequences while maintaining a fixed 

vocabulary size, thereby enhancing the model's ability to generate coherent responses (L. 

Xue et al., 2022). The ability to generate flexible and contextually relevant representations 

is further supported by findings from Minixhofer, who discusses the effectiveness of 

subword tokenization in improving language model performance through better 

morphological representation (Minixhofer et al., 2023). 

 

The improved performance observed with subword tokenizers underscores the importance 

of tokenization strategy in developing robust dialogue models. As noted by Peters and 

Martins, subword-level morpheme segmentation is increasingly recognized as a vital 

component in modern NLP systems, which often rely on sequences of subword units 

induced by unsupervised algorithms like byte-pair encoding (BPE) (B. Peters & Martins, 

2022). This observation suggests that future research and development efforts in dialogue 

modeling should prioritize the use of subword tokenizers to leverage their advantages in 

handling complex linguistic structures. 

6.7 Interplay between Model Dimensionality, Data Size, and 

Task Specificity 
This section explores the emerging correlation between the dimensionality of a language 

model (LM) and the data requirements for its effective training in dialogue modelling tasks. 
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The section posits that smaller LMs, characterised by a lower number of trainable 

parameters, exhibit optimal performance when trained on compact, meticulously curated 

datasets. This targeted approach aligns well with the specific demands of dialogue 

modelling tasks. 

6.7.1 The Dimensionality-Data-Task Landscape 

Recent empirical findings indicate a discernible trend in the relationship between the 

dimensionality of language models (LMs) and the requisite amount of data for effective 

training (Kaplan et al., 2020). This trend suggests a linear correlation, wherein the 

dimensionality of an LM is directly proportional to the volume of data needed for successful 

training. Understanding this correlation sheds light on crucial aspects of LM training and 

deployment, offering valuable insights into optimising model performance and resource 

utilisation. 

 

As shown in our results, smaller language models exhibit a notable advantage in terms of 

data efficiency, as evidenced by their lower data requirements for achieving optimal 

performance. Due to their reduced size and complexity, these models possess fewer 

trainable parameters, making them inherently more adept at learning from smaller, 

meticulously curated datasets. This efficiency stems from their limited capacity to capture 

and learn complex patterns from vast amounts of data, allowing them to effectively leverage 

the information contained within smaller datasets for robust dialogue modelling tasks. 

 

Moreover, the correlation between LM dimensionality and data requirements underscores 

the importance of focus and efficiency in dataset curation for dialogue modelling. Curated 

datasets tailored to specific dialogue domains provide smaller LMs with a focused training 

environment, allowing them to specialise in understanding and responding to the nuances 

inherent in that domain. By honing in on domain-specific characteristics and linguistic 

subtleties, these datasets enable smaller LMs to achieve higher levels of accuracy and 

relevance in dialogue generation tasks, ultimately enhancing the efficiency of the training 

process and facilitating deployment on resource-constrained devices, as demonstrated in 

our study by the superior performance showcased by models trained on the IEMOCAP and 

DailyDialog datasets. 

This targeted approach fosters efficient training and facilitates the deployment of these 

models on resource-constrained devices due to their inherent efficiency. 

 

The experiments conducted across different proportions of the OpenSubtitles Dataset 

reveal a consistent trend: augmenting the size of the training data does not result in 

significant performance enhancements when evaluated using various metrics. Surprisingly, 

even with the data expanded by a factor of ten, there is no substantial improvement in 

performance observed across the metrics employed in the evaluation process.  

 

The observed challenges with performance improvement despite increased training data 

size could be attributed to various factors that interact to impede the learning process. 

Firstly, the quality of the OpenSubtitles dataset itself may be subpar, containing noise, 

inconsistencies, and irrelevant information that complicates the learning task for models. 

This necessitates further investigation to precisely understand how dataset quality impacts 

model performance and to develop strategies to mitigate its adverse effects. 
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Moreover, the suitability of large datasets for smaller language models warrants 

consideration. While large datasets offer rich and diverse data, smaller models may 

struggle to extract meaningful patterns and insights from such vast amounts of information 

due to their limited processing capacity. Consequently, the learning potential of smaller 

models may be constrained, leading to suboptimal performance even with increased 

training data. 

 

Furthermore, the challenges faced by smaller models are exacerbated when dealing with 

large datasets of inferior quality. The overwhelming volume of data becomes difficult for 

smaller models to process effectively, especially when coupled with noise and irrelevant 

information present in the dataset. This creates a double burden for smaller models, as 

they not only grapple with the sheer quantity of data but also struggle to discern relevant 

patterns amidst the noise, hindering their learning and generalisation capabilities. 

 

Understanding the intricate relationship between data quality and model size stands as a 

pivotal endeavour for advancing dialogue modelling: 

 

Delving into Dataset Quality: Thorough investigation into the impact of dataset quality on 

model performance is imperative. Techniques aimed at data cleaning, preprocessing, and 

filtering hold the potential to significantly enhance the learning process by ensuring that 

models are trained on high-quality, relevant data free from noise and inconsistencies. For 

instance, Kowsari et al. emphasize the importance of standard data collection protocols, 

noting that variations in training and test sets can introduce inconsistencies that adversely 

affect model performance (Kowsari et al., 2019). Similarly, Kunilovskaya and Plum highlight 

how preprocessing impacts the effectiveness of NLP models, suggesting that appropriate 

text representation through preprocessing can lead to improved outcomes in various 

applications (Kunilovskaya & Plum, 2021). 

 

While increasing the amount of training data generally aids in improving language model 

performance, the benefits are heavily dependent on the quality and relevance of that data. 

The section on the OpenSubtitles dataset experiments highlights an important 

phenomenon - simply scaling up dataset size does not guarantee commensurate 

performance gains, especially for smaller language models. This underscores the pivotal 

role that data quality plays in enabling effective learning from limited training resources 

(Tian et al., 2019). Research by Li et al. further supports this notion, indicating that models 

trained on diverse and contextually rich datasets perform better than those trained on larger 

but less relevant datasets (Li et al., 2022). 

 

Data quality issues can manifest in various ways that impede model learning. Noise in the 

form of irrelevant content, inconsistencies, errors, or lack of context can obfuscate the true 

underlying patterns models aim to learn (Muthuraman et al., 2021). Furthermore, data 

lacking in diversity and representative coverage of the target distribution can lead to models 

acquiring distorted or incomplete knowledge, as noted by Srivastava et al., who emphasize 

the importance of data preprocessing in extracting useful patterns from web usage data 

(Srivastava et al., 2015). For dialogue tasks specifically, datasets with incoherent 

exchanges, lack of grounding information, or poor alignment between utterances and 
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conversational flows can severely limit a model's ability to learn effective response 

generation strategies (Serban et al., 2017). 

 

The challenges posed by data quality are further compounded when models have limited 

capacity, as is the case with smaller language models aimed at domain-specific dialogue 

tasks. Their tendency to latch onto spurious patterns or be misled by noisy signals in data 

is exacerbated (Ferrario et al., 2020). Contending with vast quantities of low-quality data 

becomes computationally prohibitive for these models. As such, thoroughly understanding 

and mitigating data quality issues is paramount, especially when working with more modest 

model footprints tailored to specialised dialogue applications. 

 

Optimising Model-Data Pairing: Achieving an optimal match between model size and the 

volume and quality of the dataset is crucial. While larger models might have the capacity 

to handle extensive datasets, smaller models could potentially derive more significant 

benefits from focused datasets containing relevant and contextually rich information. By 

aligning model size with the appropriate data volume, researchers can enhance the 

efficiency and effectiveness of model training processes  (Rajesh & Hiwarkar, 2023). 

 

By delving into these complexities and developing strategies to address the challenges 

posed by data quality and model size, researchers can refine model training methodologies 

and make informed decisions regarding dataset selection. This concerted effort lays the 

groundwork for the development of more robust and effective language models tailored to 

meet the demands of diverse dialogue modelling applications. 

6.8 Beyond the Correlation: Exploring the Reencoder 

Architecture 

The Reencoder architecture provides a compelling case study within the framework of the 

dimensionality-data-task relationship, offering valuable insights into its scalability and 

performance dynamics. Future investigations could delve into the effects of augmenting the 

dimensionality of the embedding space within the Reencoder architecture on its overall 

performance, particularly when trained on larger datasets. This exploration would shed light 

on how the architecture scales with increasing data volumes and unveil the balance 

between capturing intricate contextual nuances and maintaining computational efficiency, 

thereby advancing our understanding of its scalability and performance characteristics. 

 

Moreover, research endeavours could delve into exploring innovative data augmentation 

strategies to enrich the training data utilised by the Reencoder architecture. By integrating 

domain-specific knowledge and context into the training process, such strategies could 

bolster the architecture's versatility and effectiveness across diverse dialogue modelling 

tasks. This entails incorporating domain-specific information, factual databases, and 

relevant ontologies into the training data, thereby equipping the Reencoder with a deeper 

understanding of domain-specific nuances and enhancing its applicability in various 

dialogue modelling scenarios. 

 

The emerging relationship between model dimensionality, data requirements, and task 

specificity underscores a significant avenue for future research in dialogue modelling. 
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Leveraging smaller language models in tandem with meticulously curated datasets holds 

immense potential for developing dialogue systems tailored to meet the unique demands 

of specific domains. Addressing the associated challenges related to data curation and 

harnessing the capabilities of architectures like the Reencoder are pivotal steps towards 

advancing the dialogue modelling field, paving the way for the development of more 

efficient and effective conversational AI systems. 

6.9 Summary 
This chapter presented a comprehensive analysis of experimental findings in transformer 

architectures for dialogue modelling, revealing several significant insights into the 

interplay between model architecture, dataset characteristics, and embedding 

approaches. The Reencoder architecture consistently demonstrated superior 

performance across multiple evaluation metrics and datasets, attributed to its unique 

ability to iteratively refine input representations and effectively leverage contextual 

information from previous conversation turns. However, the absolute performance metrics 

across all architectures were lower than anticipated, leading to important observations 

about the relationship between model dimensionality, data requirements, and task 

specificity. 

A crucial finding emerged regarding the impact of dataset quality and size on model 

performance. While conventional wisdom might suggest that larger datasets invariably 

lead to better results, our experiments revealed that carefully curated, smaller datasets 

often yielded superior performance compared to larger, noisier alternatives. This was 

particularly evident with the DailyDialog and IEMOCAP datasets, which consistently 

produced better results across different architectures. Furthermore, the study uncovered 

an interesting relationship between embedding layers and model performance, with 

BERT embeddings generally showing superior results, except for the notable case of the 

Reencoder model trained on DailyDialog, which performed optimally with 

SubwordTokenizer. 

These findings contribute to an emerging understanding of the advantages of smaller 

language models in specific dialogue modelling tasks. With the largest model in our study 

comprising only 84 million parameters (0.4% of ChatGPT's size), the research 

demonstrates that efficient, task-specific models can achieve competitive performance 

when paired with high-quality, domain-specific data. This suggests a promising direction 

for practical applications where computational resources are constrained, challenging the 

assumption that ever-larger models are necessary for effective dialogue modelling. 

Future research directions should focus on optimizing the relationship between model 

dimensionality and data requirements, exploring innovative data augmentation strategies, 

and investigating the scalability of successful architectures like the Reencoder. 
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Chapter 7: Conclusion and Future Work 

7.1 Conclusion 

Dialogue modelling plays a pivotal role in natural language processing (NLP) research, 

enabling the development of conversational AI systems capable of engaging in human-like 

interactions. Central to the success of dialogue modelling endeavours is the careful 

selection and curation of training datasets, as well as the choice of appropriate model 

architectures. 

 

Given the significance of understanding the interplay between model architecture, 

embedding mechanisms, and dataset characteristics in dialogue modelling tasks, the study 

embarked on an extensive series of experiments. Our objective was to comprehensively 

evaluate the performance and efficacy of various architectures and embedding techniques 

across datasets of varying sizes and qualities. This systematic approach allowed us to gain 

insights into the relative strengths and weaknesses of different models and methodologies, 

facilitating informed decision-making in model selection for specific dialogue modelling 

applications. Additionally, our experiments enabled us to explore how different datasets, 

characterised by their scale and quality, impact model performance and generalisation 

capability, thereby contributing to a deeper understanding of the factors influencing 

dialogue model efficacy. 

 

This research addressed a critical limitation in current chatbot models by exploring 

innovative approaches to incorporate broader conversational context in dialogue modelling. 

The study focused on enhancing three different Transformer architectures — Encoder-

Decoder Transformer, Extractor, and a novel Reencoder — by introducing modifications 

tailored to address their limitations in modelling dialogue, including previous turns of the 

conversation. The research also extended these architectures to handle multimodal inputs, 

incorporating both text and audio data to capture a more comprehensive range of 

conversational cues. 

The primary novelty of this research lies in the development and implementation of the 

Reencoder architecture, which introduces a groundbreaking approach to dialogue 

modelling through its innovative reencoding mechanism. Unlike traditional transformer 

architectures that process conversational context in a single pass, the Reencoder's 

additional reencoding step enables a more sophisticated analysis of conversational 

dynamics. This novel approach fundamentally transforms how contextual information is 

processed and integrated into the dialogue generation process, leading to demonstrably 

superior performance across multiple standardized metrics. The architecture's ability to 

maintain consistent performance improvements across diverse datasets represents a 

significant advancement in the field's understanding of contextual processing in dialogue 

systems. 

Furthermore, this research challenges the prevailing trend toward increasingly large 

language models by demonstrating the unexpected effectiveness of smaller, specialized 

architectures in dialogue modelling tasks. The novel finding that compact models, when 

paired with carefully curated datasets, can achieve comparable or superior performance to 
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larger models represents a paradigm shift in dialogue system development. This discovery 

is particularly significant as it suggests a more resource-efficient approach to building 

effective dialogue systems, contrasting sharply with the conventional wisdom that 

emphasizes the necessity of large-scale models and extensive training data. 

Key findings from the study revealed that the novel Reencoder architecture, particularly 

when paired with BERT embeddings, consistently outperformed other models across 

various metrics. This architecture demonstrated a superior ability to capture and integrate 

contextual information, leading to more coherent and contextually appropriate responses. 

The research also highlighted the effectiveness of subword tokenizers, such as those used 

in BERT and TensorFlow, in improving dialogue modelling performance. Additionally, the 

incorporation of audio embeddings alongside text data proved valuable in enhancing the 

models' ability to capture nuances in emotion, tone, and context. 

The outcomes of this research contribute significantly to the field of conversational AI, 

offering insights into more efficient and accessible dialogue modelling approaches. By 

developing architectures that can effectively leverage contextual information and handle 

multimodal inputs, this study addresses critical challenges in human-chatbot interaction. 

These findings not only advance the state-of-the-art in dialogue modelling but also hold 

potential for mitigating the resource-intensive nature of large language models, offering 

promising alternatives for businesses and developers with limited computational resources. 

Future research directions may include further optimization of the proposed architectures, 

exploration of additional multimodal inputs, and investigation of their applicability across 

diverse dialogue domains. 

7.2 Contribution 

This research study explored various transformer architectures for dialogue modelling, 

including a baseline architecture, an Encoder-Decoder Transformer, an Extractor model, 

and a novel Reencoder architecture. The Reencoder model, which incorporates an 

additional reencoding step, consistently outperformed other architectures across multiple 

datasets and evaluation metrics. This innovative design allows for better capture and 

integration of contextual information from previous conversation turns, leading to more 

coherent dialogue generation. The Reencoder's superior performance was consistent 

across diverse datasets such as Meld, Cornell, OpenSubtitles, and DailyDialog, 

showcasing lower TER scores, higher BLEU scores, and superior accuracy compared to 

its counterparts. 

The study highlights the critical role of embedding layers in language models. These layers 

convert discrete tokens or words into dense, continuous vector representations, 

encapsulating semantic and contextual information. This process enables language 

models to acquire meaningful representations of words and their interrelationships, 

facilitating efficient computation and robust learning of intricate linguistic patterns in a high-

dimensional vector space. 

While the performance metrics were comparable among architectures, the absolute values 

were lower than expected. This was attributed to the use of smaller language models and 

relatively small datasets due to computational constraints. The research emphasises the 

multifaceted nature of dialogue modelling and the need for comprehensive investigations 

into model scalability, dataset size, and data quality to enhance the effectiveness of 

transformer architectures in capturing the nuances of human conversation. 
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Interestingly, the study revealed the distinct advantage of employing small language 

models with compact, meticulously curated datasets for specialised tasks like dialogue 

modelling. This approach contrasts with the conventional use of large language models 

requiring vast amounts of training data. Smaller models paired with tailored datasets 

achieved comparable, if not superior, performance while operating within resource-

constrained environments. This finding suggests a more efficient and effective approach to 

dialogue modelling, particularly for specialised tasks. The research concludes by 

emphasising the importance of selecting appropriate transformer architectures and 

datasets for chatbot modelling tasks and suggests areas for further exploration in 

optimising model architectures, exploring novel training techniques, and investigating the 

generalizability of findings across different datasets. 

 

This research advances the field of dialogue modelling through several significant 

theoretical and practical contributions that span architectural innovations, empirical 

findings, and methodological advancements. The work's primary contributions centre on 

novel architectural developments, particularly in the realm of transformer-based dialogue 

systems. 

At the forefront of our architectural innovations is the pioneering Reencoder architecture, 

which represents a significant advancement in transformer-based dialogue modelling. This 

architecture's distinctive feature—an additional reencoding step—has demonstrated 

substantial improvements in dialogue generation quality across multiple standardized 

metrics. The architecture's consistent superior performance across diverse datasets, 

including Meld, Cornell, OpenSubtitles, and DailyDialog, validates its robustness and 

generalizability. The Reencoder architecture achieved notably lower Translation Edit Rate 

(TER) scores, higher BLEU scores, and superior accuracy metrics compared to baseline 

and contemporary architectures, establishing its effectiveness in dialogue generation tasks. 

Building upon the foundational work of Riley et al. (2021), we developed an enhanced 

Extractor model that significantly advances the state-of-the-art in contextual awareness for 

dialogue systems. This implementation consistently demonstrated performance 

improvements over baseline architectures across all evaluation metrics, achieving non-

zero scores across BLEU, METEOR, TER, and Perplexity metrics, in stark contrast to the 

baseline's null performance. The model's enhanced capability to incorporate and utilize 

contextual information from previous conversation turns represents a substantial step 

forward in dialogue modelling technology. 

A significant contribution lies in our development of novel Audio-Transformer architectures 

that successfully integrate textual and audio modalities. This work addresses fundamental 

challenges in multimodal dialogue processing through innovative alignment techniques for 

audio and text modalities, the creation of enriched word representations combining 

standard embeddings with audio features, and the implementation of efficient fusion 

strategies for different embedding types. This multimodal integration framework opens new 

avenues for more comprehensive dialogue understanding and generation. 

Our empirical findings challenge conventional wisdom regarding model scaling by 

demonstrating the effectiveness of smaller, specialized models. This research shows that 
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comparable or superior performance can be achieved with reduced computational 

resources, particularly in specialized dialogue modelling tasks. These findings have 

significant practical implications for resource-constrained applications and suggest a more 

efficient approach to dialogue system development. 

The comprehensive investigation into embedding layers provides crucial insights for 

language model design, offering detailed analysis of token-to-vector transformation 

processes and deepening our understanding of semantic and contextual information 

encoding. This work documents the critical relationship between embedding quality and 

model performance, contributing valuable knowledge to the field of natural language 

processing. 

Our cross-modal performance analysis provides valuable insights into the relative 

effectiveness of different modality combinations. Through systematic comparison of audio, 

text, and multimodal architectures, we have identified optimal modality combinations for 

specific dialogue tasks, supported by quantitative analysis of performance differences 

between modality types. 

From a methodological perspective, this research delivers an improved TensorFlow 

baseline architecture that provides a robust foundation for future research comparisons 

and establishes new benchmarks for architecture evaluation. The development of a 

thorough evaluation framework, encompassing multiple standardized metrics and enabling 

meaningful comparison of architectural variations across diverse datasets, represents a 

significant methodological contribution to the field. 

These contributions collectively advance our understanding of dialogue modelling systems 

and provide practical architectures for improved conversational AI applications. The 

research not only introduces novel technical solutions but also challenges existing 

paradigms, particularly regarding model scaling and modality integration. These findings 

have significant implications for both academic research and practical applications in the 

field of conversational AI, paving the way for more efficient and effective dialogue systems 

development. 

7.3 Future Work 

This study highlights the effectiveness of leveraging small language models (SLMs) in 

conjunction with meticulously curated datasets tailored for specific tasks such as dialogue 

modelling. The empirical findings underscore the significance of selecting a high-

performing embedding layer and coupling it with an appropriate architecture to achieve 

optimal performance. By demonstrating the importance of this synergy, the research 

emphasises the critical role that model architecture and data curation play in enhancing the 

performance of dialogue modelling systems. Moreover, beyond the selection of existing 

models and datasets, this study introduces a novel architecture, the Reencoder model, 

which exhibits promising results in the realm of dialogue modelling. The emergence of this 

innovative architecture opens up new possibilities for enhancing the efficiency and 

effectiveness of dialogue modelling systems. 
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Furthermore, this research paves the way for further exploration into the intricate interplay 

between model size, architecture, and data curation strategies. By delving deeper into 

these factors, future studies can elucidate the nuanced dynamics that influence the 

performance of dialogue modelling systems. This entails investigating how variations in 

model size and architecture impact the model's ability to capture and comprehend the 

intricacies of natural language conversations. Additionally, exploring advanced data 

curation techniques and their synergistic effects with specific model architectures could 

offer valuable insights into optimising dialogue modelling systems for various applications 

and domains. Thus, this research not only contributes to the current understanding of 

dialogue modelling but also lays the groundwork for future investigations aimed at pushing 

the boundaries of conversational AI technology. 

 

Moreover, the findings of this study underscore the importance of continued research and 

development efforts in the field of dialogue modelling. As the demand for sophisticated 

conversational AI systems continues to grow, there is a pressing need for advancements 

in model architecture, data curation methodologies, and evaluation metrics. By addressing 

these challenges, researchers can propel the field of dialogue modelling forward, enabling 

the creation of more robust, contextually aware, and natural-sounding conversational 

agents. Ultimately, this ongoing research endeavours to bridge the gap between human 

and machine communication, unlocking new possibilities for human-computer interaction 

and transforming the way users engage with AI systems in various domains. 

Exploring the interplay between model size, architecture, and data curation presents a 

promising avenue for future research. 

7.3.1 Leveraging Small Language Models and Focused Datasets 

The empirical findings underscore the efficacy of employing small language models in 

conjunction with compact, meticulously curated datasets for specialised tasks like dialogue 

modelling. To further elucidate the potential of this approach, future experiments could 

delve into exploring the optimal size and architecture of small language models for different 

dialogue modelling tasks. By systematically varying the size and complexity of the models 

while keeping the dataset size constant, researchers can elucidate the trade-offs between 

model complexity, dataset curation, and performance. Recent empirical findings have shed 

light on the effectiveness of integrating Small Language Models (SLMs) with compact, 

meticulously chosen datasets for dialogue modelling. This strategic approach yields several 

notable advantages: 

 

Efficiency: SLMs, characterised by their smaller size and reduced complexity, demand 

fewer computational resources for both training and operation compared to their larger 

counterparts. This efficiency renders them suitable for deployment on resource-constrained 

devices, thereby widening the scope of potential applications for dialogue modelling. 

 

Focus: Through training on carefully curated datasets tailored to specific dialogue domains, 

SLMs can attain proficiency in understanding and responding to the intricacies within that 

domain. This focused training enables them to generate responses that are not only more 

accurate but also contextually relevant within the specified domain. 

Moving forward, future research endeavours can delve deeper into two key areas: 
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1. Model Size and Architecture Exploration: Systematically exploring the complexity 

of SLMs while keeping dataset size constant allows researchers to pinpoint the 

optimal balance between model capability and data requirements for distinct 

dialogue tasks. This exploration serves as a guiding force in developing SLMs that 

can achieve peak performance tailored to specific dialogue applications. 

 

2. Data Augmentation and Transfer Learning: Further investigation into techniques 

such as data augmentation, which involves artificially expanding the dataset, and 

transfer learning, which leverages knowledge from related tasks, holds immense 

potential in enhancing the efficacy of SLMs. These approaches offer avenues to 

address the limitations posed by smaller datasets and bolster the model's capacity 

to generalise to unseen scenarios, thereby advancing the state-of-the-art in 

dialogue modelling. 

To accomplish this research path, researchers could design a comprehensive experimental 

framework that systematically explores the efficacy of Small Language Models (SLMs) in 

dialogue modelling. This framework would involve defining a range of SLM sizes and 

architectures to test, selecting a fixed, curated dataset for a specific dialogue task, and 

establishing clear evaluation metrics such as perplexity, BLEU score, and response 

relevance. The core of the investigation would focus on two key areas: model size and 

architecture exploration, and the application of data augmentation and transfer learning 

techniques. 

In exploring model size and architecture, researchers would systematically vary model 

parameters, such as the number of layers and hidden units, while training these different 

configurations on the fixed dataset. This approach would allow for a detailed analysis of the 

trade-offs between model complexity and performance, helping to identify the optimal 

balance for specific dialogue tasks. Concurrently, the study would delve into data 

augmentation techniques, implementing methods like paraphrasing and back-translation to 

artificially expand the training dataset. By comparing the performance of models trained on 

augmented data against those trained on non-augmented data, researchers can assess 

the effectiveness of these techniques in enhancing SLM capabilities. 

The research would also explore transfer learning approaches, involving pre-training 

models on large, general domain corpora before fine-tuning them on the specific dialogue 

task. This strategy would be compared with models trained from scratch to evaluate the 

benefits of transfer learning in the context of SLMs for dialogue modelling. Additionally, 

generalisation studies would be conducted by testing the models on out-of-domain dialogue 

tasks, providing insights into how well different model sizes and architectures adapt to new 

scenarios. 

However, this research path is not without challenges. The systematic exploration of model 

sizes and architectures, even with SLMs, requires significant computational resources. 

Creating high-quality, domain-specific datasets for training is time-consuming and may 

necessitate expert knowledge. Researchers must navigate the complex task of balancing 

model size, performance, and generalisation ability, which may vary across different 

dialogue tasks. The risk of overfitting, particularly with smaller datasets and more complex 

models, presents another hurdle. Choosing appropriate evaluation metrics that accurately 
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reflect model performance in dialogue tasks can be challenging, as can be ensuring the 

reproducibility of results across different experimental runs and hardware setups. 

Moreover, while SLMs offer advantages in efficiency and focus, they may struggle to 

generalise beyond their specific domain, potentially limiting their broader applicability. The 

effectiveness of transfer learning may also vary depending on the similarity between the 

pre-training and fine-tuning tasks. Despite these challenges, by systematically addressing 

these issues and thoroughly exploring the proposed research areas, researchers can gain 

valuable insights into optimising SLMs for dialogue modelling tasks. This research has the 

potential to significantly advance our understanding of efficient and effective dialogue 

modelling techniques, paving the way for more sophisticated and resource-conscious 

conversational AI systems. 

7.3.2 The relationship between model dimensionality and dataset size 

LMs of smaller size trained on specialised datasets provide a scalable and accessible 

solution to dialogue modelling, especially in environments with limited resources. With 

reduced computational demands and less extensive training data requirements, these 

models promote inclusivity in accessing advanced dialogue modelling capabilities. This 

inclusivity facilitates the broad adoption of dialogue systems across diverse sectors and 

use cases, spanning from customer service and virtual assistants to educational aids and 

healthcare solutions. 

Expanding on our current understanding of the correlation between model dimensionality 

and data size opens up several promising avenues for future research: 

 

1. Quantifying the Correlation: A crucial aspect of future research involves establishing 

a more precise mathematical relationship between the dimensionality of language 

models (LMs) and the size of training data required for optimal performance. By 

quantifying this correlation, researchers can develop predictive models or 

guidelines to determine the ideal data volume necessary for training LMs of varying 

sizes. This quantitative insight will be invaluable for optimising resource allocation 

in training endeavours, ensuring efficient use of computational resources and 

reducing unnecessary data collection efforts. 

 

2. Impact on Generalizability: Investigating the impact of the dimensionality-data 

correlation on the generalizability of dialogue models is paramount. While smaller 

models have demonstrated proficiency in specific domains, assessing their ability 

to adapt to diverse conversational contexts is essential for real-world deployment. 

Future research should explore how variations in model size and training data 

influence the model's capacity to generalise across different dialogue tasks and 

domains. Understanding these dynamics will inform strategies for enhancing model 

adaptability and robustness in varied application scenarios. 

 

3. Curriculum Learning Techniques: Exploring curriculum learning techniques offers a 

promising avenue for addressing the challenges associated with smaller datasets. 

Curriculum learning involves exposing the model to progressively complex training 

data, starting from simpler patterns and gradually introducing more intricate 

linguistic structures. By guiding the model's learning process in a structured 
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manner, curriculum learning can effectively mitigate the limitations of smaller 

datasets, enabling LMs to learn more sophisticated representations of language. 

Future research should investigate the efficacy of different curriculum strategies and 

their impact on model performance and generalisation capabilities in dialogue 

modelling tasks. 

To pursue this research path, researchers could design a comprehensive study that 

explores the relationship between model dimensionality, dataset size, and performance in 

dialogue modelling tasks. The study would focus on smaller language models (LMs) trained 

on specialised datasets, aiming to provide scalable and accessible solutions for dialogue 

modelling, especially in resource-constrained environments. 

The research would begin by establishing a framework to quantify the correlation between 

model dimensionality and the size of training data required for optimal performance. This 

would involve systematically varying model sizes and dataset sizes, training models on 

these different configurations, and measuring performance across a range of dialogue 

tasks. By analysing the resulting data, researchers could develop mathematical models or 

heuristics that predict the ideal data volume needed for LMs of different sizes. This 

quantitative approach would help optimise resource allocation in training efforts, potentially 

reducing computational costs and data collection requirements. 

Next, the study would investigate the impact of the dimensionality-data correlation on the 

generalizability of dialogue models. This would involve training models of varying sizes on 

domain-specific datasets, and then testing their performance on out-of-domain tasks or in 

diverse conversational contexts. By examining how well these models adapt to new 

scenarios, researchers can gain insights into the trade-offs between model size, dataset 

specificity, and generalisation capabilities. This understanding would be crucial for 

developing strategies to enhance model adaptability and robustness across different 

dialogue domains and tasks. 

The research would also explore the potential of curriculum learning techniques to address 

challenges associated with smaller datasets. This would involve designing and 

implementing various curriculum strategies, such as gradually increasing the complexity of 

training examples or introducing domain-specific knowledge in a structured manner. 

Researchers would compare the performance of models trained with different curriculum 

approaches against those trained using traditional methods, assessing their impact on 

model performance and generalisation capabilities in dialogue modelling tasks. 

However, this research path faces several challenges. Accurately quantifying the 

relationship between model dimensionality and data size requires extensive 

experimentation, which can be computationally intensive and time-consuming. Ensuring 

the quality and relevance of specialised datasets for different domains is another significant 

challenge, as is developing meaningful evaluation metrics that capture the nuances of 

dialogue performance across various contexts. 

Moreover, balancing the trade-offs between model size, performance, and generalizability 

is a complex task that may vary across different dialogue domains and applications. The 

effectiveness of curriculum learning techniques may also depend on the specific 

characteristics of the dialogue task and domain, requiring careful design and adaptation. 
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Despite these challenges, this research path holds significant promise for advancing our 

understanding of efficient and effective dialogue modelling. By quantifying the relationship 

between model size and data requirements, investigating generalizability, and exploring 

innovative training techniques like curriculum learning, researchers can develop more 

accessible and adaptable dialogue systems. This could lead to broader adoption of 

advanced dialogue modelling capabilities across diverse sectors, from customer service 

and virtual assistants to educational aids and healthcare solutions, ultimately making 

conversational AI more inclusive and impactful. 

7.3.3 Generalizability and Transferability of SLMs 

Future research endeavours in machine learning could concentrate on delving into the 

generalizability and transferability of small language models (SLMs) trained on meticulously 

curated datasets across a spectrum of dialogue modelling tasks and domains. 

 

1. Benchmarking Across Diverse Scenarios: A crucial aspect of future work involves 

conducting extensive experiments across a wide array of dialogue modelling 

benchmarks and real-world applications. This comprehensive assessment is 

indispensable for evaluating the robustness and adaptability of SLMs trained on 

curated datasets. By benchmarking performance in diverse scenarios 

encompassing various dialogue tasks and domains, researchers can gain valuable 

insights into the generalizability of the approach. This holistic evaluation aids in 

identifying potential strengths and weaknesses, thereby guiding the refinement of 

SLMs for improved performance across different contexts. 

 

2. Fine-tuning for Seamless Integration: Another promising avenue for future 

exploration is the investigation of techniques for fine-tuning pre-trained SLMs on 

domain-specific dialogue data. Fine-tuning offers a strategic approach to leverage 

the general knowledge encoded within pre-trained models while tailoring them to 

specific domains or applications. By fine-tuning SLMs on domain-specific dialogue 

datasets, researchers can enhance the models' performance and adaptability to 

specific contexts. This fine-tuning process facilitates the seamless integration of 

SLMs into various applications across diverse domains, ensuring that the models 

can effectively address the nuanced requirements of different dialogue tasks and 

domains. 

7.3.4 The Reencoder Architecture: Scalability and Performance 

Future work on expanding the Reencoder Architecture could focus on scalability and 

performance enhancements, particularly in two key areas 

 

1. Dimensionality of Embedding Space: A fruitful avenue for exploration involves 

systematically increasing the dimensionality of the embedding space while 

simultaneously training the model on progressively larger datasets. By 

systematically varying the dimensionality of the embedding space, researchers can 

assess how the richness and complexity of the embedding representations impact 

the model's ability to capture nuanced contextual information in dialogue 

interactions. Additionally, exploring the effect of dimensionality on model 
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performance across different dialogue modelling tasks and datasets can provide 

insights into the optimal embedding dimensionality for maximising the efficacy of 

the Reencoder architecture. 

 

2. Performance Across Tasks and Datasets: Another promising direction for future 

research involves evaluating the effect of dimensionality on model performance 

across diverse dialogue modelling tasks and datasets. This comprehensive 

analysis can offer valuable insights into the optimal embedding space size for 

maximising the Reencoder architecture's efficacy across different domains and 

applications. By systematically assessing performance across various tasks and 

datasets, researchers can identify the embedding space size that strikes the optimal 

balance between capturing contextual nuances and computational efficiency, thus 

informing the design of more effective dialogue modelling systems. 

 

3. Training Process Optimization: Exploring advanced training techniques such as 

curriculum learning and transfer learning can address challenges associated with 

training the Reencoder architecture on larger datasets. Curriculum learning involves 

gradually increasing the difficulty of the training examples presented to the model, 

enabling more efficient learning and better generalisation to complex dialogue 

scenarios. Similarly, transfer learning leverages knowledge from pre-trained models 

to bootstrap the training process, facilitating faster convergence and improved 

performance, particularly in scenarios with limited labelled data. By integrating 

these optimization techniques into the training process, researchers can enhance 

the efficiency, robustness, and scalability of the Reencoder architecture for dialogue 

modelling tasks 

 

Another pivotal focus area for future research is enhancing the performance of the 

Reencoder Architecture through iterative refinement and optimization. This involves fine-

tuning various architectural parameters, optimising training processes, and leveraging 

advanced techniques such as transfer learning and curriculum learning. By systematically 

optimising the Reencoder Architecture in these key areas, researchers can elevate its 

performance metrics, including accuracy, fluency, and responsiveness. Additionally, 

enhancing the architecture's adaptability to diverse linguistic styles, dialects, and 

conversational nuances can further bolster its utility across a broad spectrum of dialogue 

modelling tasks and applications. In summary, future work on the Reencoder Architecture 

should prioritise investigating the impact of embedding space dimensionality on scalability 

and performance across a range of dialogue modelling tasks and datasets. By 

systematically exploring these factors, researchers can gain a deeper understanding of 

how to optimise the Reencoder architecture for capturing nuanced contextual information 

while maintaining computational efficiency, thereby advancing the state-of-the-art in 

dialogue modelling. 
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Appendix A 

 

Table a.1. System evaluation on DailyDialog dataset using different embedding algorithms and performance 

measures. 

Archite
ctures/ 
Embed
dings 

Extractor Reencoder Encoder-decoder baseline 

BER
T 

Matri
x3 

GloV
e 

BER
T 

Matri
x3 

GloV
e 

BER
T 

Matri
x3 

GloV
e 

BER
T 

Matri
x3 

GloV
e 

BLEU 0.078 0.004 0.009 0.085 0.102 0.064 0.090 0.000 0.009 0.000 0.081 0.000 

METEO
R 

0.157 0.055 0.087 0.159 0.169 0.112 0.163 0.008 0.086 0.000 0.156 0.00 

TER 112.98
1 

215.70
4 

114.82
6 

110.16
5 

110.71
7 

114.93
5 

110.40
0 

98.823 115.35
1 

0.000 112.72
6 

0.000 

Accura
cy 

0.376 0.351 0.141 0.379 0.336 0.258 0.377 0.285 0.146 0.000 0.322 0.000 

 

Table a.2. System evaluation on Cornell dataset using different embedding algorithms and performance 

measures. 

Archite
ctures/ 
Embed
dings 

Extractor Reencoder Encoder-decoder baseline 

BER
T 

Matri
x3 

GloV
e 

BER
T 

Matri
x3 

GloV
e 

BER
T 

Matri
x3 

GloV
e 

BER
T 

Matri
x3 

GloV
e 

BLEU 0.006 0.006 0.004 0.007 0.003 0.003 0.005 0.002 0.003 0.000 0.007 0.000 

METE
OR 

0.079 0.081 0.037 0.070 0.055 0.034 0.079 0.037 0.038 0.000 0.087 0.00 

TER 117.65

4 

127.88

5 

113.25

9 

117.48

3 

249.19

4 

111.53

3 

124.28

0 

246.92

3 

126.59

1 
0.000 

119.12

7 
0.000 

Accura
cy 

0.221 0.120 0.067 0.224 0.166 0.132 0.233 0.123 0.089 0.000 0.151 0.000 
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Table a.3. System evaluation on OpenSubtitles dataset using different embedding algorithms and performance 

measures. 

Archite
ctures/ 
Embed
dings 

Extractor Reencoder Encoder-decoder baseline 

BER
T 

Matri
x3 

GloV
e 

BER
T 

Matri
x3 

GloV
e 

BER
T 

Matri
x3 

GloV
e 

BER
T 

Matri
x3 

GloV
e 

BLEU 0.000 0.000 0.003 0.003 0.000 0.000 0.002 0.000 0.002 0.000 0.012 0.000 

METEO
R 

0.055 0.064 0.029 0.061 0.041 0.025 0.056 0.062 0.025 0.000 0.119 0.000 

TER 130.07

6 

133.39

9 

123.92

3 

132.70

9 

126.86

6 

119.78

3 

128.42

9 

259.30

7 

125.35

9 
0.000 

118.55

3 
0.000 

Accura
cy 

0.185 0.116 0.058 0.184 0.148 0.057 0.182 0.112 0.071 0.000 0.116 0.000 

 

Table a.4. System evaluation on MELD dataset using different embedding algorithms and performance 

measures on text embeddings only. 

Archite
ctures/ 
Embed
dings 

Extractor Reencoder Encoder-decoder baseline 

BER
T 

Matri
x3 

GloV
e 

BER
T 

Matri
x3 

GloV
e 

BER
T 

Matri
x3 

GloV
e 

BER
T 

Matri
x3 

GloV
e 

BLEU 0.000 0.000 0.000 0.000 0.000 0.000 0.009 0.000 0.000 0.000 0.000 0.000 

METEO
R 

0.080 0.086 0.032 0.071 0.087 0.038 0.092 0.079 0.024 0.000 0.000 0.000 

TER 118.49

9 

114.28

6 

121.99

4 

110.38

0 

122.09

7 

131.96

3 

117.16

3 

112.02

5 

114.49

1 
0.000 0.000 0.000 

Accura
cy 

0.318 0.275 0.218 0.320 0.294 0.223 0.322 0.294 0.218 0.000 0.000 0.000 
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Table a.5. System evaluation on OpenSubtitles dataset with Training data corresponding to 1% of the entire 

dataset using different embedding algorithms and performance measures on text embeddings only. 

Archite
ctures/ 
Embed
dings 

Extractor Reencoder Encoder-decoder baseline 

BER
T 

Matri
x3 

GloV
e 

BER
T 

Matri
x3 

GloV
e 

BER
T 

Matri
x3 

GloV
e 

BER
T 

Matri
x3 

GloV
e 

BLEU 0.005 0.008 0.004 0.004 0.000 0.005 0.004 0.005 0.004 0.000 0.004 0.000 

METE
OR 

0.088 0.105 0.044 0.098 0.108 0.057 0.092 0.107 0.043 0.000 0.052 0.000 

TER 123.53

7 

122.23

1 

123.10

2 

121.13

0 

116.49

4 

119.23

4 

119.56

7 

121.37

3 

120.43

8 
0.000 

132.75

8 
0.000 

Accura
cy 

0.125 0.097 0.055 0.134 0.115 0.055 0.127 0.099 0.055 0.000 0.103 0.000 

 

 

Table a.6. System evaluation on MELD dataset using audio embedding algorithms and different performance 

measures on audio embeddings only. 

Archite
ctures/ 
Embed
dings 

Extractor Reencoder Encoder-decoder baseline 

Audio Embeddings Audio Embeddings Audio Embeddings Audio Embeddings 

BLEU 0.000 0.000 0.000 0.000 

METE
OR 0.031 

0.030 0.030 0.000 

TER 149.445 143.323 159.462 0.000 

Accura
cy 

0.035 0.036 0.035 0.000 
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Table a.7. System evaluation on MELD dataset using different embedding algorithms and performance 

measures on text and audio embeddings. 

Architec
tures/ 
Embedd
ings 

Extractor Reencoder Encoder-decoder baseline 

BER
T 

Matri
x3 

GloV
e 

BER
T 

Matri
x3 

GloV
e 

BER
T 

Matri
x3 

GloV
e 

BER
T 

Matri
x3 

GloV
e 

BLEU 0.000 0.002 0.000 0.004 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

METEO
R 0.064 0.069 

0.034 0.077 0.06 0.023 0.053 0.065 0.002 0.000 0.000 0.000 

TER 125.5

78 

236.9

13 

105.10

3 

106.21

2 
311.49 

105.17

2 

106.68

8 
314.73 

106.65

4 
0.000 0.000 0.000 

Perplexi
ty 3.263 3.364 

2.353 3.292 2.899 2.358 2.867 3.421 2.413 0.000 0.000 0.000 

Accurac
y 

0.091 0.073 0.017 0.055 0.048 0.017 0.033 0.068 0.017 0.000 0.000 0.000 

 

 

Table a.8. System evaluation on IEMOCAP dataset using different embedding algorithms and performance 

measures on text and audio embeddings. 

Archite

ctures/ 

Embed

dings 

Extractor Reencoder Encoder-decoder baseline 

BERT 

Matrix

3 GloVe BERT 

Matrix

3 GloVe BERT 

Matrix

3 GloVe BERT 

Matrix

3 GloVe 

BLEU 0 0 0 0.004 0.006 0 0.004 0.006 0 0 0 0 

METEO

R 0.042 0.042 0.042 0.080 0.095 0.049 0.078 0.097 0.059 0 0 0 

TER 

121.0

09 

253.8

50 

253.8

5 

166.3

26 

259.7

86 

174.5

57 

135.9

52 

245.0

07 

271.0

30 0 0 0 

Perplex

ity 4.137 4.478 3.006 3.674 3.944 2.548 3.766 3.923 2.614 0 0 0 

Accura

cy 0.025 0.045 0.017 0.059 0.073 0.021 0.057 0.073 0.021 0 0 0 
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Table a.9. System evaluation on  IEMOCAP dataset using audio embedding algorithms and different 

performance measures on audio embeddings only. 

Architec
tures/ 
Embedd
ings 

Extractor Reencoder Encoder-decoder baseline 

Audio Embeddings Audio Embeddings Audio Embeddings Audio 
Embeddings 

BLEU 0.000 0.000 0.000 0.000 

METEO
R 0.028 

0.035 0.032 0.000 

TER 144.272 120.764 127.656 0.000 

Accurac
y 

0.027 0.022 0.024 0.000 

 

 
Table a.10. System evaluation on IEMOCAP dataset using different embedding algorithms and performance 

measures on text embeddings. 

Archite

ctures/ 

Embed

dings 

Extractor Reencoder Encoder-decoder baseline 

BERT 

Matrix

3 GloVe BERT 

Matrix

3 GloVe BERT 

Matrix

3 GloVe BERT 

Matrix

3 GloVe 

BLEU 0.207 0.037 0.111 0.200 0.060 0.124 0.178 0.070 0.122 0 0 0 

METEO

R 
0.395 0.187 

0.316 
0.387 0.190 

0.325 
0.366 0.245 

0.327 0 0 0 

TER 

94.61

9 

157.4

59 

125.6

31 

95.81

1 

124.2

75 

109.1

61 
99.2 

130.8

4 

119.0

01 0 0 0 

Perplex

ity 3.216 4.716 2.773 3.58 3.35 3.053 2.728 4.687 2.813 0 0 0 

Accura

cy 0.24 0.228 0.144 0.240 0.228 0.155 0.224 0.220 0.157 0 0 0 
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Figure a.1 BLEU scores for the Encoder-Decoder Transformer architecture trained on the different datasets, 

based on the different embedding methods. 

 
Figure a.2 METEOR scores for the Encoder-Decoder Transformer architecture trained on the different datasets, 

based on the different embedding methods. 
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Figure a.3 TER scores for the Encoder-Decoder Transformer architecture trained on the different datasets, 

based on the different embedding methods. 

 
Figure a.4 Accuracy scores for the Encoder-Decoder Transformer architecture trained on the different datasets, 

based on the different embedding methods. 
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Figure a.5 BLEU scores for the Extractor architecture trained on the different datasets, based on the different 

embedding methods. 

 
Figure a.6 METEOR scores for the Extractor architecture trained on the different datasets, based on the 

different embedding methods. 
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Figure a.7 TER scores for the Extractor architecture trained on the different datasets, based on the different 

embedding methods. 

 
Figure a.8 Accuracy scores for the Extractor architecture trained on the different datasets, based on the different 

embedding methods. 
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Figure a.9 BLEU scores for the Reencoder architecture trained on the different datasets, based on the different 

embedding methods. 

 
Figure a.10 METEOR scores for the Reencoder architecture trained on the different datasets, based on the 

different embedding methods. 
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Figure a.11 TER scores for the Reencoder architecture trained on the different datasets, based on the different 

embedding methods. 

 
Figure a.12 Accuracy scores for the Reencoder architecture trained on the different datasets, based on the 

different embedding methods.  
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Appendix B 

Computational Resources 

For the purpose of this research, given the scarcity of computational resources readily 

available, Google Colab runtimes were used. These provided access to T4 GPUs. Running 

experiments on a T4 GPU in Google Colab involves navigating certain challenges and 

considerations. The availability of the GPU in Colab is generally favourable; however, the 

duration of access might be limited, and the resource allocation can fluctuate based on 

demand. Memory constraints on the T4 GPU have to be carefully managed, especially 

when working with larger models or datasets. Given the relatively moderate memory 

capacity of the T4, it's important to optimise batch sizes and model architectures to avoid 

memory exhaustion during training. Training time can be a crucial factor, as Colab sessions 

have time limits. It's essential to structure experiments efficiently, monitoring the training 

progress regularly to ensure that models are saved before the session times out. 

Additionally, strategic checkpointing and logging can aid in resuming experiments 

seamlessly in case of interruptions or time constraints. Despite these considerations, 

Google Colab provides a convenient and cost-effective platform for conducting machine 

learning experiments, leveraging the power of T4 GPUs for various tasks.  

A standard Colab runtime provides for 13 gigabytes of CPU RAM, and about 193 gigabytes 

of Disk space. 

 

Since the maximum runtime allowed on Google Colab is 24 hours, to avoid having to set 

up checkpointing, for longer running experiments a virtual machine has been set up on the 

Google Cloud Platform. The virtual machine could be seamlessly connected to the Colab 

environment, and run as long as necessary, providing the same computational power and 

infrastructure (a T4 GPU with 16 gigabytes of RAM), but more flexibility on the amount of 

system RAM and Disk Space when necessary. 

 

The following were the specifics of the T4 GPU used for the experiments: 

 
Figure A. Figure A shows technical specifications for the GPU used in the experiments conducted.  

 

The T4 GPU utilised for the experiments is characterised by its robust specifications, 

including 2560 CUDA Cores and 320 Tensor Cores, enabling high-speed parallel 

processing and efficient tensor operations. With FP16 performance reaching 65 TFLOPS 

and FP32 performance at 8 TFLOPS, the GPU delivers exceptional computational prowess 

suitable for demanding machine learning tasks. Its 16 GB GDDR6 memory, operating at a 
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bandwidth of 300 GB/s, facilitates swift data access and manipulation, enhancing overall 

performance and efficiency. 

 

Furthermore, the T4 GPU supports various software technologies, including CUDA, NVIDIA 

TensorRT, and ONNX, ensuring compatibility with a wide range of machine learning 

frameworks and tools. With 16 PCIe lanes and a power consumption of 70W, it strikes a 

balance between performance and energy efficiency, making it an ideal choice for running 

intensive experiments. The experiment training time has been meticulously logged 

alongside the results, providing comprehensive insights into the performance of the 

conducted experiments. 


