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ABSTRACT

Vision-based deep learning models have been widely adopted in autonomous agents, such as unmanned aerial vehicles (UAVs),
particularly in reactive control policies that serve as a key component of navigation systems. These policies enable agents to respond
instantaneously to dynamic environments without relying on pre-existing maps. However, there remain open challenges to improve
the agent's reactive control performance: (1) Is it possible and how to anticipate future states at the current moment to benefit
control precision? (2) Is it possible and how can we anticipate future states for different sub-tasks when the agent's control consists
of both discrete classification and continuous regression commands? Inspired by the Chinese idiom “Mirror Flower, Water Moon,”
this paper hypothesizes that future states in the latent space can be learnt from sequential images using contrastive learning, and
consequently proposes a light-weight Multi-task Visual Prospective Representation Learning (MulVPRL) framework for benefiting
reactive control. Specifically, (1) This paper leverages the advantage of contrastive learning to correlate the representations obtained
from the latest sequential images and one image in the future. (2) This paper constructs an integrated loss function of contrastive
learning for classification and regression sub-tasks. The MulVPRL framework outperforms the benchmark models on the public
HDIN and DroNet datasets, and obtained the best performance in real-world experiments (46.9 m, 177svs. SOTA 27.3 m, 136 s).
Therefore, the multi-task contrastive learning of the light-weight MulVPRL framework enhances reactive control performance on a
2D plane, and demonstrates the potential to be integrated with various intelligent strategies, and implemented on ground vehicles.

1 | Introduction surfaces can be regarded as a latent space containing visual
representations that are encoded from reality and decoded

“Mirror Flower, Water Moon” is a Chinese idiom (Wang 2006) towards illusions. Unlike recent visual-based control strate-

that is metaphorically used to depict something that can be
seen but is untouchable. Just like the moon reflected in the
water shown in Figure la which is the illusion of the real
world. Inspired by this idiom, future state anticipation is
likewise the illusion of the present moment like the old man
reflected in the mirror in Figure 1b. The water and mirror

gies that immediately respond to the latest observations
relying on learning present representations (Yang et al.
2019, 2021; Chang et al. 2023b), this paper intends to study
the possibility of anticipating future states based on present
visual data and consequently advancing the reactive control
performance for autonomous agents.
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(b) Magic mirror

(a) "Mirror Flower, Water Moon"

FIGURE 1 | (a) Reflected moon in the water is untouchable. (b) A
magic mirror that can foresee the future (this is produced by ChatGPT
40 OpenAl 2024). (a) “Mirror Flower, Water Moon”, (b) Magic mirror.
[Color figure can be viewed at wileyonlinelibrary.com]

Anticipating future states is to learn a representation from the
latest data inputs during time t — n to t to denote the infor-
mation extracted from the ¢+ n future data. Josselyn and
Tonegawa (Josselyn and Tonegawa 2020) indicated that rodent
brains existing “Memory Engram” have the potential to recall
the past and anticipate the future through Artificial Intelligence
(AD)-based technologies. According to their persuasive evi-
dence, Visual Prospective Representation Learning (VPRL) used
for anticipating future visual states has been initially studied for
video action prediction (Vondrick et al. 2016; Jain et al. 2016;
Suris et al. 2021), future frame generation (Zeng et al. 2017),
pedestrian path generation (Park et al. 2016) and robotic arm
reactive control (Koppula and Saxena 2015), which all have
demonstrated better performance compared to other methods
without VPRL.

However, VPRL has rarely been implemented in autonomous
systems, particularly those systems for UAV indoor navigation.
Although deep reinforcement learning (Doukhi and Lee 2022;
Xie et al. 2020), depth image prediction (Kouris and
Bouganis 2018; Chakravarty et al. 2017; Yang et al. 2019, 2021)
and relative position recognition (Padhy et al. 2018; Chhikara
et al. 2021) have achieved navigation in unknown spaces
without collision, they can solely be treated as short-term
reactive control policies since regardless of long-term historical
information. Recently, short-term policies serving as agent-
decision module of unmanned ground vehicles (UGVs) auton-
omous systems are not just integrated with map prediction
(Chaplot et al. 2020; Ramakrishnan et al. 2020), but also can be
collaborated with image retrieval and localization (Wei
et al. 2024; Balntas et al. 2018; Leyva-Vallina et al. 2023, 2024;
Laskar et al. 2017) to record long-term historical information,
thus showing potential to achieve indoor mapless navigation
without 2D/3D map-building (Giizel 2013; Chang et al. 2023a).
Since the short-term reactive policy becomes a key component
of indoor mapless navigation systems and requires a light-
weight architecture to obtain faster processing speed and higher
control precision, VPRL has the potential to satisfy and is the
focus of this paper.

In recent years, contrastive learning has been applied for many
real-world applications such as classification tasks of agricul-
ture monitoring (Giildenring and Nalpantidis 2021), healthcare

management (Tang et al. 2021), emotion recognition (Song
et al. 2022) and video action classification (Pan et al. 2021; Jain
et al. 2016), and regression tasks of UAV reactive control for
drone racing (Fu et al. 2023). Different to the direct label-
representation association of supervised learning results in
extracting the most relevant features, contrastive learning
distinguishes similar and dissimilar samples by comparing
representations based on defining appropriate similarity scores.
Hence, contrastive learning can learn more weak relevant fea-
tures (Koohpayegani et al. 2020; Robinson et al. 2021) which
can benefit models’ prediction performance (Yu and Liu 2004;
Chang et al. 2023b).

Due to the advantages of contrastive learning and the potential
model improvement based on VPRL, this paper proposes a
novel Multi-task Visual Prospective Representation Learning
(MulVPRL) framework to simultaneously obtain the prospec-
tive classification-aware and regression-aware representations
from the latest sequential images. The MulVPRL framework
presents competitive performance on two public datasets.
The real-world experiments depend on a Nano-size UAV
(Bitcraze 2019) as the practical agent shown in Figure 2, which
achieves the best control performance. This framework with
light-weight architecture serves as a short-term control policy
for instantaneous reaction and subsequently can be integrated
with other intelligent policies to record long-term historical
information for accomplishing complicated tasks such as victim
search-and-rescue in unknown spaces based on suitable agent
platforms. The main contributions of this paper are summa-
rized below, and the trained model, code and video are publicly
released on GitHub (Chang 2024).

o This paper proposes a novel MulVPRL framework by
developing appropriate similarity measurements for the
associated contrastive loss functions to respectively contrast
the present regression-related and classification-related
representations with the corresponding actual future rep-
resentations in the latent space.

« The visual prospective representations learned by the
MulVPRL framework are specifically mapped to the UAV
reactive control in this paper, and have been verified and
compared with relevant models on both public datasets and
in real-world environments.

The rest of this paper is organized as follows: Section 2 intro-
duces the related works of representation learning and indoor
navigation strategies based on different agent platforms.
Section 3 illustrates the relevant theoretical principles of the
methods described in Section 4. Sections 5 and 6, respectively,
demonstrate the evaluation on public datasets and real-world
experiments, which both include visualizations and discussions.
Finally, this paper will be concluded in Section 7.

2 | Related Works

This section will firstly introduce representation learning
background regarding contrastive classification and regression
along with prospective representation learning. Then, it will
provide investigations of indoor navigation strategies.
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FIGURE 2 | Real-world experiments. The Nano-UAV sends the sequential greyscaled images to the laptop via WiFi connection while the laptop

executes the MulVPRL framework and sends back the UAV's control commands including forward v, and steering angular velocities 6 via radio

connection. The UAV automatically navigates in practical environments. [Color figure can be viewed at wileyonlinelibrary.com]

Anchor

v,
’,
iyl

al
v, %
w = %

| F?l\/’ ‘
[

— Normalized
{ /'\ Embeddings 1
\ R

~

\N

Negatives

Positives

(a) Self-Supervised Contrastive Learning

Anchor

-L Positives
ll.' ol

Negatives

\

Normalized |
Embeddings

(b) Supervised Contrastive Learning

FIGURE 3 | (a) Self-supervised contrastive learning. The dog in the yellow box is defined as negative sample since it is not generated from the

same anchor image, hence it might be erroneously pushed towards the cat's group. (b) Supervised contrastive learning. The dog image in the yellow
box is defined as a positive sample since it belongs to the same class of the anchor image and hence, has been correctly clustered into the dog's group.

[Color figure can be viewed at wileyonlinelibrary.com]

2.1 | Contrastive Classification

The fundamental of contrastive learning is to push away the
negative samples and pull together the positive samples. If
the answer to “Is it from the same image” is yes, the newly
augmented images are positive samples of the original image,
otherwise theyre negative samples. This is called self-
supervised contrastive learning without using actual labels (He
et al. 2020; Chen et al. 2020) to separate representations that are
obtained from the encoder and hence, benefit the following
MLP layers for image classification such as releasing tiresome
labeling works on videos (Pan et al. 2021). Unfortunately, self-
supervised contrastive learning sometimes presents mis-
classifications as shown in Figure 3a relating to the insufficient
definition regarding positive and negative samples. Therefore,

Khosla et al. (Khosla et al. 2020) changed the idea of “Is it from
the same image” to “Is it from the same class” by introducing
the actual class labels into the contrastive loss function. It is
named Supervised Contrastive Learning (SupCon) as shown in
Figure 3b, which obtained better classification performance
than the self-supervised contrastive learning methods.

2.2 | Contrastive Regression

Due to the improved performance of contrastive classification,
researchers have started to explore contrastive learning for
regression tasks in which the continuous samples and labels
have no discrete classes, such as activity scoring (Yu et al. 2021),
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data set annotation (Ruan and Wang 2021) and face gaze esti-
mation (Wang et al. 2022). In addition, several papers focusing
on outdoor autonomous driving demonstrated that their vehicle
steering prediction as agent decision based on SupCon (Khosla
et al. 2020) is close to the performance based on supervised
learning. For instance, Zhang et al. (2022) utilized a constant
threshold to distinguish positive and negative samples accord-
ing to the L1 distance between labels. Zheng et al. (2022)
formed the consecutive labels as a vector to calculate the cosine
similarity for measuring the distance between sample pairs and
thus, can be used to identify positive and negative samples.
Although these contrastive learning methods (Zhang et al. 2022;
Zheng et al. 2022) initially addressed the challenge of defining
positive and negative pairs for regression samples and obtained
similar results of supervised learning, they ignored the rele-
vance between consecutive samples. The relevance between
consecutive samples, that is the intrinsic order relationship, is
shown in Figure 4. Therefore, Zha et al. (Zha et al. 2024) pro-
posed a Rank-N-Contrast model based on the “Ranking” idea
for Supervised Contrastive Regression (SupCR) and out-
performed other supervised and contrastive learning methods.
Furthermore, the SupCR method was also verified to predict the
ratio of steering angular velocity for outdoor ground vehicles
and indoor UAVSs reactive control by Chang et al. (2023b). The
significant performance improvement of single-image contras-
tive regression achieved by Zha et al. (2024) and Chang et al.
(2023b) serves as the motivation to further enhance the model's
performance by incorporating spatial-temporal information
and VPRL.

2.3 | Prospective Representation Learning

Depending on the mutual representations that are respectively
encoded from images at time ¢ and in the future, Vondrick and
Zeng et al. (Vondrick et al. 2016; Zeng et al. 2017) generated the
visual prospective representation for video action classification

>

"'S,

'g.: ° -:%\ l
v y 30

- 20

Dy !

- 10

-0

FIGURE 4 | Intrinsic order relationship between consecutive sam-
ples. It is plotted by Umap visualization technology (McInnes

et al. 2018). The X- and Y-axes represent the coordinates of the data in
the 2D XY space after dimensionality reduction. The axes do not have
direct physical concepts but rather are used to depict the relationship
between data. The representation distribution according to the associ-
ated actual value of labels from low — high corresponds to colors
from cold » warm. (Zha et al. 2024). [Color figure can be viewed at
wileyonlinelibrary.com]

and future frame generation. Moreover, the Convolutional
Neural Networks with Recurrent Neural Networks (CNN
+RNN) structure extracts the spatial-temporal representation
by taking the image sequence from the past. Oord et al. (van
den Oord et al. 2019) indicated that the spatial-temporal rep-
resentation contains sufficient information to predict the future.
Learning prospective representations based on the CNN+RNN
structure has been proved for classification tasks such as audio
recognition (Haresamudram et al. 2021) and video action pre-
diction (Suris et al. 2021; Jain et al. 2016), and recently applied
for reactive control of UGV autonomous navigation (He
et al. 2023). However, none of them have coped with regression
tasks, and even multi-task applications which include classifi-
cation and regression sub-tasks to smooth the agent, especially
the UAV reactive control for indoor mapless autonomous
navigation.

Therefore, this paper innovatively leverages the advantage of
contrastive learning into multi-task VPRL and applies the
commonly used CNN+RNN structure from contrastive and
VPRL methods (Suris et al. 2021; Jain et al. 2016; van den Oord
et al. 2019; Haresamudram et al. 2021; He et al. 2023; Pan
et al. 2021) as the backbone of the MulVPRL framework.

2.4 | Indoor Autonomous Navigation

The workflow of the agent's conventional navigation
system covers environmental perception, map-building, self-
localization and path planning (Khairuddin et al. 2015).
Simultaneous Localization and Mapping (SLAM) such as visual
SLAM (Mur-Artal et al. 2015; Mur-Artal and Tardo6s 2017; Engel
et al. 2014) and Light Detection and Ranging (LIDAR) SLAM
(Hornung et al. 2013; Batinovic et al. 2021) is the prime sub-
component for goal-directional navigation in large-scale indoor
environments (Chen et al. 2022; Youn et al. 2021; Esrafilian and
Taghirad 2016). Although the SLAM-based algorithms can plan
the optimal path to the destination based on the continuously
updated map, the overall workflow is computational-
demanding resulting in massive time-consumption (Chang
et al. 2023a).

To improve real-time control performance, researchers explored
mapless navigation by applying CNN models to perceive en-
vironmental information. For instance, processing event images
(Vemprala et al. 2021), optical flow depth estimation (McGuire
et al. 2017) and RGB image depth estimation (Chakravarty
et al. 2017; Yang et al. 2019, 2021) allow the following controller
to generate UAV commands accordingly. Moreover, CNN
models are able to directly map the captured images to UAV
commands based on supervised (Loquercio et al. 2018; Palossi
et al. 2019) and reinforcement learning (Singla et al. 2019; Fu
et al. 2023; Xue and Gonsalves 2023). Although these strategies
offer instantaneous reactions to control the UAV, they lack
destination and long-term historical information and hence can
only be treated as short-term control policies. Recently, there
have been two solutions to address this limitation for long-term
navigation. Firstly, capturing more surrounding environmental
information by additionally using a backward camera or a
360° camera along with long-term image sequences, such as
the UGV mapless navigation systems (Morin et al. 2023;
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He et al. 2023). Another solution controls the UGV relying on a
light-weight short-term policy as the agent-decision module,
and periodically invoking a long-term policy with map-
prediction at a constant interval (Chaplot et al. 2020;
Ramakrishnan et al. 2020). In comparison, the short-term policy
of the latter solution is important to ensure real-time respon-
siveness and requires higher control precision. Otherwise, the
agent can be controlled into unexpected spaces, leading to more
iterations and time-consumption for invoking long-term polic-
ies, which have negative impacts on specific tasks such as vic-
tim search-and-rescue.

3 | Theoretical Principles

This section respectively introduces the theoretical principles
of VPRL and supervised contrastive learning, providing a
theoretical foundation for the methodologies in subsequent
MulVPRL framework.

3.1 | Predictive Coding of VPRL

The following Equations (1)-(3) indicate the theoretical prin-
ciple summarized from predictive coding (van den Oord
et al. 2019). In Equation (1), x;_, to x; represents the latest
sequential images. STEnc is a spatial-temporal encoder com-
posed of shared-weights CNN encoders followed by RNN layers
(i.e. CNN+RNN structure). Xx;;, in Equation (2) denotes a
future image while Enc is a single CNN encoder that is same as
those in STEnc. The objective of predictive coding of VPRL is to
ensure that the representations z; and z;4,, respectively, ex-
tracted from the latest sequential and future images have the
greatest similarity, that is the cosine similarity approaching 1
shown as Equation (3).

Z; =S8T Enc(xt—m oo xt)a (1)
Ziwn = Enc(Xeyn), 2
o, 2t Zun
sim\ zZ;, 2 = 3
( ! ‘*") 11z )
3.2 | Supervised Contrastive Classification and

Regression

According to the reference (Khosla et al. 2020), the summarized
Equations (4)-(6) are used to demonstrate the theoretical princi-
ple of supervised contrastive classification. The index i is called
the anchor and B is a set of all sample indices in one batch.

In Equation (4), P, is the set including indices of all positive
samples of the anchor sample in a batch. When sample j shares
the same class label as the anchor sample (y; = y)), its index j
will be stored into P.

In Equation (5), (z;-z) and (z; - zx) calculate the cosine
similarity between two representations. 7 is the temperature
parameter for controlling the penalty on hard negative samples
which have greater similarity. The anchor sample pairs up with

its all positive samples for calculating the summation shown as
Zje p@xp((2i - ;) /7). Then, the anchor sample pairs up with all
samples in the same batch to calculate the summation shown as
Ywepexp((z; - zi)/7) for contributing to the denominator. Sub-
sequently, Lg,pcon, Calculates the average loss of the anchor
sample by dividing IPJ, i.e. the number of positive samples of the
anchor sample.

Finally, since each sample in the same batch will be the anchor
once for calculating the summation shown as 3, g Lsupcon;» the
total SupCon 10ss Lgypcon, iS Obtained by dividing the batch
size |Bl in Equation (6). Minimizing the Lsupcon,, Via intro-
ducing class labels to the loss function allows to pull together
the representations from the same class and push away the
representations from different classes.

r={jy =y}, ©)
1 exp((z; - Z))/7)
L upCon; = —— — log 5 5
SupC P E,i Sres exp((zi - 1) /T) )
1
ACSupConmml == Z ‘CSMPCOHI" (6)

IBl /25
Similarly, the summarized Equations (7-9) are used to dem-
onstrate the theoretical principle of supervised contrastive

regression inspired by the “Ranking” idea of reference (Zha
et al. 2024).

Firstly, when anchor sample i and sample j form a sample pair,
the index k will be stored into the Nj; set if the L1 distance of
labels between samples i and k is greater or equal to that
between samples i and j, that is d(y;, y;) > d(yi,yj). This pro-
cess is shown in Equation (7) and indicates that each sample
pair has a different number of relevant negative pairs.

In Equation (8), for each sample pair formed with
anchor sample i, the summation of relevant negative pairs
including itself contributes to the denominator shown as
Tke quxp((zi - Zx) /7). Since each sample in the same batch will

be the anchor once and paired up with all samples, the total
SupCR loss Lsupcr, is calculated as Equation (9) by dividing
IB?, that is the square of the batch size. Minimizing the
Lsupcri Will sort all representations according to the magni-
tude of regression labels, that is capturing the intrinsic ordered
relationship between consecutive samples.

Nj = {kld(yi’ y) 2d(y, y,-)}, )
ESupCRij = —log exp((zi - z))/7) , ®
Zieny XP(Zi - 2i) /T)
1
[’S”PCRto[al = @Z Z ‘CSupCon,-j~ (9)

i€B jeB

In general, the theoretical principles described in this section
provide a fundamental understanding of the methods in the
following Section 4.
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4 | Methods

This section will present the proposed novel MulVPRL frame-
work as well as detailing two training stages along with the
proposed loss functions. The agent in the following contents
will be embodied as a UAV.

4.1 | MulVPRL Framework—Training Stage I

The I¥ training stage is to update the weights within the
CNN + RNN structure for learning the visual prospective
regression-aware and classification-aware representations.
The theoretical objective is to simultaneously correlate the
prospective regression-aware and classification-aware repre-
sentations obtained from the latest observed sequential images
between x;_;, and x;, with the corresponding spatial repre-
sentation of the future image x,.1,. The t, k and n respectively
represent the current time, the number of previously observed
images and the image sampling step.

As shown in Figure 5, the CNN + RNN structure consists of
parallel shared-weights encoders (Enc), an RNN layer, and
Regression and Classification Projectors (RegProj and ClsProj).
Specifically, the final flattened layer of the ResNet8 (Loquercio
et al. 2018; Palossi et al. 2019) shared-weights encoder outputs
the spatial representation z with the dimension of 128. Then,
the RNN layer outputs spatial-temporal representation ¢; with
the dimension of 256 by feeding sequential spatial representa-
tions between z;_i,---Z;. Subsequently, the regression and
classification projectors generate the prospective regression-
aware z,,, and classification-aware representations zy, with the
dimension of 128, which are the same dimension as the spatial
representations between Z;_j, ‘- Zr+1n. Finally, the MulVPRL
loss function contains SupCR and SupCon loss functions to
calculate the total loss value Ly, vprr for updating the weights
of shared-weights encoders, RNN layer and projectors shown in
the dashed box in Figure 5.

Algorithm 1 Training Stage I of the MulVPRL
Framework

Definition: A batch contains B image sequences

[X1® = [X/—kn> - X+ 12]® in which there are R regression-
related sequences and C classification-related
sequences. R + C = B.

Input: [X]?, an example batch with image sequences
1: [Z]B = Enc([X]®), in which [Z]® = [zi—n, -
2:[a]? = RNN([ZJ%), [Z])® = [zi—ins -or 2]
3: [27e)? = RegProj([c,]®), [zs)? = ClsProj([c;]P);
4: Loypcr = f:gupCRLoss([z;eg]R’ [Ze1n )% [ ]5)s

ESupCon = f:SupConLOSS ( [Zéls]c’ [ZHlVlclx]C ’ [yc,]c);

Zes1nl®;

5: [/MulVPRL = fMulVPRLLoss (ESupCR + ESupCon);
6: Updated weights of CNN+RNN structure by
using LMulVPR]x

The procedures of the 1¥ training stage are presented in
Algorithm 1 for each batch containing B image sequences.
Upon processing by the paralleled shared-weights
encoders (Enc), an RNN layer, and regression and
classification projectors (RegProj and ClsProj) within the first
three steps, this batch yields B prospective regression-aware
[z7e]® and classification-aware representations [zg]®. Since
each batch is composed of R regression-related and C
classification-related sequences (R + C = B), [2;,|® and [z¢,]¢
representations respectively contrast with corresponding
future representations [Ziyin,|® and [Zi41n,]¢ in step 4.
The SupCR  fo,,crresy SUPCON  fopconross @Dd  MulVPRL
JSamaveriross 10ss functions calculated in steps 4 and 5 will be
illustrated as follows.

The relative positive and negative samples for the anchor
sample define the relationship between the anchor and

C T 2

Steefing label
Q’[ulVPRL Loss Functiy

LMulVPRL

FIGURE 5 | The workflow of the 1st training stage of MulVPRL framework. The green modules denote that their weights are updated during this
process. The backbones of the shared-weights encoder and RNN are, respectively, a ResNet8 model and a single gated recurrent unit (GRU) layer.
Both Reg Proj and Cls Proj consist of a single-layer Fully Connected Neural Network (FCNN) while the total MulVPRL loss function includes SupCR
and SupCon loss functions. [Color figure can be viewed at wileyonlinelibrary.com]
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other samples which is essential for contrastive learning.
According to the theoretical principles in Section 3, Figure 6
is used to better illustrate the SupCR and SupCon loss
functions corresponding to the VPRL for steering-related
and collision-related sequences.

VPRL for Steering-Related Sequences

As shown in Figure 6, the z;egn representation marked by a

yellow solid box is initially assumed as the “Steer Anchor”.
Then, the “Steer Anchor” pairs up with all steering-related
future representations to form the “Positive Pairs” shown in
the left table. According to the aforementioned theoretical
principles of SupCR in Section 3.2, the negative pairs relevant
to each positive pair have greater L1 relative distance of
labels. For instance, the relevant negative pairs correspond-
ing to the [z’,egn,ztﬂ,,n] positive pair are [z',egxl,ztﬂnsz] and

[2reg, - Zes1n,,] since (¥, y,) and d(yy,p,) > d (¥, 9,). As a
result, the contrastive loss to the “Steer Anchor” z’,egs1 is

%ij’f}':}* ls,s; where i = 1. The [ is calculated according to
Equation (10). Moreover, since each steering-related
prospective representation in the same batch will be the
anchor once, the total SupCR loss Lgy,cr is computed as

Equation (11).

lSi,Sj =
exp ((z’regsl, : Zt+1nxj )/T)
—log ,
Sn,n= ’
Dserr ]l[d(ysl.,ySk)zd(ySi,ij)]exp((zregsi : Zt+1nsk)/f)
(10)
1 Sn,n=R 1 Sn,n=R
£SupCR = E Z E Z lsi,sj-- (11)
§i 4

ii=1 Sjj=1

s; is the index of steering-related prospective representations,
sj, s, and s, represent the indices of steering-related future
representations. R is the number of steering-related sequences
in a batch with the size of B. (Z;egs,- . z,+1,,sj) and (Z;egs,- * Zt+lng)
are responsible for computing the cosine similarity between
the wunit vectors which have the same dimension.
ﬂ[d@si,ysk)zd(ysi,yﬁ)] =1 if the condition in the square bracket is

true, otherwise equals 0. In summary, minimizing Lg,ycr not
only enhances the similarity between the regression-aware
prospective representation with the actual future representa-
tion, but also sorts these prospective representations according
to label numerical magnitudes for capturing their intrinsic or-
dered relationships.

Batch size B = 6,
each sequence includes [X;_jpn, - Xt 110l

A

3 Steering-related sequences

3 Collision-related sequences

Ys, = —0.2138 Ys, = —0.0210

! ' q !
Zregs, | Z'regs, | Z'regs, )
Zeying, | Zeying, | Zesing, |

Positive Pairs Negative Pairs Positive Pairs Negative Pairs
[Z’regslr Zt+1n51] [Z’regslt Zt+1n52]7 [Z’regsl' Zt+1ns3] [Z’clsdlr Zt+1ncll], [Z’clsdlr Zt+1ndz] [z'clscllr Zt+1ncl3]
d(ysl.ysi) =0.0 d(yserSz) = 0'4056'61(3’51-3153) =0.5984 ]l[ycl1=ycl1] = 1'11[37:11:3«'512] =1 ]1[3’c11=3’cl3] =0
[Z,regsll Zt+1nS2] I:Z,regs1 ’ Zt+1ns3] Y 1

d(ysl,ysl) = 0.4056 d(ysl, _’)/53) = 0.5984 1 | “Collision” | |“Non-collision”| Processed by CNN+RNN :

7 ] 1 Sequence Sequence and shared-weights Enc "
z 7
regs,’ “t+ing, [Empty] 1 = —I iy @runnanns >
d(y51'y53) = 0.5984 || Steer Anchor ColArﬂwr L1 relative distance  Relative class |
L i i s o i o ) ) ) e i
FIGURE 6 | An example batch includes 3 steering-related (indices s; to s3) and 3 collision-related (indices cl to cl;) sequences with their steering

regression (), to y;,) and collision classification (), to ,,) labels at time ¢. Each sequence in the example batch obtains corresponding prospective
representations (Ze; and zy;) via the CNN+RNN structure, and future representations (z:41,) via the shared-weights encoder. The “Steer Anchor”

» 1

Z;egsl and “Coll Anchor ks, form positive and negative pairs with future representations, respectively, based on the L1 relative distance of steering
labels (green solid double arrows) and relative class of collision labels (purple dashed double arrows). [Color figure can be viewed at

wileyonlinelibrary.com]|
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VPRL for Collision-Related Sequences

As for collision-related sequences, the z’clsdl representation is
initially denoted as the “Coll Anchor” highlighted in a blue
dashed box in Figure 6. According to the theoretical principles
of SupCon in Section 3.2, the positive samples to the “Coll
Anchor” are selected from the collision-related future repre-
sentations between z;11p,, to Zt+1ng, if their sequences have the
same collision label as the cl; sequence. Therefore, [z'dsdl, Zt41ng,]
and [z, > Ziving,] are positive pairs while [zg, , Zering,] 1S
negative  pair shown in the right table since
I gy =y 1= [ yy=yp] = 1 Ut Iy, =y 1= 0. The contrastive loss
to the “Coll Anchor” Z/clsdl is éi Zz;}:c lcli’c,j where i = 1. The
Ly, iy is calculated based on Equation (12) and Fy, is obtained
from Equation (13).

’
Jl[ydi:ydeexP((chSdi zt+1ndj )/T)

lcli,clj = —log . (12)
clyn=
ZCIk,k:lc exp((z/dscti " Rt ney I
clpn=c
Ri= 3 U, bRi<C (13)
e el = Vel
1 Cln,n:C 1 Cln,n:C
ESupCon =3 Z o Z lClz,Clj' 14)
B cliji=1 Fy, cljj=1

clj, cly and cl, are the indices of the collision-related future
representations and cl; specifically indicates the index of
collision-related prospective representation. C shows the num-
ber of collision-related sequences in the same batch. Py de-
termines the number of positive samples corresponding to the
anchor z’dei. Since each collision-related prospective represen-
tation in the same batch will be the anchor once, Equation (14)
firstly computes the average loss of positive pairs that are
formed with the anchor zé,sdi and subsequently calculates the

total SupCon loss Lsupcon-

Total MulVPRL Loss Function

Similar to the DroNet methods for training a multi-task model
(Loquercio et al. 2018; Palossi et al. 2019), the following
Equation (15) MulVPRL loss function which is composed of
Lsupcr and Lg,pcon loss values calculates the total MulVPRL loss
value Ly vprr for conjunctly updating the weights of the CNN
+RNN structure shown as the black dashed box in Figure 5.
epoch represents the current training epoch while decay and
epoch, will be specifically introduced in Section 5.1.

Laguverr, = Lsupcr + max (0, 1 — expdecay (epoch—epocho) ) (1s)

ESupCon-
4.2 | Mulvprl Framework—Training Stage II
As for the 2" training stage shown in Figure 7, the parameters
within the CNN+RNN structure will be frozen. The separate
Regression and Classification MLP layers (RegMLP and
CIsMLP) composed of a single-layer FCNN can be trained
for mapping the prospective regression-aware zy, and
classification-aware representations zy into steering value y;l
and collision probability y;[. These two separate MLP layers are
trained based on the Multi-task Supervised Learning (MulSL)
loss function as Equation (16) shows, in which the total MulSL
loss value L5 combines Mean Square Error (MSE) Lysg and
Binary CrossEntropy (BCE) Lpcg losses. This MulSL loss func-
tion is the same as the multi-task DroNet model (Loquercio
et al. 2018; Palossi et al. 2019).

Lauist = ‘CMSE(y;[-yn) +max (0’ !
(16)

_ —decay (epoch—epochg)
exp Locr (v, m,):

y;[ and y, are the prediction and ground truth of steering values
while y; and Y, respectively represent the prediction and

1
I MulVPRL for A~y
' Depl t s,/9 | BeE 2=
| ployment = S| S
Images (X¢_gn. X¢) 1 : 5 : Loss

) a8 E— I I

! 1
1
! 1
| al o
: s |5 !
Ly

1 s M o
I 7
b mm i i i i = = - Steering label

FIGURE 7 |

MulSL Loss Functiou

The workflow of the 2nd training stage of the MulVPRL framework. The green modules, RegMLP and CIsMLP, are only updated

during this process. All sub-components within the black dashed box are ultimately deployed for image inference. [Color figure can be viewed at

wileyonlinelibrary.com]
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ground truth for collision classification. epoch represents the
current epoch during training while decay and epoch, will be
specifically introduced in Section 5.1

5 | Evaluation on Datasets

This section will firstly introduce the public datasets and
training setup of the MulVPRL framework. Then, the relevant
models and the MulVPRL framework will be compared on the
datasets. Ablation studies, visual demonstrations and statistical
analyses are also included.

5.1 | Datasets and Training Setup

In recent years, numerous datasets have been developed to train
models for controlling the UAV in indoor and outdoor en-
vironments. For instance, the model trained on the ICL data set
(Kouris and Bouganis 2018) is able to estimate distances at
directions [—30°, 0°, 30°] within the front field of view. The ICL
data set is more focused on reactive collision avoidance rather
than navigational direction. Moreover, He et al. (2023) collected
visual information by following the expert trajectory in large-
scale virtual environments to form a data set and hence, en-
abling the model to achieve long-term navigation tasks. How-
ever, the collected 360° images are inappropriate for the
commonly used UAVs with only a monocular camera.

The most appropriate datasets for evaluation are the DroNet
(Loquercio et al. 2018; Palossi et al. 2019) and HDIN (Chang
et al. 2022) UAV multi-task reactive control datasets, which
both involve “Steering” and “Collision” subsets. The DroNet
data set is entirely created in outdoor environments in which
steering labels are ranged within [—%, g] (Udacity 2016)
while collision labels are 0 “Non-collision” and 1 “Collision”
depending on the distance-to-collision. There are totally 64204

frames for training and 6855 frames for testing. The DroNet
model trained on this data set was capable of controlling the
UAV flying on outdoor vehicle roads and in indoor corridors
and car parks.

The images and labels of the HDIN data set are completely col-
lected on an actual UAV platform in indoor environments. The
labels from the “Steering” subset are the Scalable Angular
Velocity of label type 3 according to the original HDIN reference
(Chang et al. 2022). These steering labels represent the ratio of
maximum angular velocity within the range of [—1, 1], which are
also suitable for different UAV platforms. The labels from the
“Collision” subset are manually annotated as 0 “Non-collision”
and 1 “Collision” to represent collision probability. There are
10192 frames from 42 different trajectories for training with 1547
frames from 6 trajectories for testing in the “Steering” subset, and
3390 frames from 13 trajectories for training with 457 frames from
2 trajectories for testing in the “Collision” subset.

As for the training setup of the MulVPRL framework, Table 1
presents the hyperparameters for training on the HDIN and
DroNet datasets based on the Adam optimizer (Kingma and
Ba 2017).

5.2 | Quantitative Results on Datasets

The overview architectures of representative models with dif-
ferent learning methods are presented in Figure 8a-e for com-
parison with the MulVPRL framework shown in Figure 8f. The
brief introductions of these models are described below.

DroNet+SL (Figure 8a): The baseline DroNet model with Re-
sNet8 backbone was trained based on supervised learning for
directly predicting the steering value and collision probability
by processing the present image x;.

TABLE 1 | Hyperparameters of the MulVPRL framework training on the HDIN and DroNet datasets.

Hyperparameters

On HDIN data set on DroNet data set

Greyscaled image size

Initial learning rate of the first stage
Learning decay of the first stage

Epochs of the first stage

Initial learning rate of the second stage
Learning decay of the second stage
Epochs of the second stage

Temperature 7 in Equations (10) and (12)
decay in Equations (15) and (16)

epoch,, in Equations (15) and (16)

Batch size N

Sequence length

The number of historical images k in each sequence

Image sampling step n in each sequence

324 x 244 200 x 200
le™3 le™3
le™ le™
100 50
le73 le73
le™ le™

50 50
0.25 0.20
1/3 1/5
3 5
48 32
5 5
3 3
2 2
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FIGURE 8 | Architectures of relevant models for comparison. z; and ¢, represent the spatial and spatial-temporal representations at time .

Zis1s Z/fegpr L and zg,, .1 represent the prospective representations at time ¢ + 1. y;[ and y;t are the predicted steering value and collision probability. &
denotes representation concatenation. (a) DroNet+SL (b) ACO+CL (c) ViViT+CL (d) DroNet+SupCR (e) DeepExplorer+SIL (f) MulVPRL. [Color

figure can be viewed at wileyonlinelibrary.com]

Nvidia CNN + SL: It serves as a baseline model (Bojarski
et al. 2016). Its architecture is a 9-layer CNN training based on
supervised learning to only predict steering values, which is
similar to Figure 8b.

3D LSTM +SL: It serves as another baseline model (Du
et al. 2019). It is composed of 3D convolutional layers followed
by LSTM layers to extract the spatial-temporal representations
based on supervised learning, and subsequently just predict the
steering value.

ACO + CL (Figure 8b): Zhang et al. (2022) used a constant
threshold to distinguish positive and negative samples of the
anchor sample. It is called Action-Conditioned (ACO) Con-
trastive Learning and selected the ResNet34 as the encoder's
backbone to only predict the steering value by processing the
present image Xx;.

ViViT + CL (Figure 8c): Zheng et al. (2022) transformed the
consecutive actual steering labels into the unit vectors named
“Positiveness” for dynamically weighting the contrastive loss.
The encoder's backbone is the Video Vision Transformer
(ViViT) (Arnab et al. 2021) which extracts the spatial-temporal
representation from image sequence X;_y, ..., X; for predicting
the steering value.

DroNet + SupCR (Figure 8d): Similar to the DroNet model in
Figure 8a, Chang et al. (Chang et al. 2023b) applied ResNet8 as
the encoder's backbone but was trained based on SupCR (Zha
et al. 2024) for only predicting the steering value from present
image Xx;.

DeepExplorer + SIL  (Figure 8e): The DeepExplorer (He
et al. 2023) applied ResNet18 as the encoder's backbone and fol-
lowed with two Long Short-Term Memory (LSTM) layers. By
concatenating the visual prospective representation z;,, generated
from the last unit of the final LSTM layer with the actual repre-
sentation z; from the image at time ¢, the final MLP layer predicts
the action a € [moveforward, turnleft, turnright] based on
a = MLP (z;,, @ z:). For the reasons of fair comparison and the
output of the original DeepExplorer is mainly used for deciding

movement direction, the original loss function of Sparse Categor-
ical Crossentropy for action classification is replaced by the MSE
for steering regression. This replacement is denoted as Reg MLP in
Figure 8e, y; = RegMLP (z;;, @ z:), and retrained the DeepEx-
plorer based on the same supervised imitation learning.

Table 2 quantitatively shows the models’ performance on the
HDIN and DroNet datasets. All results are obtained from their
original references or provided trained model (ACO+CL) except
the DeepExplorer model which was validated on different da-
tasets and requires retraining. A notable case is the steering
prediction of the ViViT. Different from the common RMSE
regression metric, ViViT adopted regression accuracy (results
marked by “ 7”) to assess performance, where a higher regres-
sion accuracy indicates better performance. Therefore, we also
calculated the regression accuracy of the baseline DroNet model
on the same data set for comparison. The best results of steering
regression and collision classification on each data set are
highlighted in bold while “-” means the compared models do
not have this prediction.

In comparison between Figure 8a-c, ACO and ViViT models
have more parameters and deeper architecture for extracting
visual representation. However, their regression performance
has not outperformed the baseline DroNet model which only
uses ResNet8 as the backbone, and worse than the baseline
Nvidia CNN and 3D LSTM models. The major reason lies in the
limited definition of positive and negative pairs for contrastive
learning. Specifically, the ACO+CL defines a constant thresh-
old € = 0.05 to distinguish the positive and negative sample
pairs based on the relative distance between labels, that is if the
L1 distance of labels of two images is greater than €, they are
negative sample pairs. In addition, the ViViT + CL utilizes
the unit vector of labels to calculate the similarity between
sample pairs, that is the relevant negative pairs have smaller
similarities. However, these two definitions fail to capture the
intrinsic ordered relationship between consecutive samples and
thus, result in suboptimal performance.

Moreover, according to the observation from Figure 8a,d, the
DroNet+SupCR has the same encoder's backbone as the DroNet
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TABLE 2 | Comparison of relevant models with different learning methods on the HDIN and DroNet datasets.

Models and learning

Results on HDIN

References methods VPRL} data set Results on DroNet data set
RMSE? Acc.® RMSE Acc.
Loquercio et al. (2018) DroNet + SL! X 0.123 85.8% 0.110/75.5%" 95.4%
Palossi et al. (2019)
Bojarski et al. (2016) Nvidia CNN + SL X — — 0.099 —
Du et al. (2019) 3D LSTM + SL X — — 0.112 —
Zhang et al. (2022) ACO + CL? X — — 0.15718 —
Zheng et al. (2022) ViViT + CL X — — 51.9%’ —
Chang et al. (2023b) DroNet + SupCR X 0.118 — 0.107 —
He et al. (2023) * DeepExplorer + SIL3 v 0.085 — 0.091 —
Ours MulVPRL v 0.083 86.6% 0.098 96.0%

Note: SI: supervised learning; CL?2: contrastive learning; SIL3: supervised imitation learning; VPRL*: indication of whether using visual prospective representation
learning or not; RMSE?: root mean square error of steering prediction; Acc.®: average accuracy of collision prediction; 7: Calculated regression accuracy upon
corresponding data set, acc, = count(\y{arecl — Yiruel < €)/n based on the original reference (Zheng et al. 2022); 8: Verified based on their provided model with RMSE

metrics. *: Retrain on HDIN and DroNet datasets.

+SL. The results of DroNet+SupCR in Table 2 demonstrate that
capturing the intrinsic ordered relationship between consecu-
tive samples depending on the SupCR loss function is capable of
benefiting the regression performance.

One should notice that the DroNet+ SL, ACO + CL, ViViT +
CL and DroNet+SupCR have not applied VPRL to generate
prospective representations for anticipating future states. In
comparison, the SOTA DeepExplorer+SIL generates a visual
prospective representation z;,, and obtains the best perform-
ance of steering prediction on the DroNet data set. Moreover,
the proposed MulVPRL framework obtains regression-aware
(z',egm) and classification-aware (zy;,,) prospective represen-
tations as shown in Figure 8f, and consequently improves the
steering regression and collision classification. To find out why
the MulVPRL framework only obtains the best results on the
HDIN data set while the DeepExplorer performs better in
steering prediction tasks on the DroNet data set as shown in
Table 2, ablation studies have been conducted in the next
subsection to investigate reasons.

5.3 | Ablation Study

Figure 9 intuitively presents the overview of structural variants
with respect to the proposed MulVPRL and the SOTA Dee-
pExplorer for the ablation study. The structure variants with
details will be illustrated below.

MulVPRL_Enc (Figure 9a): This structure conjunctly trained
the ResNet8 encoder along with projectors and MLP layers of
steering regression and collision classification. This structure
simultaneously predicts steering values and collision probability
from the current image x;.

MulVPRL_EncwithGRU (Figure 9b): A GRU layer, the same
as the GRU layer used by the MulVPRL framework, is added to
the MulVPRL_Enc for conjunctional training and extracting the

current spatial-temporal representation ¢, from the latest
sequential images between x;_, to x,;. Subsequently, ¢, is fed
into the projectors and MLP layers for steering and collision
predictions.

MulVPRL_noClsProjCIsMLP (Figure 9c): It is modified from
the MulVPRL framework which discards the classification-
related projector and CIsMLP layer. The spatial-temporal rep-
resentation ¢, purely contains steering-aware features for the
regression projector to learn the visual prospective steering-
aware representation z;egm.

MulVPRL_noCIsMLP (Figure 9d): It is modified from the
MulVPRL framework which merely discards the classification
CIsMLP layer. In comparison with MulVPRL_noClsProjCIsMLP
in Figure 9c, the spatial-temporal representation c; is partially
occupied by collision-aware features.

DeepExplorer_MulVPRL (Figure 9e): The DeepExplorer
model is modified to match with the MulVPRL framework. In
comparison with the original DeepExplorer in Figure 8e, its
ResNet18 encoder is replaced by the ResNet8 encoder that is the
same as the MulVPRL_Enc structure, and two LSTM layers are
replaced by one GRU layer. The sequence length is as same as
the MulVPRL framework.

MulVPRL_noRegProjRegMLP (Figure 9f): Similar but different
to MulVPRL_noClsProjCIsMLP from Figure 9c, the MulVPRL
framework discards the regression-related projector and RegMLP
layer. The spatial-temporal representation c; only contains
collision-aware features for the collision projector to learn the
visual prospective collision-aware representation Z,. .

MulVPRL_noRegMLP (Figure 9g): Similar but different to
MulVPRL_noCIsMLP from Figure 9d, the MulVPRL framework
merely discards the regression RegMLP layer. Comparing with
MulVPRL_noRegProjRegMLP, the spatial-temporal representa-
tion ¢, involves both steering-aware and collision-aware
features.
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solid box for comparison. [Color figure can be viewed at wileyonlinelibrary.com]

Table 3 shows the results of the MulVPRL framework and
DeepExplorer model with respect to different structural variants
and the best results are highlighted in bold in the last four
columns. The “Tasks” column indicates that the corresponding
models focus on multi-tasks, single regression task or single
classification task in which the multi-tasks involves regression
task for steering prediction and classification task for collision
prediction. The “Loss Functions” column indicates the corre-
sponding loss functions used by the model for different training
stages. The structural variants in the “Models” column are
illustrated as aforementioned. The “-” in Table 3 means the
corresponding structure does not provide this prediction.

The MulVPRL_Enc is similar to the baseline DroNet model, where
both models employ the same ResNet8 encoder to predict steering
values and collision probability by purely using a present image,

hence they obtain similar results. The MulVPRL_EncwithGRU
extracts the spatial-temporal representations from the latest
sequential images and therefore, further benefits the prediction
performance, especially the steering regression performance com-
pared with the the MulVPRL_Enc. Moreover, since the proposed
MulVPRL framework considers VPRL for regression and classifi-
cation sub-tasks compared with the MulVPRL_EncwithGRU, it
performs the best with respect to the structures in the “Multi-tasks”
row in Table 3.

As for the single regression task, the MulVPRL_no
ClsProjCIsMLP without classification-related components is
sorely responsible for the steering regression task. In compari-
son with the MulVPRL_noCIsMLP, the better regression per-
formance of the MulVPRL_noClsProjCIsMLP in Table 3
demonstrates that the model purely learns one type of visual
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TABLE 3 | Results comparison of MulVPRL and DeepExplorer structural variants.

Results on Results on
Tasks Loss functions! Models Len® Num.params! HDIN data set DroNet data set
RMSE Acc. RMSE Acc.
Multi- Lanusr? DroNet 0.3M 0.123 85.8% 0.110 95.4%
tasks
MulVPRL_Enc 1 1.6M 0.125 84.0% 0.110 95.0%
MulVPRL_EncwithGRU 4 1.9M 0.098 86.7% 0.104 95.1%
L vuaveriz+Lyuist ours MulVPRL 4 2.0M 0.083 86.6% 0.098 96.0%
Single Lopcr*+Lysg>  MulVPRL_noClsProjCIsMLP 4 2.0M 0.081 — 0.092 —
Reg. task
Lawaverr, + Luse MulVPRL_noCIsMLP 2.0M 0.083 — 0.097 —
SIIS DeepExplorer 10 16M 0.085 — 0.091 —
DeepExplorer_MulVPRL 2.0M 0.096 — 0.108 —
Single Lsupco’ tLpcg®  MulVPRL_noRegProjRegMLP 2.0M — 86.6% — 97.5%
Cls. task
Lamvere + Lpce MulVPRL_noRegMLP 2.0M — 86.6% — 96.1%

Note: Loss Functions®: In this column, “+” separates the loss functions used for the 1¥ and 2"¢ training stages while without “+” represents only one training stage;
Lanasz, 2: MulSL loss function from Equation (16); Lapavprr, >: MulVPRL loss function from Equation (15); Lsupcr *: SupCR loss function from Equation (11); Lysg 5: MSE
loss function; SIL °: Supervised Imitation Learning; Lsupcon 7: SupCon loss function from Equation (14); Lpcg ®: BCE loss function; Len°: Sequence length of the latest
observed images; Num. Params'%: The number of total parameters of the model, M =1¢°.

prospective representation performs better for the correspond-
ing subtask. This trend has also been evidenced by comparing
the results between the MulVPRL_noRegProjRegMLP and
MulVPRL_noRegMLP in the single classification task of
Table 3. In addition, the original DeepExplorer which is also
entirely responsible for the regression task merely achieves an
improvement of 0.001 RMSE on the DroNet data set compared
with the MulVPRL_noClsProjCIsMLP, but requires a greater
number of parameters (16M vs. 2.0M parameters) and longer
image sequence (10 vs. 4 sequence length). Finally, suppose the
encoder’s backbone, RNN layer and the sequence length of the
DeepExplorer model are replaced by the corresponding com-
ponents of the MulVPRL framework, that is the DeepExplor-
er_MulVPRL. In that case, the results are significantly
decreased and worse than the proposed MulVPRL framework.
According to these comparisons, there are two prime summa-
ries. Firstly, the spatial-temporal representation c;, which
incorporates both steering-aware and collision-aware features,
provides less comprehensive information compared to a spatial-
temporal representation ¢, that is purely focused on either
steering-aware or collision-aware features. Secondly, supervised
contrastive learning can better enhance the capability of rep-
resentation learning for smaller-size models compared to
supervised imitation learning, and subsequently achieve better
performance than larger-size models.

Another observation from Table 3 is that the best accuracy of
collision prediction on the HDIN data set is 86.7%. This situa-
tion occurred due to the manual annotations for “Collision” and
“Non-collision” images shown as the examples in Figure 10.
The labels of “Collision” and “Non-collision” images are
determined according to the distance between the UAV and the
front obstacles, but the wall in Figure 10b is closer to the UAV
than that shown in Figure 10a and is labeled as “Non-collision.”
The model correctly predicts the situation in Figure 10a as

y;[ =Y, = 1 and thus, erroneously predicts the situation shown
in Figure 10b as y'ct =1#}Y, =0. To verify whether the
annotation error affects the capability of collision avoidance, an
experiment has been conducted by flying the UAV straight
forward to the obstacle. The UAV stopped in front of the
obstacle when the MulVPRL framework predicted the collision
probability y’ct > 0.5, which shows the annotation error does not
impact the capability of collision avoidance.

5.4 | Visualization and Statistical Analyses

In this subsection, the baseline DroNet, the recent SOTA Dee-
pExplorer and the proposed MulVPRL along with their struc-
tural variants are specifically selected as the representative
models, that is the structural variants highlighted in Table 3
“Models” column. The visualizations along with statistical
analyses of their performance are presented for discussions.

Statistical analysis can help in studying the robustness of
improvements over baseline models. Compared to the basic
p-values and confidence intervals, R? and Explained Variance
Adaptation (EVA) are similar and more appropriate for evalu-
ating the fitting performance of regression models. Same as the
baseline DroNet (Loquercio et al. 2018), this study adopts EVA
as an additional statistical metric in Table 4 for assessing
regression performance.

VAR [ytrue - ypred]

EVA=1-
VAR 3y,

17)

EVA is calculated as Equation (17) in which VAR represents the
variance. The greater the EVA, the better the alignment
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(a) "Collision" image

(b) "Non-collision" image

FIGURE 10 | (a) Actual label Y, = 1, model correctly predict yét = 1. (b) Actual label y,, = 0, model erroneously predict y;t = 1. (a) “Collision”
image, (b) “Non-collision” image. [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 4 | Metrics and results for statistical analyses.

Models Results on HDIN data set Results on DroNet data set
RMSE EVA Acc. F1 RMSE EVA Acc. F1
DroNet 0.123 0.827 85.8% 0.794 0.110 0.737 95.4% 0.895
DeepExplorer 0.085 0.924 — — 0.091 0.825 — —
DeepExplorer_ MulVPRL 0.096 0.900 — — 0.108 0.767 — —
ours MulVPRL 0.083 0.923 86.6% 0.807 0.098 0.788 96.0% 0.907

between the model's predictions and ground truths concerning
the continuous data. The intuitive visualizations are shown in
Figure 11a which respectively depicts the chronological steering
curves and distributed histograms concerning predictions and
ground truths. It can be observed that the steering predictions of
DeepExplorer, DeepExplorer MulVPRL and the proposed
MulVPRL framework align more closely with the actual steer-
ing curves. The DeepExplorer and the proposed MulVPRL
model obtained similar and optimal EVA on the HDIN data set,
and the DeepExplorer achieved the best EVA on the DroNet
data set.

As for collision prediction, the F1 score as a statistical metric
concerning both precision and recall for imbalanced data is
additionally used in Table 4 to indicate the classification per-
formance of the baseline DroNet and the proposed MulVPRL
framework. For intuitive understanding, the confusion matrices
of DroNet and MulVPRL framework are shown in Figure 11b. It
can be observed that these two models have correctly predicted all
“Collision” images on the HDIN data set while a small number of
“Non-collision” images are erroneously misclassified. These false
positive cases are consistent with situations shown in Figure 10 to
corroborate the labeling errors of collision-related images. Since
all “Collision” images are correctly classified, the MulVPRL
framework with better F1 scores will improve the capability of
collision avoidance for UAV control, that is “Non-collision” pre-
diction (y::, < 0.5) allows to go forward while “Collision” pre-

diction (y; > 0.5) requires to stop.

In addition, the Umap (McInnes et al. 2018) and t-SNE (van der
Maaten and Hinton 2008) visualization technologies are respec-
tively used to present the distributions of regression-aware

representations shown in Figure 12a and that of classification-
aware representations shown in Figure 12b. These colored rep-
resentation distributions can help to intuitively understand how
the model segregates the visual representations.

As shown in the final row of Figure 12a, the MulVPRL
framework captures the intrinsic ordered relationship between
consecutive visual prospective regression-aware representa-
tions, and the representation distributions are similar to that in
Figure 4. In comparison, the baseline DroNet model without
VPRL obtains the unsorted present regression-aware represen-
tations which are distributed in the ¥ row of Figure 12a.

The DeepExplorer model based on supervised imitation learn-
ing is also dedicated to learn the visual prospective regression-
aware representation. It achieves an improvement of 0.007
RMSE on the DroNet data set compared to the MulVPRL
framework in Table 3. Through observing the second row in
Figure 12a, the visual prospective regression-aware represen-
tation of the DeepExplorer model presents a sorted distribution
trend that is similar to the MulVPRL framework, but requires 8
times the number of parameters.

If the DeepExplorer model adopts the same components as the
MulVPRL framework but maintains its original supervised
imitation learning method, as shown in the third row of
Figure 12a, the DeepExplorer MulVPRL with fewer parameters
would struggle to sort the extracted visual prospective
regression-aware representation following the order of label
values. Comparing the representation distributions between
the DeepExplorer MulVPRL and the proposed MulVPRL
framework will remove the impact of different model structures
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FIGURE 11 | Visualizations of steering and collision predictions. (a) presents steering curves and distributed histograms concerning predictions

and ground truths. Green curves and blue histograms are predicted results while red curves and orange histograms are ground truths. (b) shows the

confusion matrices of prediction. [Color figure can be viewed at wileyonlinelibrary.com]
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and aim to only analyze the performance of obtaining visual
prospective regression-aware representations based on different
learning methods. In conclusion, the supervised contrastive
regression of the MulVPRL framework performs better than the
supervised imitation learning of DeepExplorer_MulVPRL for
sorting the representation in an order and thereby, benefits
steering prediction.

Figure 12b presents the classification-aware representation dis-
tributions of the multi-task DroNet model and MulVPRL frame-
work. According to the observations, the visual prospective
classification-aware representations obtained from the MulVPRL
framework perform clearer segregation. Therefore, it is capable of
benefiting the following MLP layers to be trained during
the second training stage described in Section 4.2 with shorter
training procedures and better classification performance.

6 | Real-World Experiments

This section will conduct real-world experiments in unknown
indoor environments using an actual UAV platform. The same
compared models in Section 5.4 are selected, that is the baseline
DroNet, SOTA DeepExplorer, DeepExplorer_ MulVPRL and the
proposed MulVPRL framework, and trained on the indoor
HDIN data set. Section 6.1 will introduce the experiment setup
while a pretest is conducted for data augmentation in
Section 6.2. The entire navigation experiments are visually and
quantitatively shown in Section 6.3. Finally, supplementary
experiments and additional discussions concerning diverse en-
vironmental conditions and agents are involved in Section 6.4.

6.1 | Experiment Setup

This section will sequentially introduce practical environments,
UAV platform and the control policy.

Environments

Figure 13 shows the top-down views of real-world practical
environments. These environments without junctions will be
mainly used to evaluate the performance of short-term reactive
control policies. Notably, the narrowest width of these corridors
is 1.4 m, and the UAV will be operated at a constant altitude
of 0.7 m.

UAV platform

Due to the indoor environments requiring the UAVs to be
capable of vertically taking off and landing, and hovering in the
same location, the rotorcraft UAVs are more suitable than
other UAV platforms. In recent years, there have been many

commercial and open-source supported quadcopters such as
Parrot AR. Drone (Parrot 2012) and Crazyflie (Bitcraze 2019),
which facilitate scientific research.

Furthermore, Palossi et al. (Palossi et al. 2019) classified the
rotorcraft UAVs into four different groups according to their
sizes and payloads in Table 5. According to this classification,
the Parrot AR. Drone 2.0 shown as Figure 14a with around
60 cm radius can be treated as a Standard-size UAV while the
Crazyflie 2.1 shown as Figure 14b with a 9.2 cm radius is re-
garded as a Nano-size UAV.

Although both Parrot AR. Drone 2.0 and Crazyflie 2.1 match
the physical constraints of the narrowest corridor, that is the
UAV's size should be smaller than Width = 1.4 m in environ-
ments of Figure 13a,b, the Parrot AR. Drone 2.0 cannot stably
hover in this place due to the wind disturbance caused by its
larger size and powerful propellers. Due to the summarized
main reasons below, the Nano-size Crazyflie 2.1 is chosen as the
experimental UAV platform. This platform equips with a
320 X 240 greyscale monocular camera and the memory size is
8M bytes.

« UAV's stability. All models for real-world experiments
focus on locomotion control rather than stabilization
control.

» Models' generalization capability. Images of the HDIN data
set were collected from Parrot AR. Drone 2.0 for training
models and should be validated on a different platform.

Control Policy

The DroNet, DeepExplorer, DeepExplorer_MulVPRL and the
proposed MulVPRL framework process a short-term image
sequence and predict the steering value y;[ and collision prob-
ability y/c[ for reactive control. y;l represents the ratio of maxi-
mum angular velocity ranging in [—1, 1] while y, means the
probability of collision within [0, 1]. Since the Crazyflie UAV is
controlled by the actual steering angular and linear forward
velocities such as 6, = 10°/s and vy, = 0.5m/s, the predicted
steering and collision values cannot be directly used. Therefore,
the following will demonstrate the command transformation of
the proposed MulVPRL framework as an example.

Based on the low-pass filter which is inspired by the original
DroNet references (Loquercio et al. 2018; Palossi et al. 2019)
shown as Equation (18), the collision probability y;l
0< y’q <1) is converted to the linear forward velocity vy,
(0 <vy, < Vjyer) by multiplying the maximum velocity Vine. as
a- y’q)Vmax. That is, a greater collision probability results to a
smaller linear forward velocity. Also, the linear forward velocity
vy, is smoothed by taking the factor @ and concerning the

t

FIGURE 12 | Visualization of representation distribution. Each row represents a corresponding model while the columns respectively present

the visualizations of representation distributions on the HDIN and DroNet datasets. Each dot in sub-figures represents an image's representation

while the color indicates the ground truth of steering values and collision labels. Specifically, the colors of dots in (a) from red warm — blue cold
correspond to the values of steering labels from low — high. The green and red dots in (b), respectively, denote the ‘Non-collision” and ‘Collision’
image labels. The proposed MulVPRL framework in (a) sorts regression-aware representations according to steering values, and better segregates
classification-aware representations in (b). [Color figure can be viewed at wileyonlinelibrary.com]
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Width=
1.4m

Scenario 2

A

Scenario 1

" A

Scenario 2

Width=1.4m

(b) Corridor 2

FIGURE 13 | Two real-world unknown corridors. (a) Corridor 1 consists of straight-forward and S-shape segments while (b) Corridor 2 includes

straight-forward, L-shape and S-shape segments. The key positions with different orientations are denoted as a colored triangle with a number within

environments, and their internal views are taken and presented on the right. [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 5 | Rotorcraft UAV classification.

Vehicle Class Size Payload
Standard-size 50 cm >1kg
Micro-size 25 cm 0.5kg
Nano-size 10 cm 0.01 kg
Pico-size 2 cm 0.001 kg

previous linear forward velocity v,,_,. The default a = 0.2
and Vo = 0.2 m/s.

Ve = (1 — vy, + oc(l - y,q)Vmax- (18)

The steering labels of the HDIN data set used for training
represent the ratios of maximum angular velocity within [-1, 1]
since the original angular velocities are divided by the default
maximum angular velocity S, = 40°/s. As a result, Equation
(19) directly transforms the predicted steering value y;[
(-1< y;[ <1) back to the actual steering angular velocity 6,
(—Smax <6 < Spmax) by multiplying the same Sy, value without
fine-tuning.

6 = y;t Smax- (19)

Finally, the proposed MulVPRL framework can be used to
control the UAV by processing the latest 4 greyscaled images
between I,_; and I, for generating the steering angular 6, and

linear forward velocities v,, as described in Algorithm 2. As for
other models, the computations of the LowPassFilter and the
Transformation respectively concerning collision and steering
predictions are the same as the MulVPRL framework according
to Equations (18) and (19).

Algorithm 2 MulVPRL framework for UAV control
Input: Latest 4 greyscaled images [[;_3, ..., I;]
Output: UAV commands [vy,, 6]
Initialized o = 0.2, Vo = 0.2m/s, Spax = 40°/s;

while iteration do
(g ¥5,] = MulVPRL([I—, ..., 1]);
Vy, < LowPassFilter (Vxiep y'ct ) Vmax) according to
Equation (18);
6, « Transformation( y;[, Smax) according to
Equation (19);
Output [vy,, 6;];

end while

Specifically, the DroNet model predicts the steering and colli-
sion values via the present image and will be respectively
transformed to steering angular and linear forward velocities
by following the procedures in Algorithm 2. In addition, the
DeepExplorer and DeepExplorer MulVPRL also follow the
procedures in Algorithm 2 by respectively processing 10 and 4
sequential images, but they do not have collision prediction y;
to be transformed to the linear forward velocity v,,. Therefore,
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(a) Parrot AR. Drone 2.0

(b) Crazyflie 2.1

FIGURE 14 | Examples of UAV platforms. (a) Parrot AR. Drone 2.0 (b) Crazyflie 2.1. [Color figure can be viewed at wileyonlinelibrary.com]

the collision prediction from the proposed MulVPRL frame-
work is combined with them, that is simultaneously executing
the MulVPRL framework for obtaining the linear forward
velocity vy, via the predicted y; based on Equation (18). Since
the DeepExplorer, DeepExplorer MulVPRL and the proposed
MulVPRL framework apply the same collision avoidance
scheme, the comparisons are fair.

6.2 | Pretest for Data Augmentation

The proposed MulVPRL framework trained on the original
HDIN data set without data augmentation is pretested in a
common L-shape corridor where the width of the corridor is
1.4m. The left and right steering trajectories are shown as the
red dashed lines in Figure 15a,b by executing Algorithm 2,
where the parameters of Equations (18) and (19) are set as
a=0.2, Ve =02m/s and Sy = 40°/s.

The UAV exhibits an overcompensation behavior when the UAV
makes left steering when approaching the bending center. As the
red dash line shown in Figure 15a. However, when the UAV ap-
proaches the bending center in the opposite direction to steer right,
the trajectory is smooth and continuous as the red dashed line
shown in Figure 15b. To investigate this abnormal behavior, that is
over-turning to the right, the distributions of actual and predicted
steering values have been depicted as a histogram in Figure 15c. It
can be observed that the distribution of actual steering values from
the original HDIN data set is imbalanced, particularly the number
of right steering values (i.e., negative values) is greater than that of
left steering values (i.e., positive values). This imbalanced data
distribution can lead to imbalanced steering prediction and right-
side overcompensation.

To address this issue, data augmentation was used by horizontal
flipping of all images in the HDIN data set including the
“Steering” and “Collision” subsets to create a horizontally
mirrored version of the HDIN data set. Since images on each
trajectory follow the temporal sequence, this horizontal flipping
does not change the image's order. By combining the mirrored
and the original HDIN datasets, the number of trajectories
containing ordered images is expanded, and the numerical
distribution of steering labels is balanced as shown in Fig-
ure 15d. The MulVPRL framework was retrained with data
augmentation and retested at the same r-shape corner, the
trajectories were plotted as green solid lines in Figure 15a,b. The
right-side overcompensation disappears and the trajectories
become smooth and continuous.

As for fair comparison, the DroNet, DeepExplorer and Dee-
pExplorer_ MulVPRL models that will be used to compare with
the proposed MulVPRL framework for analyzing the perform-
ance in real-world environments are also retrained with data
augmentation by horizontal flipping on the HDIN data set. The
results are shown in Table 6.

Since the embedded micro-controller on the Crazyflie
(Bitcraze 2019), that is the Al-deck (Bitcraze 2023), only sup-
ports 8-bit data, requiring model quantization which is not the
focus of this study, all models are executed on the Intel i7-
4600U CPU of the laptop and sends the linear forward and
angular velocities to the UAV. Therefore, Table 6 used to
present computational efficiency involves the models' inference
time [fps] which might affect the real-time performance.
Moreover, the memory requirements (Reqs.) and limitations
(Lim.) for onboard processing are shown in the final column of
Table 6. It can be observed that HyperRAM for real-time
responses has a 8.0M bytes memory limitation and thus, only
the DroNet and MulVPRL models with light-weight architec-
tures (1.3 M and 7.8 M bytes) can be deployed onboard as short-
term reactive control policies in future works.

6.3 | Performance in Corridors

The parameters in Equations (18) and (19) for converting the
predictions to actual steering angular and linear forward velo-
cities are set as & = 0.2 and S, = 40°/s for both corridors in
Figure 13. The maximum forward velocity V. = 0.2m/s is
used for experiments in Corridor 1 and changed to
Vinax = 0.3m/s for experiments in Corridor 2. Different maxi-
mum forward velocities can assist in analyzing the control
precision and reaction speed in varying environments.

The UAV takes off at the same position respectively in two
corridors. The models automatically control the UAV without
human intervention once the mission starts except in situations
when collision, being trapped at a corner or reaching the end of
the corridor. A “Landing” command from a human inspector
will be sent under these situations.

The DroNet model performs similar trajectories to the
MulVPRL framework, where both models successfully control
the UAV for reaching the end of Corridor 1 shown as the first
and fourth and trajectories in Figure 16a. Although the DroNet
model performs the worst in terms of steering and collision
predictions on the HDIN data set in Table 6, its light-weight
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MulVPRL without
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FIGURE 15 | (a)L-shape left and (b) right steering trajectories with and without data augmentation. The green solid trajectory is smoother than
the red dashed trajectory in (a) since the model trained with data augmentation. (c) and (d) show the distributed histograms of predicted and actual
steering values with and without data augmentation. The data distribution in (d) is more balanced than that in (c). (a) L-shape left steering,
(b) L-shape right steering, (c) MulVPRL model training without data augmentation, (d) MulVPRL model training with data augmentation.

[Color figure can be viewed at wileyonlinelibrary.com]

TABLE 6 | Results of models trained with flipping data augmentation along with hardware computational efficiency.
Models Results on HDIN data set Inference speed [ fps] Regs./Lim.! [bytes]
RMSE Acc.
DroNet 0.120 82.9% 5.5 1.3M/8.0M
DeepExplorer 0.094 — 1.8 107.0M/8.0 M
DeepExplorer_ MulVPRL 0.100 — 4.3 14.1M/8.0M
ours MulVPRL 0.086 84.1% 5.0 7.8 M/8.0M

Note: Regs. /Lim."Models' memory requirements and the onboard HyperRAM limitation.

architecture (1.3 M bytes) enables rapid orientation adjustment
when navigating under a lower maximum UAV velocity
(0.2 m/s). In addition, Corridor 1 only involves straight-forward
and S-shape corridors with small-angle steering which are less
than 90° and hence, the DroNet model can navigate along this
corridor without collision. However, due to the limited steering
and collision predictions and faster forward velocity (0.3 m/s),
the DroNet model exhibits insufficient steering and braking at
the large-angle L-shape corner with 90° in Corridor 2, and a
collision occurs shown in the first trajectory in Figure 16b.

The DeepExplorer obtains better steering prediction
than the DroNet model on the HDIN data set shown in
Table 6, and also utilizes the collision prediction from
the MulVPRL framework for collision avoidance. However,
it still collides on the wall at the entrance of the first
turn shown as trajectories of the second row in
Figure 16a,b. The major reason lies on its architecture with
the greatest size (107.0 M bytes) that results in the slowest
reaction speed (1.8 fps) for orientation adjustment and
deceleration.
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(a) Trajectories in Corridor 1

(b) Trajectories in Corridor 2

FIGURE 16 | The UAV takes off at x > and KA\A respectively represents collision situation and being trapped at a corner. #x& denotes that the
UAV reaches the end of corridors. Blue dashed lines, red dashed-dotted lines, yellow dotted lines and green solid lines respectively indicate the
trajectories of DroNet, DeepExplorer, DeepExplorer_MulVPRL and MulVPRL models. (a) Trajectories in Corridor 1 (b) Trajectories in Corridor 2.

[Color figure can be viewed at wileyonlinelibrary.com]

Furthermore, the DeepExplorer_MulVPRL reduces the number
of parameters compared to the DeepExplorer and thereby
improves inference speed (14.1M bytes, 4.3fpsvs. 107.0M
bytes, 1.8 fps). Though the DeepExplorer_MulVPRL model does
not obtain better steering prediction than the DeepExplorer
model in Table 6, it is able to autonomously fly for longer
trajectories in both corridors shown in the third row of
Figure 16a,b. Nevertheless, since the DeepExplorer MulVPRL
model exhibits similar errors of unexpected steering prediction
at the exits of the S-shaped corners in both corridors, the UAV
is trapped at the corner and cannot escape. Being trapped at the
corner is related to the reactive policy that only observes short-
term information and hence, exhibits a constant left-right
swaying situation.

Finally, as the short-term reactive control policy, the proposed
MulVPRL framework outperformed other compared models,
which not just obtained the best steering and collision predic-
tions on the HDIN data set in Table 6, but also achieved the
farthest trajectories with 42.7 m in Corridor 1 and 46.9 m in
Corridor 2 by respectively using 227 and 177 s for successfully
reaching the end of two corridors. Trajectories are shown in the
final row in Figure 16a,b. Table 7 shows the quantitative

performance of these four models that are experimented in two
corridors including the trajectory length and flight time.

6.4 | Supplementary Experiments and
Discussions

Although the primary focus of this paper is on UAV reactive
control and navigation, the control strategy illustrated in
Section 6.1 incorporates linear forward and steering angular
velocities (v, and 6;), which allows the MulVPRL framework to
control different types of agents such as the UGVs for move-
ment on a 2D plane. That is, the practical agent for the specific
application is not just limited to the UAV. Moreover, the
supervised contrastive learning of the MulVPRL framework can
be further developed to contrast visual samples during 3D
motions by introducing more commands such as vertical
velocity v,,, to consequently facilitate 3D control performance of
UAUVs in future works.

Moreover, two extra experiments for the MulVPRL framework
are conducted without any human intervention once the mis-
sion starts except in emergencies when the UAV collides with
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TABLE 7 | Real-world experimental performance.
Models Corridor 1 Corridor 2
Traj Len! Time? Traj Len Time
DroNet 459 m 229s 3.3m 16.3s
DeepExplorer 7.51m 37.6s 3.8m 19.1s
DeepExplorer_MulVPRL 27.3m 136s 17.1m 85.65
MulVPRL 42.7m 227s 46.9m 177s

Note: Abbreviations: Traj Len!: UAV's navigation path length; Time?: UAV's navigation time.
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FIGURE 17 | Trajectory of MulVPRL trapped at the dead-end region. The trajectory color from blue cold — red warm indicates the movement's
chronological order, and the corridor width is 1.4 m. The UAV takes off at % and eventually gets trapped at “x’\ until it runs out of power. The right
figures present the UAV's first-person views at the start and dead-end positions. [Color figure can be viewed at wileyonlinelibrary.com]

obstacles or runs out of power. Specifically, the first
experiment is conducted in an unknown corridor with
dead-end regions while the second experiment is tested in an
enclosed unknown office with randomly placed items such
as chairs, tables, clutters, and umbrella. The UAV control
procedures follow Algorithm 2 with the parameters of
a =02,V =02m/s and Sy, = 40°/s for Equations (18)
and (19) to control the UAV, which is the same parameters of
experiments in Corridor 1 in Section 6.3.

The first experiment is shown in Figure 17 in which the UAV
turns left at the first junction after taking off. This left turn is
sorely reactive control rather than selecting the best route via
long-term spatial-temporal observations since the traversable
space on the left side is greater than that on the right when
entering the junction. Subsequently, the UAV navigates to the
dead-end region of the corridor and constantly sways left and
right until running out of power. In general, the UAV suc-
cessfully flies for 23.05 m in this corridor.

Since the MulVPRL framework, as a short-term reactive control
policy, is incapable of tackling route-selection at junctions and
dead-end returning for long-term tasks in large-scale environ-
ments, current solutions include conventional map-building
and short-term, long-term integrated methods. As introductions

in Section 2.4, conventional SLAM-based map-building
algorithms can handle long-term large-scale tasks, but they
have massive computational and memory burdens. Moreover,
the current research trend is to integrate the short-term reactive
policy with a long-term policy such as CNN-based map pre-
diction, and image retrieval and localization. Specifically, these
integrated methods achieve long-term tasks in large-scale, even
dynamical environments, which not just require precise and
instantaneous reactive control commands, but also invoke the
long-term policy with updated global information at a constant
interval (e.g., 25 steps Chaplot et al. 2020; Ramakrishnan
et al. 2020).

The second experiment is illustrated in Figure 18 along with
internal views and chronological trajectory. This office size is
6.0 X 4.6 m. Unlike navigating in open spaces such as corridors
shown in Figure 13 where the observed images contain distant
visual backgrounds (i.e., depth of field) to enable the model to
perceive farther navigable spaces, the MulVPRL framework
controls the UAV flying in the enclosed space is more like a
random navigation with a collision avoidance scheme. The
UAV traveled a distance of 15.66 m from the start position by
using 123 s. However, although the UAV completed orientation
adjustment for collision avoidance at the end of the trajectory
which is shown as the top image in Figure 18, the propeller-
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FIGURE 18 | Trajectory of MulVPRL in office. The colored trajectory indicates chronological order. The UAV flies at a constant altitude of 0.7 m,
below the height of the desktop, and eventually collides on the wall due to the suction phenomenon caused by Bernoulli's principle. [Color figure can

be viewed at wileyonlinelibrary.com]

“M

1

(a) Indoor Illuminations

(b) Outdoor Illuminations

FIGURE 19 | (a) Various lighting conditions in the office. (b) Lighting conditions on vehicle roads. [Color figure can be viewed at

wileyonlinelibrary.com]|

generated airflow caused by proximity to walls and clutters
results in a suction phenomenon according to Bernoulli's
principle and thereby, the UAV's side was drawn to the wall
and occurs collision. In general, the MulVPRL framework can
control the UAV in the enclosed space, but the clutter within
narrow environments affects the UAV to be controlled as
stability as in open corridors that are free of items.

More environmental conditions are presented as the example
images in Figure 19. As for varying lighting conditions, during
the experiments in the office, the MulVPRL framework nor-
mally controlled the UAV under normal illumination and did
not move forward into the dark areas, which are shown in
Figure 19a. In addition, the MulVPRL framework was also
tested on the outdoor DroNet data set and outperformed the
baseline DroNet model presented in Table 2. This data set
involves scenarios on vehicle roads under various lighting
conditions shown in Figure 19b.

Furthermore, the DroNet model trained on its data set with
outdoor image samples (Figure 19b) has demonstrated the capa-
bility of controlling the UAV navigating along the outdoor vehicle
roads based on the “line-like” patterns (Loquercio et al. 2018).
The proposed MulVPRL framework with better performance
on the outdoor DroNet data set shown in Table 2 provides
the potential to be used in outdoor environments. Since the
application objective of this study is indoor navigation and the

MulVPRL framework was trained solely on the indoor HDIN data
set, future works will be extended to outdoor navigation.

Finally, according to all the real-world experiments in this
section, Table 8 summarizes the strengths and weaknesses of
the models involved in the comparison by illustrating differ-
ences between each other to emphasize the prime reasons.

7 | Conclusion

As an indispensable component of indoor mapless navigation
systems, the reactive control policy is expected to feature a
light-weight architecture for pursuing instantaneous respon-
siveness and high control precision. However, the recent
models based on different learning methods, such as super-
vised and contrastive learning, have encountered a bottleneck
in advancing prediction performance. Inspired by the “Mirror
Flower, Water Moon” idea to anticipate future states for en-
hancing the model's performance, this paper proposes a novel
light-weight MulVPRL framework. To the best of our knowl-
edge, this is the first attempt to integrate the VPRL with
supervised contrastive learning, which outperforms other
models whether employing VPRL or not and based on differ-
ent learning methods validating on datasets and real-world
environments.
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TABLE 8 | Summary table for models in real-world experiments.
Models Advantages Disadvantages
DroNet Light-weight architecture allows fast inference Limited prediction performance leads to

DeepExplorer

DeepExplorer_ MulVPRL

ours MulVPRL

speed for rapid reactions.

Large model with VPRL based on SIL initially
captures the intrinsic ordered relationship of
regression samples and thus benefits
prediction on datasets.

Light-weight architecture improves inference
speed compared to DeepExplorer.

Light-weight architecture with VPRL based on
MulVPRL loss function obtains optimal
prediction performance on both datasets and
real-world environments.

insufficient steering and deceleration.

Large architectural size delays reaction.

Light-weight model with VPRL based on SIL
fails to capture intrinsic ordered relationship
and hence limits prediction performance.

Short-term reactive control cannot tackle
junctions and trapped situations, which are the
common disavantages of all short-term reactive

policies.

Although the MulVPRL framework has shown competitive
performance on reactive control for indoor mapless navigation,
it sorely depends on short-term observations while regardless of
long-term historical information for large-scale environmental
tasks. This results in challenges of handling route-selection at
junctions and returning from dead-end regions. Inspired
by the short-term, long-term integrated approaches (Chaplot
et al. 2020; Ramakrishnan et al. 2020), a global policy within
a hierarchical architecture, such as image retrieval (Wei
et al. 2024; Leyva-Vallina et al. 2024) for key scenario
recognition (Arandjelovic et al. 2016; Liang et al. 2022; Li
et al. 2023), can be invoked at a constant interval to be aware of
global environmental information. As a result, our future works
will be dedicated to exploring long-term mapless control policy
and to integrating with our proposed MulVPRL framework,
consequently to accomplish tasks such as victim search and
rescue in large-scale environments.

In addition, the MulVPRL framework not just has the potential
to be used in outdoor environments even on different ground
vehicles if trained with data captured from outdoor and asso-
ciated practical agents, but also found that the model with
greater size and parameters is capable of advancing prediction
performance. According to the real-time requirements for high-
frequency agent control, our future works will develop the
advanced and larger MulVPRL framework with powerful en-
coders based on model distillation and quantization, and deploy
it to agents' onboard processors for applying in both indoor and
outdoor dynamic environments.
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