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ABSTRACT

In this work we implement Bayesian surprise as a method to sift through sequences of discrete patterns and identify any unusual
or interesting patterns that deviate from known sequences. Surprise is a biological trait inherent in humans and animals and is
essential for many creative acts and efforts of discovery. Numerous technical domains are comprised of discrete elements in se-
quences such as e-commerce transactions, genome data searching, online financial transactions of many types, criminal cyber-
attacks and life-course data from sociology. In addition to the complexity and computational burden of this type of problem is the
issue of their rarity. Many anomalies are infrequent and may defy categorisation; therefore, they are not suited to classification
solutions. We test our methods on four discrete datasets (Hospital Sepsis patients, Chess Moves, the Wisconsin Card Sorting
Task and BioFamilies) consisting of discrete sequences. Probabilistic Suffix Trees are trained on this data which maintain each
discrete symbol's location and position in a given sequence. The trained models are exposed to “new” data where any deviations
from learned patterns either in location on the sequence or frequency of occurrence will denote patterns that are unusual com-
pared with the original training data. To assist in the identification of new patterns and to avoid confusing old patterns as new or
novel we use Bayesian surprise to detect the discrepancies between what we are expecting and actual results. We can assign the
degree of surprise or unexpectedness to any new pattern and provide an indication of why certain patterns are deemed novel or
surprising and why others are not.

1 | Introduction We implement a version of the equation devised by Itti and Baldi

which models subjective beliefs that are reviewed as new data

The emotion of surprise is an essential function in many human
cognitive and intellectual processes when acquiring new knowl-
edge and skills (Baldi and Itti 2010; Andrew et al. 2013). Surprise
is generally described by cognitive scientists as an emotion that
occurs when our assumptions and the actual consequences di-
verge to a greater or lesser extent (Berlyne 1994; Ekman and
Davidson 1960). These discrepancies of belief can be assessed by
a principled approach using a modification to Bayesian theory
which allows us to express our beliefs and to modify these be-
liefs based on new data input to the system.

becomes available (Itti and Baldi 2005). Bayesian surprise can
be used as a metric to assess any differences between a mod-
el's prior and posterior beliefs. The larger the difference be-
tween the two distributions the bigger the surprise metric (Itti
and Baldi 2009). Surprise as a criterion for judging differences
in belief is finding applications in reinforcement-based learn-
ing for automating the learning process (Schmidhuber 2010;
Gottlieb et al. 2013) and autonomous agents (Rhienberger and
Hammitt 2018; Maguire et al. 2019). Furthermore, the creative
world of fashion design is starting to realise the benefits of using
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FIGURE1 | Probabilistic suffix tree generation integrated with Bayesian surprise.

AT for designing consumer products, applying surprise as a met-
ric to judge how consumers will perceive unfamiliar product
styles and features that may be pleasing and attractive to the eye
(Becattini et al. 2017) (Figure 1).

Recently, Bayesian surprise is finding applications in deep
learning language models (GPT-2) where event sequences are
modelled during storey telling (Kumar et al. 2023). The sur-
prise score is used to measure the listener's change in beliefs
when the storey takes an unexpected turn. Generative mod-
els such as the GPT family provide a rich source of textual
data generation for rich experimentation and analysis (Binz
and Schulz 2023). Other recent applications include (Qiao
et al. 2022) where Qiao used Bayesian surprise to gain a bet-
ter understanding of neuron connectivity modulation and
brain plasticity. Chieppe et al. (Chieppe et al. 2022) consid-
ered Bayesian surprise for the association with good experi-
ences, whilst (Ishikawa et al. 2025) other work used Bayesian
surprise to quantify pain with novel, unpleasant experiences
(Onysk et al. 2024).

Bayesian surprise is suitable for anomaly detection, which is
the process of seeking unusual patterns compared with normal,
expected data. Many potentially useful and interesting patterns
can be revealed through anomaly detection. The complication
in many applications is the infrequency of anomaly occurrence,
which may be construed as noise. This often prevents a classi-
fication solution, as there may not be enough examples to build
a robust model. Additionally, there is no guarantee that new
anomalous patterns will have similar characteristics to previ-
ously observed trends or patterns.

In the work, we build Probabilistic suffix trees (PST) to repre-
sent data sets with variable record sizes of discrete sequences
of symbols. In Table 1 we have fictitious data collected from a
shop; all possible customer transactions are identified by a let-
ter. The first two transactions are legitimate, with two custom-
ers entering; they pick up items and/or put items back on the
shelf, then pay for them and then leave. However, transaction

TABLE1 | Example customer data sequences.

Transaction String

1. A,B,C,D

2. A,B,E,B,B,B,E,C,C,D
3. A,B,E,B,B,B,B,D

Abbreviations: A =enters shop; B=picks item; C =pays for an item; D =leaves
shop; E =put item back on shelf.

3 is anomalous: the customer picks up several items, places one
item back, and leaves the shop with four items but did not pay.

The remainder of this is structured as follows: section two con-
siders the related work; section three provides an overview of
the theoretical framework; section four provides details of the
data and the analytical methods used; section five discusses the
results; section six provides the conclusions.

1.1 | Contribution of this Work

In our experiments, we train Probabilistic Suffix Trees (PST)
to model the sequences of four symbol-based data sets; these
are partitioned into train/test sections. After training, the test
data acts as “new” data which is then passed through the PST.
PSTs are generative models and provide the probabilities of
the expected outputs based on the prior and posterior relation-
ships. The divergence between the two distributions is cal-
culated by the Bayesian Surprise criteria and determines the
uniqueness/anomalousness of the new test data. However, we
need to distinguish between novel patterns and noise. We con-
sider outliers or noise to be sequences unlikely to have been
generated by the model. We can more or less identify outliers
by setting a threshold in the prediction quality distribution
such that sequences having scores below the threshold will be
considered as outliers. The difference between outliers/noise
and interesting patterns is explained in the main body text,
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but in effect, calculating log-loss, which is a good prediction
quality measure between the new data (which in fact could be
typical data, or noise, or interesting data) and the probability
the PST could have generated the new data. Low probabilities
tend to imply the new data record is an outlier; however, this
is only an indication.

2 | Related Work and Baseline Methods

The baseline methods commonly used to model discrete se-
quences are often conducted by analysis of the number and
composition of the symbols; also, the length of the sequence and
the transition rate from one symbol to another can all provide
useful information. Summaries of sequences in terms of what
a representative sequence may contain, such as the most fre-
quent sequence and the modal or middle sequence, are provided.
Clustering is also used to create homogeneous groups of related
sequences; sequences that have different compositions will ap-
pear in different clusters. In addition to sequence transition,
Shannon entropy is used to measure the diversity of the sym-
bols in any sequence. Distance measures such as the Longest
Common Prefix (LCP) and the Longest Common Sub-sequence
(LCS) from string theory are used to compute similarities and
distances. We explain these in greater detail in the methods
section.

Many sequences of symbols often have a hierarchical structure;
the SEQUITUR system takes advantage of this characteristic
whereby text is composed of letters, sentences and paragraphs.
SEQUITUR assembles a data structure from sequences of text
symbols. Repeated phrases based on their frequency are re-
placed with a recursive rule that can reconstruct the sentence or
phrase and hence generates the grammar in a hierarchical struc-
ture. SEQUITUR simplifies any subsequence that occurs at least
once into a rule and performs this operation using recursion.
The main advantage is a hierarchical structure that can manage
long sequences of symbols; such sequences are usually problem-
atic for many machine learning algorithms (Nevill-Manning
and Witten 1997).

Lin and Keogh tackled the conversion of continuous time-
series into discrete symbolic components using the Symbolic
Aggregate approXimation (SAX) algorithm and the Piecewise
Aggregate Approximation (PAA) algorithm (Lin et al. 2007).
The PAA algorithm decomposes continuous time series signals
into an alphabet of discrete symbols. Their secondary objective
was to search for motifs or repeating sub-sequences of symbols;
the motifs may represent a sequence of symbols that are natu-
rally grouped together and may represent useful or interesting
activity in the time-series (Keogh et al. 2002). The PAA and SAX
algorithms were further improved by keeping the information
of the continuous time series slope, making it easier for the dis-
cretisation of the symbolic representation (Zalewski et al. 2012).

Sequence information is particularly important in Natural
Language Processing (NLP) and speech recognition (Rieck and
Laskov 2008; Wilson et al. 2007). A major issue in NLP is to
avoid ambiguity. Part-of-speech tagging (POS) annotates the
sequences of words to help resolve this issue, whereby the po-
sition/location of words in a sentence is a major consideration.

Often, Hidden Markov Models (HMM) are used to model text
data that has been annotated (tag/label) in POS corpora. The
HMM advantage over other methods is that word context can
be modelled using other words in the near neighbourhood, and
they are able to provide probabilities based on the ambiguous
word and the previously tagged words based on their location. In
order to predict future sequences, strong assumptions are made
by Markov chains; the main consideration is that the current
state only matters and past states should not influence future
predictions. The Markov assumption on the probabilities of any
sequence when predicting the future is that the past should not
unduly influence the internal states. The characteristics of the
HMM make it suitable for many sequential problems (Liao and
Fasang 2021; Boldt et al. 2019) especially for anomaly detection
in sequences (Florez-Larrahondo et al. 2005).

Recent work by Wang uses HMM for anomaly detection in smart
homes, examining behavioural discrete sequences for profil-
ing residents and predicting their actions (Wang et al. 2023).
HMM and Probabilistic Suffix Trees (PST) have a biologically
plausible mechanism for holding variable length sequences
similar to human cognition (Hard et al. 2011). However, Basgol
implements a predictive event segmentation model using self-
supervised neural networks to achieve similar outcomes (Basgol
et al. 2024).

In biology, various string searching algorithms for RNA and
DNA sequences have been developed. However, they have a
common goal to detect motifs, as they search for recurring sub-
sequences in sequential, discrete data (Li and Homer 2010).
This leads on to the suffix tree data structure; this is commonly
used to hold sequential data and can model words and their lo-
cation in a sentence. It is a hierarchical data structure that is
often used to find the longest sub-string or sub-sequence in a
DNA sequence. For example, Huang employed suffix trees to
extract periodic patterns from very long temporal sequences
and then used self-attention neural transformers (Huang
et al. 2021; Huang 2023). Reick conducted experiments on sev-
eral sequence-based data structures such as tries (a data struc-
ture similar to a tree), generalised suffix trees, and data arrays
for the analysis of long sequences; this was a very useful analysis
comparing and contrasting the strengths of each data structure
(Rieck and Laskov 2008). The experiments were conducted on
a variety of data sets from bioinformatics, text processing, and
cyber-security network intrusion.

3 | Theoretical Framework
3.1 | Probabilistic Suffix Trees

Similar to the HMM, the Probabilistic Suffix Tree is also used
for discrete sequence modelling (Largeron-Leténo 2003).
Markov processes are suited to detecting anomalies in discrete
sequences with the caveat that unusual activity could be rep-
resented by an array of chronological observations (Zolfaghari
et al. 2021). The Probabilistic Suffix Tree (PST) incorporates a
Variable Length Markov Chain (VLMC), with the suffix tree
as the basic data structure. In Figure 2 we give an example
structure trained on a repeating pattern. Using a VLMC al-
lows variable length sequences (effectively lagging variables)
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FIGURE2 |

Probabilistic Suffix Tree example, trained on the symbol sequence “c-c-a-a-a-a-b-b-b-b-a-a-a-a-c-c”. The tree has a maximum depth

of three with a minimum support requirement of one occurrence for a symbol to be incorporated into the tree. The node values are counts of that
symbol's appearance. For the root node (e), we have 16 symbols in total, the next layer has 8, 4, and 3 (n—1). That is 4 “c's”, 8 “a's” and 4 “b's”. The

« »

frequency count for symbol “c” is n —1 since it is the first symbol in the sequence. The probability distribution for each node is shown as a barplot.

to be used in a given data set when training and testing the
PST. Otherwise, the data would be constrained by fixed length
sequences such as some neural networks require, like Long
Short Term Memory, which is a major disadvantage since the
data set requires padding (usually with zeros) up to the longest
length sequence. Furthermore, the VLMC property enables
emission probabilities to be calculated, and thus a predictive
model can be constructed (Berchtold 2010). As each state is
dependent only on the previous state, probabilities need to be
defined for the next state. Having knowledge of the current
state, equations for state probabilities and VLMC as imple-
mented from the Traminer software (Gabadinho et al. 2011;
Gabadinho and Ritschard 2016):

P(x;1%;_y, .., X)) =P (x| x,_;)

The probability of the sequence can be decomposed into:

P(x):P(xL,xL_l’ ,xl) =

®
P(xp | xp_1 )P (x4 1% 5) .. P(%y] %, ) P(x;)
P(xl) can also be calculated from the transition probabilities,
multiplying the initial state probabilities at time t =0 by the
transition matrix, the probabilities of states at time t = 1 can be
derived and therefore we also have them for time ¢t = n.

VLMCs model sequential data without recourse to complex
estimation procedures but they have significantly better per-
formance compared with HMMs (Bulmann and Wyner 1999).
Furthermore, one great advantage is the VLMC generative

ability to compute a probability distribution and hence make a
prediction on what the next sequences should be, based on the
learned sequences. Based on the PST model S developed from
training data, we can generate new test sequence likelihoods.
The new sequences are passed back into the trained PST which
generates the conditional probabilities for the next expected
symbols to be predicted. Equation (2) generates these sequences,
with the expectation that sequences with low probabilities could
be of interest to the user and perhaps anomalous.

VEE(012, ..} Y PSx)=1 o)

x €A’

where is the alphabet of symbols is defined by A and S is the
generative model representing the probability A”. Whilst x € A”
is the sequence presented to the PST (S). These probabilities are
assessed by the Bayesian surprise algorithm to determine if a
pattern or sequence is surprising or interesting.

The tree in Figure 2 is constructed from the training sequence
“c-c-a-a-a-a-b-b-b-b-a-a-a-a-c-c”. The tree has a maximum depth
of three with a minimum support requirement of one occur-
rence for a symbol to be incorporated into the tree. The node val-
ues are counts of that symbol's appearance. For the root node (e),
we have 16 symbols in total; the next layer has 8, 4, and 3 (n—1).

The PST can be constructed from a single sequence of sym-
bols or a series of sequences. Here in our example, we have a
single sequence. In Figure 3 the PST is built by successively
adding contexts of increasing length k. A node labelled with
the context c=cl, ..., ck stores the conditional probability of
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1 --(e)-[ p=(0.50,0.25,0.25) - n=16 ]
2 "--(a)-[ p=(0.75,0.12,0.12) - n=8 ]

3 "--(a-a)-[ p=(0.67,0.17,0.17) - n=6 ]

4 “--(a-a-a)-[ p=(0.50,0.25,0.25) - n=4 1--

5 *—-(b-a-a)-[ p=(0.998,0.001,0.001) - n=1 ]--
6 *--(c-a-a)-[ p=(0.998,0.001,0.001) - n=1 ]--
7 *——(b-a)-[ p=(0.998,0.001,0.001) - n=1 ]

8 --(b-b-a)-[ p=(0.998,0.001,0.001) - n=1 1--|
9 --(c-a)-[ p=(0.998,0.001,0.001) - n=1 ]
10 "--(c-c-a)-[ p=(0.998,0.001,0.001) - n=1 ]--|
11 *——(b)-[ p=(0.250,0.749,0.001) - n=4 ]
12 " --(a-b)-[ p=(0.001,0.998,0.001) - n=1 ]
13  “--(a-a-b)-[ p=(0.001,0.998,0.001) - n=1 ]1--|
14 *—-(b-b)-[ p=(0.333,0.666,0.001) - n=3 ]
15 “--(a-b-b)-[ p=(0.001,0.998,0.001) - n=1 ]--|
16 *——(b-b-b)-[ p=(0.499,0.499,0.001) - n=2 ]--
17 "——(c)-[ p=(0.333,0.001,0.666) - n=3 ]
18 "--(a-c)-[ p=(0.001,0.001,0.998) - n=1 ]|
19 “--(a-a-c)-[ p=(0.001,0.001,0.998) - n=1 1--|
20 *—-(c-c)-[ p=(0.998,0.001,0.001) - n=1 ]--|

FIGURE 3 | Internal structure and probabilities of the probabilistic
suffix tree.

observing the next symbol in the sequence. In line 1, the (e)
symbol denotes the root node. The nodes labelled by a, b and
¢ have the root node e as parent (the longest proper suffix3
of a string of length 1 is the empty string e). A leaf node has
no child and this occurs when the maximal context length is
reached; they are denoted by the “~|” symbol. The four distinct
subsequences of length 2 (a-a, a-b, b-a, and a-c) appearing in
the training sequence are then added to the tree. We also have
subsequences of length 3.

3.2 | Bayesian Surprise and Novelty

The connection between human reasoning and Bayesian mod-
elling is the assumption that Bayesian cognitive theories are
effectively a rational analysis grounded on the observations of
an initial theory and revising it based on new data (Lee and
Wagenmakers 2013). There is sufficient evidence for assum-
ing the Bayesian approach for making models of cognition is
essentially correct. However, there are several counterargu-
ments where humans deviate from Bayesian inference (Lee
and Wagenmakers 2013; Griffiths and Tenenbaum 2006). The
evidence is based on several human problem-solving tasks that
produce consistent results when tasks become too difficult to
manage using normative techniques and thus become reliant on
heuristic approaches (Bain 2016). The usual convention for stat-
ing Bayes rule is given below:

P(D| h)P(h)

P(h| D) = i)

©)

where P(h| D) is the posterior probability of the hypothesis h
given the data D; P(D| h) is the likelihood of D given h; P(h) is the
prior probability of hypothesis h; P(D) is the marginal likelihood
of the probability of the data D.

The Bayesian surprise measure S, which tests the two-fold vari-
ation between prior and posterior over the hypothesis and data
and returns a value (Baldi and Itti 2010; Itti and Baldi 2009).
This value will be either positive or negative depending on the
observers belief in the hypothesis when it either increases or
decreases. The distance measure used is the Kullback-Leibler

divergence measure. Several applications have recently used
the Bayesian Surprise criteria to as part of a feedback criteria
for improving the reliability of machine learning models such
as neural networks and thematic maps (Hasanbelliu et al. 2012;
Correll and Heer 2017; Grassi and Bartels 2021).

S(D, h) = distance|P(h), P(h| D)] @)
The Bayesian surprise measure provides a natural and useful
method for defining and representing novel and surprising pat-
terns (Andrew et al. 2013). Equation (5) calculates the distri-
bution over all hypothesis h € #. The surprise is given as the
two-fold difference between P(h| D) and P(h). The model space
is defined by M, in this case the output from the probabilistic
suffix trees but could be from any generative type model.

S(D, %)= distance[P(h), P(h| D)]

_ P(M| D) )
= ;;:P(A4|1)ﬂog-i;r32-

Novelty and surprise play a fundamental role in human and an-
imal behaviour for survival, attention and adaptation. Surprise,
is not however, entirely related to the information content of a
pattern alone (Itti and Baldi 2009; Bayarri and Morales 2003).
Experiments with patterns of visual white-noise (random but
with high information content) presented to participants over
time, their Bayesian surprise quickly decreased and soon van-
ished. This occurred as they adjusted their beliefs so that the
random patterns are anticipated and expected. “Thus, more in-
formative data may not always be more important, interesting,
worthy of attention, or surprising” (Baldi and Itti 2010). Shannon
or similar information theoretic measures would erroneously
classify the majority of unusual patterns as surprising because
of their low probability.

The Kullback-Leibler (KL) divergence examines the relative en-
tropy (Kullback and Leibler 1951) between prior and posterior
distributions (Berger et al. 2009). It is defined by:

p(»)
p(x)

where p(y) represents the posterior or correct distribution of
data and p(x) represents the hypothesis or model. We obtain a
value measuring the difference between the prior distribution
p(0) to the posterior distribution p(#]|y) (Statisticat, LLC 2020).
The machine learning perspective of a novel pattern is deemed
to be a statistical outlier that is different to the probability den-
sity function of previously observed patterns (Marsland 2003),
in other words novel patterns are those with low estimated prob-
ability of occurrence.

KL[p»)lpx)] = Y p(y;)log ©®)
i=1

However, without some sort of memory or the ability to rec-
ognise previous interesting patterns, each presentation of data
would result in similar outcomes of interesting scores being as-
signed. This can be tackled in one of two ways: either incorpo-
rate the new data patterns into the PST and retrain it or use a
decay function over time that will dampen surprise such as that
proposed by Baldi (Baldi and Itti 2010).
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1 1 1-p
—+log<1——>z— 7
a ay + by Pn @

where N is the number of data samples, a and b refer to the re-
spectively to the prior and posterior probability values.

4 | Data and Analytical Methods

All of the data sets consist of strings of symbols, usually letters with
one or two numbers (as strings). The data sequences for each re-
cord can be variable length or fixed length. The sequences identify
a series of discrete actions or conditions which have been recorded;
the location and position of each symbol in the sequence may be
important. The datasets generally contain other values such as bi-
ological measurements, gender, age, etc. represented by numeric
factors and continuous values. This data is interesting, but we do
not use it; we only use the sequences of events/actions. In Table 2
we summarise the data; the missing data records were removed.

4.1 | Bio-Family Data Set

The Swiss Panel collected data over a 16-year-long period of family
life sequences (Mueller et al. 2007). The individuals selected for
the study were born between 1909 and 1972 and contain details of
2000 individuals aged from 15 to 30years. The sequence length is
fixed at 16, with some missing data. There are eight states based
on single and a combination of family situations defined from the
combination of five basic states such as Living with parents (P),
Married (M), Divorced (D), Left home (L), Having Children (C). In
Table 3 an example of six records for the 11-year sequences is given.

TABLE 2 | Overview of the data sets.
No of length of Unique
Data records sequence symbols
BioFam 2000 Fixed (16) 8
Sepsis 1000 Variable (3-30) 16
Chess 280 Variable (2-10) 191
WCST 360 Fixed (60) 18
TABLE 3 |

For the first record with ID =1335, we see that this individual lived
with their parents from 2002 to 2010, then left home in 2011, then
from 2012 onwards was married and in 2013 had a child.

4.2 | Sepsis Data Set

Sepsis occurs when the body fights an infection but then causes
the antibodies to attack the patient's own cells. It is a serious condi-
tion usually requiring hospitalisation and may damage the inter-
nal organs such as the liver, kidneys, and lungs. In the worst-case
scenario, it may also lead to death. The majority recover from a
mild case of sepsis, but for septic shock, the mortality rate is about
30%-40% (NICE 2024). The data consists of cases collected from
a Canadian hospital and represents sequential events of medical
interventions to combat sepsis. Each record/case represents a pa-
tient's pathway through the hospital system. There are approxi-
mately 1000 patient cases with about 15,000 interventions (with 16
unique possibilities.) recorded for each patient. Also, a maximum
of 39 variables were collected, test results from clinical parame-
ters, and medications prescribed. Each patient can have a variable
number of interventions and outcomes, giving a variable length of
the discrete sequence records.

The symbol set for all records will contain at least three of the
following:

AdmissionC; AdmissionNC; CRP; ERRegistration; ERSepsis;
Triage; ERTriage; IVAntibiotics; IVLiquid; LacticAcid; Leucocytes;
ReleaseA; ReleaseB; ReleaseC; ReleaseD; ReleaseE; ReturnER.

Where: ER (emergency room); Triage (prioritise patient treat-
ment); Leucocytes (test for white blood cell count); CRP (C-
reactive protein, a test for sepsis); IV Antibiotics (Intravenous
antibiotics), IV Liquid (Intravenous fluid); Lactic Acid (tests for
Lactic Acid which is affected by sepsis).

In Table 4 an example of the variable length sequences is shown;
however, we only show the first eight sequences for this data-
set. On average, the typical number of symbols in a sequence
is 13, the smallest length is three symbols and the longest is 33
symbols. Clearly, the more symbols for a given patient, then the
more serious the infection. The patient's entry into the hospital
system begins with ERReg and with a discharge of one of the
five types (typically Release A), but if a patient relapses, then a
return to ER is likely.

16years of biofamily records listing six individuals, 1st column refers to the record id, each year contains their current state where (P)

indicates living with parents, (L) left home, (LM) left home and married, (LMC) left home and married with children.

ID 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2012 2013 2014 2015 2016
1335 P P P P P P P P P L LM LM LMC LMC LMC LMC
1516 P P L L L L L L L L L L L L L L
1870 p P P p p P P P P LM LM LM LM LM LM LM
2162 P P p p P P P P P P p LM LM LM LM LMC
398 P P P P L L L L L LM LMC LMC LMC LMC LMC LMC
902 P P P P P P LMC LMC LMC LMC LMC LMC LMC LMC LMC LMC
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Six patient records truncated at eight symbols for each.

TABLE 4

(8]

IVAntibiotics

(71

IVLiquid

[6]

ERSepsisTriage

[5]

CRP

[4]

Leucocytes

31

LacticAcid

[2]

ERTriage

B}

ERReg

ID

841

IVAntibiotics

IVLiquid Leucocytes CRP LacticAcid

ERSepsisTriage

ERTriage

ERReg

825

CRP Leucocytes LacticAcid ERSepsisTriage IVLiquid IVAntibiotics

ERTriage

ERReg

430

ERTriage ERSepsisTriage CRP Leucocytes IVLiquid IVAntibiotics AdmissionNC
IVLiquid

ERReg

95

LacticAcid

CRP Leucocytes

IVAntibiotics

ERTriage

ERSepsisTriage

ERReg

209

IVAntibiotics

CRP Leucocytes LacticAcid IVLiquid

ERSepsisTriage

ERTriage

ERReg

442

4.3 | Wisconsin Card Sorting Test (WCST)

The Wisconsin Card Sorting Test (Berg 1948) was designed
to reveal cognitive processes such as perseverance, attention,
abstract thinking, and set shifting (Lange et al. 2016). It can
measure the so-called perseverative behaviours that refer to
the participants fixation on incorrect behaviour. The data set
used in this work is generated using the PsyToolkit software
and contains 30 healthy staff and students aged between 24
and 50 from the University of Sunderland. The test we used is a
variation based on the original WCST, which is preferably used
on those with cognitive issues. The participants are presented
with 60 cards, and for each card, they must select one of four
rules they believe the card should belong to. The rules can be
colour of object (red, blue, green), shape of object (star, circle,
triangle, cross) and the number of objects. The rules change
after the presentation of 10 cards, which tests the participants
ability to change strategy when presented with an incorrect
answer. The software presents the sequence of cards and the
participants response with either the correct or incorrect an-
swer. It also provides the total number of errors and the perse-
veration errors (old strategy) and non-perseveration errors. All
participants will make errors since this is a feedback mecha-
nism informing them the old strategy no longer works and they
must figure out a new one. In Figure 6 the first 10 sequences
(from the same participant) are shown; the test type (number
of patterns, pattern type or colour) is the first symbol and re-
mains constant for 10 sequences. The symbols representing the
details of the card presented to the participant are next in the
sequence; finally, the result is presented, either correct, fail, or
out of time.

The experimental software is freely available from the PsyToolkit
platform.

https://www.psytoolkit.org/experiment-library/wcst.html
(Desrochers et al. 2022).

4.4 | Chess Short Games

The Lichess Chess Game Dataset contains data of 20,058 indi-
vidual games of chess, extracted from the website lichess.org
(Lichess Data Kaggle 2024). The data set contains multiple
columns of variables, but of interest to us are the following
two properties: moves, i.e., the set of moves played in the
game using standard algebraic chess notation [https://www.
chess.com/terms/chess-notation|; winner, i.e., the result of
the game, which can take one of three values: black, white, or
draw. We have also reduced the size of the data set for compu-
tational purposes to only include games which are 10 moves
or less. This reduces the size of the data set to 280 individ-
ual games. An explanation of algebraic chess notation can be
found on the chess.com website, but as an example, the moves
(e4 e5 Qh5 Nc6 Bc4 Nf6 Qxf7#) for the game below can be
described in Table 5. Players (white or black) take turns in se-
quence, and each move highlights the finishing place of the
piece (the starting position can normally be inferred as pieces
have standard moves), with special symbols for example, x for
when a piece is captured, + when the King is in check, and #
for checkmate.
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https://www.psytoolkit.org/experiment-library/wcst.html
https://www.chess.com/terms/chess-notation
https://www.chess.com/terms/chess-notation
http://chess.com

TABLE 5 | Record of one chess game.

Move code Meaning

e4 White pawn in e2 moves to e4

e5 Black pawn in €7 moves to e5

Qh5 White queen in d4 moves to h5
Nc6 Black knight in b8 moves to c6
Bc4 White bishop in f3 moves to c4
Nf6 Black knight in g8 moves to f6
Qxf7# White queen in h5 moves to f7 and has

checkmate, so white wins the game

Chess involves cognitive abilities, including reasoning and
memorisation. In chess, there are a large variety of opening
moves which players need to recall and act on. The most well-
known opening move in chess is Sicilian Defence, and there are
multiple variations of this, such as e4 ¢5 Nf3 d6 d4 cxd4 Nxd4
Nf6 Nc3. There are several articles which highlight the various
cognitive benefits of chess. For example, Sala and Gobet (Sala
and Gobet 2016) found that young chess players can make good
mathematicians and highlight how it can help in developing
their problem-solving and critical skills, whereas other re-
searchers have explored how chess may be a positive factor in
protecting the older population against dementia (Lillo-Crespo
et al. 2019).

4.5 | Process

Data records with missing values are removed and we divide
the training/test split randomly (75/25). The object of this work
is not to build a classifier, but to train a model that can iden-
tify how different new patterns are compared with the trained
Probabilistic Suffix Trees (PST). When new patterns appear,
the PST will generate probabilities as to the likelihood these se-
quences differ from what has been learned. We use RStudio as
the programming environment and load the PST package and
the TraMineR package developed by Gabadinho (Gabadinho
et al. 2011; Gabadinho and Ritschard 2016) to ensure the sym-
bols in the sequence are formatted as required by the PST. As
the test data is inputted to the PST for every symbol in every test
record, the difference between the probabilities is noted. The 1st
record is the probabilities assigned to the training data symbols
as deemed by the PST. The 2nd record is the probabilities for the
test data as they are passed through the PST.

In Algorithm 1 the input takes a data structure consisting of ei-
ther fixed length or variable length strings. The algorithm will
output a trained PST and the probabilities for each symbol in the
training data. The Parameters are used to train the PST and do
not require much in the way of tuning. The L parameter is an
integer value and sets the maximal depth of the PST. The nmin
parameter is an integer value and controls the minimum num-
ber of occurrences of a string to add it in the tree. The parame-
ter ymin is also an integer value and controls the smoothing for
conditional probabilities, assuring that no symbol, and hence no

ALGORITHM1 | Train Probabilistic Suffix Tree.

Input: set of string data D.

Output: Trained PST PST,; Probabilities for each symbol
PS

Parameters: L = 10; nmin = 2, ymin = 0.001].

1: Convert Seq « D using seqdef().

2 Split Seqtrain’ Sthest - Seq by 75/25.

3: Train PST using pstree([Parameters]) on Seq,, i,

4: Obtain probabilities for each Py, « PST.

5: cprob(PST, L=0, prob.=TRUE).

6: Return [Pg,,; PST,|.

ALGORITHM 2 | Calculate Bayesian Surprise.

Input: Trained PST PST,; Probabilities for each symbol
Py Test data T,

Output: §,; TP, ; Bayesian Surprise Surp,,; Entropy E,;
KullBack-Leibler KL,,.

1: Initialize KL, ; E,,; Surp, = 0.

2: Initialize P(Data| 6) =0, P(0| Data) =0, P(0) =
dbinom(0.5).

3: repeat.

4: Obtain the Likelihood P(Data| 8) = P, .

5: Calculate the Posterior P(0| Data) = P(Data| 0) x

P(0| Data).

6: Calculate the standard Prior P(0) = P(Data| ) x P(6).
7: Calculate Surp, = mean(Posterior) - mean(Prior)
Equation 5.

8: Calculate KL,= KL(Prior, Posterior, log, ).
9: Calculate E,, =

shannon. cond. ent(Prior, Posterior, log,).

10: Calculate g, = i Equation 7.

11:until P, & T,,.

12: ReturnTSurpn; KL,;E ;TP B, |

sequence, is predicted to have a null probability. The parameter
ymin sets a lower bound for a symbol's probability.

In lines 1-2, the string data is converted into special sequence
format (for the PST) and then split 75/25 into train and test par-
titions. In line 3, the PST is training on this data using the pa-
rameters. Lines 4-5 generate the probabilities for each unique
symbol in the PST, the prob parameter can be set to probabilities
or relative frequencies. Line 6 returns the trained PST and the
associated symbol probabilities.

In Algorithm 2 the trained PST, Equations (5) and (7) use the
test data to generate probabilities. For input the algorithm
receives a trained PST, probabilities for each symbol in the
PST and the test data. It will output upon completion for each
test record: the decay values g,; the Bayesian Surprise Surp,;
Entropy E,; KullBack-Leibler distance KL,. In lines 1-2, the
values for KL, E, and Surp, are set to zero, these will be calcu-
lated for each and every record in the test data. The Prior and
Posterior values are set to zero, the likelihood value is set to a
binomial function that is centred at 0.5. This is our main as-
sumption (belief) in our approach, it assumes that overall, any
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given pattern has a 0.5 probability of being surprising. Where
P(Data| ) is the likelihood, P(@| Data) is the prior, and P(0) is
the marginal likelihood.

Lines 4-6, perform the Bayesian inference stage by calculating
the likelihood, the Posterior and the standardised Posterior. The
posterior must be standardised, this is an important property of
any probability density or mass function is that it integrates to
one. The likelihood refers to the probability of observing the data
that has been observed assuming that the data came from a spe-
cific scenario. The posterior can be computed from three key val-
ues: 1. A likelihood distribution, P(Datal@) 2. A prior distribution,
P(0) 3. The average likelihood.

Lines 7-10 calculate the Bayesian surprise Surp,; the Shannon
Entropy E,;; KullBack-Leibler distance KL, and decay values §,,.
These values are stored in vectors for later use for comparisons.
Using decay, how many patterns are genuinely interesting prior
to reaching the zero value cut-off? This is a process based on
similar patterns reappearing over time, as they are presented.
Line 11, reiterates the loop until all of the test patterns have been
analysed. Line 12 returns the results for identification of those
patterns deemed to be interesting/novel.

After calculating the entropy, KL distance, and Bayesian
Surprise for the three datasets, we determine if a test pattern
is surprising or not. However, it is probably more important to
determine why a given sequence is surprising. This is based on
the use of a number of measures to analyse the structure, com-
position, and regularity of the interesting sequences. We have
six methods that assess the sequences:

1. Sequence entropy. Shannon entropy is used to measure the
diversity of the states or symbols in any sequence, based
on the length of the sequence and the number of symbols
in the alphabet (Oliveira and Ospina 2018). A more varied
sequence will have a higher entropy than a sequence com-
posed of fewer symbols.

2. Sequence complexity. A sequence may be defined in terms
of the complexity of distinct sub-sequences that can be
discovered from the distinct state sequences and is often
called turbulence in the literature (Elzinga 2010).

3. Longest Common Prefix (LCP). Distance measures from
string theory are used to compute similarities and dis-
tances. The longest common prefix for the sequences is the
common prefix between the two most dissimilar strings
(Elzinga and Studer 2015).

4. Longest Common Sub-sequence (LCS). A sub-sequence
is a relaxation of the idea of a sub-string; a sub-sequence
is a pattern that appears in the same relative order but is
not necessarily contiguous (Ritschard 2021). This method
is particularly well suited to DNA symbol matching
(Needleman and Wunsch 1970). The computations pro-
duce a matrix that can be clustered for further information.
The individual records, once clustered, provide an indica-
tion of their similarity.

5. Sequence event transitions. Rather than simply examin-
ing the sequences of symbols, we can also observe the
sequences of transitions or events between sequences

deemed as surprising and those that are not. The actual
transitions between symbols might reveal why they are
of interest.

5 | Results

We now compare the values of entropy, Kullback-Leibler (KL)
distance and Bayesian surprise for each test data set. All three
measures are based on the differences between prior and pos-
terior probabilities. It should be noted that the line plots have
a more or less regular appearance. This is because similar pat-
terns occur in the test data; the smaller the number of unique
symbols, the more likely the symbol sequences will be similar
and hence repeated over time. The “Wow” level is the two-fold
difference of the Bayesian Surprise value when derived from the
differences between the prior and posterior values as devised by
Itti (Itti and Baldi 2009). This is calculated for each dataset and
will be unique in each case. It should be noted that the Bayesian
Surprise is a much more conservative measure, especially when
coupled with the “Wow” threshold which requires a two-fold in-
crease of Bayesian Surprise for any pattern in the test data to be
considered interesting. Entropy, in all three datasets, has a much
higher response to the differences between prior and posterior
values, i.e., the overall information gain is high. The KL distance
is more conservative than entropy but still can be extremely vari-
able across the four datasets.

Viewing the Biofam data results, shown in Figure 8, the infor-
mation value of the KL measure fluctuates between a range of
0.3-1.2 and thus has high information content. Similarly, the
entropy has high information content but does not fluctuate to
any great extent. The Bayesian Surprise measure for Biofam is
just over the zero value; the “Wow” level is also just above zero.
Shown in Figure 4, the regularity of the Biofam data is evident;
10 records are shown, each with 16 sequences. The majority of
the individuals (younger people) in the study are still living with
parents, but in many sequences we can observe life changes over
the period of 16years as the individuals marry, have children,
move from home, and parents, etc.

Examining the Sepsis data results, shown in Figure 9, the in-
formation value of the KL measure fluctuates between a range
of 0.0-0.5. However, in this data entropy has a much higher in-
formation content than the other measures and fluctuates be-
tween 0.75 and 1.00. The Bayesian Surprise measure for Sepsis
is between 0.1 and 0.35 and has similar characteristics to the KL
measure. The “Wow” level is around 0.23. Shown in Figure 5,
the varied size of the sequences comprising the Sepsis data is evi-
dent; however, the sequences always start with “ERRegistration”
and usually terminate with “ReleaseA”.

Viewing the Chess data results, shown in Figure 10, the infor-
mation value of the KL measure fluctuates between a range of
0.0-0.9. Entropy has a much higher information content than
the other measures, and fluctuates between 0.90 and 1.00. The
Bayesian Surprise measure for Chess is between 0.0 and 0.25.
The “Wow” level is around 0.1. Shown in Figure 7, the size of
the sequences varies between 2 and 1; however 0, the sequences
usually start with “e4” or “e5” and as the game progresses, more
symbols are used to describe the moves.
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FIGURE 6 | Sequence ordering of Wisconsin card sorting test symbols for first 10 sequences. The first symbol in the sequence is always the test

type (shape, colour, number) which changes after 10 symbols, then the shape, colour and number of the selected card, last symbol is always the test

result (wrong, correct or too slow). There are 18 possible symbols, as shown in the legend.
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FIGURE 7 | Sequence ordering of first ten chess games of a total of 280, the sequences vary in length from 2 to 10 symbols (game moves), average
game length is 6 moves. The legend shows the repertoire of different moves made in these 280 games.
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FIGURE 11 | KL, entropy and Bayesian surprise on WCST for first
50 records without interest decay. Where: ent is the entropy, KL is the
Kullback Leibler measure and surp is the Bayesian surprise value.

Examining the WCST data results, shown in Figure 11, the in-
formation value of the KL measure fluctuates between a range of
0.0-0.6. Entropy fluctuates between 1.00 and 1.50. The Bayesian
Surprise measure for Sepsis is between 0.1 and 0.35. The “Wow”
level is around 0.25. Shown in Figure 6, the regular structure of
the sequences comprising the WCST data with its equal sizes
of five symbols and the first symbol is repeated 10 times, be-
fore it changes to another symbol for 10 repeats and so forth.
This predicable regularity makes for a less “interesting” data set
information-wise.

5.1 | Estimates of Noise and Errors

Next we must determine the amount of noisy data present in
each dataset; we provide a summary of the log-loss errors in
Table 6 for all datasets. This process is dependent on the quality
and quantity of the data used to train the PSTs and should only
be used as a rough guide and is not exact. The PSTs are genera-
tive models, and we use this feature to see if the test data could
have been generated by the PST model. In Figures 12 and 13
we have the log-loss error for an individual Biofam record and
for the entire Biofam dataset respectively. The histograms are
generated by passing the test data into the trained Biofam PST
tree and observing the probabilities of the outputs. The proba-
bilities based on the log-loss error provide an indication of the
amount of error overall and individually for the data. The aver-
age log-loss error is used as a cut-off point to determine if those

<
» L4p
7]
(o]
= o~
od -
[s]
— = |—|

e T ]
o

al5 al7 a19 a21 a23 a25 a27 a29

FIGURE 12 | Biofam log-loss error for a single record, the red line
indicates the average log-loss and the lower bars are the symbols for that
record. The coloured bars are assigned automatically for each unique
symbol in the sequence.
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FIGURE 13 | Biofam log-loss error density distribution over the en-
tire data set.
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FIGURE 14 | Sepsis log-loss error for a single record, the red line in-
dicates the average log-loss and the lower bars are the symbols for that
record. The coloured bars are assigned automatically for each unique
symbol in the sequence.

particular test records are noise/outliers based on discrepancies
between them and the features learned by the PST model.

In Figures 14 and 15 histograms for the Sepsis data are pre-
sented. The log-loss errors are slightly higher than those of the
other datasets, potentially a result of a varied set of sequences
with up to 16 symbols and a sequence length ranging between
3 and 30 symbols. Although we have 1000 samples, it is likely
that more data is needed to span the input space (the curse of
dimensionality).

In Figures 16 and 17 the histograms for the Chess data are dis-
played. Although the chess data consists of short variable length
sequences (2-10) it has a larger than usual repertoire of symbols
(191). Again, this will contribute to the log-loss error. The se-
quence shown in Figure 16 consists of five symbols (five moves)
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FIGURE15 | Sepsislog-loss error density distribution over the entire
data set.
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FIGURE 16 | Chesslog-loss error for a single record, the red line in-
dicates the average log-loss and the lower bars are the symbols for that
record. The coloured bars are assigned automatically for each unique
symbol in the sequence.
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FIGURE17 | Chesslog-loss error density distribution over the entire
data set.

which is about the average size for this dataset and is represen-
tative of the whole.

In Figures 18 and 19 the histograms for the WCST are shown.
This data set has a very regular structure of 60 symbols for each
participant with feedback symbols for the answer (correct, wrong
or out of time). It has moderate log-loss error per sample/record
and the average is similar to the other datasets, although the his-
togram is somewhat skewed. The interesting aspect about this
data set is that it may be structured in different ways, sequences
of length 60 or sequences of length 10 (six for each participant).

5.1.1 | Evaluation of Results—Statistics

The next stage is to examine the details of the sequences. We
wish to determine if any differences exist between surprising
and non-surprising patterns. Referring to Table 6 the results for
entropy, sequence complexity, longest common prefix, and lon-
gest common sub-sequence are presented.
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FIGURE 18 | WCST log-loss error for a single record, the red line in-
dicates the average log-loss and the lower bars are the symbols for that
record. The coloured bars are assigned automatically for each unique
symbol in the sequence.
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FIGURE 19 | WCST log-loss error density distribution over the en-
tire data set.

For the Sepsis sequences, the average entropy is 0.74, much larger
than Biofam (0.35) indicating a varied set of symbols. The turbu-
lence or complexity of the Sepsis data is 11.9 and is more complex
than Biofam (4.8) data (which is to be expected) given the symbol
set. The longest common prefix for the Sepsis data is 20, which is
smaller than Biofam (32). The longest common sub-sequence for
Sepsis data is 10; this is smaller than what could be expected given
the long lengths of some sequences. Biofam is much larger at 30;
this is unusual. Bayesian surprise value is 0.15 for the Sepsis data
and is larger than the other three, which is to be expected from the
wider range of symbols and variable length size of the sequences.

The Chess sequences form an average entropy of 0.37 with a com-
plexity (Turbulence) rating of 5.3 suggesting, with the values of the
other measures of LCP, LCS, Bayes and log-loss of 5.66, that this
data set is problematic. As suggested in the other experiments, it
is the large number of potential symbols that is likely the cause of
the high error rate and identifying a number of records as noise.

Examining the WCST sequences we find that the log-loss is
moderate, suggesting there are few noisy patterns in this data
set. Entropy and complexity are moderate, along with the length
LCP/LCS subsequences discovered.

5.1.2 | Evaluation of Results—Sequence Event
Transitions

For all data sets, we tag the sub-sequences with the initial “sur-
prising” and “not-surprising” labels from the test data as it is
passed through the Probabilistic Suffix Tree. The sub-sequence
events correspond to potentially interesting or not interesting
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pattens which are shown in Table 7 we highlight the statisti-
cally significant events from sub-sequences that discriminate
between interesting and not-interesting sub-sequences for the
BioFam data. Usually, we are interested in detecting frequently
occurring transitions with event sequences. The first column
provides the sequence ID, we show five sequences. In the second
column the full sub-sequence is shown, creates a distinct (from-
state > to-state) event for every discovered transition consisting
of a pair of events (end-state event, start-state event) which is
assigned to each transition. Similar to association rules these
state to state events have a support value based on a minimum
support of the number of similar sequences.

Examining the biofam event sub-sequences further, we discover
the most discriminating sequences between surprising and not
surprising. The chi-square test is used to test between the two
types of sequences; it gives a p-value for significance and the
Pearson’s coefficient.

In Table 8 the statistically significant events from the Sepsis data
sub-sequences that discriminate between interesting and not-
interesting sub-sequences are presented, using the tagged se-
quences with the surprising label. The Surprising patterns have
values for the key variables between 0.6 and 0.9, whilst the not-
surprising sequences events have values much lower between
0.05 and 0.5—only the Lecoucyte > CRP sequence (ID=1) in
Table 8 has a significantly higher value.

The Chess subsequences shown in Table 9 show predominantly the

opening moves that are ordered by the support statistic for each se-
quence. The first row with ID =1 highlights the transition between

TABLE 6 | Anomaly detection results on the data sets.

Nf3 to Nc6; the white player always moves first. We can deduce they
are moving their knight to the f3 square, and the black player is
moving their knight to square c6. The 2nd row shows e4-Nf3-Nc6;
the subsequence algorithm has picked up the Double King's Pawn
Games and the Double King's Pawn Opening. The surprising statis-
tic and p-value indicate these subsequence moves are valid.

The table indicates the 10 most discriminating sequences for
identifying surprising and not surprising patterns. The magni-
tudes of the values for the surprising patterns are much larger
than the not-surprising patterns, and this serves to differentiate
between them.

In Table 10 the key sequences for the WCST are shown. The p-
values are not significant; however, similar to the Chess data,
the values of the surprising versus the not-surprising subse-
quences are very different (0.23 versus 0.07) and thus can dis-
criminate between them.

Our work just uses the discrete symbol sequences to detect
unusual and novel patterns. Although the data sets have addi-
tional information such as participant demographics and other
variables, we do not use these. We took the decision to concen-
trate only on sequences as our main objective. Furthermore,
data sets with variable length sequences are often problematic
for many probabilistic machine learning methods; however,
the PST is well suited to this task. The results have shown
that variable length sequences, like the Sepsis data which has
several different symbols, are the most interesting to analyse.
Such sequences allow a richer diversity of patterns to be gen-
erated and can capture interesting patterns occurring in the

Dataset Entropy Complexity LCP LCS Bayes surp Ave log-loss density
BioFam 0.35 4.8 32 30 0.009 0.61
Sepsis 0.74 11.9 20 10 0.15 2.18
CHESS 0.37 53 20 8 0.098 5.66
WCST 0.66 4.1 15.0 5 0.18 1.68

TABLE 7 | Eventsub-sequences discriminate between surprising and not-surprising sequences for biofam data.

ID subseq) Sup P Statistic Surprising Not-surprising
1 (Parent)-(Parent > Left) 0.43 0.00 119.53 0.32 0.57
2 (Parent > Left) 0.43 0.00 119.53 0.32 0.57
3 (Parent)-(Parent > Married) 0.12 0.00 37.81 0.16 0.07
4 (Parent > Married) 0.12 0.00 37.81 0.16 0.07
5 (Left > Left + Marr) 0.23 0.00 32.72 0.18 0.29
6 (Parent)-(Left > Left + Marr) 0.23 0.00 32.13 0.18 0.29
7 (Parent)-(Parent > Left)-(Left > Left + Marr) 0.23 0.00 32.13 0.18 0.29
8 (Parent > Left)-(Left > Left + Marr) 0.23 0.00 32.13 0.18 0.29
9 (Parent)-(Parent > Left + Marr) 0.25 0.00 15.80 0.29 0.21
10 (Parent > Left + Marr) 0.25 0.00 15.80 0.29 0.21
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TABLE 8 | Eventsub-sequences discriminate between surprising and not surprising sequences for Sepsis data.

ID subseq Support p Statistic Surp Not-surp
1 (Leucocytes > CRP)-(CRP > Leucocytes) 0.39 0.00 75.48 0.61 0.06
2 (Leucocytes > CRP)-(Leucocytes > CRP) 0.35 0.00 67.87 0.56 0.05
3 (ERRegistration > ERTriage)-(Leucocytes 0.37 0.00 67.86 0.58 0.06
> CRP)-(CRP > Leucocytes)
4 (ERRegistration)-(Leucocytes > CRP)-(CRP > Leucocytes) 0.36 0.00 66.39 0.57 0.06
5 (ERRegistration > ERTriage)-(Leucocytes 0.33 0.00 63.75 0.53 0.04
> CRP)-(Leucocytes > CRP)
6 (ERRegistration)-(ERRegistration > ERTriage)-(Leucocytes > CRP) 0.35 0.00 62.11 0.55 0.06
7 (ERRegistration)-(Leucocytes > CRP)-(Leucocytes > CRP) 0.33 0.00 60.82 0.53 0.05
8 (ERRegistration)-(ERRegistration > ERTriage)-(Leucocytes > CRP) 0.32 0.00 59.67 0.51 0.04
9 (Leucocytes > CRP) 0.73 0.00 58.26 0.91 0.47
10 (CRP > Leucocytes)-(Leucocytes > CRP) 0.37 0.00 58.07 0.57 0.09

TABLE 9 | Eventsub-sequences discriminate between surprising and not surprising sequences for CHESS data.

ID subsequence Support 4] Statistic Surprising Not-surprising
1 (Nf3 > Nc6) 0.14 0.01 14.08 0.23 0.00
2 (e4)-(Nf3 > Nc6) 0.12 0.02 12.20 0.21 0.00
3 (e4)-(e4 > e5)-(e5 > Nf3)-(Nf3 > Nc6) 0.09 0.22 7.76 0.15 0.00
4 (e4)-(e4 > e5)-(Nf3 > Nc6) 0.09 0.22 7.76 0.15 0.00
5 (e4)-(e5 > Nf3)-(Nf3 > Nc6) 0.09 0.22 7.76 0.15 0.00
6 (e4 > e5)-(e5 > Nf3)-(Nf3 > Nc6) 0.09 0.22 7.76 0.15 0.00
7 (e4 > e5)-(Nf3 > Nc6) 0.09 0.22 7.76 0.15 0.00
8 (e5 > Nf3)-(Nf3 > Nc6) 0.09 0.22 7.76 0.15 0.00
9 (Nf3 > Nc6)-(white > %) 0.08 0.33 6.92 0.14 0.00
10 (e4)-(Nf3 > Nc6)-(white > %) 0.07 0.47 6.09 0.12 0.00
TABLE 10 | Eventsub-sequences discriminate between surprising and not surprising sequences for WCST data.
ID subsequence Support p Statistic Surprising Not-surprising
1 (shape)-(shape > star) 0.19 0.71 3.16 0.30 0.00
2 (shape > star) 0.19 0.71 3.16 0.30 0.00
3 (shape)-(shape > star)-(star > OneSymbol) 0.14 0.97 1.72 0.22 0.00
4 (shape)-(star > OneSymbol) 0.14 0.97 1.72 0.22 0.00
5 (shape > star)-(star > OneSymbol) 0.14 0.97 1.72 0.22 0.00
6 (star > OneSymbol) 0.14 0.97 1.72 0.22 0.00
7 (number)-(blue > correct) 0.14 1.00 0.49 0.09 0.23
8 (red > correct) 0.22 1.00 0.26 0.17 0.31
9 (shape) 0.36 1.00 0.02 0.39 0.31
10 (colour) 0.33 1.00 0.02 0.30 0.38
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data. In fact, data sets with a limited set of symbols and with
fixed length sequences generally do not produce a lot of inter-
esting patterns.

After training, the PST is presented with new data and will out-
put probability scores for each sequence. These new scores are in
effect the posterior distributions to be compared with the prior
distributions for each and every symbol generated by the trained
PST. The differences between prior and posterior estimates are
compared using the Bayesian Surprise via the KL measure; this
determines how interesting or anomalous these new patterns are.
A further concept that must be taken into account is the decay pa-
rameter. If this was not considered, there would be no “memory”
or history of previously learned sequences, and the PST would re-
peatedly consider all new sequences with scores above the “Wow”
cut-off point as unusual or novel. Any assessment of pattern nov-
elty has to be external to whatever model is used; therefore, we did
not incorporate the new data by retraining the PST.

6 | Discussion and Conclusions

This work advances knowledge for the detection of unusual dis-
crete sequence data and provides some explanation of why a pat-
tern can be considered unusual or interesting. We have examined
why sequence data can be considered surprising using criteria
such as sequence composition and complexity, entropy measures,
and state transitions from one symbol to the next in a sequence.
Many outlier/anomalous detection methods rank patterns based
on infrequence; Shannon's theory is the usual way to assess them
based on their low probability. However, simply using low prob-
ability scores is suboptimal for identifying interesting patterns,
as all such patterns would be regarded as interesting. Bayesian
surprise is not so misled, unlike information theoretic measures
such as Shannon surprise and entropy, for example. This work,
therefore, presents a plausible, cognitive-inspired framework for
detecting unusual sequences and by reducing the interest signal
when we encounter similar patterns. The surprising patterns
identified by our methods should be helpful to the data analyst,
but there is a degree of subjectivity as to what constitutes an inter-
esting pattern. We can say our system is internally self-consistent,
based on the history and similarity of past sequences. Our future
work will use Neural Networks such as Recurrent Networks and
Long-Short Term Memory (LSTM) as these methods can manage
longer sequences through their enhanced memory.
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