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ABSTRACT
In this work we implement Bayesian surprise as a method to sift through sequences of discrete patterns and identify any unusual 
or interesting patterns that deviate from known sequences. Surprise is a biological trait inherent in humans and animals and is 
essential for many creative acts and efforts of discovery. Numerous technical domains are comprised of discrete elements in se-
quences such as e-commerce transactions, genome data searching, online financial transactions of many types, criminal cyber-
attacks and life-course data from sociology. In addition to the complexity and computational burden of this type of problem is the 
issue of their rarity. Many anomalies are infrequent and may defy categorisation; therefore, they are not suited to classification 
solutions. We test our methods on four discrete datasets (Hospital Sepsis patients, Chess Moves, the Wisconsin Card Sorting 
Task and BioFamilies) consisting of discrete sequences. Probabilistic Suffix Trees are trained on this data which maintain each 
discrete symbol's location and position in a given sequence. The trained models are exposed to “new” data where any deviations 
from learned patterns either in location on the sequence or frequency of occurrence will denote patterns that are unusual com-
pared with the original training data. To assist in the identification of new patterns and to avoid confusing old patterns as new or 
novel we use Bayesian surprise to detect the discrepancies between what we are expecting and actual results. We can assign the 
degree of surprise or unexpectedness to any new pattern and provide an indication of why certain patterns are deemed novel or 
surprising and why others are not.

1   |   Introduction

The emotion of surprise is an essential function in many human 
cognitive and intellectual processes when acquiring new knowl-
edge and skills (Baldi and Itti 2010; Andrew et al. 2013). Surprise 
is generally described by cognitive scientists as an emotion that 
occurs when our assumptions and the actual consequences di-
verge to a greater or lesser extent (Berlyne  1994; Ekman and 
Davidson 1960). These discrepancies of belief can be assessed by 
a principled approach using a modification to Bayesian theory 
which allows us to express our beliefs and to modify these be-
liefs based on new data input to the system.

We implement a version of the equation devised by Itti and Baldi 
which models subjective beliefs that are reviewed as new data 
becomes available (Itti and Baldi 2005). Bayesian surprise can 
be used as a metric to assess any differences between a mod-
el's prior and posterior beliefs. The larger the difference be-
tween the two distributions the bigger the surprise metric (Itti 
and Baldi 2009). Surprise as a criterion for judging differences 
in belief is finding applications in reinforcement-based learn-
ing for automating the learning process (Schmidhuber  2010; 
Gottlieb et al. 2013) and autonomous agents (Rhienberger and 
Hammitt 2018; Maguire et al. 2019). Furthermore, the creative 
world of fashion design is starting to realise the benefits of using 
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AI for designing consumer products, applying surprise as a met-
ric to judge how consumers will perceive unfamiliar product 
styles and features that may be pleasing and attractive to the eye 
(Becattini et al. 2017) (Figure 1).

Recently, Bayesian surprise is finding applications in deep 
learning language models (GPT-2) where event sequences are 
modelled during storey telling (Kumar et al. 2023). The sur-
prise score is used to measure the listener's change in beliefs 
when the storey takes an unexpected turn. Generative mod-
els such as the GPT family provide a rich source of textual 
data generation for rich experimentation and analysis (Binz 
and Schulz  2023). Other recent applications include (Qiao 
et al. 2022) where Qiao used Bayesian surprise to gain a bet-
ter understanding of neuron connectivity modulation and 
brain plasticity. Chieppe et  al. (Chieppe et  al.  2022) consid-
ered Bayesian surprise for the association with good experi-
ences, whilst (Ishikawa et al. 2025) other work used Bayesian 
surprise to quantify pain with novel, unpleasant experiences 
(Onysk et al. 2024).

Bayesian surprise is suitable for anomaly detection, which is 
the process of seeking unusual patterns compared with normal, 
expected data. Many potentially useful and interesting patterns 
can be revealed through anomaly detection. The complication 
in many applications is the infrequency of anomaly occurrence, 
which may be construed as noise. This often prevents a classi-
fication solution, as there may not be enough examples to build 
a robust model. Additionally, there is no guarantee that new 
anomalous patterns will have similar characteristics to previ-
ously observed trends or patterns.

In the work, we build Probabilistic suffix trees (PST) to repre-
sent data sets with variable record sizes of discrete sequences 
of symbols. In Table 1 we have fictitious data collected from a 
shop; all possible customer transactions are identified by a let-
ter. The first two transactions are legitimate, with two custom-
ers entering; they pick up items and/or put items back on the 
shelf, then pay for them and then leave. However, transaction 

3 is anomalous: the customer picks up several items, places one 
item back, and leaves the shop with four items but did not pay.

The remainder of this is structured as follows: section two con-
siders the related work; section three provides an overview of 
the theoretical framework; section four provides details of the 
data and the analytical methods used; section five discusses the 
results; section six provides the conclusions.

1.1   |   Contribution of this Work

In our experiments, we train Probabilistic Suffix Trees (PST) 
to model the sequences of four symbol-based data sets; these 
are partitioned into train/test sections. After training, the test 
data acts as “new” data which is then passed through the PST. 
PSTs are generative models and provide the probabilities of 
the expected outputs based on the prior and posterior relation-
ships. The divergence between the two distributions is cal-
culated by the Bayesian Surprise criteria and determines the 
uniqueness/anomalousness of the new test data. However, we 
need to distinguish between novel patterns and noise. We con-
sider outliers or noise to be sequences unlikely to have been 
generated by the model. We can more or less identify outliers 
by setting a threshold in the prediction quality distribution 
such that sequences having scores below the threshold will be 
considered as outliers. The difference between outliers/noise 
and interesting patterns is explained in the main body text, 

FIGURE 1    |    Probabilistic suffix tree generation integrated with Bayesian surprise.

TABLE 1    |    Example customer data sequences.

Transaction String

1. A, B, C, D

2. A, B, E, B, B, B, E, C, C, D

3. A, B, E, B, B, B, B, D

Abbreviations: A = enters shop; B = picks item; C = pays for an item; D = leaves 
shop; E = put item back on shelf.
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but in effect, calculating log-loss, which is a good prediction 
quality measure between the new data (which in fact could be 
typical data, or noise, or interesting data) and the probability 
the PST could have generated the new data. Low probabilities 
tend to imply the new data record is an outlier; however, this 
is only an indication.

2   |   Related Work and Baseline Methods

The baseline methods commonly used to model discrete se-
quences are often conducted by analysis of the number and 
composition of the symbols; also, the length of the sequence and 
the transition rate from one symbol to another can all provide 
useful information. Summaries of sequences in terms of what 
a representative sequence may contain, such as the most fre-
quent sequence and the modal or middle sequence, are provided. 
Clustering is also used to create homogeneous groups of related 
sequences; sequences that have different compositions will ap-
pear in different clusters. In addition to sequence transition, 
Shannon entropy is used to measure the diversity of the sym-
bols in any sequence. Distance measures such as the Longest 
Common Prefix (LCP) and the Longest Common Sub-sequence 
(LCS) from string theory are used to compute similarities and 
distances. We explain these in greater detail in the methods 
section.

Many sequences of symbols often have a hierarchical structure; 
the SEQUITUR system takes advantage of this characteristic 
whereby text is composed of letters, sentences and paragraphs. 
SEQUITUR assembles a data structure from sequences of text 
symbols. Repeated phrases based on their frequency are re-
placed with a recursive rule that can reconstruct the sentence or 
phrase and hence generates the grammar in a hierarchical struc-
ture. SEQUITUR simplifies any subsequence that occurs at least 
once into a rule and performs this operation using recursion. 
The main advantage is a hierarchical structure that can manage 
long sequences of symbols; such sequences are usually problem-
atic for many machine learning algorithms (Nevill-Manning 
and Witten 1997).

Lin and Keogh tackled the conversion of continuous time-
series into discrete symbolic components using the Symbolic 
Aggregate approXimation (SAX) algorithm and the Piecewise 
Aggregate Approximation (PAA) algorithm (Lin et  al.  2007). 
The PAA algorithm decomposes continuous time series signals 
into an alphabet of discrete symbols. Their secondary objective 
was to search for motifs or repeating sub-sequences of symbols; 
the motifs may represent a sequence of symbols that are natu-
rally grouped together and may represent useful or interesting 
activity in the time-series (Keogh et al. 2002). The PAA and SAX 
algorithms were further improved by keeping the information 
of the continuous time series slope, making it easier for the dis-
cretisation of the symbolic representation (Zalewski et al. 2012).

Sequence information is particularly important in Natural 
Language Processing (NLP) and speech recognition (Rieck and 
Laskov  2008; Wilson et  al.  2007). A major issue in NLP is to 
avoid ambiguity. Part-of-speech tagging (POS) annotates the 
sequences of words to help resolve this issue, whereby the po-
sition/location of words in a sentence is a major consideration. 

Often, Hidden Markov Models (HMM) are used to model text 
data that has been annotated (tag/label) in POS corpora. The 
HMM advantage over other methods is that word context can 
be modelled using other words in the near neighbourhood, and 
they are able to provide probabilities based on the ambiguous 
word and the previously tagged words based on their location. In 
order to predict future sequences, strong assumptions are made 
by Markov chains; the main consideration is that the current 
state only matters and past states should not influence future 
predictions. The Markov assumption on the probabilities of any 
sequence when predicting the future is that the past should not 
unduly influence the internal states. The characteristics of the 
HMM make it suitable for many sequential problems (Liao and 
Fasang 2021; Boldt et al. 2019) especially for anomaly detection 
in sequences (Florez-Larrahondo et al. 2005).

Recent work by Wang uses HMM for anomaly detection in smart 
homes, examining behavioural discrete sequences for profil-
ing residents and predicting their actions (Wang et  al.  2023). 
HMM and Probabilistic Suffix Trees (PST) have a biologically 
plausible mechanism for holding variable length sequences 
similar to human cognition (Hard et al. 2011). However, Basgol 
implements a predictive event segmentation model using self-
supervised neural networks to achieve similar outcomes (Basgol 
et al. 2024).

In biology, various string searching algorithms for RNA and 
DNA sequences have been developed. However, they have a 
common goal to detect motifs, as they search for recurring sub-
sequences in sequential, discrete data (Li and Homer  2010). 
This leads on to the suffix tree data structure; this is commonly 
used to hold sequential data and can model words and their lo-
cation in a sentence. It is a hierarchical data structure that is 
often used to find the longest sub-string or sub-sequence in a 
DNA sequence. For example, Huang employed suffix trees to 
extract periodic patterns from very long temporal sequences 
and then used self-attention neural transformers (Huang 
et al. 2021; Huang 2023). Reick conducted experiments on sev-
eral sequence-based data structures such as tries (a data struc-
ture similar to a tree), generalised suffix trees, and data arrays 
for the analysis of long sequences; this was a very useful analysis 
comparing and contrasting the strengths of each data structure 
(Rieck and Laskov 2008). The experiments were conducted on 
a variety of data sets from bioinformatics, text processing, and 
cyber-security network intrusion.

3   |   Theoretical Framework

3.1   |   Probabilistic Suffix Trees

Similar to the HMM, the Probabilistic Suffix Tree is also used 
for discrete sequence modelling (Largeron-Leténo  2003). 
Markov processes are suited to detecting anomalies in discrete 
sequences with the caveat that unusual activity could be rep-
resented by an array of chronological observations (Zolfaghari 
et al. 2021). The Probabilistic Suffix Tree (PST) incorporates a 
Variable Length Markov Chain (VLMC), with the suffix tree 
as the basic data structure. In Figure  2 we give an example 
structure trained on a repeating pattern. Using a VLMC al-
lows variable length sequences (effectively lagging variables) 

 14680394, 2025, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/exsy.70106 by N

IC
E

, N
ational Institute for H

ealth and C
are E

xcellence, W
iley O

nline L
ibrary on [31/10/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



4 of 17 Expert Systems, 2025

to be used in a given data set when training and testing the 
PST. Otherwise, the data would be constrained by fixed length 
sequences such as some neural networks require, like Long 
Short Term Memory, which is a major disadvantage since the 
data set requires padding (usually with zeros) up to the longest 
length sequence. Furthermore, the VLMC property enables 
emission probabilities to be calculated, and thus a predictive 
model can be constructed (Berchtold  2010). As each state is 
dependent only on the previous state, probabilities need to be 
defined for the next state. Having knowledge of the current 
state, equations for state probabilities and VLMC as imple-
mented from the Traminer software (Gabadinho et al.  2011; 
Gabadinho and Ritschard 2016):

The probability of the sequence can be decomposed into:

P
(
x1
)
 can also be calculated from the transition probabilities, 

multiplying the initial state probabilities at time t = 0 by the 
transition matrix, the probabilities of states at time t = 1 can be 
derived and therefore we also have them for time t = n.

VLMCs model sequential data without recourse to complex 
estimation procedures but they have significantly better per-
formance compared with HMMs (Bulmann and Wyner 1999). 
Furthermore, one great advantage is the VLMC generative 

ability to compute a probability distribution and hence make a 
prediction on what the next sequences should be, based on the 
learned sequences. Based on the PST model S developed from 
training data, we can generate new test sequence likelihoods. 
The new sequences are passed back into the trained PST which 
generates the conditional probabilities for the next expected 
symbols to be predicted. Equation (2) generates these sequences, 
with the expectation that sequences with low probabilities could 
be of interest to the user and perhaps anomalous.

where is the alphabet of symbols is defined by A and S is the 
generative model representing the probability A�. Whilst x ∈ A� 
is the sequence presented to the PST (S). These probabilities are 
assessed by the Bayesian surprise algorithm to determine if a 
pattern or sequence is surprising or interesting.

The tree in Figure 2 is constructed from the training sequence 
“c-c-a-a-a-a-b-b-b-b-a-a-a-a-c-c”. The tree has a maximum depth 
of three with a minimum support requirement of one occur-
rence for a symbol to be incorporated into the tree. The node val-
ues are counts of that symbol's appearance. For the root node (e), 
we have 16 symbols in total; the next layer has 8, 4, and 3 (n − 1).

The PST can be constructed from a single sequence of sym-
bols or a series of sequences. Here in our example, we have a 
single sequence. In Figure 3 the PST is built by successively 
adding contexts of increasing length k. A node labelled with 
the context c = c1, …, ck stores the conditional probability of 

P
(
xi| xi−1, … , x1

)
= P

(
xi| xi−1

)

(1)
P(x)=P

(
xL, xL−1, … , x1

)
=

P
(
xL| xL−1

)
P
(
xL−1| xL−2

)
…P

(
x2| x1

)
P
(
x1
)

(2)∀� ∈ {0,1,2, …}:
∑

x ∈A�

PS(x) = 1

FIGURE 2    |    Probabilistic Suffix Tree example, trained on the symbol sequence “c-c-a-a-a-a-b-b-b-b-a-a-a-a-c-c”. The tree has a maximum depth 
of three with a minimum support requirement of one occurrence for a symbol to be incorporated into the tree. The node values are counts of that 
symbol's appearance. For the root node (e), we have 16 symbols in total, the next layer has 8, 4, and 3 (n − 1). That is 4 “c's”, 8 “a's” and 4 “b's”. The 
frequency count for symbol “c” is n − 1 since it is the first symbol in the sequence. The probability distribution for each node is shown as a barplot.
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observing the next symbol in the sequence. In line 1, the (e) 
symbol denotes the root node. The nodes labelled by a, b and 
c have the root node e as parent (the longest proper suffix3 
of a string of length 1 is the empty string e). A leaf node has 
no child and this occurs when the maximal context length is 
reached; they are denoted by the “–|” symbol. The four distinct 
subsequences of length 2 (a-a, a-b, b-a, and a-c) appearing in 
the training sequence are then added to the tree. We also have 
subsequences of length 3.

3.2   |   Bayesian Surprise and Novelty

The connection between human reasoning and Bayesian mod-
elling is the assumption that Bayesian cognitive theories are 
effectively a rational analysis grounded on the observations of 
an initial theory and revising it based on new data (Lee and 
Wagenmakers  2013). There is sufficient evidence for assum-
ing the Bayesian approach for making models of cognition is 
essentially correct. However, there are several counterargu-
ments where humans deviate from Bayesian inference (Lee 
and Wagenmakers 2013; Griffiths and Tenenbaum 2006). The 
evidence is based on several human problem-solving tasks that 
produce consistent results when tasks become too difficult to 
manage using normative techniques and thus become reliant on 
heuristic approaches (Bain 2016). The usual convention for stat-
ing Bayes rule is given below:

where P(h|D) is the posterior probability of the hypothesis h 
given the data D; P(D| h) is the likelihood of D given h; P(h) is the 
prior probability of hypothesis h; P(D) is the marginal likelihood 
of the probability of the data D.

The Bayesian surprise measure S, which tests the two-fold vari-
ation between prior and posterior over the hypothesis and data 
and returns a value (Baldi and Itti  2010; Itti and Baldi  2009). 
This value will be either positive or negative depending on the 
observers belief in the hypothesis when it either increases or 
decreases. The distance measure used is the Kullback–Leibler 

divergence measure. Several applications have recently used 
the Bayesian Surprise criteria to as part of a feedback criteria 
for improving the reliability of machine learning models such 
as neural networks and thematic maps (Hasanbelliu et al. 2012; 
Correll and Heer 2017; Grassi and Bartels 2021).

The Bayesian surprise measure provides a natural and useful 
method for defining and representing novel and surprising pat-
terns (Andrew et  al.  2013). Equation  (5) calculates the distri-
bution over all hypothesis h ∈ℋ. The surprise is given as the 
two-fold difference between P(h|D) and P(h). The model space 
is defined by M, in this case the output from the probabilistic 
suffix trees but could be from any generative type model.

Novelty and surprise play a fundamental role in human and an-
imal behaviour for survival, attention and adaptation. Surprise, 
is not however, entirely related to the information content of a 
pattern alone (Itti and Baldi 2009; Bayarri and Morales 2003). 
Experiments with patterns of visual white-noise (random but 
with high information content) presented to participants over 
time, their Bayesian surprise quickly decreased and soon van-
ished. This occurred as they adjusted their beliefs so that the 
random patterns are anticipated and expected. “Thus, more in-
formative data may not always be more important, interesting, 
worthy of attention, or surprising” (Baldi and Itti 2010). Shannon 
or similar information theoretic measures would erroneously 
classify the majority of unusual patterns as surprising because 
of their low probability.

The Kullback–Leibler (KL) divergence examines the relative en-
tropy (Kullback and Leibler 1951) between prior and posterior 
distributions (Berger et al. 2009). It is defined by:

where p(y) represents the posterior or correct distribution of 
data and p(x) represents the hypothesis or model. We obtain a 
value measuring the difference between the prior distribution 
p(�) to the posterior distribution p(�| y) (Statisticat, LLC 2020). 
The machine learning perspective of a novel pattern is deemed 
to be a statistical outlier that is different to the probability den-
sity function of previously observed patterns (Marsland 2003), 
in other words novel patterns are those with low estimated prob-
ability of occurrence.

However, without some sort of memory or the ability to rec-
ognise previous interesting patterns, each presentation of data 
would result in similar outcomes of interesting scores being as-
signed. This can be tackled in one of two ways: either incorpo-
rate the new data patterns into the PST and retrain it or use a 
decay function over time that will dampen surprise such as that 
proposed by Baldi (Baldi and Itti 2010).

(3)P(h|D) = P(D| h)P(h)
P(D)

(4)S(D, h) = distance
[
P(h),P(h|D)

]

(5)
S(D,ℋ)=distance

[
P(h),P(h|D)

]

=
∑

ℋ

P(M|D)logP(M|D)
P ∣M

(6)KL
�
p(y)‖p(x)

�
=

n�

i= 1

p
�
yi
�
log

p
�
yi
�

p
�
xi
�

FIGURE 3    |    Internal structure and probabilities of the probabilistic 
suffix tree.
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where N is the number of data samples, a and b refer to the re-
spectively to the prior and posterior probability values.

4   |   Data and Analytical Methods

All of the data sets consist of strings of symbols, usually letters with 
one or two numbers (as strings). The data sequences for each re-
cord can be variable length or fixed length. The sequences identify 
a series of discrete actions or conditions which have been recorded; 
the location and position of each symbol in the sequence may be 
important. The datasets generally contain other values such as bi-
ological measurements, gender, age, etc. represented by numeric 
factors and continuous values. This data is interesting, but we do 
not use it; we only use the sequences of events/actions. In Table 2 
we summarise the data; the missing data records were removed.

4.1   |   Bio-Family Data Set

The Swiss Panel collected data over a 16-year-long period of family 
life sequences (Mueller et al. 2007). The individuals selected for 
the study were born between 1909 and 1972 and contain details of 
2000 individuals aged from 15 to 30 years. The sequence length is 
fixed at 16, with some missing data. There are eight states based 
on single and a combination of family situations defined from the 
combination of five basic states such as Living with parents (P), 
Married (M), Divorced (D), Left home (L), Having Children (C). In 
Table 3 an example of six records for the 11-year sequences is given. 

For the first record with ID = 1335, we see that this individual lived 
with their parents from 2002 to 2010, then left home in 2011, then 
from 2012 onwards was married and in 2013 had a child.

4.2   |   Sepsis Data Set

Sepsis occurs when the body fights an infection but then causes 
the antibodies to attack the patient's own cells. It is a serious condi-
tion usually requiring hospitalisation and may damage the inter-
nal organs such as the liver, kidneys, and lungs. In the worst-case 
scenario, it may also lead to death. The majority recover from a 
mild case of sepsis, but for septic shock, the mortality rate is about 
30%–40% (NICE 2024). The data consists of cases collected from 
a Canadian hospital and represents sequential events of medical 
interventions to combat sepsis. Each record/case represents a pa-
tient's pathway through the hospital system. There are approxi-
mately 1000 patient cases with about 15,000 interventions (with 16 
unique possibilities.) recorded for each patient. Also, a maximum 
of 39 variables were collected, test results from clinical parame-
ters, and medications prescribed. Each patient can have a variable 
number of interventions and outcomes, giving a variable length of 
the discrete sequence records.

The symbol set for all records will contain at least three of the 
following:

AdmissionC; AdmissionNC; CRP; ERRegistration; ERSepsis; 
Triage; ERTriage; IVAntibiotics; IVLiquid; LacticAcid; Leucocytes; 
ReleaseA; ReleaseB; ReleaseC; ReleaseD; ReleaseE; ReturnER.

Where: ER (emergency room); Triage (prioritise patient treat-
ment); Leucocytes (test for white blood cell count); CRP (C-
reactive protein, a test for sepsis); IV Antibiotics (Intravenous 
antibiotics), IV Liquid (Intravenous fluid); Lactic Acid (tests for 
Lactic Acid which is affected by sepsis).

In Table 4 an example of the variable length sequences is shown; 
however, we only show the first eight sequences for this data-
set. On average, the typical number of symbols in a sequence 
is 13, the smallest length is three symbols and the longest is 33 
symbols. Clearly, the more symbols for a given patient, then the 
more serious the infection. The patient's entry into the hospital 
system begins with ERReg and with a discharge of one of the 
five types (typically Release A), but if a patient relapses, then a 
return to ER is likely.

(7)
1

an
+ log

(
1 −

1

aN + bN

)
≈
1 − p

pN

TABLE 2    |    Overview of the data sets.

Data
No of 

records
length of 
sequence

Unique 
symbols

BioFam 2000 Fixed (16) 8

Sepsis 1000 Variable (3–30) 16

Chess 280 Variable (2–10) 191

WCST 360 Fixed (60) 18

TABLE 3    |    16 years of biofamily records listing six individuals, 1st column refers to the record id, each year contains their current state where (P) 
indicates living with parents, (L) left home, (LM) left home and married, (LMC) left home and married with children.

ID 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2012 2013 2014 2015 2016

1335 P P P P P P P P P L LM LM LMC LMC LMC LMC

1516 P P L L L L L L L L L L L L L L

1870 P P P P P P P P P LM LM LM LM LM LM LM

2162 P P P P P P P P P P P LM LM LM LM LMC

398 P P P P L L L L L LM LMC LMC LMC LMC LMC LMC

902 P P P P P P LMC LMC LMC LMC LMC LMC LMC LMC LMC LMC
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4.3   |   Wisconsin Card Sorting Test (WCST)

The Wisconsin Card Sorting Test (Berg  1948) was designed 
to reveal cognitive processes such as perseverance, attention, 
abstract thinking, and set shifting (Lange et  al.  2016). It can 
measure the so-called perseverative behaviours that refer to 
the participants fixation on incorrect behaviour. The data set 
used in this work is generated using the PsyToolkit software 
and contains 30 healthy staff and students aged between 24 
and 50 from the University of Sunderland. The test we used is a 
variation based on the original WCST, which is preferably used 
on those with cognitive issues. The participants are presented 
with 60 cards, and for each card, they must select one of four 
rules they believe the card should belong to. The rules can be 
colour of object (red, blue, green), shape of object (star, circle, 
triangle, cross) and the number of objects. The rules change 
after the presentation of 10 cards, which tests the participants 
ability to change strategy when presented with an incorrect 
answer. The software presents the sequence of cards and the 
participants response with either the correct or incorrect an-
swer. It also provides the total number of errors and the perse-
veration errors (old strategy) and non-perseveration errors. All 
participants will make errors since this is a feedback mecha-
nism informing them the old strategy no longer works and they 
must figure out a new one. In Figure 6 the first 10 sequences 
(from the same participant) are shown; the test type (number 
of patterns, pattern type or colour) is the first symbol and re-
mains constant for 10 sequences. The symbols representing the 
details of the card presented to the participant are next in the 
sequence; finally, the result is presented, either correct, fail, or 
out of time.

The experimental software is freely available from the PsyToolkit 
platform.

https://​www.​psyto​olkit.​org/​exper​iment​-​libra​ry/​wcst.​html 
(Desrochers et al. 2022).

4.4   |   Chess Short Games

The Lichess Chess Game Dataset contains data of 20,058 indi-
vidual games of chess, extracted from the website lichess.org 
(Lichess Data Kaggle  2024). The data set contains multiple 
columns of variables, but of interest to us are the following 
two properties: moves, i.e., the set of moves played in the 
game using standard algebraic chess notation [https://​www.​
chess.​com/​terms/​​chess​-​notation]; winner, i.e., the result of 
the game, which can take one of three values: black, white, or 
draw. We have also reduced the size of the data set for compu-
tational purposes to only include games which are 10 moves 
or less. This reduces the size of the data set to 280 individ-
ual games. An explanation of algebraic chess notation can be 
found on the chess.​com website, but as an example, the moves 
(e4 e5 Qh5 Nc6 Bc4 Nf6 Qxf7#) for the game below can be 
described in Table 5. Players (white or black) take turns in se-
quence, and each move highlights the finishing place of the 
piece (the starting position can normally be inferred as pieces 
have standard moves), with special symbols for example, x for 
when a piece is captured, + when the King is in check, and # 
for checkmate.T
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Chess involves cognitive abilities, including reasoning and 
memorisation. In chess, there are a large variety of opening 
moves which players need to recall and act on. The most well-
known opening move in chess is Sicilian Defence, and there are 
multiple variations of this, such as e4 c5 Nf3 d6 d4 cxd4 Nxd4 
Nf6 Nc3. There are several articles which highlight the various 
cognitive benefits of chess. For example, Sala and Gobet (Sala 
and Gobet 2016) found that young chess players can make good 
mathematicians and highlight how it can help in developing 
their problem-solving and critical skills, whereas other re-
searchers have explored how chess may be a positive factor in 
protecting the older population against dementia (Lillo-Crespo 
et al. 2019).

4.5   |   Process

Data records with missing values are removed and we divide 
the training/test split randomly (75/25). The object of this work 
is not to build a classifier, but to train a model that can iden-
tify how different new patterns are compared with the trained 
Probabilistic Suffix Trees (PST). When new patterns appear, 
the PST will generate probabilities as to the likelihood these se-
quences differ from what has been learned. We use RStudio as 
the programming environment and load the PST package and 
the TraMineR package developed by Gabadinho (Gabadinho 
et al. 2011; Gabadinho and Ritschard 2016) to ensure the sym-
bols in the sequence are formatted as required by the PST. As 
the test data is inputted to the PST for every symbol in every test 
record, the difference between the probabilities is noted. The 1st 
record is the probabilities assigned to the training data symbols 
as deemed by the PST. The 2nd record is the probabilities for the 
test data as they are passed through the PST.

In Algorithm 1 the input takes a data structure consisting of ei-
ther fixed length or variable length strings. The algorithm will 
output a trained PST and the probabilities for each symbol in the 
training data. The Parameters are used to train the PST and do 
not require much in the way of tuning. The L parameter is an 
integer value and sets the maximal depth of the PST. The nmin 
parameter is an integer value and controls the minimum num-
ber of occurrences of a string to add it in the tree. The parame-
ter ymin is also an integer value and controls the smoothing for 
conditional probabilities, assuring that no symbol, and hence no 

sequence, is predicted to have a null probability. The parameter 
ymin sets a lower bound for a symbol's probability.

In lines 1–2, the string data is converted into special sequence 
format (for the PST) and then split 75/25 into train and test par-
titions. In line 3, the PST is training on this data using the pa-
rameters. Lines 4–5 generate the probabilities for each unique 
symbol in the PST, the prob parameter can be set to probabilities 
or relative frequencies. Line 6 returns the trained PST and the 
associated symbol probabilities.

In Algorithm 2 the trained PST, Equations (5) and (7) use the 
test data to generate probabilities. For input the algorithm 
receives a trained PST, probabilities for each symbol in the 
PST and the test data. It will output upon completion for each 
test record: the decay values �n; the Bayesian Surprise Surpn; 
Entropy En; KullBack–Leibler distance KLn. In lines 1–2, the 
values for KLn, En and Surpn are set to zero, these will be calcu-
lated for each and every record in the test data. The Prior and 
Posterior values are set to zero, the likelihood value is set to a 
binomial function that is centred at 0.5. This is our main as-
sumption (belief) in our approach, it assumes that overall, any 

TABLE 5    |    Record of one chess game.

Move code Meaning

e4 White pawn in e2 moves to e4

e5 Black pawn in e7 moves to e5

Qh5 White queen in d4 moves to h5

Nc6 Black knight in b8 moves to c6

Bc4 White bishop in f3 moves to c4

Nf6 Black knight in g8 moves to f6

Qxf7# White queen in h5 moves to f7 and has 
checkmate, so white wins the game

ALGORITHM 1    |    Train Probabilistic Suffix Tree.

Input: set of string data D.
Output: Trained PST PSTn; Probabilities for each symbol 
Psym.
Parameters: 

[
L = 10;nmin = 2, ymin = 0.001

]
.

1: Convert Seq ← D using seqdef().
2: Split Seqtrain, Seqtest ← Seq by 75/25.
3: Train PST using pstree([Parameters]) on Seqtrain.
4: Obtain probabilities for each Psym ← PST.
5: cprob(PST, L = 0, prob. = TRUE).
6: Return 

[
Psym;PSTn

]
.

ALGORITHM 2    |    Calculate Bayesian Surprise.

Input: Trained PST PSTn; Probabilities for each symbol 
Psym; Test data Tn.
Output: �n; TPn; Bayesian Surprise Surpn; Entropy En; 
KullBack–Leibler KLn.
1: Initialize KLn;En; Surpn = 0.
2: Initialize P(Data| �) = 0, P(�|Data) = 0, P(�) = 
dbinom(0.5).
3: repeat.
4:    Obtain the Likelihood P(Data| �) = Psymn

.
5:    Calculate the Posterior P(�|Data) = P(Data| �) x 
P(�|Data).
6:    Calculate the standard Prior P(�) = P(Data| �) x P(�).
7:    Calculate Surpn = mean(Posterior) - mean(Prior) 
Equation 5.
8:    Calculate KLn= KL

(
Prior,Posterior, log10

)
.

9:    Calculate En = 
shannon. cond. ent

(
Prior,Posterior, log10

)
.

10:    Calculate �n = i Equation 7.
11: until Psym ∉ Tn.
12: Return 

[
Surpn;KLn;En;TPn,�n

]
.
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given pattern has a 0.5 probability of being surprising. Where 
P(Data| �) is the likelihood, P(�|Data) is the prior, and P(�) is 
the marginal likelihood.

Lines 4–6, perform the Bayesian inference stage by calculating 
the likelihood, the Posterior and the standardised Posterior. The 
posterior must be standardised, this is an important property of 
any probability density or mass function is that it integrates to 
one. The likelihood refers to the probability of observing the data 
that has been observed assuming that the data came from a spe-
cific scenario. The posterior can be computed from three key val-
ues: 1. A likelihood distribution, P(Data|�) 2. A prior distribution, 
P(�) 3. The average likelihood.

Lines 7–10 calculate the Bayesian surprise Surpn; the Shannon 
Entropy En; KullBack–Leibler distance KLn and decay values �n. 
These values are stored in vectors for later use for comparisons. 
Using decay, how many patterns are genuinely interesting prior 
to reaching the zero value cut-off? This is a process based on 
similar patterns reappearing over time, as they are presented. 
Line 11, reiterates the loop until all of the test patterns have been 
analysed. Line 12 returns the results for identification of those 
patterns deemed to be interesting/novel.

After calculating the entropy, KL distance, and Bayesian 
Surprise for the three datasets, we determine if a test pattern 
is surprising or not. However, it is probably more important to 
determine why a given sequence is surprising. This is based on 
the use of a number of measures to analyse the structure, com-
position, and regularity of the interesting sequences. We have 
six methods that assess the sequences:

1.	 Sequence entropy. Shannon entropy is used to measure the 
diversity of the states or symbols in any sequence, based 
on the length of the sequence and the number of symbols 
in the alphabet (Oliveira and Ospina 2018). A more varied 
sequence will have a higher entropy than a sequence com-
posed of fewer symbols.

2.	 Sequence complexity. A sequence may be defined in terms 
of the complexity of distinct sub-sequences that can be 
discovered from the distinct state sequences and is often 
called turbulence in the literature (Elzinga 2010).

3.	 Longest Common Prefix (LCP). Distance measures from 
string theory are used to compute similarities and dis-
tances. The longest common prefix for the sequences is the 
common prefix between the two most dissimilar strings 
(Elzinga and Studer 2015).

4.	 Longest Common Sub-sequence (LCS). A sub-sequence 
is a relaxation of the idea of a sub-string; a sub-sequence 
is a pattern that appears in the same relative order but is 
not necessarily contiguous (Ritschard 2021). This method 
is particularly well suited to DNA symbol matching 
(Needleman and Wunsch  1970). The computations pro-
duce a matrix that can be clustered for further information. 
The individual records, once clustered, provide an indica-
tion of their similarity.

5.	 Sequence event transitions. Rather than simply examin-
ing the sequences of symbols, we can also observe the 
sequences of transitions or events between sequences 

deemed as surprising and those that are not. The actual 
transitions between symbols might reveal why they are 
of interest.

5   |   Results

We now compare the values of entropy, Kullback–Leibler (KL) 
distance and Bayesian surprise for each test data set. All three 
measures are based on the differences between prior and pos-
terior probabilities. It should be noted that the line plots have 
a more or less regular appearance. This is because similar pat-
terns occur in the test data; the smaller the number of unique 
symbols, the more likely the symbol sequences will be similar 
and hence repeated over time. The “Wow” level is the two-fold 
difference of the Bayesian Surprise value when derived from the 
differences between the prior and posterior values as devised by 
Itti (Itti and Baldi 2009). This is calculated for each dataset and 
will be unique in each case. It should be noted that the Bayesian 
Surprise is a much more conservative measure, especially when 
coupled with the “Wow” threshold which requires a two-fold in-
crease of Bayesian Surprise for any pattern in the test data to be 
considered interesting. Entropy, in all three datasets, has a much 
higher response to the differences between prior and posterior 
values, i.e., the overall information gain is high. The KL distance 
is more conservative than entropy but still can be extremely vari-
able across the four datasets.

Viewing the Biofam data results, shown in Figure 8, the infor-
mation value of the KL measure fluctuates between a range of 
0.3–1.2 and thus has high information content. Similarly, the 
entropy has high information content but does not fluctuate to 
any great extent. The Bayesian Surprise measure for Biofam is 
just over the zero value; the “Wow” level is also just above zero. 
Shown in Figure 4, the regularity of the Biofam data is evident; 
10 records are shown, each with 16 sequences. The majority of 
the individuals (younger people) in the study are still living with 
parents, but in many sequences we can observe life changes over 
the period of 16 years as the individuals marry, have children, 
move from home, and parents, etc.

Examining the Sepsis data results, shown in Figure 9, the in-
formation value of the KL measure fluctuates between a range 
of 0.0–0.5. However, in this data entropy has a much higher in-
formation content than the other measures and fluctuates be-
tween 0.75 and 1.00. The Bayesian Surprise measure for Sepsis 
is between 0.1 and 0.35 and has similar characteristics to the KL 
measure. The “Wow” level is around 0.23. Shown in Figure 5, 
the varied size of the sequences comprising the Sepsis data is evi-
dent; however, the sequences always start with “ERRegistration” 
and usually terminate with “ReleaseA”.

Viewing the Chess data results, shown in Figure 10, the infor-
mation value of the KL measure fluctuates between a range of 
0.0–0.9. Entropy has a much higher information content than 
the other measures, and fluctuates between 0.90 and 1.00. The 
Bayesian Surprise measure for Chess is between 0.0 and 0.25. 
The “Wow” level is around 0.1. Shown in Figure 7, the size of 
the sequences varies between 2 and 1; however 0, the sequences 
usually start with “e4” or “e5” and as the game progresses, more 
symbols are used to describe the moves.
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10 of 17 Expert Systems, 2025

FIGURE 4    |    Sequence ordering of biofam symbols for first 10 records, where (P) indicates living with parents, (L) left home, (LM) left home and 
married, (LMC) left home and married with children, (D) divorced.

FIGURE 5    |    Sequence ordering of sepsis symbols for first 10 records. Main point of interest is the variable sequence length; the first sequence is 
11 symbols long and the last is 22 symbols. The symbols are grouped into admission types for emergency room/hospital, clinical test groups, and 
release from emergency room/hospital groups.

FIGURE 6    |    Sequence ordering of Wisconsin card sorting test symbols for first 10 sequences. The first symbol in the sequence is always the test 
type (shape, colour, number) which changes after 10 symbols, then the shape, colour and number of the selected card, last symbol is always the test 
result (wrong, correct or too slow). There are 18 possible symbols, as shown in the legend.
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FIGURE 7    |    Sequence ordering of first ten chess games of a total of 280, the sequences vary in length from 2 to 10 symbols (game moves), average 
game length is 6 moves. The legend shows the repertoire of different moves made in these 280 games.

FIGURE 8    |    KL, entropy and Bayesian surprise on Biofam data for first 50 records without interest decay. Where: ent is the entropy, KL is the 
Kullback-Leibler measure and surp is the Bayesian surprise value.

FIGURE 9    |    KL, entropy and Bayesian surprise on the Sepsis medical data for first 50 records without interest decay. Where: ent is the entropy, 
KL is the Kullback Leibler measure and surp is the Bayesian surprise value.
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Examining the WCST data results, shown in Figure 11, the in-
formation value of the KL measure fluctuates between a range of 
0.0–0.6. Entropy fluctuates between 1.00 and 1.50. The Bayesian 
Surprise measure for Sepsis is between 0.1 and 0.35. The “Wow” 
level is around 0.25. Shown in Figure 6, the regular structure of 
the sequences comprising the WCST data with its equal sizes 
of five symbols and the first symbol is repeated 10 times, be-
fore it changes to another symbol for 10 repeats and so forth. 
This predicable regularity makes for a less “interesting” data set 
information-wise.

5.1   |   Estimates of Noise and Errors

Next we must determine the amount of noisy data present in 
each dataset; we provide a summary of the log-loss errors in 
Table 6 for all datasets. This process is dependent on the quality 
and quantity of the data used to train the PSTs and should only 
be used as a rough guide and is not exact. The PSTs are genera-
tive models, and we use this feature to see if the test data could 
have been generated by the PST model. In Figures  12 and 13 
we have the log-loss error for an individual Biofam record and 
for the entire Biofam dataset respectively. The histograms are 
generated by passing the test data into the trained Biofam PST 
tree and observing the probabilities of the outputs. The proba-
bilities based on the log-loss error provide an indication of the 
amount of error overall and individually for the data. The aver-
age log-loss error is used as a cut-off point to determine if those 

particular test records are noise/outliers based on discrepancies 
between them and the features learned by the PST model.

In Figures  14 and 15 histograms for the Sepsis data are pre-
sented. The log-loss errors are slightly higher than those of the 
other datasets, potentially a result of a varied set of sequences 
with up to 16 symbols and a sequence length ranging between 
3 and 30 symbols. Although we have 1000 samples, it is likely 
that more data is needed to span the input space (the curse of 
dimensionality).

In Figures 16 and 17 the histograms for the Chess data are dis-
played. Although the chess data consists of short variable length 
sequences (2–10) it has a larger than usual repertoire of symbols 
(191). Again, this will contribute to the log-loss error. The se-
quence shown in Figure 16 consists of five symbols (five moves) 

FIGURE 10    |    KL, entropy and Bayesian surprise on CHESS for first 
50 records without interest decay. Where: ent is the entropy, KL is the 
Kullback– Leibler measure and surp is the Bayesian surprise value.

FIGURE 11    |    KL, entropy and Bayesian surprise on WCST for first 
50 records without interest decay. Where: ent is the entropy, KL is the 
Kullback Leibler measure and surp is the Bayesian surprise value.

FIGURE 12    |    Biofam log-loss error for a single record, the red line 
indicates the average log-loss and the lower bars are the symbols for that 
record. The coloured bars are assigned automatically for each unique 
symbol in the sequence.

FIGURE 13    |    Biofam log-loss error density distribution over the en-
tire data set.

FIGURE 14    |    Sepsis log-loss error for a single record, the red line in-
dicates the average log-loss and the lower bars are the symbols for that 
record. The coloured bars are assigned automatically for each unique 
symbol in the sequence.
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which is about the average size for this dataset and is represen-
tative of the whole.

In Figures 18 and 19 the histograms for the WCST are shown. 
This data set has a very regular structure of 60 symbols for each 
participant with feedback symbols for the answer (correct, wrong 
or out of time). It has moderate log-loss error per sample/record 
and the average is similar to the other datasets, although the his-
togram is somewhat skewed. The interesting aspect about this 
data set is that it may be structured in different ways, sequences 
of length 60 or sequences of length 10 (six for each participant).

5.1.1   |   Evaluation of Results—Statistics

The next stage is to examine the details of the sequences. We 
wish to determine if any differences exist between surprising 
and non-surprising patterns. Referring to Table 6 the results for 
entropy, sequence complexity, longest common prefix, and lon-
gest common sub-sequence are presented.

For the Sepsis sequences, the average entropy is 0.74, much larger 
than Biofam (0.35) indicating a varied set of symbols. The turbu-
lence or complexity of the Sepsis data is 11.9 and is more complex 
than Biofam (4.8) data (which is to be expected) given the symbol 
set. The longest common prefix for the Sepsis data is 20, which is 
smaller than Biofam (32). The longest common sub-sequence for 
Sepsis data is 10; this is smaller than what could be expected given 
the long lengths of some sequences. Biofam is much larger at 30; 
this is unusual. Bayesian surprise value is 0.15 for the Sepsis data 
and is larger than the other three, which is to be expected from the 
wider range of symbols and variable length size of the sequences.

The Chess sequences form an average entropy of 0.37 with a com-
plexity (Turbulence) rating of 5.3 suggesting, with the values of the 
other measures of LCP, LCS, Bayes and log-loss of 5.66, that this 
data set is problematic. As suggested in the other experiments, it 
is the large number of potential symbols that is likely the cause of 
the high error rate and identifying a number of records as noise.

Examining the WCST sequences we find that the log-loss is 
moderate, suggesting there are few noisy patterns in this data 
set. Entropy and complexity are moderate, along with the length 
LCP/LCS subsequences discovered.

5.1.2   |   Evaluation of Results—Sequence Event 
Transitions

For all data sets, we tag the sub-sequences with the initial “sur-
prising” and “not-surprising” labels from the test data as it is 
passed through the Probabilistic Suffix Tree. The sub-sequence 
events correspond to potentially interesting or not interesting 

FIGURE 15    |    Sepsis log-loss error density distribution over the entire 
data set.

FIGURE 16    |    Chess log-loss error for a single record, the red line in-
dicates the average log-loss and the lower bars are the symbols for that 
record. The coloured bars are assigned automatically for each unique 
symbol in the sequence.

FIGURE 17    |    Chess log-loss error density distribution over the entire 
data set.

FIGURE 18    |    WCST log-loss error for a single record, the red line in-
dicates the average log-loss and the lower bars are the symbols for that 
record. The coloured bars are assigned automatically for each unique 
symbol in the sequence.

FIGURE 19    |    WCST log-loss error density distribution over the en-
tire data set.
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pattens which are shown in Table  7 we highlight the statisti-
cally significant events from sub-sequences that discriminate 
between interesting and not-interesting sub-sequences for the 
BioFam data. Usually, we are interested in detecting frequently 
occurring transitions with event sequences. The first column 
provides the sequence ID, we show five sequences. In the second 
column the full sub-sequence is shown, creates a distinct (from-
state > to-state) event for every discovered transition consisting 
of a pair of events (end-state event, start-state event) which is 
assigned to each transition. Similar to association rules these 
state to state events have a support value based on a minimum 
support of the number of similar sequences.

Examining the biofam event sub-sequences further, we discover 
the most discriminating sequences between surprising and not 
surprising. The chi-square test is used to test between the two 
types of sequences; it gives a p-value for significance and the 
Pearson's coefficient.

In Table 8 the statistically significant events from the Sepsis data 
sub-sequences that discriminate between interesting and not-
interesting sub-sequences are presented, using the tagged se-
quences with the surprising label. The Surprising patterns have 
values for the key variables between 0.6 and 0.9, whilst the not-
surprising sequences events have values much lower between 
0.05 and 0.5—only the Lecoucyte > CRP sequence (ID = 1) in 
Table 8 has a significantly higher value.

The Chess subsequences shown in Table 9 show predominantly the 
opening moves that are ordered by the support statistic for each se-
quence. The first row with ID =1 highlights the transition between 

Nf3 to Nc6; the white player always moves first. We can deduce they 
are moving their knight to the f3 square, and the black player is 
moving their knight to square c6. The 2nd row shows e4-Nf3-Nc6; 
the subsequence algorithm has picked up the Double King's Pawn 
Games and the Double King's Pawn Opening. The surprising statis-
tic and p-value indicate these subsequence moves are valid.

The table indicates the 10 most discriminating sequences for 
identifying surprising and not surprising patterns. The magni-
tudes of the values for the surprising patterns are much larger 
than the not-surprising patterns, and this serves to differentiate 
between them.

In Table 10 the key sequences for the WCST are shown. The p-
values are not significant; however, similar to the Chess data, 
the values of the surprising versus the not-surprising subse-
quences are very different (0.23 versus 0.07) and thus can dis-
criminate between them.

Our work just uses the discrete symbol sequences to detect 
unusual and novel patterns. Although the data sets have addi-
tional information such as participant demographics and other 
variables, we do not use these. We took the decision to concen-
trate only on sequences as our main objective. Furthermore, 
data sets with variable length sequences are often problematic 
for many probabilistic machine learning methods; however, 
the PST is well suited to this task. The results have shown 
that variable length sequences, like the Sepsis data which has 
several different symbols, are the most interesting to analyse. 
Such sequences allow a richer diversity of patterns to be gen-
erated and can capture interesting patterns occurring in the 

TABLE 6    |    Anomaly detection results on the data sets.

Dataset Entropy Complexity LCP LCS Bayes surp Ave log-loss density

BioFam 0.35 4.8 32 30 0.009 0.61

Sepsis 0.74 11.9 20 10 0.15 2.18

CHESS 0.37 5.3 20 8 0.098 5.66

WCST 0.66 4.1 15.0 5 0.18 1.68

TABLE 7    |    Event sub-sequences discriminate between surprising and not-surprising sequences for biofam data.

ID subseq) Sup p Statistic Surprising Not-surprising

1 (Parent)-(Parent > Left) 0.43 0.00 119.53 0.32 0.57

2 (Parent > Left) 0.43 0.00 119.53 0.32 0.57

3 (Parent)-(Parent > Married) 0.12 0.00 37.81 0.16 0.07

4 (Parent > Married) 0.12 0.00 37.81 0.16 0.07

5 (Left > Left + Marr) 0.23 0.00 32.72 0.18 0.29

6 (Parent)-(Left > Left + Marr) 0.23 0.00 32.13 0.18 0.29

7 (Parent)-(Parent > Left)-(Left > Left + Marr) 0.23 0.00 32.13 0.18 0.29

8 (Parent > Left)-(Left > Left + Marr) 0.23 0.00 32.13 0.18 0.29

9 (Parent)-(Parent > Left + Marr) 0.25 0.00 15.80 0.29 0.21

10 (Parent > Left + Marr) 0.25 0.00 15.80 0.29 0.21
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TABLE 8    |    Event sub-sequences discriminate between surprising and not surprising sequences for Sepsis data.

ID subseq Support p Statistic Surp Not-surp

1 (Leucocytes > CRP)-(CRP > Leucocytes) 0.39 0.00 75.48 0.61 0.06

2 (Leucocytes > CRP)-(Leucocytes > CRP) 0.35 0.00 67.87 0.56 0.05

3 (ERRegistration > ERTriage)-(Leucocytes 
> CRP)-(CRP > Leucocytes)

0.37 0.00 67.86 0.58 0.06

4 (ERRegistration)-(Leucocytes > CRP)-(CRP > Leucocytes) 0.36 0.00 66.39 0.57 0.06

5 (ERRegistration > ERTriage)-(Leucocytes 
> CRP)-(Leucocytes > CRP)

0.33 0.00 63.75 0.53 0.04

6 (ERRegistration)-(ERRegistration > ERTriage)-(Leucocytes > CRP) 0.35 0.00 62.11 0.55 0.06

7 (ERRegistration)-(Leucocytes > CRP)-(Leucocytes > CRP) 0.33 0.00 60.82 0.53 0.05

8 (ERRegistration)-(ERRegistration > ERTriage)-(Leucocytes > CRP) 0.32 0.00 59.67 0.51 0.04

9 (Leucocytes > CRP) 0.73 0.00 58.26 0.91 0.47

10 (CRP > Leucocytes)-(Leucocytes > CRP) 0.37 0.00 58.07 0.57 0.09

TABLE 9    |    Event sub-sequences discriminate between surprising and not surprising sequences for CHESS data.

ID subsequence Support p Statistic Surprising Not-surprising

1 (Nf3 > Nc6) 0.14 0.01 14.08 0.23 0.00

2 (e4)-(Nf3 > Nc6) 0.12 0.02 12.20 0.21 0.00

3 (e4)-(e4 > e5)-(e5 > Nf3)-(Nf3 > Nc6) 0.09 0.22 7.76 0.15 0.00

4 (e4)-(e4 > e5)-(Nf3 > Nc6) 0.09 0.22 7.76 0.15 0.00

5 (e4)-(e5 > Nf3)-(Nf3 > Nc6) 0.09 0.22 7.76 0.15 0.00

6 (e4 > e5)-(e5 > Nf3)-(Nf3 > Nc6) 0.09 0.22 7.76 0.15 0.00

7 (e4 > e5)-(Nf3 > Nc6) 0.09 0.22 7.76 0.15 0.00

8 (e5 > Nf3)-(Nf3 > Nc6) 0.09 0.22 7.76 0.15 0.00

9 (Nf3 > Nc6)-(white > %) 0.08 0.33 6.92 0.14 0.00

10 (e4)-(Nf3 > Nc6)-(white > %) 0.07 0.47 6.09 0.12 0.00

TABLE 10    |    Event sub-sequences discriminate between surprising and not surprising sequences for WCST data.

ID subsequence Support p Statistic Surprising Not-surprising

1 (shape)-(shape > star) 0.19 0.71 3.16 0.30 0.00

2 (shape > star) 0.19 0.71 3.16 0.30 0.00

3 (shape)-(shape > star)-(star > OneSymbol) 0.14 0.97 1.72 0.22 0.00

4 (shape)-(star > OneSymbol) 0.14 0.97 1.72 0.22 0.00

5 (shape > star)-(star > OneSymbol) 0.14 0.97 1.72 0.22 0.00

6 (star > OneSymbol) 0.14 0.97 1.72 0.22 0.00

7 (number)-(blue > correct) 0.14 1.00 0.49 0.09 0.23

8 (red > correct) 0.22 1.00 0.26 0.17 0.31

9 (shape) 0.36 1.00 0.02 0.39 0.31

10 (colour) 0.33 1.00 0.02 0.30 0.38
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data. In fact, data sets with a limited set of symbols and with 
fixed length sequences generally do not produce a lot of inter-
esting patterns.

After training, the PST is presented with new data and will out-
put probability scores for each sequence. These new scores are in 
effect the posterior distributions to be compared with the prior 
distributions for each and every symbol generated by the trained 
PST. The differences between prior and posterior estimates are 
compared using the Bayesian Surprise via the KL measure; this 
determines how interesting or anomalous these new patterns are. 
A further concept that must be taken into account is the decay pa-
rameter. If this was not considered, there would be no “memory” 
or history of previously learned sequences, and the PST would re-
peatedly consider all new sequences with scores above the “Wow” 
cut-off point as unusual or novel. Any assessment of pattern nov-
elty has to be external to whatever model is used; therefore, we did 
not incorporate the new data by retraining the PST.

6   |   Discussion and Conclusions

This work advances knowledge for the detection of unusual dis-
crete sequence data and provides some explanation of why a pat-
tern can be considered unusual or interesting. We have examined 
why sequence data can be considered surprising using criteria 
such as sequence composition and complexity, entropy measures, 
and state transitions from one symbol to the next in a sequence. 
Many outlier/anomalous detection methods rank patterns based 
on infrequence; Shannon's theory is the usual way to assess them 
based on their low probability. However, simply using low prob-
ability scores is suboptimal for identifying interesting patterns, 
as all such patterns would be regarded as interesting. Bayesian 
surprise is not so misled, unlike information theoretic measures 
such as Shannon surprise and entropy, for example. This work, 
therefore, presents a plausible, cognitive-inspired framework for 
detecting unusual sequences and by reducing the interest signal 
when we encounter similar patterns. The surprising patterns 
identified by our methods should be helpful to the data analyst, 
but there is a degree of subjectivity as to what constitutes an inter-
esting pattern. We can say our system is internally self-consistent, 
based on the history and similarity of past sequences. Our future 
work will use Neural Networks such as Recurrent Networks and 
Long-Short Term Memory (LSTM) as these methods can manage 
longer sequences through their enhanced memory.
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