A Non-Invasive Blood Pressure Estimation Method
Based on Mamba-UNet and PPG Signals
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Abstract—Continuous blood pressure monitoring is of great
significance for the early diagnosis of cardiovascular diseases. To
address the limitations of current machine learning and deep
learning-based blood pressure (BP) prediction methods, which
rely on manual feature extraction and struggle to reconstruct
complete BP waveforms, this paper employs a continuous non-
invasive arterial BP detection model named Mamba-UNet based
on photoplethysmography (PPG) signals. The model deeply
integrates the selective state space model (Selective SSM) with the
U-Net architecture, achieving direct mapping from PPG signals
to arterial blood pressure (ABP) waveforms through end-to-end
modeling. In the encoder, the MambaConvBlock module captures
long-term temporal dependencies and individual vascular char-
acteristics of PPG signals by dynamically adjusting parameters
(A, B, C). The decoder employs a hybrid Mamba-convolution
structure, combining the global dynamic modeling capability of
SSM with the local feature extraction ability of convolution to
accurately reconstruct BP waveform details. The model design
balances the multi-scale feature integration advantages of U-Net
with the efficient long-sequence processing capability of Mamba.
Evaluated on the Sensors dataset (derived from MIMIC-III,
containing 1,131 ICU patient records), Mamba-UNet achieved
a mean absolute error (MAE) of 6.06 mmHg for diastolic blood
pressure (DBP) and 13.11 mmHg for systolic blood pressure
(SBP), outperforming models such as MLP, ResNet, and U-Net.

Index Terms—Arterial blood pressure (ABP), photoplethys-
mography (PPG), Mamba, U-Net, non-invasive.

I. INTRODUCTION

Cardiovascular diseases are one of the leading causes of
death worldwide, with the incidence continuing to rise. These
diseases are increasingly affecting younger populations and
exhibiting a trend of diverse risk factors [1]. Hypertension, as
one of the most important independent risk factors for cardio-
vascular diseases, is closely related to coronary heart disease,
stroke, heart failure, and other cardiovascular conditions [2].
Accurate and continuous blood pressure (BP) monitoring is
essential for the early detection of hypertension and abnormal
BP fluctuations, as well as for guiding disease prevention,
diagnosis, and personalized treatment. It is a key aspect in
controlling the occurrence and progression of cardiovascular
diseases [3].
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Currently, the commonly used BP measurement tools in
hospitals and homes are the mercury sphygmomanometer and
the electronic cuff-based BP monitor. These methods provide
relatively accurate results, but the cuff inflation process can
cause discomfort or even stress reactions in some individuals,
which may affect the true accuracy of the measurements. To
address these problems, cuffless BP measurement technologies
have been developed. These methods assess BP without the use
of an inflatable cuff. The advantages include greater comfort,
reduced measurement errors caused by stress reactions, and the
ability to enable non-invasive continuous monitoring, making
them a promising option for both clinical and home use.

Early cuffless blood pressure measurement methods primar-
ily included techniques based on pulse transit time (PTT),
arterial volume change detection (such as piezoelectric or pres-
sure sensors), and arterial acoustic or vibration signal analysis
[4]. In recent years, researchers have extensively explored
the application of various machine learning methods in blood
pressure prediction. Zhang et al. [5] applied the classification
and regression tree (CART) model to model blood pressure,
[6] introduced the support vector regression (SVR) algorithm
to achieve blood pressure estimation based on physiological
indicators, and [7] further used the gradient boosting decision
tree (GBDT) to build a continuous blood pressure prediction
model, showing higher prediction accuracy. These methods
offer advantages such as non-invasiveness, wearability, and
the convenience of continuous monitoring, and were widely
explored as potential replacements for traditional cuff-based
blood pressure monitors [8]. However, these approaches face
several limitations. For instance, the PTT method is highly
affected by individual differences, requires initial calibration,
and is very sensitive to posture and movement, sensor-based
methods for detecting arterial deformation have high require-
ments for sensor placement and are prone to drift and noise
interference, while audio and vibration analysis methods have
non-contact potential, the signals are weak, easily drowned
out by environmental noise, and the measurement accuracy
still needs improvement.



Compared with traditional cuffless BP methods, photo-
plethysmography (PPG)-based BP prediction offers advantages
in convenience and suitability for continuous monitoring. It
does not require pressure application, resulting in greater
comfort and suitability for frequent or long-term measure-
ments. PPG signals are easy to acquire and can be inte-
grated into wearable devices for real-time, around-the-clock
monitoring, providing a better reflection of dynamic blood
pressure changes [9]. Current approaches mainly include fea-
ture engineering combined with traditional machine learning,
and end-to-end deep learning models [10]. The former is
highly interpretable and easy to implement, but relies on
manual expertise and has limited generalizability, the latter can
automatically learn complex patterns from raw signals, making
it suitable for large-scale data modeling, and has attracted
considerable research interest in recent years.

With the advancement of deep learning, increasing attention
has been given to the use of raw PPG signals for non-invasive
and continuous BP monitoring. Convolutional neural networks
(CNN) and long short-term memory (LSTM) networks are
widely used for feature extraction and temporal modeling. The
CNN-LSTM model proposed in [11] was evaluated on the
MIMIC II database, and its results met the AAMI standards
and achieved Grade A according to the BHS standard. In [12],
LeNet-5 and U-Net autoencoders were compared, with genetic
algorithms applied to optimize their integration. The model
performed excellently in blood pressure estimation, with mean
absolute error (MAE) values of 2.54 mmHg for systolic
blood pressure (SBP) and 1.48 mmHg for diastolic blood
pressure (DBP). The Spectrotemporal ResNet model proposed
in [13] was validated on 510 participants from the MIMIC III
database, and achieved MAE values of 9.43 mmHg for SBP
and 6.88 mmHg for DBP. Although the PPG method offers
advantages in convenience and non-invasiveness, challenges
remain regarding prediction accuracy and generalization abil-
ity, requiring further optimization.

In this paper, a model named Mamba-UNet is applied,
which innovatively integrates the selective state space model
(Selective SSM) with the U-Net architecture, specifically
designed for non-invasive continuous blood pressure predic-
tion using PPG signals. The core contributions of Mamba-
UNet include employing MambaConvBlock in the encoder to
dynamically capture long-range dependencies and individual
vascular differences in PPG signals, and utilizing a hybrid
Mamba-convolution module in the decoder to accurately re-
construct blood pressure waveforms. The incorporation of
a selective mechanism allows parameters A, B, and C to
dynamically adapt to the input, effectively suppressing motion
artifact interference. Combined with hardware-aware opti-
mizations such as kernel fusion and parallel scanning, the
model enables efficient processing of million-scale sequences,
achieving five times the inference throughput compared to
Transformer-based approaches [14]. Its end-to-end architecture
directly outputs continuous blood pressure waveforms and key
parameters (systolic/diastolic pressure), while the decoder’s
multi-level feature maps enhance clinical interpretability. This

model addresses key limitations of traditional methods, such
as reliance on calibration and inefficiency in long-sequence
processing, offering a high-precision, robust deep learning
solution for real-time, non-invasive blood pressure monitoring
with significant clinical application potential.

The rest of this paper is organized as follows: Section II
provides a detailed description of the methodology used in this
study, including the dataset, data preprocessing procedures,
and the employed model architecture. Section III presents
the experimental results, covering the experimental setup and
comparisons with other methods. Section IV concludes the

paper.

TABLE I
LIST OF ABBREVIATIONS AND NOMENCLATURE

Abbreviation Full Term or Meaning
BP Blood Pressure
PPG Photoplethysmography
Selective SSM selective state space model
ABP arterial blood pressure
PTT pulse transit time
SVR support vector regression
GBDT gradient boosting decision tree
CNN Convolutional Neural Network
LSTM Long Short-Term Memory
MAE mean absolute error
SBP systolic blood pressure
DBP diastolic blood pressure
ICU intensive care unit
MSE mean squared error
ME mean error
BHS British Hypertension Society

II. METHODOLOGY
A. Data Collection

As shown in Table I, the key abbreviations and their full
definitions used throughout this paper are summarized for
reference. In this paper, the Sensors dataset was utilized, which
is a subset extracted from the MIMIC-III database and contains
records from 1,131 patients in the intensive care unit (ICU)
[15]. This dataset includes high-quality PPG and correspond-
ing arterial blood pressure (ABP) signals from the MIMIC-III
database, forming input-target signal pairs commonly used in
BP estimation research. Unlike traditional continuous signal
datasets, the Sensors dataset adopts a discrete sampling strat-
egy by retaining only two 15-second waveform segments per
patient, sampled 5 minutes apart. This approach ensures signal
diversity while maintaining a manageable dataset size. The
dataset features a medium-to-large sample scale, high inter-
individual variability, a reasonable distribution of waveform
segments, and good data standardization. This makes it well-
suited for training and evaluating deep learning models for BP
estimation, particularly for assessing model generalization and
capturing short-term physiological dynamics.

B. Data Preprocessing

To ensure high-quality data for deep learning training, the
Sensors dataset was curated by selecting records from the



MIMIC-III waveform database that simultaneously contain
invasive ABP and fingertip PPG signals, and by incorporating
subject age and gender information from the associated clinical
records. Only recordings with a minimum duration of 15
minutes were retained. From these, 10-minute resting-state
segments were extracted at 5-minute intervals to avoid data
overlap. During signal preprocessing, low-quality segments
were removed using flat segment and saturation peak detec-
tion analysis. Subsequently, the PPG signals were processed
using a 0.5-8 Hz Butterworth bandpass filter and min-max
normalization to mitigate the effects of noise and amplitude
variations. Fig. 1 presents the overall procedure, starting from
signal collection to the final estimation of blood pressure.

MIMIC-1II WAVEFORM DB LIST OF RECORDS

l
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Model
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Fig. 1. Overview of the data handling procedure.

C. Model Architecture

To predict ABP waveforms from PPG signals, we developed
and implemented a deep learning—based sequence-to-sequence
modeling framework named Mamba-UNet. As shown in Fig.
2, the model adopts a symmetric encoder-decoder structure
with skip connections to enable multi-level feature fusion.
The architecture extensively integrates Mamba modules at
various feature extraction stages to enhance temporal modeling
capabilities.

In the encoder path, the network progressively extracts
multi-scale temporal features through multiple layers of con-
volution and downsampling. At each scale, Mamba modules
are embedded to leverage their state space modeling capacity,
enabling the capture of critical patterns and long-term depen-
dencies within the signal sequences. Unlike models that con-
strain temporal modeling to deeper layers, Mamba modules are
incorporated throughout the network to capture both local and
global temporal structures, enhancing robustness in modeling
both periodic and transient dynamics.

The Mamba module is based on the SSM, which incor-
porates input-dependent dynamic parameters (e.g., A, B, C).

These allow the model to dynamically adapt the evolution of
its internal state during sequence modeling.

In contrast to traditional linear time-invariant models,
Mamba integrates optimizations such as kernel fusion and
parallel scanning, achieving high memory efficiency and real-
time inference capabilities while maintaining linear time com-
plexity. This makes the architecture particularly well-suited for
handling long physiological signal sequences.

In the decoder path, the model gradually upsamples the fea-
tures and fuses them with corresponding encoder features via
skip connections, thereby recovering the fine-grained structure
of the ABP waveform. Ultimately, the network outputs an
ABP waveform that is temporally aligned with the input PPG
signal, enabling non-invasive and continuous blood pressure
monitoring. The design of this model effectively combines the
multi-scale feature integration strength of U-Net with the effi-
cient temporal modeling power of Mamba, achieving a balance
between detail restoration and global dynamic comprehension,
and demonstrating superior performance in ABP waveform
reconstruction.
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Fig. 2. Architecture of the PPG-to-ABP Prediction Model Based on Mamba
and U-Net. (A) Overall Model Architecture. (B) Detailed Workflow of the
Mamba Module(adapted from [14]).

D. Experimental Setup

To comprehensively evaluate the performance of the pro-
posed model in the ABP estimation task, this study adopts
a 10-fold cross-validation strategy to partition the dataset.
Specifically, the dataset is evenly divided into 10 subsets. In
each iteration, one subset is selected as the test set, one as
the validation set, and the remaining eight subsets are used
as the training set, cycling through all the subsets to ensure



that the model’s generalization ability is fully validated across
different subsets.

During training, the batch size is set to 64, the initial
learning rate to 0.001, and the Adam optimizer performs the
optimization. The training runs for 50 epochs. The model uses
the mean squared error (MSE) as the objective function to min-
imize the error between the predicted and true blood pressure
values. The performance evaluation metrics for blood pressure
estimation include MAE and mean error (ME). These metrics
are used to evaluate the model’s average prediction deviation
and systematic bias, respectively, providing a comprehensive
reflection of the model’s predictive capability across different
individuals and waveform patterns.

III. RESULTS

Table II summarizes the blood pressure estimation perfor-
mance of the proposed model on the Sensor dataset. The model
achieves a MAE of 6.06 mmHg for DBP and 13.11 mmHg for
SBP. Furthermore, it shows acceptable bias levels, with ME
values of -0.91 mmHg for DBP and 1.89 mmHg for SBP.

In addition, Table II presents the DBP and SBP estimation
results of the proposed model in comparison with the British
Hypertension Society (BHS) standard. For DBP, the model
achieved a MAE of 6.06 mmHg and a ME of -0.91 mmHg,
indicating a relatively low overall deviation and minimal sys-
tematic bias. According to the BHS grading criteria, 43.21%
of DBP predictions fall within £5 mmHg, 78.3% within
+10 mmHg, and 92.6% within +15 mmHg, meeting the
threshold for Grade C performance. In contrast, the estimation
performance for SBP is notably lower, with a higher MAE
of 13.11 mmHg and an ME of 1.89 mmHg, suggesting
both greater variability and a tendency to overestimate. Only
22.42% and 48.11% of SBP predictions fall within +5 mmHg
and +10 mmHg, respectively, indicating a considerable gap
from the requirements for higher BHS grades. Overall, the
model demonstrates promising accuracy in DBP estimation,
while further refinement is needed to improve SBP prediction.

TABLE II
EVALUATION OF OUR MODEL’S DBP AND SBP ESTIMATION
PERFORMANCE COMPARED WITH BHS STANDARDS.

Standard or Protocol Metrics DBP SBP
Our results MAE 6.06 13.11
ME -0.91 1.89
< 5 mmHg (%) 4321 | 2242
BHS < 10 mmHg (%) 78.3 48.11
< 15 mmHg (%) 92.6 | 63.57
Grade C -

Fig. 3 and Fig. 4 show the Bland-Altman and correlation
plots comparing the predicted and reference values of DBP and
SBP. The Bland-Altman plot is used to assess the agreement
between the predicted and reference values, with the dashed
lines representing the 95% confidence interval (ME £ 1.96 x
SDE). From the plot, it is evident that most of the estimation
points for both SBP and DBP fall within the 95% limits,
indicating that the model exhibits good bias control and system

consistency in its predictions. This suggests that the predicted
values are generally in close agreement with the reference
values. Furthermore, the correlation plot provides additional
evidence supporting the reliability of the model’s predictions,
as it shows a strong linear relationship between the predicted
and true values, further confirming the accuracy and robustness
of the model.
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Fig. 3. Bland-Altman plot and linear regression plot between DBP estimated
blood pressure values and reference blood pressure values.

To evaluate the performance of the employed model, we
compared it with several representative blood pressure esti-
mation methods based on machine learning and deep learning
from existing research. In terms of deep learning methods,
we implemented several classical networks that have shown
strong performance in blood pressure estimation tasks, in-
cluding MLP, ResNet, and U-Net. These models have been
demonstrated in previous literature to have good potential
for non-invasive blood pressure estimation. All comparison
methods were evaluated using the same data splitting scheme,
training, validation, and testing processes as those used for
the employed model, ensuring fairness and consistency in the
comparisons. As shown in Table III, the employed model
outperforms these methods in several performance metrics,
further validating its effectiveness and leading performance
in blood pressure estimation tasks.

The results in the table indicate that the employed model
performs relatively well in both SBP and DBP estimation.
It achieves the lowest MAE among all models, with 13.11
for SBP and 6.06 for DBP, demonstrating a clear advantage
in prediction accuracy. Although its ME for SBP is 1.89,
suggesting a slight overestimation, the overall predictions are
closer to the true values. For DBP, the ME is -0.91, indicating
a slight underestimation, yet the error remains smaller than
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Fig. 4. Bland-Altman plot and linear regression plot between SBP estimated
blood pressure values and reference blood pressure values.

TABLE III
COMPARISON OF DIFFERENT ALGORITHMS FOR SBP AND DBP
ESTIMATION PERFORMANCE.

Algorithm | SBP Estimation | DBP Estimation
MAE ME MAE ME
MLP 16.05 -0.50 7.67 -0.19
ResNet 17.37 -1.21 8.42 -0.77
U-Net 15.23 -1.94 7.35 -0.52
Proposed 13.11 1.89 6.06 -0.91

that of the other models. In contrast, ResNet and U-Net
exhibit moderate performance on both metrics, with noticeable
prediction bias. MLP shows smaller bias but higher overall
error. Overall, the model demonstrates superior robustness and
accuracy in both SBP and DBP estimation tasks.

IV. CONCLUSION

This paper employed Mamba-UNet for PPG-based BP es-
timation. The encoder applied a MambaConvBlock to capture
long-range temporal dependencies and vascular variability,
while the decoder incorporated a hybrid Mamba-convolution
module for accurate BP waveform reconstruction. A dy-
namic selection mechanism helps suppress motion artifacts,
and hardware-aware design improves computational efficiency.
Evaluated on the Sensors dataset (derived from MIMIC-III,
with 1,131 ICU patient signal pairs), Mamba-UNet achieved
a MAE of 6.06 mmHg for DBP and 13.11 mmHg for
SBP, with low bias (ME: -0.91 for DBP, 1.89 for SBP).
Compared to MLP, ResNet, and U-Net models, Mamba-
UNet showed superior accuracy. However, SBP estimation
still requires improvement to meet clinical standards. Nonethe-
less, Bland-Altman and correlation analyses confirmed strong

agreement between predicted and reference BP values, high-
lighting Mamba-UNet’s potential for real-time, non-invasive
BP monitoring. These results indicate that Mamba-UNet holds
strong potential for deployment in wearable health monitoring
devices, enabling continuous and comfortable non-invasive BP
tracking in both clinical and home environments.
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